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Abstract

Unit root tests are considered for time series with innovational outliers. The function rep-
resenting the outliers can have a very general nonlinear form and additional deterministic
mean and trend terms are allowed for. Prior to the tests the deterministic parts and other
nuisance parameters of the data generation process are estimated in a first step. Then the
series are adjusted for these terms and unit root tests of the Dickey-Fuller type are applied
to the adjusted series. The properties of previously suggested tests of this sort are analyzed
and modifications are proposed which take into account estimation errors in the nuisance
parameters. An important result is that estimation under the null hypothesis is preferable
to estimation under local alternatives. This contrasts with results obtained by other authors
for time series without outliers. A comparison with additive outlier models is also performed.
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Interventions that occur regularly in economic systems often cause outliers and structural
shifts in the observed time series. Therefore, modeling time series with such features has
become an issue of importance in recent years. In particular, testing for unit roots in the
presence of outliers and structural shifts has attracted considerable attention. Examples of
articles dealing with these issues are Perron (1989, 1990), Perron & Vogelsang (1992), Baner-
jee, Lumsdaine & Stock (1992), Zivot & Andrews (1992), Amsler & Lee (1995), Leybourne,
Newbold & Vougas (1998), Montafiés & Reyes (1998), Vogelsang & Perron (1998), Saikkonen
& Liitkepohl (2001) and Liitkepohl, Miiller & Saikkonen (2001) (henceforth LMS). In some
of the literature the time where the intervention or shift occurs is assumed to be known and
in other articles it is assumed unknown. In this study we assume that the intervention point
is known. Such an assumption is often reasonable in practice. For example, on January 1,
1999, a common currency was introduced in a number of European countries or the German
unification is known to have occurred in 1990. These events have had an impact on some
economic time series which may be useful to take into account in unit root testing.

We will follow LMS and model the intervention as an innovational outlier which is repre-
sented by a very general nonlinear deterministic shift function. These authors propose tests
for unit roots based on the idea that the deterministic part is estimated in a first step and
is subtracted from the series. In the estimation procedure quasi-differenced variables are
used so that estimation is done under local alternatives as in Elliot, Rothenberg & Stock
(1996). Standard unit root tests are then applied to the adjusted series.* The purpose of
this study is to propose modifications of these tests which are expected to work well in small
sample situations and we will perform Monte Carlo comparisons of the properties of the
tests. We will also compare our tests to those proposed by Lanne, Liitkepohl & Saikkonen
(2001) (henceforth LLS) who consider an additive intervention model. The results lead to
useful recommendations for applied work.

The structure of this study is as follows. The basic model from LMS is presented in
Sec. 2 together with the assumptions needed for asymptotic derivations. Estimation of the
nuisance parameters within these models is discussed in Sec. 3 and a range of unit root tests

is presented in Sec. 4 including the asymptotic distributions of the test statistics. In Sec. 5

*For a brief exposition of such tests see also Hansen (1993).



we present some 10Cal power Simulatlons. A Sinlall SaInplie Comparison o1 the tests based on
a Monte Carlo experiment is reported in Sec. 6 and conclusions are summarized in Sec. 7.
Some proofs are provided in the Appendix.

In the following, L and A are the lag and differencing operators, respectively, so that,
for a time series variable y;, Ly, = y;—1 and Ay, = y; — y;—1. Convergence in probability
and in distribution are denoted by % and i), respectively. Independently, identically dis-
tributed will be abbreviated as #id(-, -), where the first and second moments are indicated in
parentheses. The normal distribution is signified by N(-,-). Furthermore, O(-), o(:), O,()
and o,(-) are the usual symbols for the order of convergence and convergence in probability,
respectively, of a sequence. The symbol A, (A) denotes the minimal eigenvalue of a matrix
A and || - || denotes the Euclidean norm. The abbreviations sup and inf are used as usual for
supremum and infimum, respectively. The n-dimensional Euclidean space is signified as R".
DGP abbreviates data generation process, DF is short for Dickey-Fuller and OLS and GLS
are used for ordinary least squares and generalized least squares, respectively. Moreover, AR

abbreviates autoregressive or autoregressive process.

2 The Models

We consider the model
b(L)y = po + pat + fi(0)'y+ v,  t=1,2,..., (2.1a)
where the error term v, is assumed to be an AR process of order 1,
vy = pui_1 + &y, (2.10)

starting with vy = 0, for convenience. Here &; ~ 4id(0,0?) and —1 < p < 1 with p = 1
implying a unit root in y;. The operator b(L) =1 — b L —--- — b,LP is a polynomial in L
with roots bounded away from the unit circle. More precisely, for some € > 0, b(L) # 0 for
|L| < 1+ e. For simplicity, we assume that a suitable number of presample values of the
observed series ¥; is available. The parameters jg, (1 and « in these models are supposed to
be unrestricted.

The term f;(#)'y describes the form of the innovational outlier. In its general form it

consists of the unknown (£ x 1) parameter vector v and the (k x 1) vector of deterministic
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sequences jy depending on vne (1m X 1) parameter vector . A Slimple version Ol uils terim 1S
obtained by defining

0, t<T}

1, t>T)
so that the function f; is a simple shift dummy variable and the corresponding + is a scalar.
In that case the term f;(0)'~y generates a level shift of the form vb(L)~'d;;. Thus, depending
on the AR operator, even if the innovational outlier term consists of a simple shift dummy;,
it can generate a smooth shift to a new level of the series. This behavior is the typical char-
acteristic of innovational outlier models as opposed to additive outlier models which often
include abrupt shifts. In our framework the outlier term can be much more general than the
simple shift dummy. It is assumed to be generated by a function f;(f) where the functional
form is known and the parameter vector # may be unknown. Knowledge of the functional
form of f;(#) implies in particular that the shift date 77 where the innovational outlier occurs
is known. Conditions required for the parameters § and the sequence f;(6) are collected in
the following set of assumptions which are taken from Saikkonen & Liitkepohl (2001), LMS
and LLS.

Assumption 1

(a) The parameter space of 8, denoted by ©, is a compact subset of R™.

(b) For each t =1,2,..., the term f;(#) is a continuously differentiable function in an open
set containing the parameter space © and, denoting by F;(#) the vector of all partial

derivatives of f;(6),

T T
suszugHAft(H)H < oo and suszugHAFt(O)H < 00

t=1 b€ t=19€

where fy(f) = 0 and Fy(#) = 0.

(c) fi(0) = --- = fp11(8) = 0 for all # € ©. Moreover, defining G;(0) = [f:(0)" : F.(0)")
for t = 1,2,..., there exists a real number ¢ > 0 and an integer 7} such that, for all
T>T,

T
inf A {Z AGt(G)AGt(H)’} > e

t=2



AS Imentionea €arlier, tnese Condaditions are taken 1rom eariier iliterature wnere tney are
also discussed and explained in some detail. Whereas a compact parameter space © and the
continuity requirement in Assumption 1(b) are standard assumptions in nonlinear estimation
and testing problems, the summability conditions in Assumption 1(b) for the function f;(f)
and its partial derivatives F;(f) are not restrictive in the present context because they hold
in the applications we have in mind, if the parameter space © is defined in a suitable way.
The conditions in Assumption 1(b) and (c) are formulated for differences of the sequences
f1(0), g:(0) and the partial derivatives because our aim is to study unit root tests. Hence,
estimation of the parameters p; (i = 0,1), @ and ~y is considered under the null hypothesis
that the error process contains a unit root. Efficient estimation then requires that the
variables are differenced.

Assumption 1(c) guarantees that our estimators of the deterministic part of the model
are well-defined. Notice, however, that consistent estimation of # and < is not possible
because, by Assumption 1(b), the variation of (the differenced) regressors does not increase
as T — oo. In LLS it is also emphasized that our assumptions imply that, for each value of 6,
the sequence ¢;(f) defines a slowly evolving trend in the terminology of Elliott, Rothenberg &
Stock (1996, Condition B). Our conditions are stronger than those of Elliott et al., however.
No attempt has been made here to weaken Assumption 1 because it is convenient for our
purposes and applies to the models of interest in the following. For more discussion of
Assumption 1 see in particular LLS.

We compare unit root tests within the model (2.1). More precisely, we consider tests of
the pair of hypotheses

Hy:p=1  vs. H, :|p| < 1.

The idea is to estimate the nuisance parameters first and then remove the deterministic
part and the serial dependence induced by the AR operator b(L). Then a test is performed
on the adjusted series. In the next section we therefore discuss estimation of the nuisance

parameters.
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Suppose that the process v; is near integrated with

c
P:PT=1+T, (3.1)

where ¢ < 0 is a fixed real number. The estimation procedure proposed by LMS uses an
empirical counterpart of the parameter p replacing ¢ by a chosen value ¢ and pretending
that ¢ = ¢ although we do not assume that this presumption is actually true. The idea is
to apply a GLS procedure by first transforming the variables in (2.1a) by the filter 1 — prL,
where pr = 1+ % and then applying OLS to the transformed model. In other words, we use
quasi-differencing for our variables. The choice of ¢ will be discussed later.

Using pr instead of p, the generating process of v; can be written as
VU = PrUt—1 + &4, t= 1, 2, . (32)

Employing matrix notation and defining

Y =[y1: (y2—pryn) : -+t (yr — pryr—1)],
!
1 1—pp - 1-p
7, = pr pr
1L 2-pr) - (T—pr(T-1))

Z5(0) = [11(0) = f2(0) — prfr(0) : -+ : fr(0) — prfr(0)],
Z(0) = [Z, : Z5(0)] and W () = [Z(0) : V], where V is the (T x p) matrix containing lagged
values of y; transformed in the same way as the other variables, the quasi-differenced form

of (2.1a) can be written as

Y =W(O)B+E. (3.3)

Here f = [po: 1 : 7 : V' and & =[e; : - -+ : ep|'is an error term such that e; = v, — prvy_g =
e+ T (c— ¢)vi_1. We shall consider a nonlinear OLS estimation of (3.3) by proceeding
in the same way as in the case ¢ = 0, that is, e, = £; or under the null hypothesis. Our

estimators are thus obtained by minimizing the sum of squares function
Sr(0,8) = (Y —W(6)5)'(Y —W(0)5). (3.4)
The estimator of S can be written as
B=(W(O)W(©)" W)Y, (3.5)

5



where ¢ 1s the value Ol U wiicil IMIinimizes (o.4) jolntly with O.
One may also wish to consider a modification of the above approach to avoid potential
adverse finite sample effects from treating the first observation differently than the other

observations in (3.3). Thus, we delete the first element in (3.3) and define

Y* = [(y2 — pry1) = -+ : (yr — pryr—1)]',

!

1 1

7 =
@2=pr) -+ (T=pr(T=1))

and
Z5(0) = [(f2(0) — prfr(0)) = -+ = (fr(0) — prfr—1(0))]"

Moreover, the ((T'— 1) x p) matrix V* and the ((T"— 1) x 1) vector £* are defined by
deleting the first row and first component from V and &, respectively. Instead of (3.3) we

now consider

Y* = WH0)5" + £, (3.6)

where W*(0) = [Z*(0) : V*| with Z*(0) = [Z] : Z5(0)] and B* = [u§ : p1 @ 7 : V'] with
ug = to(1 — pr). For simplicity the notation ignores the dependence of the quantities on the
chosen value of ¢ and on the sample size. In this approach we do not try to estimate the
parameter . This means that we cannot obtain an empirical counterpart of the process v;
but only of v; + pg. This feature will be taken into account in constructing unit root tests
in the next section.

We estimate the parameters §* and 6 in (3.6) by minimizing the obvious analog of the
sum of squares function in (3.4). If ¢ = 0 (or pr = 1) the two columns of the matrix Z] are
identical so that the regression model (3.6) is not of full column rank. Then we shall delete
the first column of Z] and accordingly delete pj from the parameter vector 8*. Since the
treatment of this special case is fairly obvious it will not be discussed here in more detail.

We may also impose the restriction gy = 0 if a linear trend term is not needed.

4 The Tests

Once the nuisance parameters in (2.1a) have been estimated, the residual series @, = b(L)y, —

o — it — ft(é)'if may be used to obtain unit root tests. There are several possible choices.



LIVLS suggest using Ur t-1esis like, 10r lnstance, Lillott €t al. (1JJ0). 111 the 10lIOWINg we
shall also consider these tests.

Consider the auxiliary regression model
6t:p6t,1+6:, t:2,,T (41)

If o, is replaced by vy, the error term in (4.1) becomes &, so that we can use OLS to obtain a
test statistic. LMS consider the usual ¢-statistic for testing p = 1 in (4.1). In the following
this statistic will be denoted by t;us. Note that LMS use the model (4.1) for t =1,...,T
with vy = 0.

Notice, however, that the error term in the auxiliary regression model (4.1) also contains
estimation errors caused by replacing the nuisance parameters b = [by : -+ : by, po, 1,
6 and v by their OLS estimators. As far as the finite sample properties of the above test
and particularly the performance of the asymptotic size approximation are concerned it
may therefore be worthwhile to try to allow for this feature. To investigate this possibility,
suppose the null hypothesis holds and note that, by straightforward calculation, one can

readily see that

¢; = e — [b(L) = (D) Ay — (i — ) = [AL(O)F = ALO)Y, t=2,....,T.  (42)

For simplicity, consider first the special case where the function f;() is defined by the step
dummy d;; so that it is independent of the parameter 6. As is clear from equation (4.2),
the estimation errors caused by using estimators of nuisance parameters can then be allowed
for by augmenting the auxiliary regression model (4.1) by the impulse dummy Ad;, the
lagged differences Ay, i,..., Ay, ,, and an intercept term. After this modification the test
statistic can be defined on the basis of the OLS estimator of p in the same way as before.
The inclusion of an impulse dummy in (4.1) will not change the limiting distribution of
the resulting unit root test but the inclusion of an intercept term does. We shall consider
both modifications. It should be noted, however, that since the mean value of the lagged
differences Ay;_1, ..., Ay, is generally nonzero the inclusion of these variables as additional
regressors in (4.1) will change the limiting distribution of the resulting unit root test. The
reason is that these lagged differences are not asymptotically orthogonal to the variable
U¢—1. It turns out, however, that this feature can be allowed for by using the mean-adjusted

variables Ay;,_; — fi. (j = 1,...,p), where fi, = fi;/b(1).

7



11 the Iunciion f:\v) dependas on tne parameler vector v e treatinent ol the 1ourtil verm
on the right hand side of (4.2) becomes slightly more complicated than in the foregoing
special case. We shall then assume that the function f;(f) is continuously differentiable
in an open set containing the parameter space © and use the Taylor series approximation
Af(0)—Af,(0) = A(Df,(0)/06")(0—0). Thus, instead of (4.1) we shall consider the auxiliary

regression model
b = pl1 + Afi(0)'m + AF(0)m + Gims +ef, t=2,...,T, (4.3)

where F,(f) is a (mk x 1) vector containing the partial derivatives in the matrix df,(8)/96
and §; = [Ayp1—fis 0 -+ 0 Ayp_p— 1] Let to4 be the usual ¢-statistic for the null hypothesis
p =1 based on the OLS estimator of p in (4.3).

Including an intercept term in the auxiliary regression gives
Oy = v+ plp_1 + Afi(0)'my + AF,(0) 10 + Gims +¢f, t=2,...,T, (4.4)

and the relevant t-statistic will be denoted by t;,;.

Denoting the OLS estimators of b, y1, v and 0 based on the model (3.6) by b*, i*, 7*
and 6%, respectively, we can form the series o} = b*(L)y, — fiit — fi(8*)'3 (t = 2,...,T).
Its theoretical counterpart is v; = vy + po for which we have v; = v + pv;_; + €, where
v = (1 — p)uo- Thus, yet another unit root test may be based on the auxiliary regression

model

o =v+pt;_,+er, t=2,...,T. (4.5)

Our test statistic, denoted by t} ,,¢, is the ¢-statistic for the null hypothesis p = 1 in (4.5)
based on OLS estimation.
It is also possible to include terms to take care of estimation errors and base the unit

root test on an auxiliary regression similar to (4.4),
OF = v+ pif  + A0 T+ AF(0) 10+ Gy + €t t=2,...,T, (4.6)

The resulting unit root test statistic will be denoted by t;,,.
Moreover, if we have the a priori restriction pu; = 0 the estimation procedures in Section
3 and the definitions of 7; and v} are adjusted accordingly. Since in this case the limiting

distributions of the corresponding unit root tests change, we augment the test statistics with



a SUperscCript U to distinguisn tnem 1rom tne statistics winlcil allow 10I a lIn€ar tlme trenda.
ot 0 0 40 0 0 :

In other words, the test statistics are denoted by t7 /g, a4, ting, toas and ti,, respectively.

The limiting null distributions of all the test statistics are given in the following theorem

which partly summarizes known results. The remaining unknown parts are proven in the

Appendix.

Theorem

Suppose that Assumption 1 holds and that the matrices Z(6) and Z*(6) are of full column
rank for all 7" > k£ + 1 and all # € ©. Then,

—-1/2

€0 sty L ( | 1 Bc(s)st) | ' B.(s)dB.(s), (4.7)

where B.(s) = [; exp{c(s — u)}dBy(u) with By(u) a standard Brownian motion,

1 -1/2 1
6%, i 2 ([ Bu()ds) [ Bels)B(s) (1)

where B, (s) is the mean-adjusted version of B.(s),

—-1/2

d 1 \2 1 _ _
toms, tag — (/0 G.(s;¢) ds) /0 G.(s;€)dG.(s;0), (4.9)

where G.(s;¢) = B.(s) — sK.(¢) with
1 1
K@) = h(®) ! / (1 — &s)dBo(s) + h(@) " (c — o) / (1 — 28)Bu(s)ds
0 0
and h(¢) = 1—c+¢®/3. Here the stochastic integral is a short-hand notation for f; G.(s; ¢)dB,(s)—
K.(¢) J} G.(s;€)ds. Moreover,
d 1 “1/2 1
tine —— (/ Ge(s; 5)2d8> / Ge(s; ©)dGe(s; 0), (4.10)
0 0
where G.(s; €) is a mean-adjusted version of G.(s; ). Furthermore,
d 1 -1/2 .1
tiasstiw 0 ([ Gilsids) [ Gilss0)dGilsio) (4.11)
0 0
where G%(s; ¢) = B.(s) — sK}(¢), with K}(0) = B.(1) and, for ¢ < 0,

K*(0) = 2 /01 (% - s> dBo(s) + 22 =9) /01 (1 - s) B.(s)ds,

c c 2

G*(s;¢) is a mean-adjusted version of G%(s;¢) and the stochastic integral is a short-hand

notation for [ G%(s;¢)dB.(s) — K (¢) [y Gx(s;¢)ds. O



1Ne condaitions I10r vne ranks ol the matrices £ (V) and 4 (V) are included 11 the tneorem
because they are plausible. It can be shown using Assumption 1 that they hold for T large
enough. The asymptotic distributions in (4.7) - (4.10) are the same as those in Theorem
1 of LLS for corresponding tests derived in an additive outlier framework. Thus, some
critical values are available in Table 2 of LLS. For ¢ = 0, the null distributions in (4.7) and
(4.8) are conventional Dickey-Fuller (DF) distributions for unit root tests in models without
deterministic terms and with intercept, respectively. The distribution of t7ss in (4.9) is, of
course, the one obtained by LMS.

The limiting null distribution of the test statistic t;,; is again obtained by setting ¢ = 0.
It is free of unknown nuisance parameters but depends on the quantity ¢. It differs from that
of tnms and t,4 in that G.(s;c) is replaced by a mean-adjusted version. This difference is
due to the intercept term included in the auxiliary regression model (4.4).

Obviously, the asymptotic distribution of the test statistics t7,;¢ and t},, also differs
from the other ones. Instead of G.(s;¢) in (4.10) we have G%(s;¢) in (4.11). The difference
between these two quantities is due to the different limiting distributions of the estimators
i1 and fi7. This difference results from a different treatment of the intercept term in the
regression models (3.3) and (3.6) and, in the special case ¢ = 0, this difference vanishes.

Simulations shall be performed to study the power properties of our test statistics. Even
without such simulations it is clear, however, that in terms of asymptotic local power the test
statistics in (4.10) and (4.11) are inferior to those in (4.9) because they are not asymptotically
equivalent to t; s and the asymptotic local power of t; 5 is indistinguishable from optimal
(see Elliott et al. (1996)). This result is based on a specific initial value assumption, however,
which may be unrealistic in some cases (see Elliott et al. (1996, pp. 819-820)). Therefore
the performance of the t;,;, t],,5 and t} , tests may be preferable in some finite sample
situations. We will report local power results and small sample comparisons for these tests
in the following section.

Alternative approaches such as point optimal tests are possible in the present context.
These tests would be based on the statistics 62(1) and 6%(pr) defined by replacing p in the
variance estimator by unity and pr, respectively. According to the simulation results of
Elliott et al. (1996) the overall properties of their DF ¢-statistic appeared somewhat better

than those of the point optimal tests. Therefore we use the DF test versions. It may

10
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distributions of our tests.

5 Local Power Simulations

All the tests considered in the previous section are summarized in Table 1 for the case where
no a priori restriction is available for ;. In order to investigate the local power of the tests

we have generated time series
vy =prvg +e, t=1,2,....T, vu=0, pr=1+c¢/T, & ~iidN(0,1). (5.1)

We assume y; = vy so that p = 0 and there is no additional dynamics. Moreover, there is
no deterministic part and we can use the generated series to investigate the tests with and
without the restriction u; = 0. For this purpose we use again pr = 1+ ¢/7 and consider the

following v; series:

o 3" =y — o (t=1,...,T), where [ip is obtained from a regression (1 — prL)y; =

pozor +errory (t=1,....T) with zg =1 and z, =1 — pr fort =2,...,T.

. @S” = vy — fig — fut (t = 1,...,T), where fip and [i; are obtained from a regression

(1 — prL)y: = pozot + 1 (t — pr(t — 1)) +errory (t=1,...,7T).
Moreover, the v} series are obtained as:

o 57V =y, (t=1,...,7).

. 17:(1) =y — it (t =1,...,T), where [i; is obtained from a regression (1 — prL)y; =

v+ m(t—pr(t—1))+error, (t=2,...,T).

The series @t(i) (1 =10,1) are used to compute t-statistics for the null hypothesis p = 1 based

on the regression model (4.1). The series 17,51) is also used to compute the t-statistic for

p=1in 17,§1) =v+ pf)t(i)l + u; and the series 17:@ (1 = 0,1) are used for the same purpose
in conjunction with model (4.5). For large sample size T and ¢ = 0 (i.e., pr = 1) we get
realizations of the null distributions corresponding to (4.7) - (4.11) in this way.

Notice that the asymptotic distributions in (4.7) and (4.8) do not depend on é. Simulating

(4.7) via @t(o) there is a potential small sample dependence on ¢, however. Therefore we use

11



Table 1. Summary of Tests

Test
statistic | Underlying auxiliary regression Asymptotic distribution
toms | O = piioy + € ( ! Gc(s,a)?ds)_l/2 L Go(5;0)dG.(s; ¢
boig | B = pitos + AL (O)m + AF,(B) s + g + €] (Jo Gels;2)%ds) T G 0)dG (s 0
tint By = v+ pii_1 + Af(0)'m + AF,(0) s + Gims + e (fol G.(s; E)st) ~1/2 ) Ge(s;0)dGe(s
t3 1 Uf =v+p0;_, +e* (fol Gx(s; 5)2ds) i fol G*(s;¢)dG? (s;C
G| 5 =t o+ ARV T + ARG m + 3w+ ! | ([ Gisods) | f Gr(si0)dG
¢ = —7 as recommended by Elliott et al. (1996) in local power comparisons. In contrast,
simulating (4.8) via ¥ © _ ys, the latter distribution is, of course, invariant to ¢ so that

¢ = 0 may be used without loss of generality. For the asymptotic distribution in (4.9), the
optimal value of ¢ found by Elliott et al. (1996) is ¢ = —13.5 and, hence, we also use that
value later.

It remains to consider the role of ¢ for the local power of the tests with asymptotic
distributions (4.10) and (4.11). To determine a suitable ¢ for these distributions we have
generated critical values for a 5% significance level based on 10000 drawings with sample
size T' = 500 using ¢ = 0 and then we have simulated the local power curves in Figures 1
and 2. In Figure 1 it is seen that the local power associated with the distribution in (4.10) is
almost invariant to the value of ¢. Hence, ¢ = 0 may just as well be used. This feature was
also reported by LLS. In other words, the deterministic terms may be estimated under the
null rather than local alternatives in order to get optimal local power for t;,;. The same also
holds for t7,,s and t},, as is seen in Figure 2. In that figure it is also obvious that for the
latter statistics the value of ¢ matters. However, optimal local power is achieved for ¢ = 0,
at least for ¢ = 0,—3,...,—30. Thus, critical values for all relevant cases are available in
Table 2 of LLS.

We will now consider the local power properties resulting from the five distributions in the
Theorem with ¢ = —7 for (4.7), ¢ = —13.5 for (4.9) and ¢ = 0 for the remaining distributions.
One would expect the tests based on the ﬁt(i) series to have better power than those based on
the o, @ because the former use an extra observation in estimating the nuisance parameters.

Of course, tests based on the assumption p; = 0 are expected to have more power than the
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Figure 1. Local power associated with (4.10) (t;,:) (—¢ = 0,5, 10, 15, 20).

corresponding tests which do not use that a priori restriction. To explore these issues we
have generated v; as in (5.1) with different values of ¢ and sample size T = 500. Comparing
the resulting test values to the 5% critical values in Table 2 of LLS gives the empirical local
power of the tests. The corresponding local power curves are plotted in Figure 3. They are
again based on 10000 replications of the simulation experiment.

The results in the figure are as expected. The tests which use the restriction p; = 0
are relatively more powerful than the corresponding ones which do not take the restriction
into account. Moreover, tests which include an intercept term in the auxiliary regression

(i)) tend to be less powerful than the corresponding tests which include the first

observation in estimating the nuisance parameters (based on the 17t(i)). Except for t%,,5 and

(based on 7;

tgdj, the differences in local power are in fact not very substantial. In other words, if a linear
trend term cannot be excluded a priori, the price in terms of local power for dropping the
first observation is not very high. On the other hand, substantial gains in local power are
possible if y; = 0 can be assumed. In this case using (3.6) instead of (3.3) in estimating
the nuisance parameters has a quite high price. Generally tests which include an intercept
term in the underlying regression model have reduced local power. Of course, local power is
a concept based on asymptotic considerations. In small samples the situation may be quite
different, in particular, if the assumptions underlying the tests are not fully satisfied for a

time series of interest. Therefore we will explore the small sample properties of the different
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Figure 2. Local power associated with (4.11) (t} g, t},) (—¢=0,5,10, 15,20).

variants of the tests in the next section.

6 Small Sample Comparison

We have performed some simulations to investigate the properties of the tests in small

samples based on the following two processes:
(1 - blL)yt = dlt + U, Vg = PUi—1 + &y, t= ]_, ceey T, (61)

and

Yy — dlt -+ Ty, (1 - blL)(l - pL)l‘t = &4, t= 1, .. .,T, (62)

with g, ~ itd N(0,1), p = 1,0.9,0.8, T = 100,200. In some of the simulations we also
generated 100 presample values which were discarded except that presample values were
used in the estimations. Furthermore, we use 7;/T = 0.5, that is, the break point is in
the middle of the sample. Preliminary simulations indicated that the location of the break
point is not critical for the results as long as it is not very close to the beginning or the
end of the sample. Therefore placing it in the middle does not imply a loss of generality
for the situations we have in mind. The first process (6.1) is a special case of the model
(2.1) and, for b; # 0, it generates a smooth shift in the deterministic term. For this process

our t tests are appropriate. In contrast, the DGP (6.2) represents an additive outlier model
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with an abrupt shift at time 7} so that in general the model underlying the t tests can only
approximate the DGP (6.2). For this process, applying our tests may give some indication
of the flexibility of the framework and of the consequences of violating the assumptions
underlying the derivations of our tests.

For comparison purposes we also include the tests of LLS (denoted by 7) in our study.
These tests are based on processes with potentially abrupt level shift as in (6.2). Specifically

the tests used in the following are 7.y, 7'0(;; , Tint and 7,5, which were found to have the best

small sample properties in LLS. These tests correspond to tgdj and t;,;, respectively. In
particular, they have the same asymptotic properties. The difference between the 7;,; and
7;-, statistics is that the short-term dynamics are dealt with in a slightly different way and
a similar comment applies for 7, and T(?(;; (see LLS for details). The test 7,7, was shown to
outperform other unit root tests for time series with level shifts such as those proposed by
Perron (1989, 1990) in terms of size precision and power (see Lanne & Liitkepohl (2001)).
Including 7,7, in the present study we can thereby investigate the performance of our new

tests more generally.

To capture the smooth transition from one regime to another as in DGP (6.1) the T tests
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may D€ COombined witil a SImootn sniit function. ror botn types OI Lests we us€ Lne Sillt
functions given in Table 3 for both processes. The last two shift functions allow for smooth
deterministic shifts. All three shift functions can be shown to satisfy Assumption 1. For
some of the tests the derivatives of the shift functions are needed. They are also given in
Table 3. Since ft(l) does not depend on # the derivative Ft(l) is zero. Hence, no extra terms
AFt(l)(H) appear in those auxiliary regressions which generally contain this term. In the
simulations we use a range of 0 < 6 < 2 for ft(Q) () and 0 < 6 < 0.8 for ft(?’)(t?) in estimating
the parameters of the deterministic term. Although there is no linear trend term in the

DGPs we allow for such a term in computing some of the test statistics.

Table 3. Shift Functions and Their Derivatives

Shift function Derivatives
f+(0) Fy(0)
0, t<T
0(0) = dyy = 1 FP(0) =0
1, t>T)
O, t< Ty 0, t<T)
(0 = F2(0) =
1—exp{—-0(t -T1)}, t>T (t—T)exp{-0(t—-T1)}, t=T)
dit dit1
@ _ | 1— 0L @ gy — | (1=0L)?
o (0) = dig 1 F(0) = dit o
1-6L (1—-6L)?

As in LLS we found that nonzero ¢ values lead to gross size distortions and in particular
to substantial overrejection in some situations. Therefore, nonzero ¢ cannot be recommended
for applied work. Hence, in the following discussion we exclusively focus on results for ¢ = 0,
that is, estimation of the nuisance parameters is done under the null hypothesis.

Relative rejection frequencies from 1000 replications of the experiment are given in Tables
4 - 7. Results are given for selected tests only. We will first comment on Tables 4 and 5
where the initial values used in the simulations are randomized by simulating 100 presample
values as described previously. In the tables we only show the results for those tests which

performed overall best in terms of small sample power within their respective groups, the
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Table 4. Relative Rejection Frequencies of Tests, T'= 100, T} = 50, ¢ = 0, Nominal
Significance Level 5%, Random Initial Values

Shift DGP (6.1), by = 0.5 | DGP (6.1), b =08 | DGP (6.2), b =0.5 | DGP (6.2), by = 0.8
function | Test | p=1 09 08 |p=1 09 08 |p=1 09 08 [p=1 09 08

10, 10060 0289 0577 [ 0.065 0.227 0.345 | 0.054 0.292 0.561 | 0.067 0.234 0.354
7010040 0285 0527|0020 0.140 0.275 [ 0.039 0.291 0.535 | 0.016 0.156 0.315
7401 0.061 0.343 0.575 | 0.053 0.287 0.382 | 0.063 0.353 0.590 | 0.050 0.292 0.436
tine | 0.079 0216 0.468 | 0.079 0.161 0.269 | 0.081 0.217 0.455 | 0.077 0.159 0.268

Tint | 0.022  0.091 0.305 | 0.001 0.004 0.029 | 0.020 0.090 0.302 | 0.000 0.006 0.034
T 0.075 0.216 0.499 | 0.064 0.149 0.262 | 0.080 0.233 0.526 | 0.065 0.167 0.286

0.095 0.306 0.535 | 0.088 0.227 0.366 | 0.100 0.286 0.547 | 0.099 0.238 0.361
70, | 0.064 0259 0.486 | 0.046 0.158 0.281 | 0.063 0.247 0.486 | 0.036 0.145 0.263
71010072 0266 0.491 | 0.049 0176 0.299 | 0.069 0.253 0.496 | 0.042 0.166 0.281
tine | 0134 0.200 0.505 | 0.134 0.244 0.355 | 0.135 0.288 0.509 | 0.141 0.237 0.330

Tint | 0.051 0.157 0.358 | 0.022 0.040 0.085 | 0.055 0.142 0.348 | 0.018 0.034 0.059
T 0.059 0.160 0.371| 0.026 0.0561 0.116 | 0.059 0.150 0.362 | 0.031 0.048 0.080

ft(3) t0 0.108 0.268 0.445 | 0.101 0.217 0.304 | 0.110 0.259 0.435| 0.105 0.208 0.293
70, | 0.060 0.268 0.426 | 0.082 0.217 0.293 | 0.064 0.266 0.417 | 0.079 0.223 0.302
7H) | 0.056 0.252 0.418 | 0.036 0.140 0.243 | 0.059 0.249 0.404 | 0.037 0.144 0.249

tine | 0.135 0.279 0474 | 0.129 0.229 0.322 | 0.134 0.278 0.468 | 0.140 0.213 0.314
Tint | 0.062 0.146 0.325 | 0.072 0.091 0.134 | 0.060 0.141 0.322 | 0.074 0.086 0.133
T 0.052 0.129 0.317 | 0.014 0.029 0.068 | 0.048 0.120 0.314 | 0.016 0.028 0.064

groups being t° tests (i.e., tests without linear trend term) and t tests (i.e., tests with linear
trend). We are only presenting the best tests in the tables to avoid covering up the most
important findings by the large volume of results for all the tests and simulation designs. It
may be worth noting, however, that some of the other tests were nearly as good as the tests
shown in the tables whereas some other tests performed very poorly indeed. Thus, some of
the other tests are not very useful for applied work whereas some other ones are almost as
good as those presented in the tables.

0 .0 _+0 +
int> Tadj> Tadj> Gints Tint and Tip,. From LLS we know

In the following, we consider only t
that in the group of tests which exclude the deterministic trend term, ngj and 7';1? were
generally best in terms of power, each having advantages in some situations. Among the
tY tests, ty,, was overall clearly best with highest power most of the time and close to the
maximum in the other situations. Note also that its empirical size tends to exceed the
nominal 5% slightly but not very much. More precisely, in most cases with p = 1 its relative

rejection frequency is less than 10% and in no case it is more than 13%.

In the group of 7 tests which allow for a linear trend term, 7;,; and 7,5, dominated the
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Table 5. Relative Rejection Frequencies of Tests, T' = 200, T} = 100, ¢ = 0, Nominal
Significance Level 5%, Random Initial Values

Shift DGP (6.1), by = 0.5 | DGP (6.1), by = 0.8 | DGP (6.2), by = 0.5 | DGP (62), b; = 0.8
function | Test | p=1 09 08 |p=1 09 08 |p=1 09 08 |p=1 09 08
169, [ 0053 0703 0964 | 0.058 0.519 0.781 [ 0.055 0.698 0.966 | 0.054 0.495 0.799
70, 1 0.033 0.633 0.850 | 0.017 0.472 0.650 | 0.035 0.653 0.867 | 0.017 0.494 0.726
T | 0.044 0678 0.869 | 0.040 0556 0.706 | 0.050 0.693 0.878 | 0.041 0.591 0.774
tine | 0.061 0568 0.913 | 0.062 0.394 0.687 | 0.059 0.556 0.910 | 0.058 0.387 0.675
Tint | 0.024 0466 0.899 | 0.007 0.125 0.476 | 0.028 0.469 0.907 | 0.009 0.130 0.513
7, 1 0.053 0613 0933 | 0.061 0415 0.732 | 0.050 0.617 0.943 | 0.064 0.434 0.753
2 [0, | 0073 0631 0907 | 0.067 0476 0.708 | 0.071 0.629 0.904 | 0.068 0.474 0.724
70,1 0.053 0.608 0.810 | 0.028 0.464 0.656 | 0.051 0.610 0.819 | 0.028 0.472 0.684
i | 0.053 0614 0812 | 0020 0474 0.664 [ 0.051 0.614 0.824 | 0.033 0.482 0.691
tine | 0.074 0559 0.867 | 0.077 0.393 0.658 | 0.071 0.558 0.877 | 0.075 0.398 0.682
Tt | 0.047 0491 0.896 | 0.011 0.161 0.511 | 0.046 0.489 0.844 | 0.011 0.142 0.509
mt, | 0043 0497 0889 | 0.020 0.195 0.534 | 0.044 0.492 0.891 | 0.020 0.174 0.531
39, | 0065 0536 0.802 | 0.067 0.389 0.596 | 0.068 0.534 0.809 | 0.074 0.385 0.625
70, 1 0.045 0553 0.742 | 0.050 0.492 0.637 | 0.049 0.571 0.747 | 0.051 0.507 0.656
Ty | 0043 0542 0737 | 0.026 0.447 0.619 | 0.046 0563 0.741 | 0.028 0.463 0.635
tine | 0.079 0552 0.861 | 0.082 0.399 0.645 | 0.075 0.545 0.862 | 0.075 0.389 0.634
Tt | 0.042 0488 0.861 | 0.075 0.237 0.529 | 0.051 0.484 0.854 | 0.075 0.241 0.512
7, | 0034 0473 0861 | 0.013 0.170 0.497 | 0.036 0.479 0.856 | 0.012 0.167 0.486

other tests in the study of LLS. Whereas 7;,; turned out to be preferable in conjunction with
shift function ft(?’), 7, clearly dominated for ft(l). Both tests performed poorly for b; = 0.8

int

and T = 100. Finally, t;,; is overall the best t test allowing for a trend. Its power is usually

*
int?

very close to that of t} ., though. In fact, the two tests often produce identical rejection
frequencies. Therefore, we present results for just one of them. For T' = 100, both t;,; and
t; , reject a bit too often if they are used in conjunction with ft(Q) and ft(?’). This may not be
too surprising given that using these shift functions for the presently considered DGP means
that we are fitting a misspecified model. The tests are doing quite well if the correct shift
function ft(l) is used.

The following further conclusions emerge from Tables 4 and 5. In line with the local
power results, excluding a linear trend term from the models when such a restriction is
correct results in substantially better power. Although there are power differences between
the tests which allow for a linear trend, there is no clear winner. In other words, each of the
tests is advantageous in some situations. On the one hand, t;,; has often more power than

Tint and 75, and, on the other hand, t;,; tends to reject a bit too often. The same is true for
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LESTS excluding a linear trenda terin.

It is also apparent that it is not essential to use a test designed for a particular model
when that model is in fact the true DGP. In other words, the performance of the tests is
similar for the alternative DGPs (6.1) and (6.2). This may not be very surprising given that
the two models are in fact quite close in many respects. The results in Tables 4 and 5 show
that the performance of the tests depends more strongly on the shift functions than on the
type of DGP. Furthermore, changing b; from 0.5 to 0.8 has a substantial effect. It implies
a sizable decline in power in most cases. Again, this behaviour of the tests may not be too
surprising because for b; close to 1 the processes have two roots close to unity and therefore
are difficult to distinguish from unit root processes. Finally, the performance of all the tests
improves markedly if 7" is increased from 100 to 200.

It is noteworthy that the tests based on (3.6) in estimating the nuisance parameters
(t3%5, €19, t3.,5, t5,), were not as powerful as those shown in Tables 4 and 5. This
result is in line with the local power results. To explore the impact of the initial values we
have controlled them in some of our simulations. In Table 6, results for 7" = 100 and zero
initial values are provided. Clearly, the power of the tests tends to be larger than in the
corresponding entries in Table 4, especially for those tests which do not allow for a linear
trend. Thus, using zero initial values helps to improve power in samples of size 7" = 100
although they have no impact asymptotically.

Since T" = 100 is obviously too small to ensure the validity of asymptotic properties, it
is also not surprising that the power tends to be smaller if unusually large initial values are
considered. In Table 7 we show results for the situation where the initial values are all set to
5. For p = 0.9 and 0.8, the standard deviations of the y; generated by (6.2) range from about
3 to almost 10, depending on b;. Hence, initial values of 5 may be regarded as moderate or
large compared to the randomly chosen values in Tables 4 and 5. Using identical values for
y_1 and yp may be reasonable given the large correlation in the ;. In Table 7 the power
of the tests tends to be lower than in the corresponding Table 4. In some situations the
power decline is particularly strong for tests that do not include an intercept term in the

0 40

test regression (Tadj, T,

agj)- A similar problem was also observed for some of the other tests

based on regressions without an intercept and for which results are not shown in the tables.

It may also be worth noting that the relative performance of the tests changed if zero initial
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Table 6. Relative Rejection Frequencies of Tests, T' = 100, 77 = 50, ¢ = 0, Nominal
Significance Level 5%, Zero Initial Values

Shift DGP (6.1), by = 0.5 | DGP (6.1), b =08 | DGP (6.2), by = 0.5 | DGP (6.2), b; = 0.8
function | Test | p=1 0.9 08 | p=1 0.9 08 | p=1 109 08 | p=1 0.9 0.8
ft(l) t?nt 0.050 0.271 0.594 | 0.0563 0.208 0.329 | 0.047 0.257 0.596 | 0.046 0.197 0.327
ng- 0.044 0.446 0.730 | 0.017 0.210 0.404 | 0.049 0.512 0.845 | 0.015 0.259 0.584
T;:ij 0.069 0.560 0.785 | 0.067 0.427 0.580 | 0.067 0.617 0.889 | 0.066 0.487 0.751
tine | 0.067 0.244 0.561 | 0.067 0.170 0.319 | 0.067 0.245 0.583 | 0.073 0.171 0.310
Tinte | 0.019 0.091 0.317 | 0.002 0.004 0.032 | 0.021 0.094 0.325 | 0.001 0.005 0.043
T;Lt 0.070 0.229 0.559 | 0.070 0.190 0.317 | 0.072 0.238 0.571 | 0.072 0.181 0.321
2149, 10088 0296 0.560 | 0.095 0.203 0.344 | 0.083 0.288 0.570 | 0.085 0.219 0.336
ng- 0.057 0.414 0.668 | 0.032 0.246 0.435 | 0.055 0.459 0.782 | 0.024 0.248 0.500
T;;g 0.064 0.427 0.681 | 0.034 0.271 0.451 | 0.059 0.476 0.786 | 0.024 0.269 0.517
tine | 0.129 0.316 0.562 | 0.126 0.251 0.370 | 0.136 0.340 0.588 | 0.130 0.260 0.379
Tint | 0.046 0.142 0.349 | 0.011 0.037 0.088 | 0.041 0.150 0.366 | 0.009 0.033 0.068
T{Zt 0.053 0.155 0.373 | 0.021 0.045 0.115 | 0.052 0.157 0.391 | 0.017 0.038 0.083
142, 10106 0.230 0409 | 0.115 0.170 0.257 | 0.112 0.213 0.400 | 0.120 0.174 0.250
ng- 0.061 0.402 0.559 | 0.055 0.312 0.463 | 0.058 0.420 0.630 | 0.049 0.319 0.496
T;;ij 0.0564 0.375 0.550 | 0.027 0.237 0.401 | 0.052 0.394 0.624 | 0.023 0.245 0.457
tine | 0.128 0.272 0475 | 0.136 0.224 0.318 | 0.126 0.276 0.467 | 0.132 0.211 0.308
Tint | 0.054 0.153 0.360 | 0.0561 0.094 0.135 | 0.054 0.157 0.379 | 0.046 0.076 0.133
Ti—;t 0.043 0.132 0.348 | 0.009 0.029 0.078 | 0.043 0.140 0.365 | 0.009 0.026 0.072
Table 7. Relative Rejection Frequencies of Tests, 7" = 100, 77 = 50, ¢ = 0, Nominal
Significance Level 5%, Initial Values 5
Shifs DGP (6.1), by = 0.5 | DGP (6.1), b =0.8 | DGP (6.2), by = 0.5 | DGP (6.2), b; = 0.8
function | Test | p=1 0.9 08 | p=1 0.9 08 | p=1 09 08 | p=1 0.9 0.8
ft(l) t?nt 0.067 0.329 0.659 | 0.062 0.243 0.410 | 0.064 0.261 0.593 | 0.066 0.183 0.311
ng- 0.042 0.044 0.053 | 0.016 0.166 0.151 | 0.049 0.126 0.104 | 0.015 0.180 0.234
7';23 0.064 0.066 0.070 | 0.046 0.349 0.272 | 0.067 0.168 0.147 | 0.066 0.372 0.405
tine | 0.076 0.166 0.311 | 0.080 0.133 0.177 | 0.070 0.208 0.421 | 0.077 0.169 0.263
Tin¢ | 0.021 0.060 0.155 | 0.001 0.002 0.017 | 0.021 0.084 0.265 | 0.001 0.004 0.034
T;Lt 0.068 0.189 0.292 | 0.062 0.222 0.298 | 0.072 0.214 0.429 | 0.072 0.179 0.293
ft(Q) tgnt 0.095 0.355 0.665 | 0.104 0.270 0.413 | 0.094 0.292 0.580 | 0.095 0.204 0.330
ng- 0.062 0.041 0.059 | 0.037 0.164 0.105 | 0.055 0.162 0.153 | 0.024 0.190 0.260
T;;ij 0.069 0.045 0.063 | 0.0565 0.194 0.120 | 0.059 0.165 0.168 | 0.024 0.203 0.270
tine | 0.116 0.190 0.272 | 0.146 0.181 0.197 | 0.122 0.243 0.373 | 0.133 0.222 0.300
Tinte | 0.047 0.096 0.166 | 0.011 0.032 0.060 | 0.041 0.117 0.231 | 0.009 0.032 0.066
T{Zt 0.051 0.116 0.160 | 0.025 0.106 0.140 | 0.052 0.126 0.226 | 0.017 0.042 0.082
£ ¢, o111 0333 0585|0125 0231 0362 0.112 0268 0.506 | 0.120 0.185 0.288
ng- 0.072 0.053 0.050 | 0.185 0.279 0.137 | 0.058 0.182 0.170 | 0.048 0.256 0.296
T(j;ij 0.056 0.047 0.045 | 0.027 0.142 0.087 | 0.052 0.161 0.157 | 0.023 0.189 0.245
tine | 0.117 0.253 0.391 | 0.139 0.199 0.260 | 0.126 0.268 0.435 | 0.132 0.216 0.298
Tintg | 0.057 0.144 0.216 | 0.173 0.283 0.264 | 0.0563 0.137 0.262 | 0.046 0.081 0.121
T;t 0.045 0.111 0.199 | 0.012 0.055 0.121 | 0.043 0.124 0.248 | 0.009 0.031 0.071
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values Imst€ad Ol ranaom initlal values are used. 11 that Cas€ S0Ime 1ests witiout 1ntercept
term in the test regression did a little better than in the nonzero initial value case. Thus, in
particular if unusual initial values are suspected, using one of the tests with intercept term
in the test regression is advisable. Alternatively one may remove the first values of a time
series under consideration if they appear to be unusual.

The results in Tables 4, 6 and 7 also show that the tests are generally not very reliable if
time series with T = 100 observations are under consideration. Moreover, the performance of

the tests tends to be inferior if one of the misspecified and more complicated shift functions

ft@) or ft(?’) is used.

7 Conclusions

Standard unit root tests are known to have reduced power if they are applied to time series
with outliers and structural shifts. Therefore we have considered unit root tests that explic-
itly allow for innovational outliers of a very general, possibly nonlinear form at a known point
in time. We have argued that knowing the timing of the shift is quite common in practice
whereas the precise form of the shift is usually unknown. Therefore, allowing for general and
flexible shift functions is important. In this study we have focussed on models where the shift
is regarded as part of the deterministic component of the DGP. Building on proposals by
Saikkonen & Liitkepohl (2001), LMS and LLS it is suggested to estimate the deterministic
part in a first step by a GLS procedure which may proceed under local alternatives or under
the unit root null hypothesis. The original series is adjusted in a second step by subtracting
the estimated deterministic part and accounting for the stationary dynamics. Then DF type
tests are applied to the adjusted series. A number of modifications of previously proposed
tests of this sort are considered. In particular, tests are proposed that take into account
estimation errors in the nuisance parameters. Local power and small sample properties of
the tests are obtained.

The following general results emerge from our study. Some of the suggested modifications
work clearly better in small samples than the original tests proposed by LMS in that they
have superior size and power properties. Although local power gains are possible for some

of the tests if the nuisance parameters are estimated under local alternatives rather than
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unaer vne nuil Nypotnesis, substantial S1z€ dISTOITIONnSs may resull 1 sinall Salnples 1n tne
former case. Therefore we recommend estimating the nuisance parameters under the null
hypothesis.

A comparison with similar tests based on additive outlier models with a possibly abrupt
shift shows that neither of the test versions dominates in all situations. Therefore it may be
reasonable to use both of them in practice although the tests proposed in this study have
some disadvantages in terms of size in small samples.

Initial values are found to have an impact on the small sample power of the tests. It
turns out that including an intercept term in the test regression is important to guard against
undesirable effects of large initial values. In practice, it may be worth discarding unusual
values at the very beginning of a time series under consideration to avoid a loss in power
due to untypical initial values.

If a deterministic linear time trend can be excluded on a priori grounds, it is recommended
to perform tests in models without a linear trend term because excluding it may result in
sizable power gains. Finally, using test versions with the best power properties is of particular
importance in the present context because in some situations the tests do not perform very
well for samples of size as large as 7" = 100.

Although we have focussed on a single shift in a time series, the tests can in principle be
extended to allow for more than one shift. Of course, the small sample behaviour may be
different in this case and needs to be explored in the future if applied researchers wish to
use the tests in this more general context. In future research it may also be of interest to
consider the situation where the timing of the shift is unknown and has to be determined

from the data. We leave these issues for future investigations.

Appendix. Proof of Theorem

We focus on the case where p; is not zero a priori. The result for t;yg in (4.9) can be
obtained from LMS so that we consider t,4;.

We shall first study the appropriately standardized moment matrix in the OLS estimation
of the parameters in (4.3). By Lemma A.1 of LMS, we have fi, = u, + O,(T~%/?), where

tx = p1/b(1). This result in conjunction with (12.A.10) and arguments similar to those in
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\14.A.1a) Ol LMo, Canl DE used 10 SnOwW that

T

Z @q, — o*3(b),

where X(b) = o 2Cov[b(L) *(&1,...,&p)]. The same arguments and the representation given
for vy in the proof of Theorem 1 of LMS yield
T
T323" 14, = 0p(1).
t=1

Finally, when the assumptions made for f;(6) and F;(6) are also used, we get

T
3 o [AR(O) : AR(D)] = 0,(1)
t=1
and
T ~ ~
T2 4 [AL(0) : AFB)] = 0,(1).
t=1
Thus, the appropriately standardized moment matrix between the three regressors 7;_1,
[A ft(é)’ : AFt(é)’ ]I and §; is asymptotically block diagonal. It is also asymptotically positive
definite, as can be seen by using the assumptions and arguments similar to those in the proof
of Lemma A.1 of LMS.

We shall next consider the error term e] in (4.3) and show how it is related to the error

term e; in (4.1). First, recall that py(L) = 1 — prL and observe that, for ¢ > 2,

e = et (B(L) = b(L)) (D = Fyi1) + F (Ao = o)
= (i1 = m) (1= 252) = (pr(L)£:(8)7 = pr(D)fu(6))

Here we have used the definitions of v, and %, and the identities pr(L)y; = Ay, — %y,—1 and

(A1)

pr(L)t=1-— ( ). Identifying the parameter vector w3 in (4.3) with —(b — b) shows that
the inclusion of the regressors Ay, ; — fi. (j = 1,...,p) in (4.1) changes the second term
on the r.h.s. of (A.1) to (b(L) — b(L))(fix — ZYi-1)- It is also easy to see that, as far as the
limiting distribution of the test statistics t;ag and t,q4 is concerned, the contribution of the
third and fifth terms on the r.h.s. of (A.1) is negligible. In the same way one can conclude
that, from our point of view, terms which are added to the error term et by including the
regressors Af,(f) and AF,(0) are asymptotically negligible. Thus, we can conclude that for

our purposes the error term eI can be treated by using the approximation

el e~ (B(L) - b(L)) (;1* - %yt1> — (i — 1) (1 - @) . (A.2)
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using Lemima A.l1 ald €quation (1z2.A.1U) Ol LIS 1n conjunction with the representation
given for 7; in the proof of Theorem 1 of the same paper it can be shown that ez can be
further approximated by replacing fi, on the r.h.s. of (A.2) first by p. and then by Ay;. Since
the third and fifth terms on the r.h.s. of (A.1) can be ignored we have thus demonstrated that
the above approximation of eI becomes e:[ ~ e; and, since the appropriately standardized
moment matrix in the OLS estimation of (4.3) is asymptotically block diagonal, it follows
that the OLS estimators obtained for the parameter p from (4.1) and (4.3) are asymptotically
equivalent. Since it is straightforward to show that the same is true for the related error
variance estimators the limiting distribution of t,4 follows.

Using the definition of the test statistic t;,; and the above arguments it is straightforward

to prove (4.10). In order to prove (4.11) we first need the following result.

Lemma A.1.

Suppose that the assumptions of the Theorem hold. Then,

b 5 b, (A.3)
0" =0+ O,(1), (A.4)
5 =7+ 0,(1) (4.5)
and
TV (7 = b (1) pa/b(1)) —5 oK (@), (A.6)
where

K:(e) = g/ol (% - s) dBy(s) + M/Ol (% - s) B.(s)ds

Cc

for ¢ < 0 and K}(0) = B.(1).

Proof: For ¢ = 0 the result is fairly obvious because the considered regression model differs
from that used in Lemma A.1 of LMS only in that the first observation is omitted.

Now suppose that ¢ < 0. Arguments entirely similar to those used in the proof of Lemma
A.1 of LMS show that the estimation of the parameters v and € is asymptotically orthogonal
to the estimation of the other parameters in the regression model (3.6). Given this, (A.4)

and (A.5) can be obtained in the same way as in the aforementioned previous case, whereas
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the aSymptotliC properties ol the €stlmators 0 and fy Call be obtalned as 11 the mMatlriX Zy\U)
were omitted from Z*(#) and hence from W*(@). Since the first column of the matrix Z
is constant, this implies that we only need to repeat the derivations given in the proof of
Lemma A.1 of LMS for the counterparts of the estimators b* and i by using mean-adjusted
versions of the relevant variables. This argument gives (A.3) and (A.6) because the omission
of the first observation has no effect on these (asymptotic) results.

Using equation (12.A.11) of LMS it is straightforward to check that the mean-adjusted
versions of the second sample moments in (12.A.6), (12.A.14) and (12.A.15) of LMS converge
to the same limits as before except that the constant h(¢) = 1 — ¢+ ¢®/3 has to be replaced
by /12, the limit of the mean-adjusted version of the Lh.s. of (12.A.6) of LMS. Thus, it
follows that instead of (12.A.19) of LMS we can now write

TbT—b) | . T—l/QY’S o) )
TV ([} — ) T2 7,6
where Zi is the mean-adjusted version of the second column of the matrix Z; with a typical
component ¢(1 — ) + -2 and
Ry = a?3(b) +/Lz%1p1; ,u*%lp

=2 =2
2 q1 2
Pz 1y 12

Here 1, = [1 : --- : 1] is (p x 1) and the other notation is as before. Analogously to the
treatment of equation (12.A.19) of LMS we can now premultiply equation (A.7) by [u.1}, : 1]

to obtain

TV (= 5 () o(1)) = T2 + 0y (1) (48)

2
Now recall that a typical component of the vector Zys is ¢(3 — %) + 5. Using this fact, the
definition of the vector £ and well-known limit theorems for stationary and nearly integrated
processes, it is straightforward to derive (A.6) from (A.8). As for (A.3), the proof can be
readily obtained by using (A.7) and equation (12.A.11) of LMS which defines the elements
of the matrix V. This completes the proof of Lemma A.1. O

Once the result of Lemma A.1 is available, the limiting distribution of the test statis-
tic t7 ;¢ can be obtained by following the arguments in the proof of Theorem 1 of LMS.

Specifically, a representation similar to that obtained for v; in LMS can now be used for v}
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—1/2~x — * ~ % 7 [TS] * —
T 1/27)[Ts] =T 1/2U[Ts] - T (lh - b(l)ﬂl/b(l)) T +0p(1) 5 oG (s; ).

Given this result, it is straightforward to proceed in the same way as in the proofs of The-
orem 1 in Saikkonen & Liitkepohl (2001) and Theorem 1 of LMS to show that the limiting
distribution of the test statistic t7,,s is a “mean-adjusted version” of that of t;s. In other
words, t},,¢ has the limiting distribution given in (4.11). It follows from the fact that the
regressors A f,(6%), AF,(8*) and §; are asymptotically orthogonal to 47 ; and the constant
term that the test statistic t;

¥+ has the same limiting distribution. These facts can be seen by

using the results in the appendix of LMS in the same way as in the case of the test statistic
tqq and in the proof of Lemma A.1.

Finally, the arguments used for the test statistic t; , above also apply to the test statistic
tin:. However, since the test statistic t;,; is based on the series 7, instead of v}, the function

G.(s;€) will appear in place of the function G%(s;¢).
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