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1 Introduction

Interest in cointegration analysis has led to the development of a large number

of testing procedures to determine the presence and rank of cointegration

in nonstationary multivariate systems. Recently interest has partly moved

away from the standard vector error correction model towards other possible

generating mechanisms. An example is the threshold error correction model

whose theoretical properties are still largely unknown but which has been

used in a number of empirical applications (see e.g. Balke and Fomby (1997)).

This paper suggests a new nonparametric testing procedure for determin-

ing the rank of cointegrated systems to complement procedures by Shintani

(2001), Poskitt (2000), Saikkonen and Luukkonen (1997) and Bierens (1997).

The procedure relies on two steps. The first step involves estimation of the

long run coefficient matrix of the infinite MA representation of the differences

of the nonstationary process. The second step which forms the main part of

the innovation of the paper is the use of a test of rank on the estimate of

the long run coefficient matrix. We use the Cragg and Donald (1996) test of

rank. This test requires a consistent and asymptotically normally distributed

estimate of the matrix in whose rank we are interested and an estimate of its

covariance matrix. One major advantage of the new procedure is that unlike

any other nonparametric testing method it tests for r against an alternative

of r − 1 rather than r + 1 cointegrating vectors. As argued by Snell (1999)

such a test is preferable to the standard tests for economic data as the null

of more cointegation usually follows from a priori economic reasoning.

2 Theory

In general terms we follow the setup of Bierens (1997). Consider the m-

variate unit root process with drift xt = µ+ xt−1 + εt, t = 1, . . . , T , where εt

is a zero mean stationary process and µ is a vector of drift parameters. The
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Wold decomposition can be used to write the process εt as

εt =
∞∑
i=0

Ciξt−i = C(L)ξt

where ξt is an m-variate white noise process and C(L) is a square q-dimensional

matrix of lag polynomials.

We make the following assumptions:

Assumption 1 εt is a stationary and ergodic process with finite fourth mo-

ments.

Assumption 2 ||Ci|| ∼ ci as i → ∞, for some c < 1.

The first assumption guarantees that the Wold decomposition holds for the

process ut. The second assumption describes the limit behaviour of the

seqeunce Ci. Cointegration is assumed to imply that the matrix C(1) is of

reduced rank. If r∗ is the rank of C(1), the cointegration rank of the system

is r = m − r∗. Our aim is to obtain a
√
T -consistent and asymptotically

normal estimate of the matrix C(1) and apply a test of rank on this matrix

to determine its rank. We achieve this as follows: We firstly estimate a long

(to be defined below) error correction model of the form

∆xt = µ + D0xt−1 +
k∑

i=1

Di∆xt−i + ηt (1)

An infinite ECM representation of the nonstationary system is guaranteed

to exist under assumption 2 (see Banerjee, Dolado, Galbraith, and Hendry

(1993, Chapter 8)). The behaviour of Di as i → ∞ mirrors that of Ci. Below

we will give conditions for k that guarantee consistent estimation of ξt via η̂t

at appropriate rates. We then use η̂t in

∆xt = µ +
k∑

i=1

Ciη̂t−i + ζt (2)

3



to obtain consistent estimates of Ci, i = 1, . . . , k and therefore of C(1) =∑∞
i=1 Ci. We then apply the Cragg and Donald test of rank to the estimate

of C(1), ˆC(1). By the arguments of Berk (1974), if the following two as-

sumptions on the permitted rate of increase of k apply then the parameter

estimates of the long autoregression are
√
T consistent.

Assumption 3 k3/T → 0, and k → ∞ as T → ∞.

Assumption 4 � c > 0, r > 0 such that ck > T 1/r

Assumption 3 ensures that the rate at which regressors are added to the

regression is low enough not to introduce excessive variation in the parameter

estimates. Assumption 4 ensures that the number of regressors left out of the

regression is of negligible significance for the
√
T -consistency of the parameter

estimates. Lower rates than those postulated in Assumption 4 such as a

logarithmic rate ensure consistency of the parameter estimates as long as

k → ∞ but at a lower rate of convergence1. Then the following result may

be shown

Theorem 1 Under assumptions 1-4, the estimate of C(1) obtained from (2)

is consistent at rate
√
T and asymptotically normally distributed under the√

T normalisation.

The proof of this theorem may be found in the appendix.

Next we use the Cragg and Donald test of rank to determine the rank

of C(1). The procedure is based on the transformation of the matrix C(1)

using Gaussian elimination with complete pivoting2. r∗ steps of Gaussian

elimination with full pivoting on matrix C(1) amounts to the following op-

erations:

Qr∗Rr∗Qr∗−1Rr∗−1 . . . Q1R1C(1)L1 . . . Lr∗−1Lr∗ =

[
Σ11(r

∗) Σ12(r
∗)

0 Σ22(r
∗)

]
1It is interesting to note that a power logarithmic rate for k, i.e. k ∼ [ln(T )]α, α > 1

is enough for the result
2For details on Gaussian elimination with complete pivoting see Cragg and Donald

(1996).
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where Ri and Li are pivoting matrices for step i and Qi are Gauss transfor-

mation matrices. The pivoting matrices used to perform the first r∗ steps of

Gaussian eliminination are applied to C(1) to obtain the following relation

Rr∗Rr∗−1 . . . R1C(1)C1...Lr∗−1Lr∗ = RC(1)L = F =

[
F11(r

∗) F12(r
∗)

F21(r
∗) F22(r

∗)

]

where F is partitioned accordingly, i.e. F11(r
∗) is of dimension r∗ × r∗. Note

that in this case F11(r
∗) has full rank, under the null hypothesis that r∗

is equal to the true rank. It then follows, see Cragg and Donald (1996),

that F22(r
∗)− F21(r

∗)F−1
11 (r∗)F12(r

∗) = 0. The estimated counterpart of the

above relation, i.e. F̂22−F̂21F̂
−1
11 F̂12 = Λ̂22(r

∗), may be used as a test statistic

of the hypothesis that the rank of C(1) is r∗. Under regularity conditions,

including the requirement that the covariance matrix of the asymptotically

normally distributed matrix
√
Tvec(Ĉ(1) − C(1)), V, has full rank, we can

show, that, under H0,
√
Tvec(Λ̂22(r

∗)) d→ N(0,ΓV Γ′) where Γ = Φ2 ⊗ Φ1

and Φ1 =
[
−F̂21F̂

−1
11 Im−r∗

]
R, Φ2 =

[
−F̂ ′

12F̂
−1′
11 Im−r∗

]
C ′ and d→ denotes

convergence in distribution. Then, ξ̂ = Tvec Λ̂22(r
∗)′(Γ̂V̂ Γ̂′)

−1
vec Λ̂22(r

∗) d→
χ2

(m−r∗)2 where Γ̂ and V̂ are the sample estimates of Γ and V and χ2
l denotes

the χ2 distribution with l degrees of freedom.

A sequential application of the Cragg and Donald test of rank can pro-

vide a consistent estimate of the rank of C(1) if the significance level used

in the test converges to zero as the number of observations tends to infinity

(See Hosoya (1989)). For other applications see Camba-Mendez, Kapetan-

ios, Smith, and Weale (2000) and Camba-Mendez and Kapetanios (2001).

We also note in passing that we can use our results to get nonparametric

estimates of the cointegrating vectors β since β′C(1) = 0 and we have a

consistent estimate of C(1).

3 Monte Carlo

We consider a number of experiments. We assume that the m dimensional

I(1) process, yt may be represented by the following nonstationary VAR(p)
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model

yt = Φ1yt−1 + . . . + Φpyt−p + εt

Then, the following error correction representation may be obtained.

∆yt = Πyt−1 + Ψ1∆ yt−1 + . . . + Ψp−1∆yt−p+1 + εt (3)

where Π = Φ1 + . . . + Φp − Im and Ψs = −[Φs+1 + . . . + Φp]. Cointegration

implies that the rank, r, of Π is greater than zero but less than m. We

concentrate on a multivariate model with 5 variables. We control the rank of

the coefficient matrix, Π in the error correction representation by specifying

the vector of its eigenvalues. 5 different vectors are considered. They are

given in Table 1.

We construct a standard normal random matrix of eigenvectors, E which

are almost surely linearly independent. These are transformed into an or-

thonormal basis, Ẽ, using the Gram-Schmidt process. The coefficient matrix

is then given by ẼΛẼ ′ where Λ is a diagonal matrix containing the eigenvalues

of the required coefficient matrix. We consider two different lag structures.

In experiments labelled A0-A4 the lag order is set to one and the matrix

Π is constructed as above. In experiments B0-B4, the lag order is set to 2

and the matrix Ψ1 is constructed as above but with full rank and all eigen-

values equal to 0.2. Using these matrices and random normal disturbances

generated by the GAUSS random number generator with identity covariance

matrix a sample from a process following the error correction representation

in (3) is obtained. However, the class of finite order VECM models is not

the most appropriate class to consider for nonparametric procedures. We

therefore also consider the following model

∆yt = F (∆yt−1)Πyt−1 + εt (4)

where we allow two forms for F (.). We set F (∆yt−1) = 1 − e−(
∑m

i=1 ∆yi,t−1)2

and F (∆yt−1) = 1{|∑m
i=1 ∆yi,t−1| > r}, r = 2. The rest of the specification

of the model is as before. These modifications lead to nonlinear VECM
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models where the speed of convergence to equilibrium depends on ∆yt−1. The

first model is inspired by univariate smooth transition autoregressive (STAR)

models whereas the other comes from self-exciting threshold autoregressive

(SETAR) models. We carry out exactly the same experiments as in A0-A4 for

the testing procedures using these models leading to experiment C0-C4 and

D0-D4. The sample sizes considered are: 200, 400 and 1000. For each Monte

Carlo experiment, 500 replications have been carried out. The significance

level for all the tests has been set to 95%. We choose to set k (the order of

the long autoregression) quite high to obtain a good approximation of the

matrix C(1). We set it to αTT
1/3−0.01 where α200 = 4, α400 = α1000 = 2

The motivation of the rate is obvious from the theoretical arguments. The

choice of α follows experimentation and was chosen to be as high as possible

without causing collinearity problems.

We also consider the rank determination procedures dicussed by Bierens

(1997) (λmin), Saikkonen and Luukkonen (1997) (no deterministic compo-

nents are considered), Poskitt (2000) and Shintani (2001) (we use the test

P ∗(n, s), set K = M = 4, and use the Parzen kernel) denoted by SL, POS

and SH respectively. In Tables 2-5 below we provide the mean and mean

square error of the rank estimate obtained by the tests.

As we can see from the results no single test dominates all others in all

the experiments considered. Our test does very well for high cointegration

ranks as expected, dominating the other procedures. It can compete on

equal terms with the other procedures overall. In a few cases the MA test

does worse for 400 observations compared to 200 observations. Nevertheless,

its performance is best for 1000 observations as expected by the asymptotic

results.

4 Conclusion

This paper provides a new nonparametric procedure for determining the coin-

tegratio rank in nonstationary multivariate series. This procedure requires
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only mild regularity assumptions for the stochastic process under investiga-

tion and is otherwise nonparametric. We establish the asymptotic properties

of the new testing procedure and carry out a relatively extensive Monte Carlo

analysis which shows that the new test can compete with extant nonpara-

metric procedures. One major advantage of the new procedure is that unlike

any other nonparametric testing method it tests for r against an alternative

of r − 1 rather than r + 1 cointegrating vectors. As argued by Snell (1999)

such a test is preferable to the standard tests for economic data as the null

of more cointegation usually follows from a priori economic reasoning.

Appendix

Lemma 1 The estimate of ξt given by η̂t from (1) is T 1/2−1/r′-consistent.

Proof of Lemma 1 The estimate of ξt given by η̂t is T 1/2−1/r′-consistent in the
sense ξt − η̂t = op(T−1/2+1/r′),∀t,∀r′ < r as we now show.

η̂t − ξt = ∆xt − µ̂− D̂0xt−1 −
k∑

i=1

D̂i∆xt−i −∆xt + µ+D0xt−1 +
∞∑
i=1

Di∆xt−1

or

η̂t − ξt = (µ̂− µ) + (D̂0 −D0)xt−1 +
k∑

i=1

(D̂i −Di)∆xt−i +
∞∑

i=k+1

Di∆xt−i

By results of Saikkonen and Luukkonen (1997) the first two terms are Op(T−1/2).
The third term can be bounded in absolute value bymaxi||D̂i−Di||kmaxi||∆xt−i||
which by the properties of maxima of infinite Op(T−1/2) and Op(1) random se-
quences may be seen to be equal to a Op(T−1/2+1/r1/r2(ln(T ))2) = op(T−1/2+1/r′)
term where r′ < r. The above holds in L2 norm as well as in probability. The
fourth term is o(T−1/2) by assumption 2. QED

Proof of Theorem 1 We consider the following regression

∆xt = µ+
k∑

i=1

Ciη̂t−i + ψt

First of all we note that ||C(1) − I − ∑k
i−1Ci|| = O(ck) = o(T−α),∀α > 0. Let

C = (C1, . . . , Ck). Then, Ĉ = ∆X ′Ĥ(ĤĤ ′)−1, where Ĥt = (1, η̂′t−1, . . . , η̂
′
t−k)

′,

Ĥ = (Ĥ1, . . . , ĤT )′ and ∆X = (∆x1, . . . ,∆xT )′. Define also
ˆ̂
C = ∆X ′H(HH ′)−1,
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where Ht = (1, ξ′t−1, . . . , ξ
′
t−k)

′ and H = (H1, . . . , HT )′. The asymptotic distri-

bution of
√
T ( ˆ̂C − C) is straightforward to obtain, under assumptions 1, 3 and

4 and from this the asymptotic distribution of ˆ̂C(1) = Im + F ˆ̂C
′
follows, where

F = (O(1×m), Im ⊗ ι′), ι = (1, . . . , 1)′. We need to show that ˆ̂C − Ĉ = op(1). But

in fact, it is easy to show the stronger result that
√
T ( ˆ̂C − C) − √

T (Ĉ − C) =
op(T−1/r) since (i) ||1/√T (∆X ′Ĥ−∆X ′H)|| = op(T−1/r) and (ii) ||(1/TĤ ′Ĥ)−1−
(1/TH ′H)−1|| = op(T−1/r). To see (i) we have

||1/
√
T (∆X ′Ĥ −∆X ′H)|| =

∣∣∣∣∣
∣∣∣∣∣1/

√
T

T∑
t=1

(∆xtĤ
′
t −∆xtH

′
t)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣1/

√
T

T∑
t=1


∆xt


 k∑

j=1

∆x′t−j

(
D̂j −Dj

)′
+

∞∑
j=k+1

∆x′t−jD
′
j







∣∣∣∣∣∣
∣∣∣∣∣∣ =∣∣∣∣∣∣

∣∣∣∣∣∣
k∑

j=1

{
(D̂j −Dj)′

[
1/
√
T

T∑
t=1

∆xt∆x′t−j

]}
+

∞∑
j=k+1

D′
j

[
1/
√
T

T∑
t=1

∆xt∆x′t−j

]∣∣∣∣∣∣
∣∣∣∣∣∣ =∣∣∣∣∣∣

∣∣∣∣∣∣
k∑

j=1

√
T (D̂j −Dj)′1/T

T∑
t=1

∆xt∆x′t−j

∣∣∣∣∣∣
∣∣∣∣∣∣+ op(T−α) ≤

∣∣∣∣∣∣
∣∣∣∣∣∣

k∑
j=1

√
T (D̂j −Dj)′

∣∣∣∣∣∣
∣∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣1/T

T∑
t=1

∆xt∆x′t−j

∣∣∣∣∣
∣∣∣∣∣+ op(T−α), ∀α > 0

1/T
∑T

t=1∆xt∆x′t−j converges to its non zero expectation, each of
√
T (D̂i −Di)

is Op(1) and therefore the whole term is op(T−1/r). (ii) follows from similar ar-
guments as above and the facts that, firstly for positive definite matrices A and
B, if A − B = op(T a) then A−1 − B−1 = op(T a) for all finite a, and secondly, if
A− Â = op(T a) and B − B̂ = op(T a) then AB − ÂB̂ = op(T a).

Therefore , Ĉ is consistent for C and therefore if we develop a central limit the-
orem for for 1/

√
T (∆X ′Ĥ) or equivalently for 1/

√
T

∑T
t=1∆xi,tη̂i,t−j i = 1, . . . ,m,

j = 1, . . . , k we have proven that vec(Ĉ), is asymptotically normal. A straightfor-
ward way is to prove that η̂it is a near-epoque dependent (NED) process on ξt and
then use a central limit theorem for NED processes on mixing processes.

A stochastic process yt is near epoque dependent in Lυ-norm (Lυ-NED) of
size −α on {zt}∞−∞, where ||.||υ denotes Lυ-norm if, for a stochastic process
{zt}∞−∞ defined on a probability space (Ω,F , P ), a sequence of σ-fields F t+m

t−m =
σ(zt−m, . . . , zt+m) and for υ > 0, yt satisfies supt||yt − E(yt|F t+m

t−m )||υ ≡ vm and
vm = O(m−α). The NED property focuses on the relationship between the process
{yt} and the underlying process {zt}. When the underlying process, {zt}, is mix-
ing, the NED property is used to extend results on limit laws which hold for mixing
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processes to the process {yt} which may not be mixing. The fact which permits
this extension is that NED processes on mixing processes are, under regularity
conditions, mixingales.

The main condition to be satisfied for the NED central limit Theorem 24.7 of
Davidson (1994) is that η̂it is NED on ξt of size -1. However, closer examination
of the proof of that theorem via Lemma 24.8 and Corollary 17.6 and the fact that
the error sequence ξt is mixing of any size due to independence suggests that the
results of the theorem hold for NED processes of size smaller than −1/2. To show
that η̂t is L2-NED on ξt we need to show that (η̂it − ξit)2 is of stochastic order
T−α for all −d < α, for some d < −0.5. But this follows from the above since
η̂it − ξit = op(T−1/2+1/r) for all r > 0 and any r > 0 is allowed by Assumption 4.
Further, we know that ∆xt is NED of arbitrary size on ξt because of assumption
2. The product of two NED processes is NED with size the minimum of the sizes
of the two NED processes as shown in Theorem 17.9 of Davidson (1994). We
therefore see that the estimate of the matrix C(1) has, suitably normalised, an
asymptotic normal distribution. It is easy to see that the asymptotic covariance
matrix may be obtained from standard regression results.

References

Balke, N. S., and T. B. Fomby (1997): “Threshold Cointegration,” Interna-
tional Economic Review, 38(3), 627–645.

Banerjee, A., J. Dolado, J. W. Galbraith, and D. F. Hendry (1993): Co-
Integration, Error-Correction, and the Econometric Analysis of Non-Stationary
Data. Oxford University Press.

Berk, K. N. (1974): “Consistent Autoregressive Spectral Estimates,” Annals of
Statistics, 2(3), 489–502.

Bierens, H. (1997): “Nonparametric Cointegration Analysis,” Journal of Econo-
metrics, 77, 379–404.

Camba-Mendez, G., and G. Kapetanios (2001): “Testing the Rank of the
Hankel Covariance matrix: A Statistical Approach,” Institute of Electrical and
Electronic Engineers Transactions on Automatic Control, 46(2), 331–336.

Camba-Mendez, G., G. Kapetanios, R. J. Smith, and M. R. Weale (2000):
“Tests of Rank in Reduced Rank Regression Models,” Forthcoming in Journal
of Business and Economic Statistics.

Cragg, J. G., and S. G. Donald (1996): “On the Asymptotic Properties of
LDU-Based Tests of the Rank of a Matrix,” Journal of the American Statistical
Association, 91(435), 1301–1309.

10



Davidson, J. (1994): Stochastic Limit Theory. Oxford UNiversity Press.

Hosoya, Y. (1989): “Hierarchical Statistical Models and a Generalised Likelihood
Ratio Test,” Journal of the Royal Statistical Society B, 51(3), 435–448.

Poskitt, D. S. (2000): “Strongly Consistent Determination of Cointegration
Rank Via Canonical Correlations,” Journal of Business and Economic Statistics,
18, 71–90.

Saikkonen, P., and P. Luukkonen (1997): “Testing Cointegration in Infinite
Order Vector Autoregressive Processes,” Journal of Econometrics, 81(1), 93–
126.

Shintani, M. (2001): “A Simple Cointegration Rank Test Without Vector Au-
toregression,” Journal of Econometrics, 105, 337–362.

Snell, A. (1999): “Testing for r versus r − 1 Cointegrating Vectors,” Journal of
Econometrics, 88, 151–191.

11



Table 1: Eigenvalues used to generate coefficient matrices

Experiment
1 2 3 4 5

1 0.0 -0.5 -0.6 -0.7 -0.6
2 0.0 0.0 -0.3 -0.7 -0.4
3 0.0 0.0 0.0 -0.7 -0.2
4 0.0 0.0 0.0 0.0 -0.1
5 0.0 0.0 0.0 0.0 0.0
r 0 1 2 3 4

Table 2: Mean and MSE of Estimated Rank for Experiments A

Test Exp MA Test
Mean MSE

200 400 1000 200 400 1000
A0 1.906 1.628 0.000 4.424 3.606 0.000
A1 1.198 1.280 0.004 2.244 2.273 0.004

MA A2 0.452 1.010 0.010 0.970 1.475 0.010
A3 0.086 0.760 0.008 0.695 0.760 0.008
A4 -1.088 -0.004 -0.002 1.938 0.004 0.002
A0 1.058 0.402 0.124 1.900 0.583 0.136
A1 0.230 0.012 0.130 0.747 0.341 0.154

SL A2 -0.604 -0.248 0.074 1.118 0.545 0.106
A3 -0.928 -0.078 0.062 1.690 0.166 0.066
A4 -2.010 -0.366 0.056 4.976 0.479 0.056
A0 0.114 0.006 0.000 0.114 0.006 0.000
A1 0.060 0.004 0.000 0.060 0.004 0.000

POS A2 0.016 0.000 0.000 0.016 0.000 0.000
A3 0.012 0.000 0.000 0.012 0.000 0.000
A4 -0.928 -0.386 0.000 1.241 0.403 0.000
A0 0.282 0.284 0.262 0.286 0.288 0.266
A1 -0.724 -0.714 -0.628 0.728 0.722 0.649

BI A2 -1.670 -1.658 -1.548 3.014 2.978 2.665
A3 -2.594 -2.508 -2.288 6.995 6.577 5.513
A4 -3.624 -3.558 -3.414 13.380 12.919 11.943
A0 0.000 0.000 0.000 0.000 0.000 0.000
A1 -0.998 -0.920 0.000 0.998 0.920 0.000

SH A2 -1.946 -1.006 0.000 3.838 1.106 0.000
A3 -1.786 -0.142 0.000 3.611 0.142 0.000
A4 -3.354 -0.952 0.000 11.647 1.152 0.000
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Table 3: Mean and MSE of Estimated Rank for Experiments B

Test Exp MA Test
Mean MSE

200 400 1000 200 400 1000
B0 1.648 0.990 0.000 3.349 1.551 0.000
B1 0.966 0.680 0.000 1.692 0.913 0.000

MA B2 0.344 0.512 0.000 0.845 0.593 0.000
B3 -0.158 0.376 0.000 0.792 0.376 0.000
B4 -1.244 -0.002 0.000 2.354 0.002 0.000
B0 1.172 0.348 0.174 2.246 0.561 0.222
B1 0.308 0.062 0.098 0.898 0.371 0.102

SL B2 -0.476 -0.118 0.076 1.118 0.371 0.092
B3 -0.814 -0.010 0.064 1.496 0.150 0.072
B4 -1.670 -0.168 0.052 3.936 0.276 0.052
B0 0.014 0.002 0.000 0.014 0.002 0.000
B1 0.004 0.000 0.000 0.004 0.000 0.000

POS B2 0.002 0.000 0.000 0.002 0.000 0.000
B3 0.000 0.000 0.000 0.000 0.000 0.000
B4 -1.402 -0.720 -0.012 2.271 0.817 0.012
B0 0.242 0.296 0.242 0.242 0.296 0.246
B1 -0.716 -0.680 -0.608 0.716 0.684 0.612

BI B2 -1.694 -1.640 -1.580 3.086 2.920 2.757
B3 -2.604 -2.466 -2.292 7.028 6.359 5.521
B4 -3.620 -3.546 -3.448 13.344 12.835 12.185
B0 0.000 0.000 0.000 0.000 0.000 0.000
B1 -1.000 -0.870 0.000 1.000 0.870 0.000

SH B2 -1.870 -0.824 0.000 3.610 0.840 0.000
B3 -1.542 -0.068 0.000 2.767 0.068 0.000
B4 -2.872 -0.624 0.000 8.853 0.665 0.000
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Table 4: Mean and MSE of Estimated Rank for Experiments C

Test Exp MA Test
Mean MSE

200 400 1000 200 400 1000
C0 1.882 1.604 0.000 4.267 3.530 0.000
C1 1.148 1.256 0.004 2.082 2.245 0.004

MA C2 0.354 1.068 0.002 0.960 1.589 0.006
C3 -0.142 0.744 0.012 0.808 0.748 0.012
C4 -1.298 -0.022 -0.108 2.387 0.022 0.108
C0 1.114 0.390 0.156 2.112 0.591 0.192
C1 0.158 -0.016 0.102 0.671 0.465 0.130

SL C2 -0.662 -0.416 0.060 1.292 0.657 0.072
C3 -1.096 -0.110 0.046 2.058 0.299 0.054
C4 -2.216 -0.658 0.058 6.086 1.031 0.058
C0 0.116 0.010 0.000 0.116 0.010 0.000
C1 0.058 0.012 0.000 0.058 0.012 0.000

POS C2 -0.002 0.000 0.000 0.058 0.000 0.000
C3 0.004 0.000 0.000 0.004 0.000 0.000
C4 -1.470 -1.074 -0.160 2.507 1.579 0.160
C0 0.244 0.258 0.284 0.248 0.262 0.288
C1 -0.726 -0.704 -0.692 0.726 0.704 0.696

BI C2 -1.688 -1.694 -1.630 3.068 3.082 2.898
C3 -2.606 -2.544 -2.432 7.030 6.741 6.185
C4 -3.652 -3.608 -3.504 13.564 13.260 12.573
C0 0.000 0.000 0.000 0.000 0.000 0.000
C1 -1.000 -0.986 -0.006 1.000 0.986 0.006

SH C2 -1.992 -1.326 -0.008 3.976 1.998 0.008
C3 -2.252 -0.448 0.000 5.481 0.453 0.000
C4 -3.832 -1.668 -0.030 14.836 3.153 0.038
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Table 5: Mean and MSE of Estimated Rank for Experiments D

Test Exp MA Test
Mean MSE

200 400 1000 200 400 1000
D0 1.888 1.596 0.000 4.297 3.526 0.000
D1 1.028 1.164 -0.340 1.773 1.993 0.340

MA D2 0.046 0.742 -0.898 0.808 1.263 1.203
D3 -0.748 0.638 -0.004 1.386 0.671 0.028
D4 -1.892 -0.634 -2.180 4.386 0.915 5.205
D0 1.114 0.406 0.156 2.084 0.679 0.180
D1 0.044 -0.456 -0.102 0.766 0.665 0.230

SL D2 -0.990 -1.108 -0.350 1.732 1.961 0.499
D3 -1.736 -0.994 0.068 3.858 1.727 0.080
D4 -3.034 -2.666 -0.600 9.863 8.016 0.877
D0 0.150 0.014 0.000 0.154 0.014 0.000
D1 -0.638 -0.606 -0.104 0.663 0.606 0.104

POS D2 -1.448 -1.434 -0.848 2.441 2.359 0.940
D3 -1.660 -0.860 -0.012 3.726 1.810 0.012
D4 -3.528 -3.452 -2.910 12.809 12.297 8.907
D0 0.292 0.250 0.270 0.292 0.254 0.274
D1 -0.744 -0.738 -0.746 0.744 0.738 0.746

BI D2 -1.714 -1.720 -1.692 3.146 3.160 3.076
D3 -2.674 -2.652 -2.654 7.378 7.260 7.274
D4 -3.714 -3.684 -3.610 13.998 13.792 13.274
D0 0.000 0.000 0.000 0.000 0.000 0.000
D1 -1.000 -1.000 -0.982 1.000 1.000 0.982

SH D2 -2.000 -2.000 -1.302 4.000 4.000 1.926
D3 -2.998 -2.566 -0.084 8.990 6.959 0.084
D4 -4.000 -3.986 -1.866 16.000 15.902 3.751

15



This working paper has been produced by
the Department of Economics at
Queen Mary, University of London

Copyright © 2003 George Kapetanios
All rights reserved. 

Department of Economics 
Queen Mary, University of London
Mile End Road
London E1 4NS
Tel: +44 (0)20 7882 5096 or Fax: +44 (0)20 8983 3580
Email: j.conner@qmul.ac.uk
Website: www.econ.qmul.ac.uk/papers/wp.htm


