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Simultaneuos-Equations Models

Axel Werwatz and Christian Miiller

1 Introduction

A simultaneuos-equations model (SEQM) consists of several interdepen-
dent equations. Typically, these equations are not standard regression equa-
tions with an endogenous variable on the left-hand side and one or several
exogenous regressors on the right-hand side that are independent of the
error term. Rather, endogenous variables may also appear on the right hand
side of the equations that comprise the SEQM.

But SEQMs are not merely a collection of equations with endogenous regres-
sors. They are truly systems of equations in the sense that there are cross-
equation relationships between the variables.

The well-known macroeconometric model of Klein (1950) is a good example
to illustrate these points. The Klein’s model consists of six equations, three
statistical equations and three identities. The three statistical equations
look like standard regression equations:

C: = a + P + P + as(Wf+W)) + en
Iy = Bo + BP + [2P1 + PsKi + e (1)
WP = v + mY: + %Y + 14 + €3

Here, the as, #s and s are unknown regression coeffcients, €14, €2; and eg; are
unobservable error terms and all capital letters denote observable variables,
whose meaning will be described below as necessary.

Klein’s model is completed by the following three identities:

Y;g = Ct + It + Gt
P =Y + T, — WP (2)
Ky = Kyn + L



These identities neither include unknown coeffcients nor error terms. They
hold “by definition”. Nonetheless, they are an integral part of the model.

The first equation of (2), for instance, says that total spending Y; in an economy
in year t is the sum of private consumption spending CY, investment spending
I; and government spending G;. This is an accounting relationship. Similarly,
the second equation of (2) states that we obtain private profits P; if we subtract
from total spending Y; indirect taxes T; and the total wage bill of private enter-
prises W/. These identities introduce interdependencies between the variables
of the statistical equations (1).

Note, for instance, that C; depends on W} via the first equation of (1) and
that W7 depends on Y; via the third equation of (1). But ¥; depends on C;
though the first identity in (2) which implies that W7 depends on Y;. In this
way, the first and third equation of (1) are interdependent or simultaneous.
This relatedness is not a result of some relationship between the error terms
€1 and e of these equations. Rather, it is a result of the equations in (1) and
(2) truly being a system of equations with various cross-equation relationships
between the observable variables of the system. This simulateneity has impor-
tant consequences if we want to consistently estimate the unknown coeffients
in (1).

2 Estimating Simultaneous-Equations Models

2.1 Identification

The equations of Klein’s SEQM defined by (1) and (2) are motivated by eco-
nomic theory. They are an attempt to write down in a parsimonious way the
“structure” of the economy from an aggregate, macro perspective. The pa-
rameters of these equations are thus the proper targets of estimation: after all,
they supposedly tell us “how the economy works”. In the following sections, we
will briefly discuss two approaches of estimating the parameters of a structural
SEQM such as Klein’s model.

A necessary condition for consistent estimation is identification. Identification
in SEQMs is a serious issue and warrants an extended treatment that can’t be
provided in the format of this chapter. But any good econometrics textbook
features an extensive discussion of this matter. See, for instance, Greene (1998)
or Goldberger (1991).



Intuitively speaking, identification is difficult because of the interrelatedness of
the variables, which makes it hard to disentangle their various relationships. A
necessary and easily verified condition for identification in SEQMs is that the
number of exogenous variables excluded from any equation must be as least as
large as the number of endogenous variables included in that equation (“order
condition”).

In Klein’s model of equations (1) and (2), the endogenous variables are Cj,
I, WP Y;, K; and P, (note that the latter three are endogenous despite not
being a left-hand side variable of any statistical equation). All other variables
are exogenous or predetermined. You may verify that in the first equation of
(1) there are two endogenous (C; and P;) and six excluded exogenous variables
(K¢—1, Yi—1, As, Gy, Ty and Wf). Hence, the order equation is satisfied for
this equation. Greene (1998) shows that the condition is satisfied for the entire
system (as well as other, sufficient conditions for identification).

2.2 Some Notation

Let us write down the M statistical equations (i.e, the equations that have
unknown coefficients and error terms) of the structural form (i.e., the equations
as they are suggested by economics) of a SEQM :

Y1 = Yf 61 + XT " + &

YT 8 + XToym + em.

YmMm

Focusing on the first equation, y; is the left-hand side variable, Y; is the
vector of endogenous right-hand side variables, x; is the vector of exogenous
or predetrmined right-hand side variables and $; and ~y; are the objects of
interest: the unknown structural parameters of the model.

We can illustrate the notation by using, say, the M-th equation of Klein’s model
introduced above: M = 3 (the coefficients of the identities in (2) are known and
need not be estimated), yir = WP, Y =Y, B = 71, X5, = [1 Vi1 Ay,
ym=[n 7 7" and enr = €3

Suppose that we have T observations of all the variables of the model. Then
we can write down the SEQM in terms of the data matrices and vectors as



follows:

nn = Y + X tea

yv = YuBu+ Xmym +em.

Using again the M-th equation to illustrate the notation, yas and epy are T' x 1
vectors whereas Yy and X, are matrices with n rows that have as many
columns as YI, and X%, respectively.

Defining Z,,, = (Y1,X1) and 6., = (Bm,ym) for m = 1,..., M, we can write
the system even more compactly as

nn = Z1 6 + €
' : 3)
ym = Zmom + em.

Estimating d1,...,d) by applying ordinary least squares to each equation is

not a consistent estimation procedure as some of the right-hand side variables
are endogenous and therefore correlated with the error terms.

For instance, in the second equation of (1), P, is correlated with the error term.
This can be seen by substituting the first identity of (2) for X; into the second
identity of (2) and observing that P; is a linear function of I;.

2.3 Two-Stage Least Squares

Endogenous regressors can be treated by instrumenting them and this is pre-
cisely what the method of two-stage least squares does.

1. In the first stage, the endogenous regressor is regressed by ordinary least
squares on all exogenous regressors and the predicted values of this regres-
sion are obtained. Denoting the matrix of observations of all exogenous
or predetermined variables of the SEQM as X we can write the matrix
of predicted values of the endogenous regressors of the m-th equation as

Vi = X{(XTX)'XTY,,} (4)



2. In the second stage, the two-stage least squares estimator for equation m
is obtained by regressing y,, on the fitted values Y,,, and the matrix of
exogenous or predetermined regressors of equation m, X,,.

Using the notation of (3), Greene (1998) shows that the two-stage least squares
estimator of the parameters of equation m can be written as

~

Smosrs = {(ZEX)XTX) NX1Z,)} 1 Z, X(XTX) 1 XTy,,.
= {Z3Zn} " Zyym ()
This procedure, applied to all equations m = 1,... , M, is consistent but not

efficient. This is because it does not exploit the fact that the equations form
a system or interdependent equations but rather estimates the equations one-
by-one. In the following section, we will describe the three-stage least squares
estimation procedure which builds on but also improves upon two-stage least
squares.

2.4 Three-Stage Least Squares

Let us rewrite (3) such that the system nature of the SEQM is even more
evident:

Y1 Zy 0 .- 0 o1 €1
Y2 0 Zy --- 0 0o €9

. = . . . . + . + . (6)
YM 0 0 - Zy om €M

(where y, Z and € all have T' x M rows) or simply as

y=27Z0+¢ (7

Using this “system” notation, we can write the two-stage least squares estima-
tor (5) for all M equations very compactly as

dbasps = {272} 77y, ®)



X(XTX) 1X"Z, 0 0
~ 0 X(XTX) X7 2, 0
zZ = . .
0 0 X(XTX) ' XT Zys
Zy 0 0
0 Z 0
_ e 9)
0 0 --- Zy

Written in this notation, the two-stage least-squares estimator looks like a
“system” estimator but it is really equation-by-equation instrumental variables
regression.

As remarked earlier, this estimator is consistent but it is not efficient. A more
efficient estimator is suggested by looking at the covariance matrix of the long
residual vector € of (7).

onl o1l -+ oml

_ onl o9l --- ooyl
E[eeT]=E= . ) . . =¥Xe®l, (10)

oml om2l -+ omml

where I is an T x T identity matrix, ® denotes the Kronecker product and X
is the covariance matrix of the error terms €q,€s,... ,€ep. This non-spherical
covariance matrix suggestes to improve upon (8) by using generalized least
squares. This is precisely the idea behind the three-stage least squares estima-
tor.

Suppose we knew the covariance matrix ¥. Then a generalized least squares,
instrumental variables estimator could be computed as

Sars ={ZT(2 '@ NZ} 1 ZT (S @ I)y. (11)

In practice, ¥ is unknown and has to be estimated. A consistent estimator of
element (i,5) of ¥ is based on the sum of squares of the residuals of the i-th
and j-th equation after estimating each equation by two-stage least squares:

(yi — Zi6:)" (y; — Z;0;)

; : (12

035 =



where 3\1 and gj are the two-stage least squares estimator for equations ¢ and j
as defined in (5). Estimating each element of ¥ in this way defines the estimator
3 of ¥ and allows to compute the feasible generalized lest squares estimator:

S3s0s = {ZT(E 1@ NZ} 1 ZTE @ I)y. (13)

An estimator of the asymptotic covariance matrix of (13) is given by
Asy. Var(Bss1s = {ZT (S @ )2} (14)
Summing up, the three-stage least squares estimator of ¢ in (7) is obtained by

carrying out the following three-steps:

1. The first stage is identical to the two-stage procedure: instruments for the
endogenous regressors are computed as the predicted values of an ordinary
least squares regression of each endogenous regressor on all exogenous
regressors.

2. In the second stage, the two-stage least squares estimator for each equa-
tion m is computed and the residuals are used according to (12) to obtain
an estimate of X, the covariance matrix of the error terms of the SEQM.

3. In the third stage, the estimate of ¥ is used to calculate the generalized
least squares estimator defined in (13) and an estimate of its covariance
matrix as described in (14)

2.5 Computation

{d3sls, cov3, d2sls} = seq(seqlistl, seqlist2)
estimates a SEQM via two-stage and three-stage least squares

The quantlet seq is all you need to estimate a SEQM with XploRe. It belongs
to the metrics quantlib which you have to load before you can use seq:

library("metrics")

seq requires two inputs and will return two vectors and a matrix along with
an ANOVA-type table in the output window. The two inputs are lists. The
first list (seqlist1) is a list of matrices that contain the data. The second list
(seqlist?2) is a list of string vectors that contain variable names.



seqlistl

If there are M statistical equations (i.e., equations with unknown coeffi-
cents and an error term) in the system then seqlist1l is a list of M + 2
matrices. The first matrix consists of the cocatenated vectors of obser-
vations of the left-hand side variables. The next M matrices contain the
observations of the right-hand side variables of the M statistical equations
of the system. The last and (M + 2)nd matrix contains the observations
of all exogenous and predetermined variables of the system. That is, the
M + 2 matrices are:

L. (Y1,Y25 -+ Yn)
2. Z

3. Zs

(M+1). Zy

(M+2). X

seqlist2
is a list of M + 2 string vectors. Each vector contains the names of the
variables that form the corresponding matrix in seqlist1. For instance,
the first string vector of seqlist2 contains the names of the left-hand
side variables of the system whereas the last string vector contains the
names of all exogenous and predetermined variables of the system.

The XploRe code for the Klein’s model will serve as an example:

; reading in the data
data=read("klein.dat")

; getting rid of the missing values of the lagged variables
data=data[2:rows(data),]

; assigning the columns of '"data" to the variables
C=datal,2]

P=datal,3]

Wp=datal,4]

I=datal,5]

Ki=datal,6]

Y=datal[,7]

Wg=datal[,8]



G=datal,9]
T=datal[,10]
W=datal[,11]
Pil=datal,12]
Yi=data[,13]
A=datal,14]

; preparing the matrices that form seqlistl

; first matrix: concatenated vectors

; of left-hand side variables
y=C"I"Wp

; a column of "1"s for constant term
ONE=matrix(rows(data),1)

; second through (M+1)st matrix:

; matrices of right-hand side variables
z1=P"P1"W~ONE

z2=P"P1"K1~0NE

z3=Y"Y1~A"0ONE

; (M+2)nd matrix: matrix of instruments

; (exogenous and predetermined variables)
x=0NE"G T "Wg~"A"P17K1~Y1

; forming a list of matrices
seqlisti=1ist(y,z1,z2,2z3,x)

; now we will prepare the string vectors that will form

; seqlist2 vector with names of left-hand side variables
y1=ncu|uIn|uwpn

; vectors with names of right-hand side variables

H of equations 1 though M
11="P"|"P1"|"W"|"DNE"
12="P"|"P1"|"K1"|"UNE"
13="E"|"E1"|"A"|"DNE"

; vector with names of instruments
x1="ONE"I"G"I"T“I"Wg"I"A"I"Pl“I"Kl“I"Yl"

; putting the string vectors into a list
seqlist2=1ist(y1l,11,12,13,x1)



; finally, we call the seq-quantlet
{d1,s,d2}=seq(seqlistl,seqlist2)
Qvserl.xpl

seq produces two kinds of output: ANOVA-style tables in the output win-
dow and coefficient estimates and their estimated standard errors as vectors or
matrices.

There is a table of estimation results both for the two-stage (shown first) and
three-stage least squares procedures (shown last). Both tables are designed to
be easily readable and self-explanatory. We hope that you are going to agree
after looking at the three-stage least squares table for the Klein’s model:

[ 1,] L L —— n
[2,1" 3stage Least-squares estimates"

[ 3’] n "
[ 4,1 "EQ dep. var. R2"

[ 5,] n "
[6,] "1 C 0.980 "

L7,1]"2 I 0.826 "

[ 8,] "3 Wp 0.986 "

[ 9,] " n
[10,]1 "VARIABLE Coef.Est Std.Err. t"
Mm,jm-—-—-- "
[12,]1 "P 0.125 0.108 1.155"
[13,] "P1 0.163 0.100 1.624"
[14,] "W 0.790 0.038 20.826"
[15,]1 "ONE 16.441 1.305 12.603"
(16, ] """ iiii i i i i i oo oo "
[17,]1 "P -0.013 0.162 -0.081"
[18,] "P1 0.756 0.153 4.942"
[19,]1 "K1 -0.195 0.033 -5.990"
[20,] "ONE 28.178 6.794 4.148"
21,]j"-———mrr;iiiiiiiii i i i i i i i "
[22,] "E 0.400 0.032 12.589"
[23,] "E1 0.181 0.034 5.307"
[24,1 "A 0.150 0.028 5.358"
[25,1 "ONE 1.797 1.116 1.611"
[26’] n "
[27,] "INSTRUMENTS  Mean Std.Dev "
2g,]"m-——mmr———m—m———————,—, — —  —  — "



[29,] "ONE 1.000 0.000"
[30,] "G 9.914 3.910"
[31,]1 "T 6.805 2.032"
[32,1 "wg 5.119 1.957"
[33,]1 "A 0.000 6.205"
[34,] "P1 16.376 4.028"
[35,] "K1 200.495 9.919"
[36,]1 "Y1 57.986 8.919"
[37 s ] " "

Besides showing the estimation results in the output window you can also access
some of them as vectors or matrices. Specifically, the following quantities are
returned by seq:

d3sls
the vector of three-stage least squares estimates of the elements of § in
(7). It is computed according to (13).

cov3
the estimated covariance matrix of the three-stage least squares estimator,
computed according to (14).

d2sls
the vector of two-stage least squares estimates of the elements of § in (7).
It is obtained by computing (5) for each equation and stacking-up the
resulting vectors.

In the following section, we will use seq to estimate a money-demand system.
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3 Application: Money Demand

Economists often refer to the money stock as one important determinant of the
price level. Therefore, the evolution of the amount of money in the economy is
also a focus of monetary policy analysis. A convenient tool for this is to look at
the so called demand for money. The recent economic literature analyzes the
long-run demand for money (denoted m) as a function of aggregated income
(y,) short and long term interest (i%,i') and inflation rates within a cointegra-
tion framework. If there is more than one cointegration relationship and/or
the relationship of interest helps to explain more than just one variable, these
relationships are estimated more efficiently within a system rather than as a
single equation (see (Ericsson 1999) on that). The explanatory variables con-
sidered in the money demand equation might cointegrate not only to a money
demand function but also to a stationary spread between long and short term
interest rates and a stationary real interest rate. Therefore, in a study about
European money demand, Miller and Hahn (2000) applied a system specifica-
tion to determine whether or not there exists a stationary relationship between
the money stock, aggregated income, 3-months interest rates, government bond
yield and a measure of European inflation. All data are weighted sums of the
series of each of the eleven countries except for the price measure which has
been obtained as the ratio of nominal and real income. In case of the interest
rates the weights are real income shares and in the cases of money and income
the official EURO rates have been used.

Using a system approach suggests to consider a reduced form regression, where
no endogenous variables may enter any of the equations on the right hand side.
In contrast to that, the change in money stock is often considered to depend e.g.
on the current change in inflation (Liitkepohl and Wolters 1998) and the same is
true for relationship between the short and the long term interest rates. That’s
why the reduced form regression is used to identify the long-run relationships
(cointegration relationships) while in a second step the model is re-written to
yield a structural form, as described above. Thus, the structural SEQM is:

12



Alm=—p)y = aig+aipAm—p)i_1+ a1 301 + gDk +ag sAil_,

+a1,6A%pi—1 + a1,70%p; + a1 gecly_1 +e1 (15)

Ay = agg +azaA(m—p)i—1 + az3Ays—1 + azaAib_| + s s Nif
taseA%p_1 + argecly 1 +azgec2 1 +eay (16)

AL = azy+azeA(m—p)io1 +az3Ay_1 +azaNib_| +azsAid_,
+Oé3,6A2Pt—1 + €3¢ (17)

Aif = oyq +ouA(m—p)i—1 + as 3Dy + 014,4Aii,1 +assAif_
a6 A%pi_1 + an 1008 + €4 (18)

N’py = asg+asaA(m—p)1+as3Ays 1+ asaNik_ +as sAiF_,
+a5,6A%pi_1 + asgec2i_1 + 1 (19)

ecl; = (m—p) —1.57dy; + 3.405i, — 2.061i} (20)
ec2; = il —4Ap (21)

Here, A = 1 — L where L is the backshift operator (i.e., Ay, 1 = (1 —
L)y; 1 =y 1 — ys_2)- It can be easily verified that the order condition holds
and all parameters are identified. In our case the endogenous variables are
Am — p, Ay, Ait, Aif and A2p; (all variables except the interest rates in log-
arithms). There are no purely exogenous variables but predetermined (lagged
endogenous) variables only. The error correction terms are given by the iden-
tities (20) and (21). They are the results of the first step, the reduced form
regression. Thus, we re-estimate the model including the short-run adjustment
parameters by 3SLS under more general assumptions about the contempora-
neous structure than in the reduced rank model.

We have used the following XploRe code to estimate the parameters of equa-
tions (15) to (19):

; reading in the data

z=read("eu.raw")

; getting rid of missing values due to lagged variables
z=z[4:rows(z),]

; assigning columns of z to variable names

dmp = z[,4]

13



dmp1 = z[,5]

dy = z[,7]
dy1 = z[,8]
d2p = z[,12]
d2p1 = z[,13]
dil = z[,15]
dil1 = z[,16]
dik = z[,18]
dik1 = z[,19]
ecll = z[,21]
ec21 = z[,23]

; creating the matrices for seqlistl
lhs=dmp~dy~dil~dik~d2p

one= matrix(rows(z),1)
zl=one”dmp1~dy1~dill1~dik1~d2p1~d2p~ecil
z2=one”dmp1~dy1~dill1~dik1~d2pl1~ecli1~ec21
z3=one”dmpl1~dy1~dili1~dik1~d2p1
z4=one~dmpl1~dy1~dill~dik1~d2p1~dil
zb=one”"dmp1~dy17dill1~dik17d2pl1~ec21
x=one~dmpl~dy1~dil1~dik1~d2pl~ecll1”ec21
; forming seqlistl as a list of matrices
seqlist1=1ist(1lhs,z1,22,23,24,25,%)

; creating list of string vectors
y1="dmp"|"dy"|"dzl"|“dzk"l"d2p"

zll="one"|"dmp1"I"dyl"|"dill"l"dikl"l"d2p1"|"d2p"|"ecll"
212="one"|"dmp1"|"dy1"|"di11"|"dikl"l"d2p1"|"ec11"|"ec21"
213="one"|"dmp1"|"dy1"|"di11"|"dik1”|"d2p1"

zl4="one" | “dlnpl“ | lldyl" | Ildillll | |Idik1" | Ild2P1ll | |ldi1|l
215="one" | “dlnpl“ | lldyl" | Ildillll | |Idik1" | Ild2P1ll | |leC21"
Xl:'lonell | "dmplll | |ldy1|l | "dillll | lldiklll | "d2P1|l | llecllll | "ec21ll
; forming seqlist2 as a list of string vectors

seqlist2=1list(yl,z11,z12,2z13,z14,z15,x1)

; finally, calling seq to estimate the model

{d3sls,cov3,d2sls}=seq(seqlistl,seqlist2)

These lines of XploRe code yield the following table in the output window

Q'seq02.xp1

(table of two-stage least squares estimates has been omitted). It shows for

each equation the left-hand side variable (top panel), three-stage least squares
coefficent estimates, estimated standard errors and t-values. The bottom panel

14



of the table lists the predetermined and exogenous variables that were used as
instruments in the estimation procedure, along with their sample means and
standard deviations.

[1,]" "
[ 2,] " 3stage Least-squares estimates"

[ 3’] L —— n
[ 4,] " EQ dep. var. RO

[ 5,] n n
[6,] "1 dmp 0.643 "

[7,] "2 dy 0.506 "

[ 8] "3 4zl 0.279 "

[ 9,] "4 dzk 0.079 "

[10,1 " 5 d2p 0.299 "

[11’] " n
[12,] "VARIABLE Coef .Est. Std.Err. t"
[13’] " n
[14,] "one -0.050 0.074 -0.684"
[15,] "dmp1 0.680 0.113 6.023"
[16,] "dy1 0.124 0.114 1.089"
[17,] "dil1 -0.126 0.153 -0.821"
[18,]1 "dik1 0.029 0.149 0.195"
[19,]1 "d2p1 -0.897 0.541 -1.658"
[20,] "d2p -1.421 1.078 -1.319"
[21,] "ecl1 -0.018 0.026 -0.669"
[22’] "_ _ n
[23,] "one 0.184 0.054 3.403"
[24,] "dmp1 0.270 0.087 3.082"
[25,]1 "dy1 0.393 0.106 3.694"
[26,] "dill 0.016 0.129 0.124"
[27,]1 "dik1 0.041 0.098 0.418"
[28,] "d2p1 0.922 0.242 3.809"
[29,] "ecl1 0.061 0.019 3.262"
[30,] "ec21 -0.159 0.054 -2.928"
[31’] "_ _ n
[32,] "one -0.002 0.001 -1.980"
[33,] "dmpl 0.148 0.098 1.516"
[34,] "ay1 0.192 0.121 1.590"
[35,]1 "dil1 0.425 0.138 3.075"
[36,]1 "dik1 -0.092 0.103 -0.894"
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[37,] "d2p1 0.136 0.261 0.522"
[38,] Moo "

[39,] "one -0.003 0.002 -1.698"
[40,] "dmpl 0.120 0.174 0.686"
[41,]1 "dy1 0.365 0.221 1.656"
[42,] "dil1 0.400 0.374 1.069"
[43,] "dik1 0.108 0.157 0.687"
[44,] "d2pl -0.022 0.371 -0.060"
[45,] "dil -0.270 0.762 -0.354"
[4:6 s ] 1 e e e e e e e e e e e e e e e e o o o o o o o o o o o o o o o o o o o o "
[47,] "one -0.004 0.002 -2.472"
[48,] "dmpl 0.030 0.047 0.646"
[49,] "dy1 0.009 0.057 0.154"
[50,] "dil1 -0.077 0.068 -1.144"
[51,] "dik1 0.062 0.048 1.296"
[52,]1 "d2p1 -0.323 0.125 -2.574"
[563,] "ec21 0.072 0.028 2.596"
[54 , ] n n
[55,] "INSTRUMENTS Mean Std.Dev. "

[56 s ] D e e e e e e e e e e e e e e e e e e e e e e e n
[57,]1 "one 1.000 0.000"

[58,] "dmpl 0.000 0.005"

[59,] "dy1 0.006 0.005"

[60,]1 "dil1 -0.001 0.004"

[61,] "dik1 -0.002 0.006"

[62,]1 "d2p1 0.000 0.002"

[63,] "ecll -2.813 0.027"

[64,] "ec21 0.052 0.010"

[65 s ] n n

Interpreting the results, two groups of estimators are of particular interest.
These are first the structural or contemporaneous explanatory variables’ pa-
rameters (a4,10 and oq,7) and, second the parameters of the error correction
terms (a. g and «.g), the so called short-run adjustment parameters.

Within the first group, we obtain a negative relationship between real money
growth and inflation growth, which is indicated by the coefficient of —1.42. Its
sign does not come as a surprise since an increase in inflation will naturally de-
preciate the value of nominal money stock. The coefficient does not seem to be
statistically significant however, which is indicated by the marginal probability
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of 0.187. Similarly the changes in the long-term interest rate do not seem to
have a significant impact on short rate movements of the same period.

The second group of interest provides some insight into the feasibility and
effects of monetary policy as well as to some extent into some basic economic
relationships. To start with, the error correction term which is given in (20) and
labeled as the long-run money demand enters the money and income growth
equations (15) and (16). This term indicates what effect money demand has
on the respective variables in excess of the long-run equilibrium. In the first
equation we assumed it to lead to a slow-down in money growth. This feature
should be present if one expects money to be demanded in quite the same way
as many other ordinary commodities. Thus, in such a case we would observe
an inherent tendency to restore equilibrium. The estimation results suggests
however that this adjustment does not take place. This is because although
the corresponding coefficient yields the correct sign it has too large a standard
error compared to its magnitude. When the true coefficient is zero then the we
would also have to assume that there is no money demand in Europe altogether
and the cointegrating relationship should better be rewritten in such a way that
it is normalised on a variable in whose equation the error correction term enters
significantly. This could be the income equation for example. Sticking to the
interpretation of a long-run money demand equilibrium we notice that excess
demand of real money will lead to higher income growth in the next period
as indicated by asg. Of course, re-formulating the ecl term does not affect
the significance of the coefficient but it could change the sign and will change
magnitude and economic interpretation, which will not be done here since we
are investigating the hypothesis of the existence of a money demand.

The second error correction term has an interpretation as a real interest rate.
When real interest rates are high, the respective coefficient in the income equa-
tion indicates that income growth will be less in the following period. This,
too, is economically reasonable, because credits are more expensive in that
case. Already in the first step, in the reduced form estimation, we found no
evidence of an endogenous tendency for the long-term interest rate to adjust
to deviations from the long-run real interest equilibrium level. Therefore the
error correction term for real interest rates have not been included in eq. (19).
Instead, as the corresponding coefficient of the current estimation (az,9) implies
also, these deviations may help to predict future inflation.

Since we used the error correction terms obtained in the reduced form regres-
sion and applied the zero adjustment coefficient restrictions identified in this
first step, there was not much more to learn about the effect of excess money
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demand on prices, say. Therefore the additional insight from this 3SLS esti-
mation is mainly the sensitivity of the short-run adjustment estimates when
explicit structural assumptions enter the model. It has to be pointed out how-
ever, that no final conclusions can be drawn yet because as the t-statistic of
the additional structural explanatory variables indicate, their inclusion might
not have contributed much to explain the underlying data generating process.
That’s why it is not quite clear which of variables are really part of this process
and which are not. In order to find out more about that some model selec-
tion procedures could be applied. A natural extension in that direction would
be e.g. to systematically exclude unnecessary variables due to some criteria
like ¢-values, F'-statistics, Akaike or Schwartz criteria to obtain more efficient
estimates of the remaining true model.
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