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two facts: first, that over time statistical agencies revise and improve published
data, so that observations on more recent events are those that are least well
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1 Introduction

This paper explores the consequences for forecasting of two facts: first, that over time,

statistics agencies revise and (presumably) improve observations on economic data, meaning

that observations on the most recent data are typically the least well measured. Second, that

economies are such that observations on the most recent realisations of economic variables

contain the largest signal about future values of those variables.1

There is now a large literature that attempts to examine how these facts affect forecasting

and monetary policymaking. We will not attempt a survey in this paper, but some key

strands of research are these:2 real-time data sets that enable economists to study the

properties of different vintages of data relevant to policymaking have been compiled by

Croushore and Stark (2001) for the US, and by Eggington, Pick, and Vahey (2002), Castle

and Ellis (2002) and Patterson and Hervai (1991) for the UK. Other studies (examples are

Mankiw, Runkle, and Shapiro (1984), Sargent (1989) and Faust, Rogers, and Wright (2001))

have studied whether the statistics agency behaves like a ‘rational’ forecaster by examining

whether early releases of data predict later ones. Still others have studied the implications

for monetary policy and inflation forecasts of having to use real-time measures of important

indicators like the output gap (Orphanides (2000)and Orphanides and Van-Norden (2001)).

Within this broad literature are papers that study the properties of forecast models in

the presence of measurement error, and these are the closest intellectual antecedents of our

own. One line of enquiry has been to study a problem of joint model estimation and

signal extraction/forecasting. Optimal filters/forecasts are studied in a line of work such

as, for example, Howrey (1978) and Harvey, Mckenzie, and Desai (1983). Koenig, Dolmas,

and Piger (2003) present informal experiments that reveal the advantages for forecasting of

using real-time data for model estimation. Another focus for study has been the idea of

evaluating the properties of combinations of forecasts (see, for example, Bates and Granger

(1969) and discussions in Hendry and Clements (2001)). Observations on time series at

dates leading up to time t are ‘forecasts’ of sorts of data at time t, so the problem of how

best to make use of these data is a problem of combining forecasts.3

A brief sketch of our paper makes clear the contribution of our work. Section 2 begins

by illustrating and proving how, in an environment when the measurement error does not

vary with the vintage, faced with a choice between either using or not using observations

on the most recent data, it can be optimal not to use them if the measurement error is

sufficiently large. We move on to consider a case when the variance of measurement error is

1See Castle and Ellis (2002, page 44) for a discussion of the reasons why data are revised in the UK.
2A helpful bibliography can be found at http://phil.frb.org/econ/forecast/reabib.html.
3 This observation is made in Busetti (2001).
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larger, the more recent the data observation. We find that in this case a many-step ahead

forecast may be optimal. In Section 2.3 we generalise these results further by assuming that

the forecaster can choose the parameters of the forecast model as well as how much of the

data to use. We find that it may be optimal to ignore recent data and to use forecasting

parameters that differ from the parameters of the data generating process.

Section 3 generalises the results by deriving the optimal forecasting model from the class

of linear autoregressive models. This setup allows the forecaster to include many lags

of the data to construct the forecast and place different weights (coefficients) on different

lags. Unsurprisingly, the optimal weighting scheme differs from the weighting scheme that

characterises the data generating process. The greater the signal about the future in a data

point, the greater the weight in the optimal forecasting model. More recent and therefore

more imprecisely measured data have a smaller weight. The greater the persistence in the

data generating process, the greater the signal in older data for the future, and the more

extra measurement error in recent data relative to old data makes it optimal to rely on older

data.

Throughout, this paper puts to one side the problem of model estimation. We assume

that the forecaster/policymaker knows the true model. Taken at face value, this looks like

a very unrealistic assumption. But it has two advantages. First, it enables us to isolate the

forecasting problem, without any loss of generality. The second advantage is that it also

emphasises an aspect of forecasting and policy that is realistic. The forecaster may have a

noisy information source that is contaminated with measurement error, but also contains an

important signal about shocks. The forecaster may also have an information source that is

not contaminated by (at least that source of) measurement error – an economic prior – but

that does not contain the same high frequency diagnosis of the state of the economy. The

set up we use is just an extreme version of this. We assume that the forecaster’s prior about

the structure of the economy (the data generating process) is correct.

In Section 4, we present an application to illustrate the gains from exploiting the results

in Section 3 using a single-equation forecasting model for the quarterly growth of private

consumption in the UK. We use real time data on revisions to national accounts from Castle

and Ellis (2002) to estimate how the variance of measurement error declines as we move back

in time from the data frontier at T to some T − n. We find that the optimal forecasting

model does indeed use significantly different weights on the data than those implied by

the underlying estimated model, suggesting that the problem we study here may well be

quantitatively important.
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2 Some Issues on forecasting under data revisions

We begin, as we described in the introduction, by illustrating how it may be optimal not to

use recent data for forecasting, but instead to rely on the model, which we assume is known.

We start with a simple model, but we will relax some of our assumptions later.

2.1 Age-invariant measurement error

We start with a model in which the measurement error in an observation on an economic
event is homoskedastic and therefore not dependent on the vintage. Assume that the true
model is

y∗t = ay∗t−1 + et (1)

where |a| < 1 and y∗t denotes the true series. Data is measured with error, and the relation-
ship between the true and observed series is given by

yt = y∗t + vt (2)

For this section, we make the following assumptions about the processes for e and v:

et ∼ i.i.d.(0, σ2
e), vt ∼ i.i.d.(0, σ2

v) (3)

which encompasses the assumption that the measured data are unbiased estimates of the

true data.4

We assume that we have a sample from period t = 1 to period t = T and we wish to

forecast some future realisation y∗T+1. The standard forecast, (when there is no measurement

error) for y∗T+1 is denoted by ŷ
(0)
T+1 and given by ŷ

(0)
T+1 = ayT : this is the forecast that

simply projects the most recent observation of yt using the true model coefficient a. We

investigate the mean square properties of this forecast compared with the general forecast

ŷ
(n)
T+1 = an+1yT−n, a class of forecasts that project using data that are older than the most

recent outturn.
We begin by finding an expression for the forecast error, and then computing the mean

squared error for different forecasts amongst the general class described above. The (true)

forecast error (which of course we never observe) is given by û
(n)
T+1 = y∗T+1 − ŷ

(n)
T+1. We know

that from (1) we can write:

y∗T+1 = an+1y∗T−n +
n∑

i=0

aieT+1−i (4)

and from (2) we have:

ŷ
(n)
T+1 = an+1yT−n = an+1y∗T−n + an+1vT−n (5)

4The analysis in Castle and Ellis (2002) focuses on the first moment properties of revisions and finds
some evidence of bias. But we abstract from that issue here.
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So:

û
(n)
T+1 =

n∑
i=0

aieT+1−i − an+1vT−n (6)

Therefore, the mean square error is simply given by:5

MSE(n) = a2(n+1)σ2
v +

(
1 +

a2 − a2(n+1)

1− a2

)
σ2

e (7)

The next step is to explore the condition that the mean squared error from a forecast using
the most recent data is less than the mean squared error that uses some other more restricted
information set, or MSE(0) < MSE(n) for some n > 0. This will tell us whether there are
circumstances under which it is worth forecasting without using the latest data. Doing this
gives us:

MSE(0) < MSE(n) ⇒ a2σ2
v + σ2

e < a2(n+1)σ2
v +

(
1 +

a2 − a2(n+1)

1− a2

)
σ2

e (8)

which can be written as:

σ2
v <

σ2
e

1− a2
(9)

So if σ2
v > σ2

e

1−a2 it is better in terms of MSE not to use the most recent data. The intuition
is simply that if the variance of the measurement error σ2

v is very large relative to the shocks
that hit the data generating process, (σ2

e), then it is not worth using the data to forecast:
the more so the smaller is the parameter that propagates those shocks (a). In fact it follows

that if σ2
v > σ2

e

1−a2 then MSE(n − 1) > MSE(n) for all n and therefore we are better off
using the unconditional mean of the model to forecast the true series than any other data.
The above analysis concentrated on a simple AR(1) model. However, the intuition is clear
and is valid for more general dynamic models.

2.2 Age-dependent measurement error

We now investigate a slightly more complex case where the variance of the data measurement
error vt is assumed to tail off over time. This assumption reflects the observation that, in
practice, we observe that statistics agencies revise data often many times after the first
release. If we assume that successive estimates of a particular data point are subject to less
uncertainty (since they are based on more information), then it seems reasonable to assume
that the variance of the revision error embodied in the estimate of a particular data point
diminishes over time.

The specific assumption we make here is that:

V ar(vT−i) =

{
biσ2

v , i = 0, 1, . . . , N
0, i = N + 1, . . .

(10)

for a parameter 0 < b < 1. We therefore assume that after a finite number of periods N +1,
there are no further revisions to the data. But for the first N + 1 periods, the variance of
the revision error declines geometrically over time at a constant rate measured by b. This

5Notice that this expression requires that the revision errors in (2) are uncorrelated with future shocks
to the model (1). This seems like a reasonable assumption.
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is a fairly specific assumption which we make here for simplicity and tractability (again the
analysis of later sections is more general). Indeed, we know that data are revised for reasons
other than new information specific to that series (for example re-basing and methodology
changes) so the specification of revision error variance may be more complicated than we
have assumed here. But the purpose of the assumption is to be more realistic than the
homoskedastic case considered in Section 2.1.

Under our assumptions, the MSE as a function of n is given by

MSE(n) = a2n+2bnσ2
v +

n∑
i=0

a2iσ2
e , n = 0, 1, . . . , N (11)

MSE(n) =
n∑

i=0

a2iσ2
e =

N∑
i=0

a2iσ2
e +

n∑
i=N+1

a2iσ2
e , n = N + 1, . . . (12)

We want to examine when MSE(n) > MSE(N + 1), n = 0, 1, . . . , N . It is clear that
MSE(n) > MSE(N + 1), n = N + 2, . . . ,. So, for n = 0, 1, . . . , N

MSE(n) > MSE(N + 1) ⇒ a2n+2bnσ2
v +

n∑
i=0

a2iσ2
e >

n∑
i=0

a2iσ2
e +

N+1∑
i=n+1

a2iσ2
e (13)

or, in terms of the signal-noise ratio, σ =σ2
e/σ

2
v :

bn(1− a2)

1− a2(N−n+1)
> σ2 (14)

Figure 1: b=0.99 Figure 2: b=0.95

So if σ2 < bn(1−a2)

1−a2(N−n+1) for all n then the best forecast for yt+1 is ŷ
(N+1)
t+1 . To clarify

the range of relevant values for σ we graph the quantity bn(1−a2)

1−a2(N−n+1) over n for N = 24,
b = 0.99, 0.95, 0.9, 0.5 and a = 0.1, 0.3, 0.5, 0.7, 0.9 in Figures 1-4. If each period corresponds
to one quarter, then our assumption N = 24 corresponds to the situation in which data are
unrevised after six years. While this is naturally an approximation (since rebasing and
methodological changes can imply changes to official figures over the entire length of the
data series) it seems a plausible one.

Clearly, the more persistent the process is (the larger the a) the lower σ2 has to be for

ŷ
(N+1)
t+1 to be the best forecast. Also, the more slowly the revision error dies out (the larger
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the b), the lower σ2 has to be for ŷ
(N+1)
t+1 to be the best forecast. Note that some of the curves

in the figures are not monotonic. This indicates that although ŷ
(N+1)
t+1 is a better forecast

than ŷ
(0)
t+1, there exists some N + 1 > n > 0 such that ŷ

(n)
t+1 is better than ŷ

(N+1)
t+1 .

Figure 3: b=0.9 Figure 4: b=0.5

2.3 Optimising over the choice of data frontier and the projection
parameters

The analysis in the previous section constrained the forecaster to use the true model when
forecasting future outturns. The only choice variable was therefore the horizon n upon
which to base the forecast ŷ

(n)
T+1 = an+1yT−n. This section generalises the problem of the

policymaker/forecaster so that it is possible to construct a forecast that does not use the
true model parameter. Specifically, we allow the policymaker/forecaster to use the forecast

ŷ
(n)
t+1(ã) = ãn+1yt−n where ã may differ from a. In this setting, there are two choice variables

(ã and n) and so it might be more appropriate to use a different parameter value, ã, and the
most recent data as opposed to older data and the true model parameter, a.

This section therefore extends the setup and views the mean square error as a function
of n and ã where the forecast is given by ŷ

(n)
t+1(ã) = ãn+1yt−n and ã, n are to be jointly

determined given the structural parameters a, σ2
v and σ2

e . We extend the analysis along these
lines assuming that the revision error variance is given by V ar(vt−i) = biσ2

v , i = 0, 1, . . . , N
and V ar(vt−i) = 0, i = N + 1, . . . as before.

Now the mean square error is a joint function of n and ã given by

MSE(n, ã) = (an+1 − ãn+1)2 σ2
e

1− a2
+

(1− a2(n+1))σ2
e

1− a2
+ ã2(n+1)bnσ2

v , n = 0, 1, . . . , N (15)

MSE(n, ã) = (an+1 − ãn+1)2 σ2
e

1− a2
+

(1− a2(n+1))σ2
e

1− a2
, n = N + 1, . . . (16)

and we wish to find the optimal values for n and ã. To do so, we analyse a two-step
minisimisation problem. First we will minimise the mean squared error with respect to the
forecasting parameter ã. This allows us to write down a set of mean-squared errors that use
the optimal forecasting parameters as n changes. To find the best forecast simply requires
choosing the n that gives the overall smallest mean-squared error.
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We therefore begin by minimising MSE(n, ã) with respect to ã. The first order necessary
conditions are:

∂MSE(n, ã)

∂ã
=

{
−2(an+1 − ãn+1)(n + 1)ãn σ2

e

1−a2 + 2(n + 1)ã2n+1bnσ2
v = 0 n = 0, 1, . . . , N

−2(an+1 − ãn+1)2(n + 1)ãn σ2
e

1−a2 = 0 n = N + 1, . . .

(17)

Rearranging gives

−ãn

[
an+1 −

(
1− bn(1− a2)

σ2

)
ãn+1

]
= 0, n = 1, . . . , N (18)

−ãn
(
an+1 − ãn+1

)
= 0, n = N + 1, . . . (19)

For (18), disregarding complex roots and under the convention of square roots being
positive numbers, the solutions are ã = 0 and ã = n+1

√
θ where θ = σ2an+1

σ2+bn(1−a2)
. For (19),

they are, intuitively, ã = 0 and ã = a. Note that for positive a, θ ≥ 0 making sure than the
second solution of (18) is real. It is easy to verify that the non-zero solutions are minima.

We can now incorporate the solutions of this minimisation into the expression for the
mean squared error. We define ˆMSE(n) = minã MSE(n, ã):

ˆMSE(n) =
[
(an+1 − θ)2 + (1− a2(n+1))

] σ2
e

1− a2
+ θ2bnσ2

v n = 0, 1, . . . , N (20)

ˆMSE(n) =
(1− a2(n+1))σ2

e

1− a2
n = N + 1, . . . (21)

which has to be minimised over n. Standard methods do not apply as n takes only discrete
values6. Nevertheless, we again see that it is not neccesary that the best forecast uses the
most recent data.

3 A general approach to forecasting with dynamic mod-

els under data revisions

In this section we propose a general method of forecasting in autoregressive models under
a general known form of data revisions. The extension from the previous sections is that
we optimise the forecasting model from within the linear class of models. Specifically, we
allow the forecaster to choose the optimal weights and lags on all past data. The method
described here can be easily extended to multivariate models. In particular VAR models
could easily be accommodated (including of course vector error correction models).

We assume a univariate AR(p) model to illustrate the method. The true process is given
by

y∗t =

p∑
i=1

aiy
∗
t−i + et (22)

6As the minimum of any function is also the minimum of a positive monotonic transformation of that
function, we can take logs of the mean-squared-error expressions to show that, for real n, the minimum is
obtained for

n =
log

[
(1−a2)θ log(b)

2σ2a log(a)

]

log(a/b)
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This can be written as a VAR(1) model of the form

y∗t = Ay∗t−1 + εt (23)

where y∗t = (y∗t , y
∗
t−1, . . . , y

∗
t−p+1)

′, A = (A′
1, e1, . . . , ep−1)

′; ei is a p×1 vector with an element
of 1 at the i-th place and zeroes everywhere else; A1 is a p× 1 vector of the autoregressive
coefficients ai; εt = (et, 0 . . . , 0)′. Now the observed data are given by

yt = y∗t + vt (24)

where vt = (vt, vt−1, . . . , vt−p+1). At time T we wish to determine the optimal forecast for
y∗T+1. We assume that the revision error vT has a variance matrix which is given by ΣT

v .

Our aim is to determine the optimal forecasting model of the form ŷT+1 = Ã1yT . in terms
of mean square error, where Ã1 is a 1× p vector. Note that the restriction on the dimension
of Ã1 to be the same as that of the order of the true process is not problematic because we
can simply increase the order of the process by setting the higher order a’s equal to zero.
This means that the true data generating process might be an AR(1) even though we can
write it as an AR(p) with the coefficients on lags 2, . . . , p set equal to zero.

The forecast error for the forecast of the above form is given by

y∗T+1 − ŷT+1 = A1y
∗
T + εT − Ã1y

∗
T + Ã1vT = (A1 − Ã1)y

∗
T + Ã1vT + εT+1 (25)

where A1 is the first row of A. The mean square error is given by

(A1 − Ã1)Γ(A1 − Ã1)
′ + Ã1Σ

T
v Ã′

1 + σ2
ε (26)

where Γ = E(y∗Ty∗
′

T ). The covariances of an AR(p) process are given by the first p elements
of the first column of the matrix σ2

ε [Ip2 − A ⊗ A]−1. We have assumed that the error
process is uncorrelated with the true process of the data. In the data revision literature
this is referred to as the error-in-variables model. This assumption is not crucial to our
analysis and could be relaxed as long as the covariances between the true process and the
data revision errors could be estimated. We want to minimise the mean square error in
terms of Ã1. We will use matrix optimisation calculus to solve this problem. We rewrite
the expression for the mean square error using only terms involving Ã1 since the rest of the
terms will not affect the minimisation. We have that the mean square error is given by

Ã1ΓÃ′
1 + Ã1Σ

T
v Ã′

1 −A1ΓÃ′
1 − Ã1ΓA′

1 = Ã1(Γ + ΣT
v )Ã′

1 − 2Ã1ΓA′
1 (27)

We differentiate with respect to Ã1 and set to zero to get

(Γ + ΣT
v )Ã′

1 − ΓA′
1 = 0 (28)

giving
Ãopt ′

1 = (Γ + ΣT
v )−1ΓA′

1 (29)

The second derivative is given by (Γ + ΣT
v ) and by the positive definiteness of this matrix

the second order condition for minimisation of the mean square error is satisfied. This
result is of some interest because it may be viewed as analogous to similar results in other
literatures. Note first the similarity between this result and the standard signal extraction
result which says that the optimal filter for distinguishing between signal and noise is equal
to the autocovariance of the signal (Γ in our case) divided by the sum of the signal and
noise autocovariances. Note that if p = 1 then Ã2

1 ≤ A2
1. By the positive-definiteness of Γ
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and ΣT
v one might conjecture that this result would extend to the multivariate case where

Ã1Ã
′
1 ≤ A1A

′
1. Unfortunately, this is not the case. Although it is likely that this result will

hold it is by no means certain. Another interesting corollary of the above result is that the
method applies equally to measurement error. The only assumption we have made is that
there exist an error in the measurement of the true data whose covariance is given by ΣT

v .
This clearly covers cases of data measurement error.

The above analysis concentrated on one-step ahead forecasts. The general problem of
h-step ahead forecasting can be dealt with similarly by minimising the sum of the 1 to h-
step ahead forecast errors with respect to a suitably defined set of coefficients Ã just as
we did above. We analyse this case in what follows: We want to minimise the variance of
the forecast errors of the 1-step to n-step ahead forecasts. As we need to minimise a scalar
function we choose to minimise the trace of the forecast error variance-covariance matrix of
the 1 to h step forecasts. We assume for simplicity that p > h. If this is not case it can
always be made the case by increasing p. Using the previous notation we know that

y∗T+h = Any∗T + Ah−1εT + . . . + εT+n (30)

So
y∗T+h,h = (y∗T+1, . . . , y

∗
T+h) = A(n)y∗T + A(h−1)εT + . . . + εT+h,h (31)

where A(h) denote the first h rows of Ah and εT+h,h is a vector of the first h of the vector
εT+h. So the forecast error is given by

y∗T+h,h − ŷT+h,h = A(h)y∗T + A(h−1)εT + . . . + εT+h,h − Ãy∗T − ÃvT (32)

The part of the variance of the forecast error, depending on Ã, which is relevant for the
minimisation problem, is given as before by

Ã(Γ + ΣT
v )Ã

′ − 2ÃΓA(h)′ (33)

Differentiating and noting that the derivative of the trace of the above matrix is the trace
of the derivative gives

tr((Γ + ΣT
v )Ã

′ − ΓA(h)′) = 0 (34)

If the matrix is equal to zero then the trace is equal to zero and so if

(Γ + ΣT
v )Ã

′ − ΓA(h)′ = 0 (35)

the first order condition is satisfied. But the above equality implies that

Ã
opt ′

= (Γ + ΣT
v )−1ΓA(h)′ (36)

Finally, the variance of the optimal coefficients is easily obtained using the Delta method.
As we see from the above exposition our method essentially adjusts the coefficients of the

AR model to reflect the existence of the measurement error. Of course, using the ’wrong’
coefficients to forecast introduces bias. Often, we restrict attention to best linear unbiased
(BLU) estimates. But this means that if we have two models, one unbiased but with high
variance, and the other with a small bias but low variance, we always pick the former. This
would be true even if the low-variance estimator had a lower forecast MSE than the unbiased
estimator. So the reduction in variance induced by ’aiming off’ the true coefficients outweighs
the loss from bias.

10



Clearly the method we suggest is optimal in terms of mean square forecasting error
conditional on being restricted to use p periods of past data, where p = T is a possibility.
It is therefore equivalent to using the Kalman filter on a state space model7 once p = T .
Nevertheless, the method we suggest may have advantages over the Kalman filter in many
cases. Firstly, the method we suggest is transparent and easy to interpret structurally. For
example, one can say something about the coefficients entering the regression and how they
change when revisions occur. It is also possible to carry out inference on the new coefficients.
We can obtain the standard errors of the modified coefficients from the standard errors of the
original coefficients. So in forecasting one can say something about the importance (weight)
of given variables and the statistical significance of those weights. From a practical point of
view where a large model with many equations is being used for forecasting, and one which
must bear the weight of economic story-telling, one may want to fix the coefficients for a
few periods and not reestimate the whole model. Our method has some advantages over
the Kalman Filter in uses of this sort, since it just uses the same coefficients rather than
applying a full Kalman filter every period. Finally, the method we have is nonparametric as
far as variances for the revision error are concerned. We have a T × 1 vector of errors at
time T . In the most general case, these errors can have any T × T covariance matrix that
represents all possibilities for how the variance of measurement error varies by vintage, over
time, (and, in a multivariate setting, across variables). In other words, our procedure allows
for time variation in the covariances, heteroscedasticity and serial correlation. The state
space cannot easily attain that sort of generality. In fact a standard state space imposes
rather strict forms of covariance to the errors that are unappealing in the context we are
envisaging. These can be relaxed with great difficulty only and by experienced state space
modellers.

Another point worth making in this context concerns the distinction between the ‘news’
and ‘noise’ alternative representations of measurement error as discussed by, e.g., Mankiw,
Runkle, and Shapiro (1984) and Sargent (1989). In this paper we have adopted the ‘noise’
interpretation. It worth noting that adopting the extreme ‘news’ representation where the
agency publishing data knows the correct economic model and uses it to optimally filter
data prior to release would make our suggested methodology redundant for linear models.
If the published data are not equal to the truth but are an optimal projection conditional
on all available information obtained via, say, the state space representation of the economic
model then the optimal forecast is obviously obtained by using the published data in the
economic model. In the context of autoregressive models, the best one can do is simply use
the available data together with the model, as this is equivalent to using the state space
representation.

Finally, we note that a number of practical complications have been assumed away in
the discussion of our method. For example, the variance of revision errors often depends not
just on how long it has been since the first release of the data, but also on the time that
data were first released. For example, in the UK, large revisions occur once a year with the
publication of the ‘Blue Book’ by the Office of National Statistics.

7For more details on the state space representation of the case we consider see Harvey, Mckenzie, and
Desai (1983). There the authors develop a state space methodology for irregular revisions for univariate
models. Multivariate models are briefly discussed as well.
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4 Empirical illustration

We apply the general method of optimising a forecast model to an consumption forecasting
equation based on a simple AR model. Such models, however, have been found to have very
good forecasting performance in a variety of settings. The model is given by

∆ct = a0 +

p∑
i=1

ai∆ct−i + et (37)

where ct is the (log of) consumption. Many equations of this general form include an er-
ror correction term. However, there is significant evidence to indicate that error correction
terms may not be very helpful in a forecasting context. Evidence presented by Hoffman
and Rasche (1996) demonstrates that the forecasting performance of VAR models may be
better than that of error correction models over the short forecasting horizons which con-
cern us. Only over long horizons are error correction models shown to have an advantage.
Christoffersen and Diebold (1998) cast doubt on the notion that error correction models are
better forecasting tools even at long horizons, at least with respect to the standard root
mean square forecasting error criterion. They also argue that although unit roots are esti-
mated consistently, modelling nonstationary series in (log) levels is likely to produce forecasts
which are suboptimal in finite samples relative to a procedure that imposes unit roots, such
as differencing, a phenomenon exacerbated by small sample estimation bias.

We use real time data from 1955Q1-1998Q2 for forecasting. We use the revision data
available to provide estimates of the revision error variances. We assume that revisions do
not occur in general after 24 revision rounds. More specifically we estimate the data revision
variances as follows: We use real time data to estimate the variance of the revision error
between release i and release i + 1, i = 1, . . . , 24. Denote these estimates of the variance
by ζi. Then, the variance of the revision error of the i-th release is equal to

∑24
j=i ζi. The

standard deviations for ζi estimated from the data revisions using data from 1983Q1-2001Q1
are given in Table 1. These are also plotted in Figure 5.

We want to investigate the out-of-sample performance of the above equation. We consider
four variants of it. The four variants reflect the number of lags of consumption growth
considered which varies from 1 to 4. We assume that the revision error becomes smaller
and eventually disappears after 24 rounds of revisions.

We compare the forecasting performance of the models using optimal parameter esti-
mates, obtained using the method of the previous section and as many lags as those in
each model, and standard parameter estimates. The out-of-sample forecast evaluation ex-
ercise is carried out as follows. Starting at 1984Q3 the model is estimated over the period
1955Q1-1978Q3 to get parameter estimates. Then data up to 1984Q2 and the estimated
parameters are used to forecast consumption at 1985Q3. The reason for not using the pe-
riod 1978Q4-1984Q3 data for estimating the coefficients is to ensure (within the assumptions
of the experiment) that the original parameter estimate reflects the true parameter rather
than be contaminated by revision errors in the data. We continue producing forecasts until
1998Q2. So the whole forecast evaluation period is 1984Q3-1998Q2 (14 years). The reason
we stop at 1998Q2 is because we need to use the most recently available data for the evalua-
tion period as proxies for the true data (uncontaminated by noise). Although, for the initial
periods, it may be the case that the number of observations used to estimate the coefficients
is small this is rectified rapildy as more data accumulate for parameter estimation in later
periods.

We look at the RMSE ratios of the forecasts coming from optimal and standard parameter
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Figure 5: Revision error std. deviations for Consumption
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Table 1: Consumption revision error standard Deviations

Horizon Standard Deviation
1 0.0111
2 0.0099
3 0.0085
4 0.0075
5 0.0070
6 0.0059
7 0.0048
8 0.0041
9 0.0038
10 0.0036
11 0.0034
12 0.0031
13 0.0030
14 0.0027
15 0.0024
16 0.0023
17 0.0022
18 0.0019
19 0.0019
20 0.0017
21 0.0015
22 0.0011
23 0.0007

estimates and we also look at the Diebold-Mariano tests (see Diebold and Mariano (1995))
looking at the null hypothesis that the two forecast are equally good in terms of RMSE. The
test simply compares the means of the squared forecast errors of the two forecasts8. Results
are also considered for the two seven year subperiods within the whole evaluation period.
Results are presented in Table 2. . Figure 6 presents the one-step ahea forecasts for the
whole period compared to the realised data.

Clearly the forecasts using the optimal coefficients outperform the standard forecasts for
all models for the whole period and the two subperiods. The Diebold Mariano statistics
indicate statistically significant superiority (at the 5% significance level) in the whole period
and the second subperiod. Figure 6 illustrates the advantage of using the optimal coefficients.
The optimal forecasts weighs less fluctuations in past data which may be considered to be
partly arising out of measurement noise. Consequently, the optimal forecasts are smoother.

5 Summary

In this paper we have explored the effects of data revision on forecasting models. We have
shown that in the presence of data revisions it is possible that forecasting with older data
may provide superior forecasts in terms of mean square error compared to forecasts which

8Positive test statistics indicate superiority of the forecasts based on the optimal forecasting coefficients
and vice versa.
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Figure 6: One-Step Ahead Forecasts

Table 2: MSE ratios and Diebold-Mariano testsa

Whole period First subperiod Second subperiod
Model MSE Ratio D-M Test MSE Ratio D-M Test MSE Ratio D-M Test
AR(1) 0.958 2.914∗ 0.956 2.261∗ 0.963 2.845∗

AR(2) 0.945 2.771∗ 0.937 2.384∗ 0.966 2.318∗

AR(3) 0.954 1.991∗ 0.941 1.916 0.988 0.739
AR(4) 0.929 2.740∗ 0.911 2.676∗ 0.976 1.09

a∗ denotes significance at the 5% level
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Table 3: Whole Period Coefficients in AR forecasting models for UK consumption: standard
and uncertainty corrected

AR(1) AR(2) AR(3) AR(4)
Standard −0.112(0.082) - - -

−0.101(0.083) 0.101(0.083) - -
−0.110(0.083) 0.114(0.083) 0.114(0.084) -
−0.104(0.083) 0.123(0.083) 0.104(0.084) −0.081(0.084)

optimal −0.084(0.062) - - -
−0.073(0.058) 0.079(0.062) - -
−0.070(0.052) 0.081(0.058) 0.079(0.062) -
−0.062(0.048) 0.078(0.052) 0.067(0.058) −0.063(0.062)

use the most recent data. This conclusion is not affected even if we allow for adjustments in
the parameters of the dynamic model to optimise the forecast in terms of mean square error.
Finally, we have provided a general method of determining the optimal forecasting model in
the presence of data measurement and revision errors with known covariance structure. An
empirical illustration on forecasting consumption was also considered.
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