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Low Price Equilibrium in Multi–Unit
Auctions: The GSM Spectrum Auction in

Germany∗
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Institut f. Wirtschaftstheorie I, Humboldt Universität zu Berlin
Spandauer Str. 1, 10178 Berlin, Germany
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Abstract

The second–generation GSM spectrum auction in Germany is
probably the most clear cut example of a low price outcome in a
simultaneous ascending–bid auction. The present paper gives an
account of the events, describes the auction rules and market con-
ditions, and provides a theoretical explanation of low price equi-
libria in simultaneous, ascending–bid auctions. In particular it is
shown that the low price equilibrium that implements the efficient
allocation is the unique perfect equilibrium of that game.

Keywords: multi–unit auctions, spectrum auctions, telecommuni-
cations, industrial organization, game theory.
Jel classifications: D44, D45.

1 Introduction

On October 28, 1999, the German regulatory authority for telecommuni-
cations (Regulierungsbehörde für Telekommunikation und Post), opened

∗The authors served as consultants to prepare bidding for one bidder at the
German GSM auction. Financial support was received by the Deutsche Forschungs-
gemeinschaft, SFB 373 (“Quantifikation und Simulation Ökonomischer Prozesse”),
Humboldt–Universität zu Berlin.
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the auction of second–generation GSM radio frequencies in the 1.800
MHz range. Altogether ten nationwide paired frequencies (nine with a
bandwidth of 2 × 1 and one with 2 × 1.4 MHz) were auctioned to the
four incumbent operators of mobile phone services in a simultaneous
ascending-bid auction. Bidders had settled into their offices at the regu-
lator’s headquarters, and the general expectation was that bidding would
go on for days. However, this was not to happen.

The first round of bidding started at 10:15 a.m.; the minimum bid was set
to the nominal level of just DM 1 Million per (paired) 1 MHz bandwidth.1

Bidder had 30 minutes to make their first bids. When the results of the
first round of bidding were shown on the screen, already after 8 minutes,
the press room was filled with murmurs and whistles: Mannesmann (M)
had topped the minimum bid by apparently surprising jump bids in the
order of DM 36.36 Million for frequencies 1 to 5, DM 40 Million on fre-
quencies 6 to 9, and DM 56 Million on (the larger) frequency 10 (see Table
1, where rows represent the rounds of bidding).2 In the second round, T-
Mobil (T), a subsidiary of Deutsche Telekom, raised bids on the first five
frequencies by slightly more than the minimum bid increment, and thus
reduced bidding rights to five. As a result, it outbid the two smaller in-
cumbents, Viag Interkom and E-Plus, who subsequently withdrew from
the auction. In round three no bids were placed, and the auction was
over, before it had gained momentum.

Frequency #
1 2 3 4 5 6 7 8 9 10

1 36.36 36.36 36.36 36.36 36.36 40.00 40.00 40.00 40.00 56.00
M M M M M M M M M M

2 40.01 40.01 40.01 40.01 40.01 40.00 40.00 40.00 40.00 56.00
T T T T T M M M M M

3 40.01 40,01 40,01 40,01 40,01 40.00 40.00 40.00 40.00 56.00
T T T T T M M M M M

Table 1: The GSM Spectrum Auction in Germany, October 1999. (Frequencies 1-9
were endowed with a bandwidth of 2× 1, frequency 10 with 2× 1.4 MHz.)

1Incidentally, frequencies are paired because one is used to send and the other to
receive information. To see why this is important, just listen to radio communication
in a taxi cab which uses an unpaired frequency; there, only one party is able to speak,
until the line is freed for the other party to respond.

2The Frankfurter Allgemeine Zeitung , 29-10-1999 wrote: “Ein Raunen ging durch
den Saal . . . , als das an die Wand geworfene Display das Ergebnis der ersten Bietrunde
zeigt . . . . Wie würde T-Mobil auf die Überrumpelungsstrategie reagieren?”
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While this is by far the most clear cut and strong example of a low price
outcome in a simultaneous ascending-bid spectrum auction, somewhat
similar incidents were observed before in the US, where several such auc-
tions took place since Congress gave the FCC a mandate to auction spec-
trum rights employing such a format in the year 1994. Not surprisingly,
this has lead several observers of these auction to conjecture that simul-
taneous ascending-bid auction format may have low price equilibria or
may be susceptible to collusion.

Weber [1997] noted that if several units are up for sale in a simultane-
ous ascending-bid auction, “it becomes possible for a bidder to gain from
strategic demand reduction, even if all of the items are currently priced
below the bidder’s valuations.” However, due to the specific details of the
auctions in the US, he believed that “in order to bring the auction to a con-
clusion at low prices, the bidders must negotiate with one another, and
reach agreements” that may be communicated indirectly through their
bidding, and then documented this kind of behavior, using data from var-
ious auctions.3 Similarly, Cramton and Schwartz [2000] interpreted
events in several spectrum auctions in the US as collusive behavior, and
Klemperer [2000] concluded form this experience in the US and in Ger-
many that discouraging open or tacit collusion should be one of the two
main issue of designing auction markets.

In the present paper, we show that the low price equilibrium observed
in the GSM auction in Germany, is a plausible outcome of this kind of
game, without invoking neither open nor tacit collusion. In particular,
we show that, in a model that closely follows the rules and stylized fact
of the German GSM auction, there is a low price perfect equilibrium that
entails equal sharing of available frequencies among the two dominant
bidders. Moreover, considering a slightly simplified specification of the
GSM auction in Germany, this low price equilibrium is indeed the only
perfect equilibrium of that game.

The low price equilibrium strategy involves immediate strategic demand
reduction, to one half of the available objects, together with a defense
of these objects up to their marginal valuations. Playing this low price
equilibrium strategy does not require much sophistication, because it
implements the competitive equilibrium allocation, which can be viewed
as focal point in that game. Moreover, relative to the naive strategy of

3The auctions in the US are plagued by coordination problems that have to do with
the fact that concrete frequencies are auctioned which are also confined to specific
regional areas (see Section 2 below). This design makes bidding formidably difficult.
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truthful bidding, the equilibrium is evolutionary stable, in the sense that
if bidders either bid truthfully of play the equilibrium strategy, those
who play equilibrium are never worse off, and strictly better off when
they meet others who also play equilibrium. At the same time, reduc-
ing bidding rights to the number of objects that one is awarded in the
competitive allocation is a strong signal to the other player to follow suit.

In our analysis, the uniqueness of the low price equilibrium has a lot
to do with the activity rule that is used in simultaneous ascending-bid
auctions to keep bidders from laying in wait, until they see the intentions
of others (seeMcAfee andMcMillan [1996] andMilgrom [1998]).4 This
rule stipulates that, once a bidder has reduced his demand to a certain
level, he cannot raise it thereafter. Interestingly, this rule can be used
by bidders as a commitment device, which supports an early end of the
auction. In this sense, the activity rule does indeed speed up the auction
— more than the auctioneer desires.

There are several other contributions that deal with low price equilibria
in related though different models of multi-unit auctions. Most of them
concern “share auctions” in which bidders bid for shares of a continu-
ously divisible good. Share auctions were introduced by Wilson [1979]
who already noticed, in a sealed-bid framework, that they may have low
price equilibria (see also Back and Zender [1993]).

More recently, Menezes [1996] studied an ascending-bid share auction
under complete information, and established the existence of low price
equilibria. Unlike in ourmodel, the equilibrium allocation of theMenezes
[1996] model is not unique. This seems to be due to the combination of
the continuous divisibility of the good with a discontinuously increas-
ing price clock. Menezes [1996] then employed Pareto dominance to
exclude high price equilibria. Essentially, Pareto dominance rules out
threat-strategies that may induce outcomes that are profitable for some
bidder, yet Pareto inferior. By contrast, our analysis shows that with
finitely many goods such a refinement is superfluous, because the threat
strategies that Menezes [1996] excludes by assumption cannot be part
of a subgame perfect equilibrium in any case.

Similar to the model byMenezes [1996], Ausubel and Schwartz [1999]
analyzed a share auction under complete information, specializing to
two bidders and flat marginal valuations. In addition, they changed the
auction rules in such a way that bidders are required to place their bids

4It has also been suggested that the activity rule is meant to prevent collusion,
because it limits the means of retaliation to a breach of collusive agreements.
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in a given sequential order. The latter makes the auction equivalent to
a sequential bargaining problem, and it is therefore not surprising that
the game has a unique subgame perfect low price equilibrium, which cor-
responds to the immediate agreement property of the subgame perfect
equilibrium of the Rubinstein [1982] model of sequential bargaining un-
der complete information.

Finally, Engelbrecht-Wiggans and Kahn [1998] introduced a model of
a simultaneous ascending-bid auction with two objects and two players.
They showed that there exist equilibria in which low prices result with
positive probability, while high price outcomes also occur with positive
probability. The advantage of their model is that it permits incomplete
information; however, the limitation is the restriction to two objects and
two bidders.

The plan of the paper is as follows. In Section 2 we present some stylized
facts about the mobile phone market in Germany, which motivates some
of our assumptions. In Section 3, we present a model of simultaneous
ascending-bid multi-unit auctions, which fits very closely the actual GSM
auction in Germany. We then show, in Section 4, that this auction game
has a subgame perfect equilibrium inwhich the two dominant firms share
the available licenses equally, at minimal prices. We call this equilibrium
“low price equilibrium”. Introducing one further simplification, we fur-
ther sharpen this result in Section 5, where we show that the low price
equilibrium is indeed the unique perfect equilibrium of that game. The
paper ends with some conclusions in Section 6.

2 Stylized Facts

In mobile communications, the scarce resource is the spectrum required
for radio transmission between users and base stations. The first gener-
ation analogue systems used the spectrum inefficiently, so that only few
customers could be served and few providers could be licensed. A fun-
damental improvement in the utilization of the radio spectrum occurred
with the transition from analogue to digital technology, and the intro-
duction of the European GSM (Global System for Mobiles) standard. This
technology used the spectrum much more efficiently, and it was able to
accommodate four to five times asmany customers. Thus, amassmarket
of mobile communications could develop.
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In Germany, the mobile phone industry started with commercial ser-
vices in 1992 as a duopoly, served by T-Mobil (a subsidiary of the former
state monopoly, Deutsche Telekom), and Mannesmann Mobilfunk. Even
though they were licensed already in December 1989, they did not pro-
vide commercial service prior to mid 1992.5 When the second generation
GSM 1.800 technology became available, the regulator used this oppor-
tunity to license two additional providers: E-Plus, in 1994, and Viag In-
terkom, in 1998. In order to give them a kick start, the regulator endowed
them quite generously with second generation GSM frequencies that op-
erate in the 1.800 MHz range. Indeed, while Mannesmann and T-Mobil
had to live with 2×12,5 MHz in the 900 MHz spectrum each, both E-Plus
and Viag were endowed with 2× 22,5 MHz in the 1.800 MHz spectrum.
Nevertheless, the two early entrants became dominant firms, with almost
equal market shares (each roughly 40%), whereas E-plus (14,9%), and in
particular Viag Interkom (5,3%), remained remarkably insignificant.6

By the time of the GSM auction in 1999, when more second-generation
GSM 1.800 spectrum (previously used by the military) became available,
the two dominant providers were subject to severe spectrum capacity
constraints, which inhibited their growth, whereas the two latecomers
were sitting on idle capacity, except in a few urban areas. Altogether, the
two dominant firms were eager to finally gain access to the GSM 1.800
technology, whereas the small providers had only a limited interest in
these frequencies because they could remove the bottlenecks by building
additional radio stations in those urban centers, instead of buying more
nationwide frequencies and upgrade existing radio stations. Moreover,
it was already known that third-generation (UMTS) frequencies would be
auctioned in the following year 2000.

On this background, the two dominant firms had a pretty good idea of
each others’ valuations for the new frequencies. Moreover, they could
easily assess the valuations of the two small providers, by computing the
cost of building a more closely knit network of radio stations in urban

5This long delay was primarily due to bureaucratic delays in the European wide
licensing of mobile telephones.

6Incidentally, one could argue that the second generation GSM technology unduly
burdened the new entrants with high capital cost. Operating in the higher 1.800
MHz range requires a closer network of base stations, even at low levels of capacity
utilization. This combination is not the most attractive for a new entrant with a small
customer base. However, this slight handicap was more than compensated by the
fact that late entrants were subject to dramatically lower investment costs (roughly
one half of what it was in the early 1990’s) and that they benefitted from an already
mature technology.
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centers, which was an obvious alternative to buying more nationwide
frequencies.

Based on this assessment, the two dominant firms could figure out, with a
reasonable degree of certainty, at which critical bid level the two smaller
providers would quit the auction. So they had to decide whether it was
worthwhile to predate the smaller providers, by raising the price to that
critical level, or to accommodate and share the frequencies with the
smaller providers, at a lower price. Given the extreme asymmetry of
the endowments with GSM 1.800 spectrum at the time of the auction –
the dominant firms did not have any, while the latecomers had had more
than the auction made available altogether – it was clear that it would
not take much to predate, and therefore the right decision was obvious.

Mannesmann started with a jump bid on all frequencies (see Table 1) for
two reasons: to bring the price uniformly to the critical level at which the
smaller providers would quit the auction, to coordinate efficiently with
T-Mobil on how to divide the frequencies numbered from 1 to 10, and to
signal the strategy to be played among T-Mobil and Mannesmann, after
the exit of the two small providers. And indeed, this strategy worked
smoothly. While the two small providers still made a last-minute bid on
some of the first five frequencies, they did not acquire a high bid, and
quit immediately thereafter.7

In the following we analyze the subsequent game played between the two
dominant firms, T-Mobil and Mannesmann Mobilfunk, after the initial
jump bid that succeeded to kick out the two smaller players.

3 A Model of the GSM Spectrum Auction

We now present a model of the GSM auction in Germany which ignores
some less important aspects of the actual auction. This model is further
simplified when we address uniqueness of perfect equilibrium in Section
5.

At the outset, wemention that in the GSM auction in Germany all frequen-
cies were nationwide and “abstract”. The latter means that the regulator

7The Frankfurter Allgemeine Zeitung, 29-10-1999, reports: “Die Uhr sprang auf die
letzte Minute, als der Computer noch Gebote von E-Plus . . . registriert.” (The clock
approached the last minute when the computer registered bids by E-Plus . . . .) They
could have bid the same as T-Mobil, since the rules of the auction prescribed that in
case of a tie, the earlier bidder is the high bidder.
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assigned the concrete location in the spectrum after the auction. At the
time of the auction, all frequencies were identical (except that one fre-
quency had a higher bandwidth). The introduction of abstract frequen-
cies avoids the coordination problems that plagued spectrum auctions in
the US. It is a very useful innovation.8 Indeed, the regulator managed to
assign concrete frequencies without much bureaucratic delay, and with-
out much controversy.9

1. An even number of 2n,n ∈ N, units of a homogeneous good (such
as paired frequencies of a certain MHz endowment) are for sale
in a simultaneous, ascending price auction (the rules of which are
assumed to be known).

2. Bidders are free to bid on up to 2n units; however, once a bidder
has bid on k < 2n units, he cannot later bid on more than k units
(activity rule).

3. Bids are required to be on an equidistant finite grid G := {∆T | T =
0, . . . ,S}, where ∆ is the minimum bid increment.

4. After each round, the auctioneer announces all previous bids.

5. There are two bidders, M and T ; these are risk neutral, and have
identical valuations, that are common knowledge among them. Their
marginal valuations, v(k), are strict monotone decreasing in the
number of units k.

Evidently, if a bidder is awarded k units at prices (pi)i=1,... ,k, his payoff

is wk −
∑k
i=1pi, where wk :=

∑k
i=1 v(i), denotes his absolute willingness

to pay for k units.

For later use, we define

Tk :=min{t ∈ {0, . . . ,S} | ∆t ≥ v(k)}.
8Incidentally, the auction was designed by Wissenschaftliches Institut für Kommu-

nikation (WIK).
9Apparently, this does not extend to the German UMTS auction which took place

in the summer of the year 2000. The main reason is that the frequencies are not the
same, especially due to interference problems in the many border areas of Germany,
and the fact that pan European providers have a strong preference for particular
frequencies. On this background and the fact that regulator and license holders could
not yet reach an agreement – almost one year after the auction – it is clear that the
auctioning of abstract UMTS frequencies only postponed the problems of assigning
concrete frequencies.
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∆Tk denotes the smallest grid value above the marginal valuation v(k).

Altogether, this game is a finite multistage game of complete information
with observable actions. The finiteness of the game is due to the finite-
ness of the grid of feasible of bids, and the fact that bids must increase
in each round until the auction ends. This entails that the game must
end after at most 2n(S + 1) rounds. The complications induced by an
infinite horizon game are thus avoided; for example, this rules out the
(noncredible) threat of bidding on all packages forever.

This model abstracts from a few details of the actual GSM auction in Ger-
many: 1) In the GSM auction one 2×1.4 MHz and nine 2×1 MHz abstract
packages were for sale; hence, the units were not entirely homogeneous.
2) In the actual auction only high bids, and not all bids, were published;
hence, the game was not exactly one with observable actions. 3) The
minimum bid increment was fixed as percentage, and the auctioneer had
some discretion in reducing the minimum bid increment in the course of
the auction. 4) There were four players. However, as we have already ex-
plained, the two other players (Viag and E-Plus) were sitting on plenty of
capacity, and it was understood that they would drop out of the auction
at a fairly low price, which they did. Therefore, our analysis moves right
away to the relevant game played between the two dominant firms, after
the two insignificant bidders drop out of the auction.

4 Low Price Equilibrium

Since the two players have the same preferences, and since their marginal
valuations are decreasing, the efficient allocation assigns five frequencies
to each of them. It seems to be a kind of folk theorem that, in a simul-
taneous ascending auction, bidders may be able to coordinate on a low
price equilibrium. We now prove that indeed the particular low price
equilibrium which implements the efficient allocation is a subgame per-
fect equilibrium (SPE) outcome.

Theorem 1 (Low Price Equilibrium) The following strategies are a sub-
game perfect equilibrium; they apply to both M and T , unless stated oth-
erwise:

1. start with five bids, each at the level of 0, on the frequencies 1, . . . ,5
(T) and 6, . . . ,10 (M);
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2. don’t overbid if five or more high bids are reached or if overbid-
ding the rival’s lowest high bid makes the contested frequency more
expensive than valuable;

3. if less than five high bids are reached, overbid the rivals’ lowest high
bids as long as overbidding keeps the price of these contested below
their value.

Proof In a multistage game with observed actions a strategy profile
is subgame perfect if and only if its satisfies the “one–stage–deviation
condition” that no player can gain by unilaterally deviating from it in a
single stage, while conforming to it thereafter. We show that the strategy
profile satisfies this condition in all subgames, on and off the equilibrium
path.

Consider subgames where bids have been made on all frequencies, all
bids are below v(5), and one bidder has five or more high bids.

SupposeM has five ormore high bids. Instead of refraining from bidding,
let M engage in the following one–stage deviation from the candidate
equilibrium strategy: outbid some of T ′s high bids, and then return to
the equilibrium strategy. T ′s response is to reclaim the lost frequencies
by outbidding M ′s lowest high bids. As a result, the game is back, after
one stage, to where is was before the deviation, except that some of M ′s
high bids are at a higher level. Therefore, M ′s one-stage deviation did
not pay.

Next, suppose M has less than five high bids. Instead of attacking T in
order to claim the “missing” frequencies, let M engage in the following
one-stage deviation from the candidate equilibrium: fight for less than
five frequencies, and then return to the equilibrium strategy. After M ′s
one-stage deviation, T has more than five high bids, and hence refrains
from bidding. Consequently, the auction ends (M cannot attack T any
more because of the activity rule) and M ′s one-stage deviation did not
pay.

Other deviations, such as outbidding one’s own high bids, are obviously
not profitable.

Similar reasoning applies to all other subgames. �

Thus, there is a subgame perfect equilibrium of the auction which gen-
erates an efficient outcome, but no revenue. Note that this low–price
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equilibrium does not require much sophistication. It implements the
focal symmetric allocation for this symmetric game. Moreover, even if
one player, say T , does not understand the equilibrium and thinks of
playing straightforwardly, the proposed strategy carries no risk for the
other player M because he still obtains the same allocation. Moreover,
the fact that M reduces bidding rights from 2n to n in the first round is,
of course, a strong signal for T to accept the equal sharing.

5 Uniqueness of Perfect Equilibrium

To settle the question of uniqueness of equilibria, we study a simplified
version of the GSM auction, which is the “ascending price English clock
auction”. There, the auctioneer employs a price “clock” that goes up in
each round of bidding by one increment, starting from the minimum bid.
At each reading of the “clock” bidders are asked to state their demand.
When there is no excess demand, the auction ends, and bidders pay the
current price for each unit demanded; otherwise, the clock moves up
by one increment, and the bidding procedure is repeated, until excess
demand has vanished.

Specifically, in every round t = 0,1,2, . . . ,S, bidders simultaneously sub-
mit a bid Bi ∈ {0,1,2, . . . ,2n}, i = M,T , which states how many units
they demand at the given price ∆t. Bid sequences must be decreasing
over time (to reflect the given activity rule). If BM(t) + BT(t) ≤ 2n,
the game ends in round t and bidders pay pt := ∆t for each of the
Bi(t) objects they get. If there is excess demand in a round t < S ,
i.e. BM(t)+BT(t) > 2n, the game continues to the next round. When the
sum of bids exceeds 2n in the final round S, every bidder gets 1 item for
a price of p(S). This assumption reflects the fact that in the actual auc-
tion bidders were not allowed to withdraw their high bids. Technically, it
ensures that bidders have an incentive to reduce demand to zero in the
last round (see Lemma 1 below).

Outcomes of the auction are denoted by ((k, l), t), where (k, l) denotes
the allocation (k units go to playerM and l units to L), and t the round in
which the game ends. The price paid per unit is ∆t; hence, it is already
fixed by t. An allocation (k, l) is “feasible” if k+ l ≤ 2n, and an outcome
((k, l), t) is “loss free” if wj − j∆t ≥ 0, j ∈ {k, l}.
As in other dynamic games, the concept of a Nash equilibrium is too
weak, because all relevant outcomes can be supported as an equilibrium
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by using (noncredible) threats.

Proposition 1 (Multiplicity of Nash Equilibrium) All outcomes that
are loss free and exhibit a feasible allocation are Nash equilibrium out-
comes.

Proof The following strategies are a Nash equilibrium that implements
any feasible and loss free outcome ((k, l), t): ∀s ≠ t, Bi(s) = 2n, i =
M,T , and at round t, BM(t) = k, BT(t) = l, provided one has sufficient
bidding rights, and otherwise maintain previous bids. �

However, the strategies that were invoked in the proof of Proposition 1
are not credible, since they involve the threat to burn all surplus in the
event when that equilibrium outcome is not reached. This suggests that
applying standard equilibrium refinements should reduce the multiplic-
ity of equilibria.

We can show that, if the price increment ∆ is sufficiently small and
there are sufficiently many rounds (as made precise in the assumption
below), subgame perfection allows us to identify the competitive allo-
cation (n,n) as the unique SPE allocation, and to show that in a SPE
the game ends either in round 0 or 1. Given this result, it is easy to
show that the unique (trembling–hand) perfect equilibrium outcome is
((n,n),0). Therefore, the low price equilibrium, introduced in section 4,
is the unique perfect equilibrium.

Assumption 1 The price increment is small: 1) for all k = 1, . . . ,2n− 1:
2∆ < v(k) − v(k + 1), and 2) n∆ < v(n) − v(n + 1); moreover, 3) the
game has sufficiently many rounds: ∆S > v(1).

Part 1) of Assumption 1 says that the price clock “ticks” at least twice in
between two neighboring marginal valuations. Part 2) says that bidders
prefer obtaining n units at a price equal to one increment above the
competitive equilibrium price, v(n+ 1)+ ∆, to obtaining n− 1 units at
price v(n+ 1). Part 3) says that if the game is ever played until the very
last round, S, the price clock must already have reached a level above the
highest marginal valuation.

Theorem 2 (Uniqueness) In every subgame perfect equilibrium, both bid-
ders get n objects, and the game ends either in round 0 (low price equilib-
rium) or in round 1. The corresponding price is equal to zero, resp. equal
to ∆.
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The unique trembling–hand perfect equilibrium is the low price equilib-
rium which ends in round 0 at price zero.

The proof of the Theorem is decomposed into the the following sequence
of Lemmas. It uses backward induction. Therefore, the proof starts with
the final round.

Lemma 1 In the final round S, Bi(S) = 0 is the strictly dominant strategy.

Proof If a player bids Bi(S) > 0 he gets one ormore items at a price that
exceeds v(1); this is strictly worse than bidding Bi(S) = 0, regardless of
what the other player does. �

Having shown that players reduce demand to zero in round S, it is easy
to show that this is also the case for all preceding rounds in which the
price exceeds the highest marginal valuation v(1).

Lemma 2 Every subgame perfect equilibrium of a subgame that starts in
t ≥ T1 assigns zero objects to both players.

The unique trembling-hand perfect equilibrium prescribes to bid zero in
every round s ≥ t.

Proof The proof is by backward induction. We know already that in the
final round, both players bid zero. So suppose that for every subgame
starting in s > t, the payoff for both players is zero.

In the reduced game at round t, Bi(t) = 0 is the weakly dominant strategy
because for positive bids the game either continues with the same pay-
off zero or one gets some items at a price which exceeds the valuation.
Hence, Bi(t) = 0, i = M,T is the unique trembling–hand perfect play in
round t.

There are other SPE in which the game continues for a while which lead
to the same allocation (0,0). �

We now go a step further and consider the rounds between T2 and T1−1,
where the price is above v(2) and below v(1). To start with, we consider
the round just before the valuation v(1) is crossed.

Lemma 3 Consider subgames starting in round t = T1 − 1:
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1. If one bidder has less than 2n bidding rights, the unique SPE play is
Bi(t) = 1; the resulting allocation is thus (1,1).

2. If both bidders still have 2n bidding rights, the unique trembling–
hand perfect play is Bi(t) = 1; there are other SPE in which both
players play Bi(t) = 2n in round t and the resulting allocation is
(0,0).

Proof We have v(1) − pt > 0 > wk − kpt, k = 2,3, . . . ,2n. Thus,
Bi(t) = 1 is the weakly dominant strategy and the unique best reply to
every bid Bj(t) < 2n, (j �= i). This proves the first part.
Given that the other player plays Bj(t) = 2n, player i is indifferent be-
tween all bids. Thus, BM(t) = BT(t) = 2n is also part of an equilibrium,
which, however, is not trembling-hand perfect because it uses weakly
dominated strategies. �

Hence, at time T1 − 1 there can be “bad” equilibria in which the auction
continues although this is against the interest of both players. However,
these bad equilibria can be avoided in earlier rounds by reducing bidding
rights.

Lemma 4 Every subgame perfect equilibrium of a subgame which starts
in t = T1 − 2 assigns one object to the players, and the game ends either
in round T1 − 2 or T1 − 1.

Proof If one player has less than 2n bidding rights, this is as in the pre-
ceding Lemma. The only problem is when both players have 2n bidding
rights and plan to bid Bi(T1−1) = 2n in round T1−1 given that they have
played Bi(T1−2) = 2n in round T1−2. But in this case, BM(T1−2) = 2n
is no longer a best reply to BT(T1−2) = 2n— by bidding BM(T1−2) = 1
player M ensures a strictly positive payoff in round T1 − 1, whereas he
gets a zero payoff from bidding BM(T1 − 2) = 2n. �

Lemma 5 Every subgame perfect equilibrium of a subgame which starts
in T2 ≤ t ≤ T1−2 assigns one object to the players and ends in round t or
t + 1.

Proof As in the preceding Lemma. �

14



Therefore, in round T2, when prices have crossed v(2) and the demand of
both players is 1, the unique subgame perfect allocation is (1,1), and the
game stops either immediately or after one round. Essentially the same
reasoning applies to all rounds after Tn+1, where aggregate demand is
less than 2n.

Lemma 6 Consider subgames starting in round t = Tk − 1, k = 2, . . . , n:

1. If one bidder has less than 2n+1−k bidding rights, the unique SPE
play is Bi(t) = k; the resulting allocation is thus (k, k).

2. If both bidders still have more than 2n + 1 − k bidding rights, the
unique trembling–hand perfect play is Bi(t) = k; there are other SPE
in which the game ends in round Tk with the allocation (k−1, k−1).

Proof In the first case, Bi(t) = k is the strictly dominant strategy.

In the second case, Bi(t) = k is still the best reply to all bids Bj(t) ∈
{0, . . . ,2n− k}.
For Bj(t) = l > 2n− k, two cases are possible.

1. The best reply for i is Bi(t) = 2n− l, but then (2n− l, l) is not part of
an equilibrium because the best reply to Bi(t) = 2n− l is Bj(t) = k.
2. Or the best reply is Bi(t) ∈ {k− 1, . . . ,2n}. Then there are additional
SPE plays which lead to an allocation (k− 1, k− 1) and the game ends in
round Tk (compare the proof of Lemma 3). �

Lemma 7 Every subgame perfect equilibrium of a subgame which starts
in Tk+1 ≤ t ≤ Tk − 2, k = 2, . . . , n assigns k object to both players and
the game ends in round t or t + 1. If one player has less than 2n+ 1− k
bidding rights, the game ends in round t.

Proof See Lemma 4. �

We know from Lemma 7 that after prices have crossed the “competitive
equilibrium price”, v(n+1), both players get n objects. Moreover, every
player can force the game to stop in round Tn+1 by reducing bidding
rights to n. The important step is now to show that this extends to all
previous rounds. Bidders anticipate correctly that the allocation will be
(n,n) and therefore reduce demand to n right from the beginning.
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Lemma 8 Every subgame perfect equilibrium of a subgame which starts
in t = Tn+1 − 1 assigns n objects to both players and the game ends in
round Tn+1 − 1 or Tn+1.

Proof The unique best reply to BT(t) = n is BM(t) = n. Hence, (n,n)
is a SPE play.

Now consider the bid BT(t) = n + k for k = 1, . . . , n. We show that
it is not a best response for M to accept the allocation (n − k,n + k).
The payoff from accepting is wn−k − (n− k)pt, whereas the payoff from
playing BT(t) = n is wn −npt+1. Since pt ≤ v(n+ 1), we have

wn −npt+1 −
(
wn−k − (n− k)pt

) =v(n)+ v(n− 1)+ . . .
+ v(n− k+ 1)− kpt −n∆

≥k (v(n)− v(n+ 1))−n∆ .
By Assumption 1, this term is positive. Hence, BT(t) = n is a strictly
better reply than BT(t) = n−k. We conclude that the allocation is (n,n)
if the game ends in round t.

Given that T plays BT(t) = n+k, BM(t) = n need not be the unique best
reply. Therefore, the game can continue to round t + 1. But it cannot
continue beyond t + 1 because by Lemma 7 a player can force the game
to stop in round t + 1 by reducing bidding rights to n. �

Lemma 9 Consider a subgame starting in t < Tn+1. Then every SPE of the
subgame starting in t ends in t or t + 1 with the allocation (n,n).

Proof By backward induction from the preceding Lemma. �

Applying the last Lemma to the first round t = 0, we see that the game
ends with the outcome ((n,n),0) or ((n,n),1). This finishes the first
part of the proof of Theorem 2.

Given that the equilibrium allocation is always (n,n), it is of course
weakly dominant for both players to bid n in round 0. Hence, the unique
trembling–hand perfect equilibrium play leads to a symmetric partition
(n,n) at zero prices. This proves the second part of the Theorem.

We close the analysis with an intuitive remark on the role of the activity
rule in explaining the early end of the auction. For example, consider a
Nash equilibrium in which T obtains n+ 1 and M n− 1 units at price 0,
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because T threatensM , along the following lines: “if you do not concede
and reduce demand to n − 1 units, I will keep raising the price until n
units are less attractive than obtainingn−1 at price 0.” Then, the activity
rule prevents that this can be part of a subgame perfect equilibrium, for
the following reason. Consider the subgamewhereM maintainsn (rather
thann−1) bidding rights at price zero. Then, the activity rule entails that
T can stop the auction in the following round by reducing his demand to
n units. Whereas if T executes his above threat, in the end he also obtains
no more than n units, however at higher prices. Therefore, concession
yields a higher payoff than executing the threat. This illustrates how the
activity rule destroys the credibility of the threat strategies that support
asymmetric allocations.

6 Conclusions

The present paper has not only shown that low price outcomesmay be an
equilibrium in a simultaneous ascending-bid auction, which is the typical
format of spectrum auctions. We showed that the low price equilibrium
that implements the efficient allocation is actually a perfect equilibrium,
and indeed the unique perfect equilibrium of that game. This lends sup-
port for predicting a low price outcome, which indeed occurred in the
German GSM auction, without stipulating any sort of open or tacit collu-
sion among bidders. The strength of this prediction is that it uniquely
explains a seemingly collusive outcome from a strictly noncooperative
perspective.

Several observers of spectrum auctions in the US, such as Weber [1997],
have already observed that, in a simultaneous ascending-bid auction, bid-
dersmay find it in their interest to strategically reduce aggregate demand
while prices are still low, relative to their valuations, and actually seem
to engage in such bidding practices. In this perspective, the GSM auction
in Germany is just a particularly strong and clear cut example, which is
not blurred by other issues, like the coordination problems due to the
auctioning of concrete (rather than abstract) and regionally restricted
frequencies, that plagued the spectrum auctions in the US. Apart from
documenting this extreme example of demand reduction, the main value
added of the present paper is that it provides a strong noncooperative
equilibrium foundation for the observed pattern of strategic demand re-
duction behavior.
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The main limitation of the present paper is that we assumed bidders are
completely informed about each others’ valuations. While this was an
appropriate assumption in the case of the GSM auction in Germany, it
may be a limitation when it comes to apply it to other another context.
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