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Abstract. Consider a marriage market with continuous-time two-sided search and trans-

ferable utility in which the match payoff depends on age. This paper characterizes a set of

payoff functions consistent with two salient marriage age patterns: (1) assortative match-

ing by age, and (2) “differential age matching”, a formalization of the age difference at

marriage between men and women. The payoff function has to satisfy certain conditions

on its slope and curvature in age. However, to achieve sorting it need not be supermodular

(submodular) in partners’ ages, unlike in search models where the match payoff depends

on the fixed “type” of each individual. (JEL C78, D83, J64)
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1. Introduction

Age patterns of marriage exhibit remarkable regularities across marriage markets. As an

example, figure 1 depicts the marriage ages of Indian women and their spouses according

to the 2005-06 National Family Health Survey. There is strong sorting by age, and women

often marry men considerably older than themselves, while an age difference in the opposite

direction is less common and usually quite small. This pattern is not unique to India;

Goldman et al. (1984) draw a strikingly similar graph using marriages from the United

States in 1976-78. Consistent with these patterns, the average marriage age of men is

higher than that of women in almost every country, and spousal age is highly correlated

(e.g. United Nations (2000), Choo and Siow (2006b))1.

Marriage age patterns are important because they have implications for education, fertil-

ity and maternal health, and they affect decision making, for example on savings. They also

play a role in the supply and demand of spouses: if the population grows over time, there

is a unique (average) age difference at which the numbers of women and men are balanced.

Conversely, if women marry younger than men, an increase in population growth causes a

surplus of women at the prevailing marriage age. This so-called marriage squeeze has been

blamed for the high marriage transfers paid by women’s families in India, and ultimately

for increased rates of neglect or infanticide of unwanted – expensive – female children (e.g.

Bhat and Halli (1999)).

This paper develops a search model with transferable utility in which the joint payoff to

a match, f(i, j), depends on age i of the woman and j of the man at the time of marriage.

The marriage payoff function summarizes individuals’ preferences over their own and their

spouse’s age, based for instance on fertility and health considerations, current wealth, or

labor market value. A couple will marry if they prefer f(i, j) over the outside option of

staying in the market and meeting another potential partner in the future, when they are

both older. The model applies to other settings in which coalitions of two have to form and

payoffs depend on time-until-match. Examples are buyers and sellers of perishable goods,

1Coincidentally, the dating website OkCupid (2010) recently documented age preference profiles among

its users that are again very similar to figure 1.
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Figure 1

Age at first marriage (jittered) for women born before 1981 and their partners, NFHS

2005-06.

or professional pairs like an executive and her assistant. There may in principle be both

gains or losses to “aging”. For example, the payoff for an architect and an engineer of

founding a firm together may at first increase, while they separately acquire valuable skills

as employees, but eventually they are past the optimal “age” because the learning curve is

flat and their creativity begins to suffer.

Individuals are assumed to enter the market at age zero and to leave it after age I and

J for women and men, respectively. A matched pair exits the market, and there is no

remarriage. The age distributions of singles and the ratio of unmarried men and women

in the market are endogenous, a product of market entry at age zero, and exit from the

market through marriage or upon reaching the final marriage ages. If for instance women

marry earlier than men, there will be overall more single men than women, and the age

distribution of unmarried women will be more concentrated at the low ages. In a steady-

state equilibrium, entry and exit are balanced and the singles age distributions and sex ratio

are constant over time.

In this paper I characterize a set of payoff functions under which there is assortative

matching as well as “differential age matching”, a formalization of the difference in marriage
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age between men and women. Intuitively, differential age matching requires that whenever

an “old” woman and “young” man are observed to marry, then the opposite pairing between

an old man and a young woman will lead to marriage as well; or in other words, the partners

of any man will be as young or younger than the partners or a woman of the same age.

Sufficient conditions for both marriage age patterns involve the slope and curvature of f

in each partner’s age. To provide a first intuition, it is useful to think of the net surplus of

marriage – the payoff f(i, j) minus the man’s and woman’s outside options – as a function of

one partner’s age. For example, for a given age of the man j, the net surplus from marriage

is decreasing in the woman’s age whenever f itself falls fast enough in i. But ages i and j

match with each other exactly if the net surplus is positive, meaning that the set of ages

that j marries is an interval beginning with the youngest women at i = 0 up to a cut-off age

where the net surplus from marriage is just equal to zero. Similarly, if f is “concave enough”

in i (in a sense made precise later), the marriage surplus will be quasi-concave, again leading

to j matching with an interval of ages. Interval matching, or a convex matching set, is a

key ingredient for assortative matching and plays a role for differential age matching as well

(see section 4 and Shimer and Smith (2000)).

As a motivating example, consider a simple formalization of the payoffs to marriage that

arise from an exchange of fertility for protection and status:

Example: Let I = J be the age of death and assume no discounting. Suppose the

woman receives a flow payoff b from the date of marriage to the end of her life. This

may reflect the value of the connection to (or protection by) her new family or a gain in

status from being a married woman. It is particularly relevant when status is patrilineal,

as for example in India, where the wife adopts the husband’s caste. In addition, the couple

receives a payoff Π if they have a child. Between the date of marriage and the death of the

older partner, the woman has a uniform probability of becoming infertile, modeled by an

exponential distribution with parameter γ. At the same time, conditional on being fertile

the probability of conceiving is assumed to be time independent, so that the arrival rate of

a child is again exponentially distributed (with parameter β). The payoff function is then

f(i, j) = Πβe−γi
∫ T

0
e−(γ+β)tdt+ b(I − i)
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where T = I − i if i > j, and T = J − j if j ≥ i. �

It will be shown that this marriage payoff function leads to both positive sorting and

differential age matching if the woman’s bargaining position is weak.

The theory of two-sided matching and search has long been interested in conditions for as-

sortative matching, that is, the matching of similars or opposites. Usually it is assumed that

the match payoff depends on a heterogenous, but fixed characteristic, for example the part-

ners’ productivity or what Burdett and Coles (1997) call “pizzazz”. Age has a special status

in this context: with search frictions, the time that the partners have spent in the market,

and therefore their age, is itself a source of heterogeneity. Even if individuals on the same

side of the market are ex ante identical, their marriage payoff is subject to change over time,

and there will be a distribution of agents at different ages in the market. Correspondingly,

the conditions for sorting differ from those in existing search models where heterogeneity

comes from a fixed characteristic (see Becker (1973), Shimer and Smith (2000)), and I will

show that supermodularity (submodularity) of the payoff function is neither necessary nor

sufficient for positive (negative) assortative matching.

After a literature review in section 2, section 3 describes the model and proves existence

of a steady-state equilibrium. Section 4 first defines and discusses assortative matching and

differential age matching (DAM). I then derive sufficient conditions on the payoff function

so that every individual matches with an interval of ages (convex matching sets). This

leads to conditions for assortative matching. Finally, I provide a set of conditions which

guarantee DAM, again closely related to the conditions for matching set convexity. Section

5 concludes.

2. Related Literature

Assortative matching has been a major focus of attention in the theory of matching and

search. The literature begins with Becker (1973), who analyzed a static, frictionless setting

with transferable utility and provided the well-known condition for positive assortative

matching (PAM) that the matching partners’ types must be complements. This is equivalent

to a supermodular payoff function f , or f(x1, y1)+f(x2, y2) ≥ f(x1, y2)+f(x2, y1) for types

x2 > x1 and y2 > y1. Similarly, negative assortative matching (NAM) obtains if types are
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substitutes. Becker also showed that sorting can be sustained under nontransferable utility

only if both sides have monotone preferences in their partner’s type.2

Subsequent authors have analyzed assortative matching in a setting with search frictions

for both the transferable and nontransferable case. The most general result under nontrans-

ferability is by Smith (2006), who proves that the production function has to satisfy log

supermodularity, or f(x1, y1)f(x2, y2) ≥ f(x1, y2)f(x2, y1) (where f is increasing). Under

this condition, the market becomes “segregated”, that is, the type space can be partitioned

in intervals which only match among themselves. Similar results for less general production

functions have been proven earlier, most notably by Burdett and Coles (1997), who were

the first to consider a full equilibrium with endogenous meeting rates (see Smith (2006) for

a discussion).

Search with heterogeneity and transferable utility was introduced by Sattinger (1995),

who explores the efficiency properties of equilibrium. Lu and McAfee (1996) show that there

must be assortative matching if f(x, y) = xy. Shimer and Smith (2000) generalize this result

and show that positive assortative matching requires supermodularity of the production

function as well as log supermodularity of fx and fxy. Negative assortative matching is

achieved only if all three are (log) submodular (although Atakan (2006) recovers assortative

matching under supermodularity alone by introducing an explicit additive search cost into

the model).

This paper is closely related to Shimer and Smith’s work. The key difference is that

Shimer and Smith assume a given population distribution of productivity types x and y

and a fixed, symmetric match payoff for each pair of types.3 In the model here, heterogeneity

is the result of individual search spells of different lengths. The production function depends

on time in the market, that is, ages i and j, and it may be asymmetric. Consequently, an

individual’s value of search is a function of age and changes over time. In a model with

fixed productivity types the equilibrium value of search is a time-invariant number for each

market participant.

2Legros and Newman (2007) extend the analysis of the frictionless model to partially transferable utility.
3Moreover, agents are infinitely lived and discount the future at a constant rate. Matches dissolve at an

exogenous rate.
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Age-dependent match payoffs are not entirely new to the literature. Choo and Siow

(2006a) empirically analyze matching by age in a dynamic model without search frictions.

Ljungqvist and Sargent (1998) and Coles and Masters (2000) have incorporated time-variant

payoffs into labor market search models. Both assume that workers gradually lose skills

when unemployed and regain them when employed, either through training or with ex-

perience on the job. However, all firms are identical, and the authors are not concerned

with assortative matching, but with policy questions and the effects of shocks on the labor

market.

3. The Search Model and Marriage Market Equilibrium

The description of the model begins with the steady-state “singles distribution”. For

an unmarried individual, the probability of meeting a person of the other sex at a certain

age depends on the age composition of the unmarried population. This composition is the

result of entry by young cohorts on the one hand, and of exit through marriage or upon

reaching the final marriage age on the other. For given marriage behavior, the market is in

a steady state when the age distributions of singles at different ages and the relative number

of men and women are constant in every period. We will start by deriving the steady-state

“singles distribution”, consisting of the men’s and women’s age distributions m and w and

the singles sex ratio r.

Let i ∈ [0, I] be the age of a woman, and j ∈ [0, J ] that of a man.4 Age zero is the age of

entry into the marriage market, and I and J are the last possible marriage ages. The size

of the female singles population at time t is Wt, Wt(i) denotes the measure of single women

at age i, and wt(i) = Wt(i)
Wt

describes the age distribution of single women. Equivalently use

Mt, Mt(j) and mt(j) for single men. The singles sex ratio is rt = Mt
Wt

. Assume that men

and women enter the marriage market in equal numbers at every point in time, so that

Wt(0) = Mt(0) for all t.

Men and women meet randomly, at a rate that depends on the ratio of single men and

women. Equivalently, the arrival rates of a potential match on each side of the market follow

4As distinct from fixed types x and y used in many matching models.
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a Poisson process with parameters λm(rt) and λw(rt) for men and women, respectively. One-

to-one matching requires that the number of men who meet someone in any given period

must equal the number of women who do. The Poisson parameters above must therefore

satisfy

rt ≡
Mt

Wt
=
λw(rt)

λm(rt)

for any given rt. Assume in addition that the two functions λw and λm are positive,

continuous and bounded, so that there are some minimal frictions of search.

If rt increases, there are relatively more men available, and this may plausibly increase

the overall meeting probability for women, while it decreases that for men. As an example,

there could be symmetric meeting probabilities given by λw(rt) = r0.5
t and λm(rt) = r−0.5

t .

However, note that the assumption of bounded meeting rates means that this cannot hold

for all possible rt. As an example, suppose that the maximal meeting frequency allows two

encounters per period on both market sides. In this case we would have λm(rt) = 2 for

any rt < 0.25 and therefore λw(rt) = 2rt (and similarly λm(rt) = 2r−1
t and λw(rt) = 2 for

rt > 4).

To simplify, I assume proportional conditional meeting probabilities, that is, given an

individual meets someone, the probability that this person is of a particular age equals the

proportion of that age in the singles population.

Couples decide if they want to marry based on the payoff from their partnership and the

outside options both of them have. The marriage decision for a couple (i, j) is captured

by a measurable marriage indicator function α : [0, I] × [0, J ] → [0, 1].5 Taking marriage

behavior and therefore α for now as given, the mass of single women at age i in t is

Wt(i) = e−
∫ i
0 λw(

∫ J
0 α(x,y)mt−i+x(y)dy)dxWt−i(0),

and therefore

wt(i) =
Wt(i)

Wt
=

e−
∫ i
0 λw(

∫ J
0 α(x,y)mt−i+x(y)dy)dx∫ I

0 e
−
∫ u
0 λw(

∫ J
0 α(x,y)mt−i+x(y)dy)dxdu

.

Clearly the age distribution function is decreasing for all i: after entering the market, each

singles cohort is reduced gradually by those who marry. We can write a similar expression for

5α can lie between zero and one if a couple is using a mixed strategy between marrying and staying single.
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the men’s market side, and in a steady state, the age distributions are invariant. The time

index can therefore be suppressed, and the equations that describe the singles distribution

are

w(i) =
e−
∫ i
0 λw(r)(

∫ J
0 α(x,y)m(y)dy)dx∫ I

0 e
−
∫ u
0 λw(r)(

∫ J
0 α(x,y)m(y)dy)dxdu

(3.1)

m(j) =
e−
∫ j
0 λm(r)(

∫ I
0 α(x,y)w(x)dx)dy∫ J

0 e−
∫ u
0 λm(r)(

∫ I
0 α(x,y)w(x)dx)dydu

,(3.2)

where r = w(0)
m(0) . The expression for r follows from the observation that w(0) = 1/W and

m(0) = 1/M .

Of course, marriage behavior α is itself a response to market conditions. When a man

and a woman meet, they make their marriage decision by comparing the payoff to marrying

with the outside value of being single and remaining in the market. This value depends on

the relative numbers of men and women at each age available for marriage, in other words,

the singles distribution. The description of the market equilibrium is complete with two

value functions that describe the individuals’ outside options and determine their choice

to marry based on w and m. I will focus on the women’s side of the market, stating the

equivalent expressions for the mens’ side without derivations.

Denote by fw(i, j) and fm(i, j) the (expected) payoffs of marriage for a woman and a man

at age i and j, respectively, and let d(i, j) be the transfer paid by the bride to the groom.

A couple will marry upon meeting if they both prefer marrying each other over continuing

search. The woman agrees to marry if the net payoff fw(i, j)− d(i, j) exceeds the value of

searching at age i, V (i) (which will be time-invariant in a steady-state). Equivalently, the

man compares search value H(j) with fm(i, j) + d(i, j).

Following the literature (e.g. Pissarides (1990)), the expected marriage transfer between

ages i and j is assumed to be the generalized Nash product, given by

d(i, j) = arg max
d

[fw(i, j)− d− V (i)]θ [fm(i, j) + d−H(j)](1−θ)

where θ describes the woman’s bargaining power. This means that the transfer is

d(i, j) = (1− θ)(fw(i, j)− V (i))− θ(fm(i, j)−H(j)),
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and the net payoff to the woman from marrying

V (i) + θ (fw(i, j) + fm(i, j)− V (i)−H(j)) .

In other words, she receives her outside option, plus a share θ of the net marriage surplus.6

As long as this share is positive, she will agree to marry. Similarly, the groom gets his

outside option plus a (1 − θ) share of the net surplus. This implies that the marriage

decisions of a couple (i, j) coincide and can be described by a single function α indicating

a positive net surplus. For the value function (although not the transfer payment) it is not

important from which source the marriage payoff originates, so fw(i, j) + fm(i, j) can be

summarized as f(i, j). Assume that f is continuous.

Define the marriage surplus as S(i, j) = f(i, j) − V (i) −H(j). The value functions are

then described by a system of differential equations (see the appendix for the derivation)

where the final conditions are given by the value of being single when leaving the marriage

market, V for the woman and H for the man. V and H are assumed to be nonnegative.7

V̇ (i) = −λw(r)θ

∫ J

0
max {S(i, y), 0}m(y)dy + ρV (i)(3.3)

V (I) = V(3.4)

Ḣ(j) = −λm(r)(1− θ)
∫ I

0
max {S(x, j), 0}w(x)dx+ ρH(j)(3.5)

H(J) = H.(3.6)

Note that the integral in V̇ (i) is weakly positive, so V (i) can be at most increasing by

ρV (i). V (i) and H(j) are bounded below at zero and above at max(i,j) f(i, j) ≡ f̄ . It should

be emphasized once more that the value of search for an individual is a function of time

6A possible interpretation is that either the man or the woman gets to make an ultimatum proposal for

the division of the surplus, where the probability of being the proposer equals the bargaining power.
7Implicit in this is the normalization of the payoff of being single in the market to zero. Thus, V and H

describe the value to being single, but not searching anymore. Positive values might for example indicate

a cost of searching, which is not incurred anymore when the individual leaves the market. A value of zero

implies that the individual is indifferent between spending a period in or out of the market.
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(age), even though the market is in a steady-state. The distribution of ages is invariant,

but an individual’s search value is not.8

To summarize, the singles distribution depends on marriage behavior, expressed by the

marriage indicator function α. In turn, this behavior based on marriage payoffs and the

singles distribution. In a steady-state equilibrium, marriage choices and the singles distri-

bution are mutually consistent. Men and women’s expectations about meeting probabilities

later in life are correct and identical to current market conditions. Formally, define:

Definition 3.1 (Steady-State Matching Equilibrium). For a given marriage payoff function

f and Poisson meeting rate functions λw and λm, a matching equilibrium is given by an

indicator function α, value functions V and H, and singles distributions m and w such that

(1) α(i, j) = 1 if S(i, j) > 0, α(i, j) = 0 if S(i, j) < 0 and α(i, j) ∈ [0, 1] otherwise,

(2) m and w are steady-state distributions for α satisfying equations (3.1) and (3.2),

and

(3) V (i) and H(j) are the value functions for m and w given by (3.3)–(3.6).

To show that such an equilibrium exists I construct a self-map T on the set of value

functions and singles distributions whose fixed points coincide with the matching equilibria.

Existence of a fixed point is then proved by applying the Eilenberg-Montgomery fixed point

theorem.

Theorem 3.2 (Existence of a Steady-State Matching Equilibrium). Suppose λw and λm

are positive, bounded and continuous and satisfy rλm(r) = λw(r). Then there exists a

steady-state matching equilibrium for this market.

The proof is in the appendix, as are all following proofs if omitted from the main text.

Observe that there may in general be more than one equilibrium. A change to who matches

with whom (i.e. the α) affects the entire singles distribution and therefore each agent’s value

of search, leading to potential multiplicity.

8In a typical search model with fixed productivity types, V and H themselves, not their derivatives,

would be a function of the net surplus of matching. Unlike in these models the equations here cannot easily

be solved for V and H (compare e.g. with equations (6) and (8) in Shimer and Smith (2000)).
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4. The Shape of the Equilibrium Matching Set

Our discussion of equilibrium matching patterns begins with the definitions for assortative

matching and differential age matching.

Shimer and Smith (2000) were the first to provide a definition of assortative matching

for the search context. Denote the matching set of a man of age j by I(j) = {i|α(i, j) = 1}

and that of a woman at age i by J(i) = {j|α(i, j) = 1}. For later reference define M to be

the set of couples (i, j) in R2 who match with each other, i.e. M = {(i, j)|α(i, j) = 1}. It

will be convenient to split the definition of positive assortative matching into two parts.

Definition 4.1 (Positive assortative matching). Consider any t, s > 0. There is upper

positive assortative matching (PAM) if for any i and j such that i ∈ I(j+t) and i+s ∈ I(j),

we have i+ s ∈ I(j + t). There is lower PAM if i ∈ I(j). If both hold there is (full) PAM. �

The left panel of figure 2 illustrates PAM. Positive assortative matching is most common

in the marriage market, but since assortative matching is of interest in other contexts as

well, I will also discuss negative assortative matching.

Definition 4.2 (Negative assortative matching). Let t, s > 0. There is negative assortative

matching (NAM) if for any i and j such that i ∈ I(j) and i+s ∈ I(j+t), we have i+s ∈ I(j)

and i ∈ I(j + t). �

The first step in the next subsection will be to define sets of conditions under which

each age i matches with a closed, convex set of ages j and vice versa. Some of those

conditions guarantee that the matching sets always include the boundaries (0 or I/J). I

will show that these conditions deliver PAM/NAM directly. For an alternative approach I

will follow Shimer and Smith (2000), who list four preliminaries for assortative matching:

the matching sets I(·) and J(·) need to be convex and nonempty, M has to be a closed set9,

and there must be “matching in the corners”, in other words, either the couples (0, 0) and

(I, J) or couples (0, J) and (I, 0) marry (for PAM and NAM respectively). To provide a

self-contained argument, I make use of the following lemma.

9This is equivalent to upper hemicontinuity of the matching correspondence I(j) or J(i), since the domain

is compact.
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Lemma 4.3 (Connected matching set and assortative matching). Suppose all matching

sets I and J are convex, and M is connected. If ages (I, J) (ages (0, 0)) match, there is

upper (lower) PAM. If (0, J) and (I, 0) match there is NAM.

Proof: Suppose by contradiction that there exist i′ > i and j′ > j such that (i, j′) ∈ M

and (i′, j) ∈M, but (i′, j′) 6∈M. By convexity of J(i′) and I(j′), for all j′′ > j′, (i′, j′′) 6∈M

and for i′′ > i′, (i′′, j′) 6∈ M. But this means that M can be covered by two disjoint open

sets, (i′, I] × (j′, J ] and ([0, I] × [0, J ])\([i′, I] × [j′J ]), contradicting that it is connected.

The proofs for lower PAM and for NAM are identical. �

This is equivalent to Shimer and Smith’s approach: since S(i, j) in the present model

is continuous, the preimage of R+
0 under S, that is M, is closed. If all matching sets

are closed and convex, a connected M with matching in the corners ((0, 0) and (I, J) or

(0, J) and (I, 0)) is equivalent to nonempty I and J. But it will become clear shortly

that nonemptiness/connectedness is here an actual restriction, unlike in Shimer and Smith

(where symmetry ensures that all types match at least with themselves).

The second pattern of interested is the difference in marriage age between men and

women. In a typical marriage market, a man’s wife may be his age or considerably younger

than him, but is rarely much older, whereas the opposite is true for women and their spouses.

Consequently, the bulk of marriages in figure 1 lie to the upper left of the 45-degree line.

The following definition is meant to capture this asymmetry (see also figure 2, center panel).

A market in which women tend to marry younger men can be modeled by simply relabeling

the two market sides.

Definition 4.4 (Differential age matching). Consider ages a and b such that 0 ≤ a ≤ b ≤

I, J . There is differential age matching (DAM) if b ∈ I(a) implies b ∈ J(a). �

When the matching sets are convex and there is positive assortative matching, differential

age matching means that a woman at age a is considering an older set of men acceptable

for marriage than a man at age a.
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Lemma 4.5. Suppose there is PAM and each matching set is an interval. Denote I(a) =

[i1, i2] and J(a) = [j1, j2] for some 0 ≤ a ≤ I, J . Then there is DAM if and only if j1 ≥ i1

and j2 ≥ i2 for any a, that is, the woman’s set of partners is “older” than the man’s.

Proof: Assume first that j2 < a. Then DAM implies a ∈ I(j2). But PAM means that

then (a, a) marry as well, so a ∈ J(a) and therefore a ≤ j2. Now suppose i2 > j2. Since

i2 ≥ a and i2 6∈ J(a), DAM implies that i2 6∈ I(a) either, contradiction. Similarly, suppose

i1 > a. Then DAM and PAM imply a ∈ I(i1) and therefore a ∈ I(a), so it must be that

i1 ≤ a. Now let i1 > j1; j1 < a and a ∈ I(j1) means that a ∈ J(j1) or j1 ∈ I(a) = [i1, i2],

contradiction (note that convexity is not used in this part of the proof). Conversely, suppose

women’s partners are older than men’s, and consider b > a such that a ∈ J(b) = [j1, j2].

Since b > a ≥ j1 ≥ i1, PAM implies that b ∈ I(b), and by convexity a ∈ I(b). �

In connection with DAM, it was noted in the introduction that the marriage age of

men is in almost all countries higher than that of women. Indeed, DAM is linked with

a positive age difference at marriage. For instance, if the distributions m and w were

identical, men marrying later than women would be equivalent to DAM (but of course the

matching asymmetry will typically lead to different m and w). More generally, DAM implies

a positive average age gap if w(a)m(b) ≥ w(b)m(a) for all a < b.10 However, my definition

of differential age matching deliberately does not use average ages. Instead, equivalent to

the definition of sorting, I provide a distribution-free characterization that corresponds with

observed marriage age patterns (compare with figure 1). But in many cases DAM will also

be accompanied by a positive average age difference between spouses.

4.1. Convex Matching Sets

As outlined earlier, the quest for assortative matching and DAM begins with conditions

that guarantee convex matching sets. Interval matching is not only a step towards the main

results but also an interesting feature of marriage patterns in its own right, possibly useful

for example in the econometric identification of marriage behavior. Most of the discussion

10To see this note that the difference in average marriage age is a multiple of
∫ ∫

(j−i)α(i, j)w(i)m(j)didj.

This integral is greater than or equal to zero on the set of i, j s.t. α(a, b) = α(b, a). But α(a, b) > 0 and

α(b, a) = 0 can occur only if a < b, so the term as a whole must be positive.
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Figure 2.

will again focus on only one side of the market, with the understanding that the results

hold in the same manner for the other side.

Consider a man at age j. The key observation is that, since his outside option H(j) is

fixed, the shape of the matching set depends on f(i, j) − V (i) as a function of i. If f − V

is greater than H on an interval of ages i, the matching set of j will be that interval. This

is the case if the net surplus of marriage S(i, j) = f(i, j)− V (i)−H(j) is quasi-concave in

i (see figure 2, right panel). The following conditions (A·) and (X·) provide a weak version

of concavity/convexity of S(i, j) and will be used in several different places in what follows.

Throughout this section, I assume that f is twice differentiable almost everywhere.

fii(i, j) ≤ λwθmin
y
{fi(i, j)− fi(i, y)}+ ρfi(i, j)(A1)

fjj(i, j) ≤ λm(1− θ) min
x
{fj(i, j)− fj(x, j)}+ ρfj(i, j)(A2)

Claim 1: Suppose that for all i on an interval (i1, i2), (A1) holds for any λw, and

fi(i, j)− V̇ (i) ≤ 0. Then fi(i2, j)− V̇ (i2) ≤ fi(i1, j)− V̇ (i1).

Equation (A1) is an assumption on the curvature of f in i. The first term of the right-

hand side depends on the variation of fi in j. It must be (weakly) negative, so that for

ρ → 0 the condition is a strengthening of concavity of f in i. The claim essentially says

that f − V will be concave in i whenever it is decreasing, as long as f itself is “concave
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enough” in i. This should be understood in relative terms: fii may be positive if ρ and fi

are large and fi varies only little in j. (A2) is the equivalent of (A1) for the men’s side.

One can similarly define

fii(i, j) ≥ λwθmax
y
{fi(i, j)− fi(i, y)}+ ρfi(i, j)(X1)

fjj(i, j) ≥ λm(1− θ) max
x
{fj(i, j)− fj(x, j)}+ ρfj(i, j)(X2)

Claim 2: Suppose that for all i on an interval (i1, i2), (X1) holds for any λw, and fi(i, j)−

V̇ (i) ≥ 0. Then fi(i2, j)− V̇ (i2) ≥ fi(i1, j)− V̇ (i1).

(X1) is the counterpart to (A1). Now strong enough convexity of f ensures that f −V is

convex (with the same caveat as before, since fii may still be negative). (X2) is again the

same condition for the men’s side.11 The next two propositions use (A1) and (X1) as part of

conditions under which f(i, j)−V (i) is either increasing or decreasing for all i, respectively,

so that the matching sets are intervals including the boundary 0 or I.

Proposition 4.6 (Increasing S(i, j)). Suppose that

(IN1) fi(i, j) ≥ ρmax{0, max
[i,I]×[0,J ]

f(x, y)}

holds for I, and either (A1) or (IN1) holds almost everywhere on [0, I). Then j’s matching

set is a closed interval including I. Similarly, if

(IN2) fj(i, j) ≥ ρmax{0, max
[0,I]×[j,J ]

f(x, y)}

is true for J and (A2) or (IN2) holds almost everywhere on [0, J), then i’s matching set is

a closed interval including J .

Proof: Fix j. The right-hand side of equation (IN1) is an upper bound for V̇ (i), and

therefore f −V is increasing wherever (IN1) holds, including at I. Assume by contradiction

that f(i, j)−V (i) is not increasing everywhere and let i1 be such that fi(i1, j)− V̇ (i1) < 0.

By continuity there must be i > i1 such that fi(i, j)− V̇ (i) = 0. Let i2 be the smallest such

i; for all i ∈ [i1, i2) fi(i1, j) − V̇ (i1) < 0, so that (A1) holds and claim 1 applies. Thus we

have fi(i1, j)− V̇ (i1) ≥ fi(i2, j)− V̇ (i2) = 0. �

11The equation labels are a mnemonic for concAve and conveX.
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(IN1) “anchors” fi − V̇ below zero at I, and (IN1)/(A1) restrict its sign or slope so that

it can never be positive for smaller ages i. Together they imply that the payoff function f

is increasing in i everywhere. Both (IN1) or (A1) may hold while the other is violated, as

long as ρ is positive. However, as ρ→ 0, (A1) is more restrictive, because in the limit (IN1)

is satisfied whenever (A1) holds (since then fii ≤ 0 and fi(I, j) ≥ 0).

Proposition 4.7 (Decreasing S(i, j)). Suppose that

(DE1) fi(i, j) ≤ −λwθmax{0,max
y

[f(i, y)]}

holds for I and either (DE1) or (X1) holds almost everywhere on [0, I). Then an age j

man’s matching set is a closed interval starting at 0. If

(DE2) fj(i, j) ≤ −λm(1− θ) max{0,max
x

[f(x, j)]},

holds for J and either (DE2) or (X2) holds almost everywhere on j ∈ [0, J), then the

matching set of age i is a closed interval starting at 0.

The proof works like the one for the previous proposition, but using claim 2. By (X1)

f is convex whenever it is weakly increasing, and (DE1) anchors fi below zero, so the

payoff function must be falling everywhere when these conditions hold. Again, (X1) is most

interesting when ρ is bounded away from zero.

The next proposition uses (A1) and (A2) in a much more important role, by combining

them with proposition 4.7 to arrive at conditions for convex matching sets where the age

boundaries are not necessarily included.

Proposition 4.8 (Single-peaked S(i, j)). Suppose that there exist i1 and i2 so that (A1)

is true for all i ∈ [i1, i2], (IN1) holds below i1, and the conditions of proposition 4.7 for the

women’s side apply for (i2, I]. Then j’s matching set is a closed interval. Equivalently, if

(IN2) holds below some j1, (A2) holds on [j1, j2], and the conditions of 4.7 for the men’s

side apply on (j2, J ], then i’s matching set is a closed interval.

Above i2, this proposition simply repeats proposition 4.7, so that S(i, j) is decreasing.

Below i1, the marriage surplus must be increasing thanks to (IN1). In between, claim 1
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can be applied to show that whenever f(i, j) − V (i) is strictly decreasing, it will also be

decreasing at all consecutive ages up to i2, implying that S(i, j) is a single-peaked function

in i. Here (A1) unfolds its true power, as it is used independently of (IN1) and f may be

increasing or decreasing in i.

How do the conditions for matching set convexity compare with those in Shimer and

Smith (2000), namely supermodularity (submodularity) of f and log supermodularity (sub-

modularity) of fi and fij? Even though the logic of the two models is similar, the conditions

turn out to be independent from each other. To illustrate, let i, j ∈ [0, 1] and consider the

symmetric function a(i + j) + b(i2 + j2) − cij with a, b, c > 0 (ages i and j correspond

to types x and y in Shimer and Smith (2000)). The cross derivative is −c, so that i and

j are substitutes and f is submodular, whereas it is easily verified that fi is strictly log

supermodular, violating Shimer and Smith. But condition (A1) holds for all ages whenever

a is greater than 2
ρb+

(
1 + λwθ

ρ

)
c, so proposition 4.8 applies.

On the other hand, if b < 0 instead, all three submodularity conditions are satisfied. Now

suppose a ∈ (2 |b| , 2 |b|+ c); f is increasing in i for small i and j, but at high i it is falling

on a range of j, so neither proposition 4.7 nor 4.6 applies. Moreover, for small i and j the

inequality (A1) in proposition 4.8 is violated as well.

Intuitively, the difference between the two models is how other types/ages enter the value

function of a given type or age. In Shimer and Smith (2000), different types x and y are

distinguished only by the production function f(x, y). For example, with a new production

function g(x, y) = f(1−x, 1−y) the economy would still be the same, albeit with relabeled

types. Agents of different types are only connected by the fact that they are searching in

the same market. The super- or submodularity conditions in Shimer and Smith (2000) are

therefore needed to determine the change in the value of search – and thereby in matching

behavior – between neighboring types.

By contrast, there is a natural link between different ages. Any i′ > i enters the value

function of a woman at age i, because it is part of her future. The model is fundamentally

asymmetric in that old and young cannot be interchanged. Formally, this is what makes V

a differential equation (as opposed to a single number that represents the search value for
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Figure 3. Propositions 4.6 and 4.7 and assortative matching.

each type), and it makes it possible to derive the shape of f(i, j)− V (i) from conditions on

fi and fii (fj and fjj).

4.2. Assortative Matching

With convexity of the matching sets in place, when will there be sorting by age? First

off, observe that the conditions in prop. 4.6 for an increasing match surplus S(i, j) on both

sides of the market guarantee NAM. If ages i and j match with each other, then j must

match with i + s as well and i must match with j + t, because their matching sets are

intervals ending at I and J , respectively (see last panel of figure 3). At the same time, the

conditions also imply upper PAM if they hold for just one side of the market: if i + s has

a matching set that includes J and i+ s and j match, then so do i+ s and j + t (and vice

versa). A parallel argument applies to the conditions in prop. 4.7; if they hold for both

sides there is NAM (third panel of fig. 3), and if they hold for one side there is lower PAM.

Similarly, suppose the surplus function is decreasing in i only, so that the men’s matching

sets are convex and include 0 (proposition 4.7 holds for the women’s side). Assume that

f(I, J) ≥ V +H and the women’s matching sets are convex. Then there will be PAM again,

since J marries I and therefore all i, and convexity means that the women’s matching sets

are intervals including J . The equivalent argument holds if the women’s matching sets are

intervals including zero instead.

We could stop here, but the requirements of propositions 4.6 and 4.7 are relatively de-

manding and allow only for quite specific matching patterns. I would like to take the
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approach mapped out earlier and apply lemma 4.3. To do so I need a connected matching

set.

Lemma 4.9 (Connected matching set). Suppose f(i, j) is nonincreasing in i for all (i, j)

and f(I, j)−V −H(j) ≥ 0 for some j (so that J(I) is nonempty). Then all i have nonempty

matching sets, and M is connected. If f(i, j) is decreasing in j and I(J) is nonempty, then

all j have nonempty matching sets and M is connected.

This result stems from the observation that the surplus from any i’s best match forms an

upper bound to the change in her outside option at that point. All ages in the vicinity of i

will therefore also match with this best match. Their matching sets are nonempty, and the

union of those sets is a (path)connected set. Now I can state

Proposition 4.10 (Positive assortative matching). There is PAM if

(1) the conditions in proposition 4.6 hold for one market side and those for 4.7 hold for

the other; or

(2) the conditions in prop. 4.7 hold for one market side, those in 4.8 hold for the other,

and f(I, J)− V −H ≥ 0, so that (I, J) match; or

(3) all matching sets are convex, f(i, j) is decreasing in i (or j), (I, J) match, and so

do (0, 0), for example because the conditions of proposition 4.7 hold for i = 0 (or

j = 0).

(1) and (2) follow from the earlier discussion. Both imply that one market side’s matching

sets include age 0, and the other side’s include I or J ; the two left panels of figure 3 illustrate

this situation. (3) is an application of lemmas 4.3 and 4.9.

A similar argument to (2) for NAM is not available, as it would have to be ensured for

example that (0, J) always match, but at the same time f would have to be increasing in

i. For (3) there is a similar difficulty, but there is a special case: suppose that V = H = 0,

and f(0, J) = f(I, 0) = f̄ . Since V (0) and H(0) are bounded by f̄ , there is matching in the

corners.

Proposition 4.11 (Negative assortative matching). There is NAM if
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(1) the conditions in propositions 4.6 or 4.7 are satisfied for both market sides (so that

all matching sets include 0, or they all include J or I, as in panels 3 and 4 of figure

3); or

(2) all matching sets are convex, f(i, j) is weakly decreasing in i or j, V = H = 0, and

f(0, J) = f(I, 0) = f̄ .

Note that the second set of conditions implies that either f(0, j) = f̄ for all j or f(i, 0) = f̄

for all i.

The last part of the proposition shows that the constraints on matching in the corners

and the requirement of a connected matching set can be quite demanding in the context of

age preferences.12

4.3. The Age Difference Between Couples

Lastly, I would like to find a set of conditions that is sufficient for DAM (and compatible

with the conditions for positive assortative matching). Just as before some conditions will

immediately give us the desired result: Suppose that the inequalities in 4.7 hold for the

women’s side (so that men’s matching sets are intervals including zero), and either the

conditions in 4.6 hold for the men’s side or those in 4.8 hold and I ∈ I(J) (so that all

women’s matching sets are convex and include J). It is easy to verify that DAM is satisfied

(as is PAM; compare with proposition 4.10 and the first panel of figure 3).

However, there is also another road to DAM. Take any two ages 0 ≤ a < b ≤ I, J .

Differential age matching is guaranteed whenever f(b, a)−V (b)−H(a) ≥ 0 implies f(a, b)−

V (a) −H(b) ≥ 0. That is the case if f(a, b) − f(b, a) − (V (a) − V (b)) ≥ H(b) −H(a), or

equivalently either∫ b

a
fj(b, y)− Ḣ(y)dy ≥

∫ b

a
fi(x, b)− V̇ (x)dx for all x, y < b, or∫ b

a
fj(a, y)− Ḣ(y)dy ≥

∫ b

a
fi(x, a)− V̇ (x)dx for all x, y > a.

12Compare this once again to the symmetric setup of Shimer and Smith (2000), where each type x always

matches with itself (or with 1 − x in the negative sorting case). This means that there is automatically

matching in the corners, and the matching set is always connected.
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This is intuitive: given a spouse of the same age, it implies that the surplus from marriage

falls faster (or rises less fast) in the woman’s age than in the man’s. Then the surplus

between an old man and a young woman is higher than between a young man and old

woman at the same ages. Now, if it is known that fj(c, ·)− Ḣ(·) ≥ δ and fi(·, c)− V̇ (·) ≤ δ

for some δ and all possible i, j > c (or all i, j < c) there must be differential age matching.

The next lemma guarantees just that. For given age c, consider the following conditions:

fi(i, c)− δ ≤ −λwθmax{0,max
y

[f(i, y)]}(DE1’)

fii(i, c) ≥ max{0;λwθ[fi(i, c)− δ −min
y
fi(i, y)}+ ρ(fi(i, c)− δ)(X1’)

fj(c, j)− δ ≥ ρmax{0, max
[0,I]×[j,J ]

f(x, y)}(IN2’)

fjj(c, j) ≤ min{0;λm(1− θ)[fj(c, j)−min
x
fj(x, j)− δ]}+ ρ(fj(c, j)− δ).(A2’)

Comparing them with (DE1), (X1) etc. shows that they are the same, except for an addi-

tional “wedge” of δ added to the first derivatives. However, δ can be positive or negative,

so that the new equations may be more or less demanding than the old ones (and of course

each of the conditions needs to hold only on a subset of (i, j)). For example, unlike under

the original conditions f may now be increasing in i or decreasing in j.

Lemma 4.12. Let 0 ≤ c ≤ I, J .

(1) Suppose there exists δc such that (DE1’) holds at I and either (DE1’) or (X1’) are

satisfied for all other i ∈ [c, I); and (IN2’) holds at J and either (IN2’) or (A2’) is

satisfied for all j ∈ [c, J). Then fj(c, j)− Ḣ(j) ≥ δc ≥ fi(i, c)− V̇ (i) for all i, j ≥ c.

(2) Alternatively, suppose (DE1’) holds at i = c and either (DE1’) or (X1’) are satisfied

for all other i ∈ [0, c); and (IN2’) holds at c and either (IN2’) or (A2’) is satisfied

for all j ∈ [0, c). Then fj(c, j)− Ḣ(j) ≥ δc ≥ fi(i, c)− V̇ (i) for all i, j < c.

Note that just as in propositions 4.6 and 4.7, (X1’) implies (DE1’) on [a, I) (or [0, b)) and

(A2’) implies (IN2’) on [a, J) (or [0, b)) as ρ→ 0. Now I can state:

Proposition 4.13 (Differential age matching). There is DAM if either

(1) for any age c there is δc so that one set of conditions in lemma 4.12 holds, or
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(2) the inequalities in proposition 4.7 hold for the women’s side and either the conditions

in 4.6 hold for the men’s side or those in 4.8 hold and I ∈ I(J) (so that the women’s

matching sets include J and the men’s include 0).

Importantly, both sets of conditions in proposition 4.13 are compatible with PAM. The

conditions in (2) are in fact sufficient for PAM (see prop. 4.10 (1) and (2)). Those in (1)

may be combined with the conditions in proposition 4.8 to obtain convex matching sets.

With δ less than zero f may be decreasing in j, so that the matching set is connected and

every I(j) is nonempty.

Example: Assume ρ = 0 and V = H = 0. Recall the payoff function from the introduction

f(i, j) = Πβe−γi
∫ T

0
e−(γ+β)tdt+ b(I − i)

with T = I − i if i > j and T = J − j if j ≥ i. There is both positive assortative matching

and differential age matching if (1) γ + β ≥ λ̄m and (2) θ → 0. (1) guarantees that (A2)

holds everywhere, so the men’s matching sets are convex. When θ is close to zero, (DE1)

holds as well, and the women’s matching sets are convex and include j = 0. To see this,

note that fi ≤ −b for all possible i, j, and

fj(i, j) =

 0 if i > j

−Πβe−γie−(γ+β)(J−j) if i ≤ j
fjj(i, j) =

 0 if i > j

(γ + β)fj(i, j) if i ≤ j

Observe that all propositions continue to hold even though f(i, j) is not differentiable at

i = j. The marriage surplus is quasi-concave in j if (A2) holds at all i 6= j. This is

immediate for i > j, and for i > j we need

(γ + β)fj(i, j) ≤ λ̄m(1− θ)fj(i, j)

or γ + β ≥ λ̄m(1 − θ). Moreover, (DE1) is satisfied if b(1 − λ̄wθ(I − i)) ≥

λ̄wθ
1

γ+βF (i)
[
1− e−(γ+β)J

]
. Finally, f(I, J) = 0, so that I and J marry and case (2)

of prop. 4.13 is satisfied.

This payoff function implies that PAM and DAM emerge if the woman’s bargaining

power is low and fertility rates are relatively high. Another implication is that traditional

marriage age patterns may break down as fertility rates fall and bargaining becomes more
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equal. Note that I have assumed that a man’s and a woman’s lifetime income are unaffected

by marriage, and that the only payoff to the match comes from fertility and status or

protection. Other possible sources of match payoff are companionship, mutual insurance,

or gains from specialization within the partnership. The payoff function above is just one

of many possible examples. �

5. Conclusion

This paper lays out out a search model in which preferences depend on the age of both

partners at the time of matching. This is most relevant for the marriage market, but can

also apply e.g. in contexts of skill loss and acquisition.

The first result is a set of sufficient conditions on the slope and curvature of the marriage

payoff function under which there is assortative matching by age. It is shown that super- or

submodularity are not necessary for sorting by age, but the discussion highlights the link

between assortative matching and nonempty matching sets. Nonemptiness turns out to be

restrictive when the market is not symmetric. Conditions for assortative matching which do

not rely on symmetry and nonempty matching sets remain an open question in the search

literature at large.

In addition, I define differential age matching and show that DAM and PAM together

imply that men match with a younger set of partners than women of the same age. I then

provide conditions under which DAM must occur in equilibrium. These conditions stipulate

that the marriage surplus declines faster in the woman’s than in the man’s age when their

partner is the same age.

Together, the conditions for assortative matching and DAM characterize a set of payoff

functions consistent with the prevailing age patterns in the marriage market. I provide a

simple example which suggests that these patterns could be anchored in a trade-off between

protection and fertility, a scenario that may break down as traditional modes of marriage

become less important.
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Omitted Proofs

Proofs Section 3

Derivation of the value function: Let p(n, dt) denote the probability of meeting n

potential marriage partners in period dt, and Vn(i+t) the expected value of such n meetings

at the time of the first meeting i+ t. We have

V1(i+ t) =

∫ J

0
θmax {S(i+ t, y), 0}m(y)dy + V (i+ t).

The value of search for a woman at age i is, for any dt > 0,

V (i) = p(1,dt)Et(e
−ρtV1(i+t))+

∞∑
n=2

p(n, dt)Et(e
−ρtVn(i+t))+

(
1−

∞∑
n=1

p(n,dt)

)
e−ρdtV (i+dt)

where ρ is the discount rate and the expectation is formed over possible meeting times

0 < t < dt. In a Poisson process with parameter λ, 1
dt

∑∞
n=2 p(n,dt) goes to zero and

p(1,dt)→ λ as dt→ 0, so that

V̇ (i) = lim
dt→0

V (i+ dt)− V (i)

dt
= −λw(r)θ

∫ J

0
max{S(i, y), 0}m(y)dy + ρV (i).

Proof of Theorem 3.2: The proof uses the following version of the Eilenberg-

Montgomery fixed point theorem (Granas and Dugundji (2003), ch. 19, corollary 7.5):

Theorem. Assume that K is an absolute retract. Then any compact acyclic map T of K

into itself has a fixed point.

An acyclic map is a correspondence whose values are compact, upper hemi-continuous,

and acyclic. The proof constructs a map T described by the functions 3.1-3.2 and 3.3 and

3.5 and then verifies the conditions of the theorem.

Notation For any functions h(x) and g(x, y), let h̄ = supx h(x) and ḡ = sup(x,y) g(x, y)

(on their respective domains). Similarly, let h = infx h(x) and g = inf(x,y) g(x, y) respec-

tively. These are taken to mean the max and min whenever they exist.

Let K be the product V ×H×W×M with function tuples k = (V,H,w,m) as elements.

V is the set of continuous functions on [0, I], bounded below by zero and above by f .

Equivalently, H are the sets of continuous functions on [0, J ] bounded by zero and f . W
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(M) are the continuous functions on [0, I] ([0, J ]), bounded by

w =
1

I
e−λ̄wI and w =

λ̄w

1− e−λ̄wI

m =
1

J
eλ̄mJ and m =

λ̄m

1− e−λ̄mJ

The mapping T is defined as follows. Let T [(V,H,w,m)] = (V̂ , Ĥ, ŵ, m̂). ŵ(i) and m̂(j)

equal the right-hand sides of (3.1) and (3.2); V̂ (i) and Ĥ(j) are given by

V̂ (i) = max

{
0, λw(r)θ

∫ I

i

∫ J

0
max {0, f(x, y)− V (x)−H(y)}m(y)dy − ρV (x)dx+ V

}
Ĥ(j) = max

{
0, λm(r)(1− θ)

∫ J

j

∫ I

0
max {0, f(x, y)− V (x)−H(y)}w(x)dx− ρH(y)dy +H

}
For any given k, denote the set of (i, j) where f(i, j) − V (i) −H(j) = 0 by Ak and let

Āk = [0, I] × [0, J ]\Ak. For short, also define Ak(i) = Ak ∩ ([0, i] × [0, J ]) and Āk(i) =

Āk ∩ ([0, i]× [0, J ]). Finally, define α(i, j) to be 0 whenever S(i, j) < 0 and 1 if S(i, j) > 0,

and let α(Ak) = c be a constant between 0 and 1. In other words, α describes a particular

mixed strategy in which all couples who are indifferent between marrying and not marrying

randomize in the same way. Note that T (k)|V= V̂ and T (k)|H= Ĥ are singletons for any

k. T (k)|W and T (k)|M, on the other hand, may be sets of functions ŵ and m̂ if Ak is a set

with nonzero measure: in this case, some couples may choose mixed strategies. These sets

are described by varying c continuously between 0 and 1.

Step 1 Endow K with the norm implied by the metric d(k1, k2) =

max(f∈{V,H,w,m}) [supx |f1(x)− f2(x)|]. Each of the function spaces constituting K is closed

and convex, so that K inherits those properties. A convex subset of a normed linear space

is an absolute retract.

Step 2 T is compact if its image is contained in a compact subset of K. It is sufficient

to prove that the image of T on each subspace of K is a bounded, equicontinuous set,

and has therefore a compact closure by the Arzelà-Ascoli theorem13. The product C of

these closures is compact (Tychonoff), and T (K) ⊂ C. We therefore consider V̂ (i) and

13More precisely, by Arzelà-Ascoli a set of functions on a metric space is relatively compact if it is bounded

and uniformly equicontinuous, and a relatively compact set has a compact closure. An equicontinuous set

of functions is uniformly equicontinuous if its domain is compact (see Ok (2007) p. 262-64).
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ŵ(i) separately (with the equivalent proofs for Ĥ(j) and m̂(j) omitted). It is easily verified

that they lie in V and W respectively, so we are left with proving equicontinuity. For any

(V,H,w,m) we have∣∣∣V̂ (i1)− V̂ (i2)
∣∣∣ =

∣∣ ∫ i2

i1

λw(r)θ

∫ J

0
max {0, f(x, y)− V (x)−H(y)}m(y)dy − ρV (x)dx|

≤ λ̄wθf̄ |i1 − i2|

Therefore |i1 − i2| < 1
λ̄wθf̄

ε implies
∣∣∣V̂ (i1)− V̂ (i2)

∣∣∣ < ε, for all V̂ ∈ T (K) ∩ V. Similarly,

|ŵ(i1)− ŵ(i2)| = ŵ(i1)

∣∣∣∣1− exp

(∫ i2

i1

λw(r)

∫ J

0
α(x, y)m(y)d(y)dx

)∣∣∣∣
≤ w

∣∣1− exp(−λ̄w |i1 − i2|)∣∣
This implies that |ŵ(i1)− ŵ(i2)| < ε whenever

|i1 − i2| <
1

λw
ln
(

1− ε

w

)
,

for all ŵ ∈ T (K) ∩W.

Step 3 Consider any ŵ in T (k)|W . There must be an α and c such that

(A.1) ŵ(i) =
e
−λw

(
w(0)
m(0)

)(∫
Āk(i)α(x,y)m(y)d(x,y)+

∫
Ak(i)α(x,y) m(y)d(x,y)

)
∫ I

0 e
−λw

(
w(0)
m(0)

)(∫
Āk(u)α(x,y)m(y)d(x,y)+

∫
Ak(u)α(x,y) m(y)d(x,y)

)
du

.

Observe that α is uniquely defined to be either 1 or 0 on Āk, and that α(x, y) = c on Ak is

unique as well (consider ŵ(0)). ŵ is continuous in c. Now let g(i, j, t) be defined as follows:

g(i, j, t) =

 (1− t)c+ t if (i, j) ∈ Ak

α(i, j) else

and define a function F : T (k) |W ×[0, 1] → T (k) |W where F (ŵ, t)(i) is given by (A.1),

except that α(x, y) is replaced by g(x, y, t). Then F (ŵ, 0) = ŵ and F (ŵ, 1) is identical for

the entire set T (k)|W . This means T (k)|W is contractible and therefore acyclic, and the

same argument can be made for T (k)|M. Together this implies that T has acyclic values.

Step 4 T is compact-valued: consider a convergent sequence k̂n ∈ T (k) with limit k̂.

There exists a sequence cn such that α(Ak) = cn for each k̂n and α(Ak) = c for k̂, given w,

m. Moreover, cn → c. But c must converge to a point in [0, 1], and this implies k̂ ∈ T (k).
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Step 5 Last I have to show that T is upper hemicontinuous. Consider a sequence

kn → k in K and let k̂n ∈ T (kn). Since the closure of T (K) is compact, k̂n has a convergent

subsequence; w.l.o.g. let it be k̂n. I need to show that this limit point lies in T (k). First,

let kn such that d(kn, k) = δ and denote V̂ n = T (kn)|V and V̂ = T (k)|V . Now∣∣∣V̂ n(i)− V̂ (i)
∣∣∣ ≤ |λw(rn)− λw(r)| Iθf̄

+Iλ̄wθf̄

∫ J

0
|mn(y)−m(y)|dy

+

∫ I

i
λ̄wθ

∫ J

0
m2(y) |V (x) +H(y)− V n(x)−Hn(y)|dydx

+ρ

∫ I

i
|V n(x)− V (x)| dx

≤
∣∣∣∣λw (wn(0)

mn(0)

)
− λw

(
w(0)

m(0)

)∣∣∣∣ Iθf̄ +
[
IJλ̄wθf̄ + 2Iλ̄wθ + ρI

]
δ

Since λw is continuous, for any ε there exists a small enough δ such that
∣∣∣V̂1(i)− V̂2(i)

∣∣∣ < ε.

Thus, V̂ n → V̂ and by a similar argument, Ĥn → Ĥ.

In the same manner, let ŵn = kn |W and ŵ ∈ T (k)|W . Calling the numerator of (3.1)

φ(i) and the denominator Φ for short, we have

|ŵn(i)− ŵ(i)| =

∣∣∣∣φn(i)

ΦnΦ
(Φ− Φn) +

1

Φ
(φn(i)− φ(i))

∣∣∣∣
≤ w

2 |Φ− Φn|+ w |φn(i)− φ(i)|

≤
(
w

2
I + w

)
max
i
|φn(i)− φ(i)|

But maxi |φn(i)− φ(i)| is at most

max
i

∣∣∣∣1− exp

(∫ i

0

(
λw(r)

∫ J

0
α(x, y)m(y)dy − λw(rn)

∫ J

0
αn(x, y)mn(y)dy

)
dx

)∣∣∣∣
The expression in the exponent is bounded by

|λw(rn)− λw(r)|+ λ̄wIJ |m(y)−mn(y)|+
∫ I

0

∫ J

0
Iα(x,y)6=αn(x,y)m(y)dydx.

Thus, ŵ is a limit point of ŵn, provided that the size of the set of (i, j) at which the

signs of Sn(i, j) and S(i, j) differ shrinks to zero. But note that for any (i, j) ∈ Āk, since

S(i, j)n → S(i, j) 6= 0, there must be an n such that sign(S(i, j)n) = sign(S(i, j)). If Ak

has measure zero, we are done. Otherwise, for any (i, j) ∈ Ak there must be a convergent
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sequence α(i, j)n → α, or else ŵn could not converge. But then there must be some

ŵ ∈ T (k)|W such that c = α on Ak, and this ŵ is the limit point of ŵn. The same argument

holds for m̂n. �

Proofs Section 4

Proof of Claim 1 (p. 15): Using the value function equation (3.3),

V̇ (i2)− V̇ (i1) = λwθ

∫ J

0
[α(i1, y)− α(i2, y)][f(i1, y)− V (i1)−H(y)]m(y)dy

+ λwθ

∫ J

0
α(i2, y)[V (i2)− V (i1)− (f(i2, y)− f(i1, y))]m(y)dy + ρ(V (i2)− V (i1))

≥ λwθ
∫ J

0
α(i2, y)

[∫ i2

i1

(
V̇ (x)− fi(x, y)

)
dx

]
m(y)dy + ρ

∫ i2

i1

V̇ (x)dx

≥ λwθ
∫ J

0
α(i2, y)

[∫ i2

i1

(fi(x, j)− fi(x, y)) dx

]
m(y)dy + ρ

∫ i2

i1

fi(x, j)dx

≥
∫ i2

i1

fii(x, j)dx = fi(i2, j)− fi(i1, j).

The first inequality holds because the terms [α(i1, y)−α(i2, y)] and [f(i1, y)−V (i1)−H(y)], if

not zero, must have the same sign under optimal matching behavior. The second inequality

follows since for all x ∈ [i1, i2], V̇ (x) ≥ fi(x, j).The last step comes from (A1) (note that

miny{fi(i, j)− fi(i, y)} ≤ 0). But this means that fi(i2, j)− V̇ (i2) ≤ fi(i1, j)− V̇ (i1). �

Proof of Claim 2 (p. 16):

V̇ (i2)− V̇ (i1) = λwθ

∫ J

0

[α(i1, y)− α(i2, y)] [f(i2, y)− V (i2)−H(y)]m(y)dy

− λwθ
∫ J

0

α(i1, y) [f(i2, y)− f(i1, y)− (V (i2)− V (i1))]m(y)dy + ρ(V (i2)− V (i1))

≤ λwθ

∫ J

0

α(i1, y)

[∫ i2

i1

(V̇ (x)− fi(x, y))dx

]
m(y)dy + ρ

∫ i2

i1

V̇ (x)dx

≤
∫ i2

i1

fii(x, j)dx = fi(i2, j)− fi(i1, j),

and therefore fi(i1, j)− V̇ (i1) ≤ fi(i2, j)− V̇ (i2). �

Proof of Proposition 4.7: fi(i, j) − V̇ (i) ≤ 0 whenever (DE1) holds. Suppose

by contradiction that f(i, j) − V (i) is not decreasing everywhere and let i1 be such that

fi(i1, j)− V̇ (i1) > 0. Let i2 be the smallest i > i1 such that fi(i, j)− V̇ (i) = 0. By claim 2

fi(i1, j)− V̇ (i1) ≤ fi(i2, j)− V̇ (i2) = 0. �
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Proof of Proposition 4.8: Suppose fi(i1, j) − V̇ (i1) < 0, but there exists an i > i1

such that fi(i, j)−V̇ (i) > 0. There must be a point between i1 and i with fi(i, j)− ˙V (i) = 0;

let i2 be the smallest of them. By claim 1, fi(i2, j)− V̇ (i2) ≤ fi(i1, j)− V̇ (i1) < 0. �

Proof of Lemma 4.9: Define a function S∗(i) = maxj f(i, j)−V (i)−H(j) for i ∈ [0, I]

and constant at S∗(0) for all i < 0, with the arg max denoted by j∗(i). Since f , V and H

are continuous, so is S∗. Assume that for some i′′, J(i′′) is nonempty. Now suppose there

exists an i < i′′ such that S∗(i) < 0. There must be an i′ ∈ (i, i′′) such that S∗(x) ≤ 0 for

all x ∈ [i, i′] and S∗(i′) = 0. But then

V (i′)− V (i) = −λwθ
∫ i′

i

∫ J

0
α(x, y) [f(x, y)− V (x)−H(y)]m(y)dydx+ ρ

∫ i′

i
V (x)dx

≥ −λwθ
∫ i′

i
max{0, S∗(x)}dx+ ρ

∫ i′

i
V (x)dx ≥ 0.

Since f is decreasing in i, this means that f(i, j∗(i′)) − V (i) − H(j∗(i′)) ≥ f(i′, j∗(i′)) −

V (i′)−H(j∗(i′)) = S(∗(i′)) = 0; in other words, j∗(i′) must be in the matching set of i (as

well as all x). The connecting path for M is given by S∗(i)× i. �

Proof of Lemma 4.12: Hold j fixed at a. (DE1’) directly bounds fi(i, a)− V̇ (i) ≤ δ.

Suppose by contradiction that there is an i1 such that fi(i1, a) − V̇ (i1) > δ. Let i2 be the

smallest i > i1 such that fi(i, a)− V̇ (i) = δ. Then V̇ (x) ≤ fi(x, a)− δ for all x ∈ [i1, i2]. By

an analog argument to that for claim 2,

V̇ (i2)− V̇ (i1) ≤ λwθ

∫ J

0

α(i1, y)

[∫ i2

i1

(V̇ (x)− fi(x, y))dx

]
m(y)dy + ρ

∫ i2

i1

V̇ (x)dx

≤ λwθ

∫ J

0

α(i1, y)

[∫ i2

i1

(fi(x, a)− δ − fi(x, y))dx

]
m(y)dy + ρ

∫ i2

i1

(fi(x, a)− δ)dx

≤
∫ i2

i1

fii(x, a)dx = fi(i2, a)− fi(i1, a)

and therefore fi(i1, a) − V̇ (i1) ≤ fi(i2, a) − V̇ (i2) = δ; contradiction. Similarly, let i = a.

(IN2’) bounds fj − Ḣ above δ. Suppose that there is an j1 such that fj(a, j1)− Ḣ(j1) < δ.

Let j2 be the smallest age above j1 at which fj(a, j)−Ḣ(j) = δ. Then by a similar argument

Ḣ(j2)− Ḣ(j1) ≥ λm(1− θ)
∫ I

0

α(x, j2)

[∫ j2

j1

(fj(a, y)− δ − fj(x, y))dy

]
w(x)dx+ ρ

∫ j2

j1

(fj(a, y)− δ)dy

≥
∫ j2

j1

fjj(x, a)dx = fj(j2, a)− fj(j1, a)

and fj(j1, a)− Ḣ(j1) ≥ fj(j2, a)− Ḣ(j2) = δ, contradiction. �
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