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No Profitable Decompositions in Quasi-Linear

Allocation Problems∗

Geoffroy de Clippel† and Camelia Bejan‡

August 2009

Abstract

We study the problem of allocating a bundle of perfectly divisible private goods

from an axiomatic point of view, in situations where compensations can be made

through monetary transfers. The key property we impose on the allocation rule

requires that no agent should be able to gain by decomposing the problem into

sequences of subproblems. Combined with additional standard properties, it leads

to a characterization of the rule that shares the total surplus equally. Hence a

traditional welfarist rule emerges as the unique consequence of our axioms phrased

in a natural economic environment.

JEL classification numbers: C78, D63

Keywords: Social Choice, Axiomatic Bargaining, Welfarism, Egalitarianism

1 Introduction

We consider situations where a group of people have to share a bundle of perfectly di-

visible private goods. We assume that compensations can be achieved through monetary

transfers (quasi-linear framework). As often, instead of solving each specific problem in

isolation, we study allocation rules that may be applied in many different instances. For

∗The paper benefited from stimulating discussions with Hervé Moulin and Yves Sprumont. Geoffroy
de Clippel gratefully acknowledges financial support from the National Science Foundation (grant SES-
0851210).
†Brown University, Department of Economics, Providence, Rhode Island - declippel@brown.edu.
‡Rice University, Department of Economics, Houston, Texas - camelia@rice.edu.
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most allocation problems and most rules, some participants can gain by decomposing

the stakes in some way, requesting for instance to allocate good l before l′, or to share

a proportion of the total amount of goods available before allocating what remains. Of

course, such decompositions often lead to an efficiency loss, which is not desirable. Even

when there is no efficiency loss, a gain for one participant must result in a loss for another

one when the allocation rule selects efficient outcomes. Hence the normative appeal of a

rule may be lost if stakes are decomposed when implementing it. Finally, one advantage

of agreeing on an allocation rule is to reduce conflict when it comes to solving particular

problems. This advantage may be limited when implementing rules that are subject to

such profitable decompositions, as participants will have conflicting preferences when it

comes to setting the agenda. For all these reasons, we are interested in studying rules that

satisfy a property of “No Profitable Decompositions” (NPD), requiring that no individual

can gain by decomposing the problem into sequences of subproblems.

The main result of the paper establishes that NPD, once combined with other standard

axioms, characterizes the allocation rule that corresponds to an equal split of the maximal

total surplus among the participants. Equal surplus sharing being probably the simplest

notion of microeconomic justice, one would think that there exist numerous axiomatic

characterizations of this solution in bargaining and social choice theory. In reality there

are only relatively few such results. The reason is that most contributions in axiomatic

bargaining and social choice are phrased while taking utilities as primitive. Equal surplus

sharing follows trivially from the properties of anonymity and efficiency in quasi-linear

environments under this welfarist assumption. Most of the literature focuses instead on

finding extensions of the equal surplus sharing solution to environments that are not

quasi-linear. Unfortunately, the welfarist assumption lacks a clear normative and/or

positive content, and is thus hard to accept as an axiom or postulate (see Roemer (1986,

1988)). The existence of appealing contextual solutions (e.g. egalitarian equivalence, or

competitive equilibrium with equal income) also shows that the welfarist assumption is

far from being innocuous. To be precise, we are not arguing that a solution is unappealing

because it is welfarist. Instead, we suggest that the axiomatic approach should be applied

more systematically to explicit economic and social environments. Some properties that

were incompatible in the utility space may lead to the characterization of new (necessarily

contextual) solutions. In other cases, welfarism will come as a consequence of axioms,

hence giving us a deeper understanding of classical solutions. Our main result belongs

to this second category. It is worth noting that NPD cannot even be phrased under the
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welfarist assumption, since the set of utilities that are feasible in the subsequent step

of a decomposition depends on the economic description of the problem. This set may

be strictly smaller than, and unrelated to, the set of utilities that are achievable when

solving the problem in its entirety.

Beyond usual properties of anonymity, efficiency, and continuity, the result requires

an axiom of independence with respect to preferences over non-feasible allocations (IND).

As hinted by its name, IND requires that the solution of two allocation problems that

differ only in the participants’ perferences over outcomes that are not feasible coincide.

As far as we can tell, this type of property was first mentionned explicitly in Karni and

Schmeidler (1975).1 It has been invoked on various occasions since then.2 Though IND

may appear completely innocuous at first sight, we must point out that it rules out

solutions such as Pazner and Schmeidler’s (1978) egalitarian equivalence.

We can now provide some intuition for our main characterization result. Consider

various countries that have an equal claim over a newly-discovered field of natural gas. A

total quantity Q is available to share. Let vi be the function that measures the net social

surplus for country i, as a function of the share it receives.3 These functions are most likely

to vary across countries because of different transportation costs and different needs (e.g.

existence of alternative sources, and use of different technologies that make the resource

more or less productive). NPD is more restrictive when it applies to many decompositions

of the original problem. Consider for instance the case where the division of Q is tested

against the iteration cubic meter by cubic meter of the solution. Suppose that Q′ < Q

cubic meters have already been shared (combined with some monetary transfers). Given

the possibility of monetary compensations, the efficient allocation of Q′ prescribed by

the solution must equalize the marginal social surplus across countries (assuming for

simplicity that we have an interior solution). When considering the additional cubic

1Karni and Schmeidler themselves refer to a 1969 mimeo written by A. Gibbard.
2Here are a few references: Plott (1976), Grether and Plott (1982), Campbell (1992), Dutta et al.

(2001), Ehlers and Weymark (2003), Fleurbaey (2003), Chambers (2005a), Fleurbaey and Tadenuma
(2007), de Clippel (2009), and de Clippel and Eliaz (2009). The list is not exhaustive, but it illustrates
well the various contexts where a property in the spirit of IND has been used, and the various formulations
that have been proposed.

3The story is of course rather stylized, the objective being to emphasize the argument behind the
main result of our paper. Still, the model is more general than it may seem at first sight. For instance,
the costs of extraction seem to be overlooked, but they can possibly be expressed in terms of the energy
required to extract the gas, which itself can be obtained from a fraction of the natural gas extracted. Q
can then be interpreted as the net quantity available in the field. Also, our story does not incorporate
time explicitly, but the functions vi can be reinterpreted as the net present value of streams of resources
to be extracted.
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meter to be shared in the next iteration of the decomposition, all the countries look

identical, because a cubic meter is essentially an infinitesimal quantity when compared

to Q, and the countries’ social surplus functions over quantities that are larger than this

infinitesimal amount must be irrelevant under IND. In order to be anonymous (a minimal

requirement for equitability), the solution should give an equal share to each country of

the additional total surplus generated by the additional cubic meter to allocate. Iterating

the process, it follows that the total surplus associated to Q should be shared equally

across countries. The formal reasoning is more general (e.g. allowing for multiple goods,

and without restricting attention to functions vi that guarantee interior solutions), but

also requires to focus on solutions that are regular (formalized in an axiom of continuity)

in order to make the argument at the margin complete.

The paper unfolds as follows. Section 2 presents the model. The axioms and the main

result are included in Section 3, while its proof is postponed to Section 5. Section 4 offers

a review of the related literature.

2 Model

A set I of I ≥ 2 individuals have to allocate a bundle ω of L perfectly divisible goods (ω ∈
RL

+). Some compensation can be achieved through monetary transfers. An allocation is

a couple (x, t) ∈ RIL
+ × RI where, for each i ∈ I, ti (resp. xi) represents the net amount

of money (resp. bundle of goods) that individual i receives. It is feasible if
∑

i∈I xi ≤ ω

and
∑

i∈I ti ≤ 0. The set of feasible allocations will be denoted by F(ω).

Utilities are quasi-linear. The utility function ui : RL
+ → R+ determines the maximal

(or reservation) price ui(x) that individual i is ready to pay to consume each bundle

x ∈ RL
+. The utility functions are assumed to be non-decreasing, continuous and such

that u(0) = 0.4 The set of all such functions is denoted by U . Agent i’s total utility

associated to the allocation (x, t) is ui(xi) + ti. A utility profile is a vector u in RI . It is

feasible if there exists a feasible allocation (x, t) such that ui = ui(xi) + ti, for each i ∈ I.

An allocation problem P is a couple (ω, u), where ω is the bundle of L goods to share,

and u = (ui)i∈I ∈ U I is the list of utility functions. The set of all allocation problems is

denoted by P .

An allocation rule is a correspondence R : P → RIL
+ × RI , which associates to each

4It is natural to assume that an individual’s reservation price for consuming nothing is zero. Dropping
this assumption would require to change some notations, but not the substance of our argument.
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allocation problem a nonempty set of feasible allocations. We will assume throughout

the paper that the allocation rules determine a single utility profile:

{(x, t) ∈ R(P ) and (x′, t′) ∈ R(P )} ⇒ {ui(xi) + ti = ui(x
′
i) + t′i, ∀i ∈ I}, (1)

for each P ∈ P , and each pair ((x, t), (x′, t′)) of allocations.

A solution is a function σ : P → RI that associates a utility profile to each allocation

problem. Condition (1) makes it meaningful to consider the solution associated to an

allocation rule R that is defined as follows:

σRi (P ) = ui(xi) + ti, ∀i,

for some (or each, by (1)) (x, t) ∈ R(P ), and each P ∈ P .

For each allocation problem P = (ω, u),

s(P ) = max
x∈RIL

+

{∑
i∈I

ui(xi) |
∑
i∈I

xi ≤ ω

}
.

denotes the maximal total surplus achievable. The equal surplus sharing solution5 σESS

is then given by:

σESSi (P ) =
s(P )

I
,

for each i ∈ I, and each P = (ω, u) ∈ P . The equal surplus sharing allocation rule RESS

is then naturally defined as follows:

RESS(P ) = {(x, t) ∈ F(ω) | ui(xi) + ti = σESSi (P ), ∀i ∈ I},

for each P = (ω, u) ∈ P .

Finally, an allocation rule R is welfarist if σR(P ) = σR(P ′), for each pair (P, P ′) of

allocation problems with s(P ) = s(P ′). This definition should make precise the discussion

we had in the Introduction and that we will pursue in Section 4.

5One could argue that σESS is actually the egalitarian solution. We refrain from using this terminol-
ogy, because it also coincides with many other solutions such as the Nash or the Kalai-Smorodinsky solu-
tions applied to the bargaining problem (U(P ), d(P )), where d(P ) = 0 and U(P ) = {u ∈ RI |

∑
i∈I ui ≤

s(P )}, for each P ∈ P. The problems being quasi-linear, σESS actually coincides with any solution that
is welfarist, and satisfies the properties of “Efficiency” and “Equal Treatment of Equals” (cf. definitions
below in the main text).
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3 Main Result

Here are the axioms that we will impose on the allocation rule.

Efficiency (EFF)
∑

i∈I σ
R
i (P ) = s(P ), for each P ∈ P.

Equal Treatment of Equals (ETE) σRi (P ) = σRj (P ), for each P = (ω, u) ∈ P, and

each i, j in I such that ui = uj.

No Profitable Decompositions (NPD) Let P̃ = (ω̃, u) ∈ P, let ω ∈ RL
+ be such that

ω ≤ ω̃, let P = (ω, u), let i ∈ I, and let (x̃, t̃) ∈ R(P̃ ). Then, there exists (x, t) ∈ R(P )

and (y, r) ∈ R(Px) such that

ui(xi + yi) + ti + ri ≤ ui(x̃i) + t̃i,

where Px = (ω̃ − ω, ux) is the “residual problem” obtained after distributing (x, t), i.e.

with uxi (yi) = ui(xi + yi)− ui(xi), for each yi ∈ RL
+ and each i ∈ I.

Independence of Preferences over Non-Feasible Allocations (IND) Let P =

(ω, u) ∈ P and P̃ = (ω, ũ) ∈ P be such that ui(x) = ũi(x), for each i ∈ I and each

x ∈ RL
+ with x ≤ ω. Then σRi (P ) = σRi (P̃ ).

Continuity (CONT) a) Let ω ∈ RL
+ and let (ωk)k∈N be a sequence in RL

+ that converges

to ω. Then the sequence (σR(ωk, u))k∈N converges to σR(ω, u), for each u ∈ U I .

b) For every compact set K ⊆ RL
+, there exist M > 0 such that6

‖σR(ω, u)− σR(ω, ũ)‖ ≤Md(u, ũ),

for every ω ∈ K and u, ũ ∈ U I .

EFF simply imposes on the rule to specify allocations that are Pareto efficient. It

should not be possible to find another feasible allocation that would make all the individ-

uals happier. ETE guarantees some minimal form of equity, in that two individuals with

the same utility functions are treated identically. NPD guarantees that no participant

can have an interest in manipulating the allocation rule through some decomposion of

the stakes. As explained in the Introduction, a violation of that property may lead to

conflict and inefficiency when it comes to implement the rule, as well as a violation of

6d(u, ũ) = maxi∈I supx∈RL
+
|ui(x)− ũi(x)|.
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the equity principles that motivated the solution in the first place. Different people may

have different opinions regarding what is the right way of formalizing NPD depending

on the agents relative optimism/pessimism when decomposing the stakes (given that al-

location rules can be multi-valued). Our formulation presumes that each agent is most

pessimistic, making a rule robust to profitable decompositions as soon as the combination

of some element (x, t) ∈ R(P ) and (y, r) ∈ R(Px) makes him no better than the solution

of the original problem P̃ . The property is thus the weakest version one can think of,7

making the uniqueness result in the next Theorem only more interesting. On the other

hand, observe that ΣESS does satisfy the stronger version of NPD, where they are most

optimistic.8

Strong NPD Let P̃ = (ω̃, u) ∈ P, let ω ∈ RL
+ be such that ω ≤ ω̃, let P = (ω, u), let

i ∈ I, and let (x̃, t̃) ∈ R(P̃ ). Then, for all (x, t) ∈ R(P ), and all (y, r) ∈ R(Px), we

have:

ui(xi + yi) + ti + ri ≤ ui(x̃i) + t̃i,

where Px = (ω̃ − ω, ux) is the “residual problem” obtained after distributing (x, t), i.e.

with uxi (yi) = ui(xi + yi)− ui(xi), for each yi ∈ RL
+ and each i ∈ I.

While discussing the notion of exhaustivity towards the end of this Section, we will en-

counter a simple solution that satisfies NPD, but not its stronger version. Before stating

our main result, let us motivate the last two axioms. An allocation rule must specify

feasible allocations, and hence no individual can ever receive more than the amounts

that are available for division. It is then natural to assume that the individuals’ reser-

vation prices for bundles that are not feasible should be irrelevant in the determination

of the final allocation, as required by IND (see references in the introduction). It is also

meaningful to require some form of continuity on the allocation rule. CONT formalizes

the idea that small measurement mistakes should not trigger a major difference when

computing the solution. Part (a) applies this principle to the total resources available,

while part (b) requires the stronger property of Lipschitz continuity with respect to the

utility functions.

Theorem RESS satisfies EFF, ETE, NPD, IND and CONT. Conversely, any allocation

7It is not even required for the agents’ expectations to be consistent, in that (x, t) and (y, r) may very
with i in the definition of NPD.

8Observe that the strong version of NPD actually implies condition (1).
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rule that satisfies the axioms must be such that σR = σESS.

We already gave some intuition for this Theorem in the Introduction, and we defer the

complete proof to Section 5. We now discuss the independence of the axioms. The equal

split allocation rule, σES, that shares ω equally among all the individuals without making

any monetary compensation, satisfies all the axioms except EFF. An allocation rule that

selects feasible allocations that split the total surplus in some fixed proportions which

are not the same for all the individuals (same as Kalai’s (1977) proportional solutions)

clearly satisfies all our axioms, except ETE. Consider next the solution proposed by

Moulin (1992). For each P = (ω, u) ∈ P , let

σM(P ) = {(x, t) ∈ F(ω) | ui(xi) + ti = Shi(v
(ω,u)),∀i},

where Sh denotes the Shapley value, and v(ω,u) is the characteristic function defined as

follows:

v(ω,u)(S) = max
x∈RIS

+

{∑
i∈S

ui(xi) |
∑
i∈S

xi ≤ ω

}
,

for each coalition S ⊆ I (i.e. the maximal surplus that members of S could share if they

were free to distribute ω among themselves). σM satisfies EFF (resp. ETE; resp. CONT

a); resp. b)) because the Shapley value is efficient (resp. symmetric; resp. continuous;

resp.9 linear). It obviously satisfies IND, given the way v(ω,u) is defined. The Theorem

thereby implies that it violates NPD. More explicitly, consider for instance the allocation

problem P̃ with L = 1, I = {1, 2}, ω̃ = 2, u1(x) = 2x if x ≤ 1 (resp. 1 + x if x ≥ 1),

and u2(x) = min{x, 1}, for each x ∈ R+. Any element of σM gives a utility of 2.5 to the

first agent and 0.5 to the second agent. Even a pessimistic agent 2 (as in NPD) would

want to decompose the stakes, starting for instance by allocating a single unit of the

good. Indeed, the Moulin solution of that problem contains a unique allocation, with the

first agent receiving the good and paying a half dollar to agent 2. Solving the residual

problem, we conclude that the second agent can guarantee himself a utility of at least

$1 via this decomposition. To conclude, we have unfortunately not been able to prove

separately the independence of IND and CONT from the rest of the axioms. While we

clearly use both axioms in the proof in Section 5, it remains a possibility (and would

9To show that σM satisfies CONT b), one also needs to observe that |v(ω,u)(S)−v(ω,ũ)(S)| ≤ Sd(u, ũ),
which is shown explicitly in the Appendix for the special case S = I (when checking that σESS satisfies
CONT).
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make the Theorem only even more interesting) that one of them might be dropped, or at

least weakened. We will therefore only show that they cannot both be dropped and, for

notational simplicity, we will do so only when L = 1. Let P̂ be the set of problems (ω, u)

for which there exist α ∈ RI
++ and x∗ ≥ 0 such that ui is differentiable and u′i(x) = αi,

for all x ≥ x∗ and all i ∈ I. Consider then the following allocation rule:

R(P ) = RESS(P ), for all P ∈ P \ P̂ , and

R(P ) = {(x, t) ∈ F(ω) | ui(xi) + ti = Shi(v
u)s(ω, u) ∀i ∈ I} ,

for each P = (ω, u) ∈ P̂ , where vu is the characteristic function defined as follows:

vu(S) =
maxi∈S αi
maxi∈I αi

,

for each coalition S ⊆ I. It is not difficult to check that R satisfies EFF, ETE, and

NPD (because P̂ is closed under decompositions, and s(ω, u) is additive, as shown in the

Appendix when checking that σESS satisfies NPD), but violates both CONT and IND.

It is worthwhile to note that our characterization of the egalitarian solution does not

require exhaustivity of the allocation rule, an assumption imposed by most of the papers

that characterize classical welfarist solutions in non-welfarist environments. An allocation

rule σ is exhaustive if, for each P ∈ P , an allocation (x′, t′) ∈ σ(P ) whenever it is feasible

and it generates the same utility profile as an allocation (x, t) ∈ σ(P ). Observe that σESS

is exhaustive, while σES is not. The “exhaustive extension” of σES is defined as follows:

σ̄ES(P ) = {(x, t) ∈ F(ω)|ui(xi) + ti = ui(
ω

I
),∀i},

for each P ∈ P . While σES satisfies also the stronger version of NPD, σ̄ES satisfies only

NPD. To see that, consider for instance the allocation problem P̃ with L = 1, I = {1, 2},
ω̃ = 4, u1(x) = x, and u2(x) = min{x, 1}, for each x ∈ R+. Any element of σ̄ES gives

a utility of 2 to the first agent and 1 to the second agent. An optimistic agent 2 may

hope to be better off with first receiving nothing of the good plus a compensation of one

dollar when allocating the first two units, and then getting 1 unit of the good with no

compensation in the residual problem. A pessimistic agent 2, on the other hand, would

have no strict incentive to decompose the stakes when σ̄ES is used (any allocation rule that

contains an allocation that satisfies the strong NPD must necessarily satisfy NPD). The
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property of exhaustivity may thus be restrictive in that it rules out reasonable allocation

rules when used in conjunction with other axioms (strong NPD in this example).

We conclude this section by arguing that the natural analogues of EFF, ETE, NPD,

and IND are likely to be incompatible when monetary compensations are not available.

When there is a single good to be allocated, the equal split solution is the only solution

that satisfies the axioms, at least if preferences are strictly increasing. This is a direct

consequence of ETE, since there is only one possible such ordinal preference - the more the

better. Moving to two goods or more leads to an impossibility. This follows from Moulin

and Thomson’s (1988, Theorem 1) impossibility result. Indeed, the natural extension

of NPD in a framework without monetary compensations will imply their property of

“Resource Monotonicity.” At the same time, IND and NPD will imply their “Individual

Rationality” axiom, which requires that each individual prefers the final outcome to an

equal split of the total endowment. Notice that applying the natural extension of NPD

good by good will imply that property, since IND imply that the solution of each smaller

problem (focus on one good) depends only on the individuals’ preferences for that good,

and as before, there is only one such preference (restricting attention to preferences that

are strictly monotonic). Moulin and Thomson’s (1988) two-good two-individual counter-

examples therefore apply, and it is not difficult to extend them to counter-examples with

any number of goods and individuals. It remains an interesting question to find restricted

domains that are different from the quasi-linear case, and where the axioms would be

compatible again (see comment (D) Section 4 of Moulin and Thomson (1988)).

4 Related Literature

Graham et al. (1990, Section II) characterized the equilibrium allocation rule that prevails

in single-unit second-price auctions in the presence of nested buyer rings. Its computa-

tion is reminiscent of the principle of serial cost sharing (Littlechild and Owen (1973)),

and each resulting allocation happens to coincide with the Shapley value of some char-

acteristic function derived from the buyers’ reservation prices. Indeed, the payoffs have

a strong normative appeal as well (see Moulin (1992, Section 5)). There seems to be a

natural procedure to adapt this allocation rule to problems that involve a quantity Q

of a divisible good: decompose the problem into a sequence of allocation problems with

infinitesimal quantities, solve each infinitesimal problem via the previous solution (treat-

ing each infinitesimal quantity as indivisible), and integrate in order to obtain a solution

10



for the original problem. Of course, the procedure works well only for problems with

decreasing marginal utilities, as otherwise the resulting allocations are not necessarily

efficient. Suppose also that the utility functions are regular, that is differentiable and

such that the efficient allocation of any positive Q gives a positive amount of the good

to each participant (interior solutions). It turns out that the resulting solution then co-

incides with equal surplus sharing. This is true not only when applying the constructive

procedure to the Graham et al./Moulin allocation rule, but also to any solution that

guarantees to each agent a payoff that is larger than or equal to his valuation for the

indivisible good to be allocated divided by the number of participants, a rather weak

equity property first introduced by Moulin and Thomson (1988) and that plays a central

role in Moulin (1992). The proof of this new result is very similar to Step 1 in the proof

of our Theorem (see Section 5). The general idea is that, at every step of the continuous

summation, the lower bound on the participant’s final utility is binding, and equal to

the common marginal utility (which is also equal to the derivative of the total surplus,

by the envelope theorem) divided by the number of participants.10 The details for the

full proof are left to the dedicated reader. It is interesting to note that the Graham et

al./Moulin allocation rule, as well as many of the rules that meet Moulin and Thomson’s

lower-bound requirement, are not welfarist. Yet, once iterated to obtain a solution for

the divisible case, they all result in the same welfarist solution.

At first sight, NPD may seem very similar to Kalai’s (1977) axiom of step-by-step ne-

gotiations (see also Myerson (1977), and Young’s (1988) composition principle in taxation

problems). In reality, the two axioms are rather different. Indeed, NPD cannot even be

phrased in Kalai’s welfarist framework, because the set of utility profiles that are feasible

when sharing the bundle ω − ω′ after having solved for ω′ < ω may be strictly smaller

than the set of utility profiles that are feasible when sharing the bundle ω. Kalai assumes

instead that the solution for the problem of dividing ω′ is a partial agreement that serves

as a disagreement point in a new bargaining problem where any division of the bundle

ω can still be agreed upon. NPD, on the contrary, assumes that any partial agreement

is final and non-renegotiable.11 Kalai’s arguments in support of the egalitarian solution

10Notice that requiring the efficient allocations to be interior is important. If the first participant’s
utility function equals the quantity he consumes, while the second participant’s utility function equals
twice the quantity she consumes, then the solution obtained by iterating the Graham et al./Moulin
allocation rule does not coincide with an equal split of the total surplus.

11Kalai himself (page 1627) offers a very clear discussion of his axiom of step-by-step negotiations,
emphasizing that, although a property in the spirit of NPD would be a natural formulation of the general
principle, his axiom must have an alternative interpretation in terms of partial agreements because NPD
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are not very informative for the quasi-linear case that we focus on. Indeed, equal shar-

ing of the surplus follows immediately from the properties of efficiency and anonymity

when one is ready to work in the space of utilities. The purpose of Kalai’s argument

instead is to characterize proportional solutions in a welfarist framework when utilities

are non-transferable. It may be interesting to test the robustness of Kalai’s result, by

trying to rephrase it in explicit economic environments. As has been showed on different

occasions, and most forcefully by Roemer (1988), axioms that characterize a solution in

the space of utilities are usually satisfied by other non-welfarist solutions as well.

The additivity/super-additivity property12 that plays a key role in various axiomatic

results of social choice and cooperative game theory is often motivated by referring to

multiple issues (see e.g. Shapley (1953), Peters (1986), Ponsati and Watson (1997)).13

The story behind the axiom is that the participants’ payoffs when bargaining over all the

issues at once should be larger than or equal to the sum of their payoffs when bargaining

over the different issues separately. A difficulty though is that all the papers in that

vein are written in welfarist frameworks. Yet it is usually impossible to derive the utility

possibility set when bargaining over two issues simultaneously, from the two sets of the

utilities that are feasible when bargaining over each issue separately. The usual motiva-

tion behind the additivity/superadditivity property is thus meaningful only when utility

functions are assumed to be additively separable across issues, in which case the former

set is indeed the sum of the other two.14 So, while applying NPD to decompositions

good by good is reminiscent of these ideas on multi-issue bargaining, we believe that

cannot be phrased in the space of utilities. It is thus surprising that, to the best of our knowledge, the
property of NPD has not been studied sooner in non-welfarist environments.

12Quasi-linear problems lead to utility possibility sets that are half-spaces, and super-additivity is then
equivalent to additivity.

13The additivity/super-additivity property is sometimes given an alternative interpretation in terms of
a preference to agree before the resolution of some uncertain events, see e.g. Myerson (1981) and Perles
and Maschler (1981). This kind of argument is unrelated to our analysis, since there is no uncertainty
in our framework, and utility functions do not contain any information regarding risk attitudes.

14Green (1983) has taken a first step away from welfarism in quasi-linear problems, by dissociating
monetary compensations from the set of utilities that are achievable in the absence of transfers (see also
Green (2005), Chambers (2005b), and Chambers and Green (2005) for more recent results). The addi-
tivity/superadditivity property is subject to the same limitation as far as its interpretation is concerned,
but it is worth noting that these authors do obtain interesting solutions that are both anonymous and
efficient, while different from the equal surplus sharing rule. These solutions would trivially satisfy IND
if they were rephrased in our explicit economic environments, because the utility possibility set obtained
in the absence of monetary transfers does not change when one modifies the utility function of any par-
ticipant over bundles that involve more goods than available in the total endowment. Those solutions
must therefore violate NPD and/or CONT.
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NPD is a more appropriate formulation. Arguing in a non-welfarist framework, we are

indeed able to treat problems with no underlying restriction on utility functions. NPD

also highlights another class of multi-issue problems that arise from alternative decom-

positions. Indeed, a participant may insist, for instance, on sharing first a fraction of the

total endowment, before sharing what remains. The two issues that this decomposition

generates are inter-dependent, even if the utility functions are additively separable (or

even if L = 1), and therefore cannot be phrased in any welfarist model. As for Kalai

(1977), the proof of our result has no analogue in the literature on multi-issue bargaining,

since the equal surplus sharing solution follows trivially from the axioms of efficiency and

anonimity when working exclusively in the space of utilities.

O’Neill et al. (2004) introduce a new welfarist model of bargaining, where the set

of feasible utility profiles expands over time according to a differentiable function. Our

two papers thus share a common line of argument, in that a solution is ultimately char-

acterized by integrating its local behavior, which can be determined by imposing rather

weak axioms. A first obvious difference is that there is no given bargaining agenda in

our model. The integration step follows from the NPD property instead. More impor-

tantly, the arguments bear on different objects in our two papers. Working in the space

of utilities, equal surplus sharing is not derived in O’ Neill et al., but instead assumed by

their symmetry property. The key ingredient in their result is that the efficient frontier

of the expanded set of feasible utilities at time t + ∆t that lies above the agreement

reached at time t is essentially linear when ∆t is infinitesimal. Scale covariance then

leads to a problem in the space of utilities that can be solved by direct application of

the symmetry axiom. The key ingredient in our result is that the participants’ prefer-

ences are essentially identical when an infinitesimal quantity ∆ω has to be divided after

a strictly positive quantity ω has already been distributed (assuming that we have an

interior solution). Notice how the set of feasible utilities at time t does not depend on

previous agreements in O’Neill et al.’s model. Rephrased in an economic environment

like ours, this implies that the whole quantity of all the goods that have been bargained

in the past must be renegotiated at every t, as in Kalai’s interpretation of the property

of step-by-step decomposition. In our case, to integrate the solution of local problems

that follow a path from 0 to ω often leads to an inefficient solution because past agree-

ments are assumed to be non-renegotiable (except when L = 1 and marginal utilities are

decreasing, as in the first paragraph of the present section).

NPD is related to the CONRAD property that Roemer (1988) introduced to recover

13



most classical results in bargaining theory with axioms phrased in economic environments.

Though weaker, the CONRAD property is far more cumbersome than NPD, because it

restricts in a rather ad-hoc way the set of decompositions over which it applies (adding

goods in which at most one agent is interested, provided the set of feasible utility profiles

remains the same). If a person likes Roemer’s idea of consistency in CONRAD, then we

think that he or she will prefer to go all the way to NPD. Notice that Roemer’s proof

cannot be adapted to our framework because he makes crucial use of preferences that are

not quasi-linear. Our result has also the advantage of holding for any fixed number of

goods, while Roemer works with a variable and potentially infinite number of goods.

The present paper studies the exact same problem as Moulin (1992), but from a

different perspective. Moulin introduces four new properties: resource monotonicity,

population solidarity, (weak and strong) individual rationality, and the stand-alone test.

He then shows that these four properties, as well as most possible combinations of two

or three properties out of the list, are incompatible both on the general domains and

when restricting attention to concave utility functions. On the other hand, there exists

a solution that satisfies the four axioms simultaneously (using the weaker version of in-

dividual rationality) on the restricted domain where goods are substitutes, that is when

restricting attention to utility functions that are concave in each good, as well as sub-

modular. We have already discussed Moulin’s solution when checking the independence

of our axioms at the end of the previous section. There we noted that it satisfies all

our axioms, except NPD. It is thus subject to strategic manipulations of the agenda,

leading, as we argued earlier, to possible conflict, inefficiency, and violation of the equity

principles that motivated the solution in the first place. It is not difficult to check, on

the other hand, that the equal surplus sharing solution that we characterized, satisfies all

of Moulin’s axioms except the stand-alone test (not only on the restricted domain where

goods are substitute, but over the all domain). Let us thus explain briefly the content of

that test, and why, though interesting, we do not see it as an uncontroversial principle of

equity. A solution passes the stand-alone test if no coalition of agents receives a higher

aggregated payoff than the maximal surplus that its members could achieve if they were

free to share the whole total endowment, giving nothing to non-members. The solution

must thus belong to the anti-core of the fictitious characteristic function used to compute

the Moulin solution. It implies for instance that an agent on his own cannot get a payoff

that is larger than his reservation price for consuming the total endowment. The equal

surplus sharing solution takes a different standpoint on equity. Even in the limit case
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where an agent does not care for the goods being shared, we think that he should not be

treated as irrelevant because he is a member of the group that collectively owns the total

endowment. More generally, it is true that efficiency requires that an agent should not

consume much of the goods being shared when others have higher marginal utilities, but

this does not mean that there should be no or little monetary compensations in order

to reach an equitable outcome. It remains a fact that consuming less is a favor to other

agents, insofar as it lets them consume more, and it seems fair to compensate agents on

the basis of that criterion as well.

We close this literature review by briefly discussing two alternative axiomatic charac-

terizations of the equal surplus sharing solution in non-welfarist environments. Moulin

(1985, Theorem 2) provides one such result when selecting a public decision, together

with monetary compensations, when there are at least three participants. Interestingly,

his key axiom, No Advantageous Reallocations (NAR), is another property of robustness

against some class of potential manipulations of the solution to be implemented. Indeed

it requires that no coalition of individuals can be better off by publicly changing their

utility functions via contingent monetary transfers. NPD on the other hand operates

through decompositions of the total endowment, while the participants’ utility functions

are fixed. Ginés and Marhuenda (2000) study economies where money is used to produce

multiple public goods. They succeed in characterizing the equal surplus sharing solution

by giving some economic content to Kalai’s (1977) monotonicity property. The axiom

restricts the behavior of the solution when the individuals’ satisfaction from consuming

the public goods increase. This kind of principle has nothing to do with the axioms we

discussed in Section 3. Ginés and Marhuenda also show that their result does not extend

to the production of private goods. This confirms that there is no connection between

our result and theirs.

5 Proof

It is clear that RESS satisfies EFF, ETE and IND. Part (a) of CONT is an immediate

consequence of Berge’s (1959) maximum theorem. As for part (b) of CONT, let x ∈ RIL
+

be such that
∑

i∈I xi ≤ ω and
∑

i∈I ui(xi) = s(ω, u). Then
∑

i∈I ũi(xi) ≤ s(ω, ũ), and

hence s(ω, u)−s(ω, ũ) ≤ Id(u, ũ). A similar argument also implies that s(ω, ũ)−s(ω, u) ≤
Id(u, ũ). Hence |σESSi (ω, u) − σESSi (ω, ũ)| ≤ d(u, ũ), for every u, ũ ∈ U I (independently

of ω), and thus RESS satisfies CONT. Finally, to check that it satisfies NPD (or even its
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strong version), it is enough to observe that

s(ω′, u) ≥ max

{∑
i∈I

ui(x
∗
i + yi) | y ∈ RIL

+ and
∑
i∈I

yi ≤ ω′ − ω

}
,

for any x∗ that maximizes
∑

i∈I ui(xi) over the set of vectors x ∈ RIL
+ such that

∑
i∈I xi ≤

ω.

Let’s prove now the second part of the Theorem. Let thusR be a rule that satisfies the

five axioms, and let (ω̄, u) be an allocation problem. We have to prove that σR(ω̄, u) =

σESS(ω̄, u). For each ω̄ ∈ RL
++, let X(ω̄) := {x ∈ RL

+|x ≤ ω̄}, and let V(ω̄) be the

following set of functions:

V(ω̄) = {u ∈ C2(intX(ω̄)) | ∀d ∈ ∂RL
+, ∀l ∈ {1, . . . , L} : dl = 0⇒ lim

x→d,x∈int(X(ω̄))

∂u

∂xl
(x) = +∞},

where C2(int(X(ω̄))) denotes the set of functions that are twice continuously differentiable

on the interior of X(ω̄). We are now ready to proceed with the proof in four steps.

Step 1. Suppose that ω̄ ∈ R++. If u ∈ V(ω̄)I , then σRi (·, u) admits a right directional

derivative along any vector d ∈ RL
+ \ {0}, at any point ω in the interior of X(ω̄). In

addition, this derivative is equal to 1
I
∇ωs(·, u) · d. Formally,

lim
ε→0+

σRi (ω + εd, u)− σRi (ω, u)

ε
=

1

I
∇ωs(ω, u) · d,

for each ω ∈ int(X(ω̄)) and each d ∈ RL
+ \ {0}.

Proof: Let ω, d as above, let ε ∈ (0, 1], and let i ∈ I. NPD applied with ω̃ = ω + εd

implies that there exists (xi(ε), ti(ε)) ∈ R(ω, u) such that

σRi (ω + εd, u)− σRi (ω, u) ≥ σRi (εd, ux
i(ε)). (2)

For each j ∈ I, let

αij(ε) = max
0≤y≤εd

|∇uj(xij(ε)) · y − u
xi(ε)
j (y)|,
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and let ui,εj be the utility function defined as follows:

ui,εj (y) =


∇uj(xij(ε)) · y if |∇uj(xij(ε)) · y − u

xi(ε)
j (y)| ≤ αij(ε)

u
xi(ε)
j (y) + αij(ε) if ∇uj(xij(ε)) · y − u

xi(ε)
j (y) > αij(ε)

u
xi(ε)
j (y)− αij(ε) if u

xi(ε)
j (y)−∇uj(xij(ε)) · y > αij(ε)

for each y ∈ RL
+. It is easy to check that ui,εj ∈ U , for each j ∈ I.

Let K be the compact set K = {y ∈ RL
+|y ≤ d}. Part (b) of CONT implies that there

exists M > 0 such that

σRi (εd, ux
i(ε)) ≥ σRi (εd, ui,ε)−Md(ux

i(ε), ui,ε) (3)

for each ε ∈ (0, 1]. Since u ∈ V(ω̄)I and xi(ε) is an efficient split of ω, it must be

interior, and thus ∇uj(xij(ε)) = ∇uk(xik(ε)), for every j 6= k. Then IND, ETE, and

EFF imply σi(εd, u
i,ε) = ε

I
∇ui(xii(ε)) · d. This in turn equals ε

I
∇ωs(ω, u) · d, by the

envelope theorem. Observe also that the uniform distance between ux
i(ε) and ui,ε is equal

to αi(ε) = maxj∈I α
i
j(ε). Hence (2) and (3) imply that

σRi (ω + εd, u)− σRi (ω, u)

ε
≥ 1

I
∇ωs(ω, u) · d−Mαi(ε)

ε
. (4)

We are now ready to prove by contradiction that the ratio on the left-hand side of (4)

converges to 1
I
∇ωs(ω, u) · d when ε converges to 0, for each i ∈ I. For simplicity, let’s

refer to this ratio as ri(ε). If the property is not true, then we can find j ∈ I, β > 0, and

a sequence (εk)k∈N of strictly positive numbers that converges to 0 such that

|rj(εk)−
1

I
∇ωs(ω, u) · d| ≥ β, (5)

for all k. Taylor’s theorem implies15 that M αj(εk)
εk

converges to 0 when k goes to infinity,

and hence there exists k0 ∈ N such that M αj(εk)
εk

< β, for all k ≥ k0. Combining this with

(5), we must have rj(εk)− 1
I
∇ωs(ω, u) · d ≥ β, for all those k’s. Combining this with (4)

15Taylor’s theorem implies indeed that, for each ε > 0, αj
m(ε) (m ∈ I) is equal to the absolute value of

the remainder term, which is smaller than ε2 ·L2 · ‖d‖2 times the supremum of the absolute value of the
elements of the Hessian matrix, ∇2uj(xj

m(ε) + y), over all vectors y between 0 and εd, and all vectors of
bundles xj(ε) that are part of an element in R(ω, u). EFF and the definition of V(ω̄) guarantee the set
of all such xj(ε) is contained in a compact subset of (intX(ω̄))I (closedness of the set of efficient vectors
of bundles for u follows from Berge’s (1959) maximum theorem), and hence the supremum is finite.
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for i ∈ I \ {j}, we obtain:

s(ω + εkd, u)− s(ω, u)

εk
=

∑
i∈I

ri(εk) ≥ ∇ωs(ω, u) · d+ β +M
∑

i∈I\{j}

αi(εk)

εk
,

for all k ≥ k0. Taking the limit when k tends to infinity, we get a contradiction: ∇ωs(ω, u)·
d ≥ ∇ωs(ω, u) · d+ β. �

Step 2. Suppose that ω̄ ∈ RL
++. Let u ∈ (V(ω̄) ∩ U)I . Then σRi (ω̄, u) = σESSi (ω̄, u), for

all i ∈ I.

Proof: Fix i ∈ I, and define the function f : [0, 1]→ R by f(t) = σRi (tω̄, u)− 1
I
s(tω̄, u).

Part (a) of CONT implies that f is continuous and, according to Step 1, f also has a

right derivative with f ′+(t) = 0 for all t ∈ (0, 1). Then f must be a constant function

(for a proof, see for example Knight (1980)) and thus, σRi (ω̄, u) − 1
I
s(ω̄, u) = σRi (0, u).

IND implies that σRi (0, u) = σRi (0, v) for any utility profile v. In particular, one can take

a utility profile in which all agents are identical. Then ETE together with s(0, u) = 0

implies that σRi (0, u) = 0 and thus σRi (ω̄, u) = 1
I
s(ω̄, u). �

Step 3. For each i ∈ I, there exists a sequence (uni )n∈N of functions in V(ω̄) ∩ U that

converges uniformly to ui.

Proof: Let (Qn
i )n∈N be the sequence of multivariate Bernstein polynomials derived from

ui on X(ω̄) (a definition can be found in Lorentz (1953), for instance). It is well-known

that it converges uniformly to ui on X(ω̄). Also, the elements of the sequence are smooth

and non-decreasing on X(ω̄) (because ui is non-decreasing). Unfortunately, they will

typically be decreasing in some regions out of X(ω̄). Let then Q̃n
i : RL

+ → R be the

function obtained by projecting bundles on X(ω̄) before applying the polynomial Qn
i ,

i.e. Q̃n
i (x) := Qn

i ((min{xl, ω̄l})l∈L), for each x ∈ RL
+. These functions are continuous and

non-decreasing on the whole domain, by construction. They coincide with the underlying

polynomials on X(ω̄), and hence are smooth on the interior of that domain. Yet, they do

not belong to V(ω̄), because they do not satisfy the limit conditions on partial derivatives.

For each n ∈ N, let then vni : RL
+ → R be the function defined as follows:

vni (x) = (1− 1

n
)(Q̃n

i (x)− Q̃n
i (0)) +

1

n
(e

∑L
l=1

√
xl − 1),
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for each x ∈ RL
+. It is now easy to check that vni ∈ V(ω̄) ∩ U . Observe also that

max
x∈X(ω̄)

|ui(x)−vni (x)| ≤ (1− 1

n
)|Q̃n

i (0)|+ max
x∈X(ω̄)

|ui(x)−Q̃n
i (x)|+ 1

n
max
x∈X(ω̄)

|Q̃n
i (x)−e

∑L
l=1

√
xl+1|.

Each of the three terms on the right-hand side converges to 0 when n tends to infinity.

Indeed, limn→∞ Q̃
n
i (0) = ui(0) = 0, and the sequence (Q̃n

i )n is uniformly bounded on

X(ω̄), since it is uniformly convergent. This proves that (vni )n∈N is uniformly convergent

to u on X(ω̄), but not necessarily on the whole domain. Hence we propose one last

transformation of the sequence. For each n ∈ N, let

γ(n) = max
x∈X(ω̄)

|ui(x)− vni (x)|,

and let uni be the utility function defined as follows:

uni (x) =


vni (x) if |ui(x)− vni (x)| ≤ γi(n)

ui(x)− γi(n) if ui(x)− vni (x) > γi(n)

ui(x) + γi(n) if vni (x)− ui(x) > γi(n)

for each x ∈ RL
+. It is easy to check that uni ∈ V(ω̄) ∩ U , for each n ∈ N, and that the

sequence converges uniformly to ui on RL
+, as desired. �

Step 4. σR(ω̄, u) = σESS(ω̄, u).

Proof: Suppose first that ω̄ ∈ RL
++. For each i ∈ I, construct a sequence (uni )n∈N of

functions in V(ω̄)∩U that converges uniformly to ui, as in Step 3, and let un = (un1 , ..., u
n
I ).

We have:

σRi (ω̄, u) = lim
n→∞

σRi (ω̄, un) = lim
n→∞

s(ω̄, un)

I
=
s(ω̄, u)

I
,

for each i ∈ I, where the first equality follows from part (b) of CONT, the second equality

follows from step 2, and the third equality follows from the fact that RESS satisfies part

(b) of CONT.

Suppose finally that ω̄ ∈ RL
+. We can construct a sequence (ωn)n∈N in RL

++ that

converges to ω̄. We have:

σRi (ω̄, u) = lim
n→∞

σRi (ωn, u) = lim
n→∞

s(ωn, u)

I
=
s(ω̄, u)

I
,

for each i ∈ I, where the first equality follows from part (a) of CONT, the second equality
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follows from the previous paragraph, and the third equality follows from the fact that

RESS satisfies part (a) of CONT. �
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