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ASYMPTOTIC EQUIVALENCE OF ESTIMATING A POISSON
INTENSITY AND A POSITIVE DIFFUSION DRIFT

VALENTINE GENON-CATALOT, CATHERINE LAREDO, AND MICHAEL NUSSBAUM

Unwersité Marne-la-Vallée, INRA Jouy-en-Josas and Cornell University

ABSTRACT. We consider a diffusion model of small variance type with positive drift
density varying in a nonparametric set. We investigate Gaussian and Poisson approx-
imations to this model in the sense of asymptotic equivalence of experiments. It is
shown that observation of the diffusion process until its first hitting time of level one
is a natural model for the purpose of inference on the drift density. The diffusion
model can be discretized by the collection of level crossing times for a uniform grid
of levels. The random time increments are asymptotically sufficient and obey a non-
parametric regression model with independent data. This decoupling is then used to
establish asymptotic equivalence to Gaussian signal-in-white noise and Poisson inten-
sity models on the unit interval, and also to an 1.i.d. model when the diffusion drift
function f is a probability density. As an application, we find the exact asymptotic
minimax constant for estimating the diffusion drift density with sup-norm loss.

1. INTRODUCTION

Diffusion processes defined by stochastic differential equations have been widely used
for modeling purposes. Consider the autonomous differential equation

(1) O jww) ¢ 120,40 =0

where f is some continuous function. When f is positive, the solution y of (1.1) is
monotone increasing and can be used to model growth processes. Assume that this
system is modified by a small random perturbation induced by a Wiener process W;.
This leads to a stochastic differential equation

(1.2) dY; = f(Y))dt +edW, ; t>0, Yo=0

where ¢ is a small parameter. Diffusion processes obtained as small random perturba-
tions of deterministic dynamical systems have been extensively studied in probability
theory (cf. e.g. Freidlin and Wentsell (1998)). We are interested in the statistical
model where the process Y; is observed and the positive function f is unknown.
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2 VALENTINE GENON-CATALOT, CATHERINE LAREDO, AND MICHAEL NUSSBAUM

Compared with the signal function g in the white noise model
(1.3) dZ, = g(u)du+edW, ; 0<u<l, Zy=0

the drift density f has to fulfill stronger conditions, in order to ensure existence and
uniqueness of non-exploding solutions of (1.2) (cf. Karatzas and Shreve (1997)). The
Lipschitz condition imposed here (see condition (C2) in section 2.1 below) is essentially
inherited from the ordinary differential equation (1.1). Note that in (1.2) the function
[ is a function of the state variable Y;, whereas ¢ in (1.3) is a function of time. Another
feature which distinguishes the diffusion model (1.2) from the white noise model (1.3)
is that Y; in (1.2) is a continuous strong Markov process.

We are interested here in the statistical theory for Markov and diffusion processes,
specifically in approximation of the respective experiments by simpler ones like Gauss-
ian and Poisson experiments. For the diffusion model (1.2), two types of asymptotics
have been considered: fixed time interval ¢t € [0,7] with noise intensity ¢ — 0 (see
Kutoyants (1984), (1994)), and fixed noise intensity (¢ = 1) for an expanding time
interval T' — oco. In the latter case Y; is commonly assumed stationary and ergodic
(cf. Kutoyants (1997) and references therein). Note that the ergodic case requires a
different set of conditions on the drift function; in particular, f cannot be positive as
in our model.

For both types of asymptotics, standard local likelihood theory leads to Gaussian limits
of experiments which provide a satisfactory basis for efficient parametric inference. Our
aim however is reduction of nonparametric experiments, when the drift function f varies
in a function class F, within the framework of asymptotic equivalence (cf. Brown and
Low (1996), Nussbaum (1996)). It turns out that a straightforward reduction to a
Gaussian or Poisson experiment is possible under a specific assumption: the diffusion
model (1.2) with small noise intensity ¢ — 0 is observed until ils first hilting time
Ti(Y) of level 1. We shall see below (Remark 1 at the end of section 2.1) that this
model is appropriate when we would like to estimate f(u), 0 < u < 1 and we are not
interested in its values beyond the interval.

This special observation model arises in a rather natural way from the Markov char-
acter of our diffusion process. For any Gaussian approximation of a stochastic process
experiment, a natural first step is to approximate the process by some collection of
independent random variables (”decoupling”, cf. de la Pena and Giné (1999) for a gen-
eral theory). The appropriate method is not discretization of the process in time which
results in a Markov chain; in fact discretization at equidistant time points ¢; = 7/n was
the method applied in Milstein and Nussbaum (1998) to the case of a fixed observation
interval ¢ € [0,7T]. That method led to some interesting statistical equivalences (see
below for a more detailed discussion), but not to a Gaussian approximation. Time
discretization is also applied in the seminal paper of Brown and Low (1996) to the
white noise model (1.3).

In the Markov diffusion model (1.2) it turns out that space discretization is more
natural and leads to a statistically useful decoupling. Assume that the drift density f
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is nonnegative; in that case the process Y; which starts at Yy = 0 tends to increase and
will eventually reach value 1 almost surely. Even though the state space for the process
Y; is the real line, consider the interval [0, 1] as the area of interest here and endow
it with an equidistant grid of points i/n, ¢ = 1,... ,n. Let Tj;, be the first hitting
time of level i/n by the process Y;; then the increments Ti41)/n — Tiyn are independent
random variables. That fact is an immediate consequence of the Markov character of
the diffusion process: these increments depends on the past only via the value of Y;
at Tj/,, which is i/n by definition. This value depends on ¢, but is nonrandom and
thus independent of the past; hence T(;41)/n — T}/, does not depend on the past of the
process. This idea of using space rather than time discretization is well known in a
probabilistic context; is has been applied in algorithms of path reconstruction (Kushner

and Dupuis (1992), Milstein (1998), Milstein and Tretyakov (1999)).

This reduction to independent variables takes places in the sense of the A-distance
for experiments, for small noise asymptotics ¢ — 0. In the sequel we use available
theory for nonparametric regression models (Grama and Nussbaum (1998)) to obtain
a Gaussian white noise approximation of type (1.3) for ¢ = f'/? where f is the drift
function in (1.2). It is obvious that conceptually, the time u in this latter models stands
for the space variable in the original model (1.2); thus our arguments are related to
the well-known technique of time change for stochastic processes.

The Euler type (time) discretization of ¥; in (1.2) on a fixed interval ¢ € [0, 1] has
been considered by Milstein and Nussbaum (1998). It was shown that the statistic
(Yi, .., Yi,), where t; = i/n is asymptotically sufficient for e — 0, in the experiment
given by observations Y; , t € [0,1] from (1.2), if n = n. — oo in such a way that en. —
oo and f varies in a certain nonparametric set of functions F. This extended the
result obtained in the corresponding parametric problem (see Larédo (1990), Genon—
Catalot (1990)). The proof was based on considering the statistical model associated
with the Euler scheme:

vi = Yic1 + 07 flyic) +en™ 6 5 yo=10

where (£,,4 =1,...,n) are i. i. d. standard normal variables. It was shown that Le
Cam’s deficiency distance between these experiments tends to 0 as ¢ — 0.

In this paper we consider the experiment given by the diffusion process Y; defined in
(1.2) when it is observed until its first hitting time 71(Y) of level one. The unknown
function f belongs to the set F = Fk,, associated with two positive constants K
and m; see section 2.1 below for details. This will be our first experiment & having
parameter set F.

In the model (1.2), let us consider the hitting time process
T,=T,(Y)=inf{t >0:Y, =a}

defined on an interval of levels a € [0, a] for some prescribed a; > 0. This process has
some nice properties. First, it is an increasing Lévy process (a process with independent
positive increments). Second, its observation is equivalent to the observation of the
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record process

M; =supVYs, t €0, T,,(Y)].
s<t
Indeed, the function a — T,(Y), a € [0,a;] is the left continuous pseudo-inverse of

t— My, t €1[0,7,,(Y)]. Records of diffusion processes occur in mathematical finance
(records of stock market indices, cf. Musiela and Rutkowski (1997), chap. 9.6).

For the sake of simplicity, we assume from now on a; = 1. In this paper we address
the problem of inference on the function f defined on [0, 1] from discrete observations
of the hitting time process, i.e. of times Tj/,,(Y), i = 1,... ,n. These random times
are almost surely finite under the assumption that f is positive. We ask how much
information about the unknown drift function f is lost when only discrete observations
on the path Y, are available. It turns out that space discretization based on successive
level crossings is feasible in the diffusion model under the assumption of a positive f,
and leads to further interesting statistical results.

The second experiment is closely related to the increments of the hitting times (nor-
malized by n), i.e. ton (Ti/n(Y) — T(i_l)/n(Y)). Consider a triangular array of n
independent random variables (X}, ¢ = 1,... ,n) distributed according to an inverse
Gaussian law I ((f(%))_l, n‘lg_Q). Recall that the inverse Gaussian distribution
IG(p, A) can be defined as the distribution of the hitting time of level A2 by the
process X; = Al/Q,LL_lt + Wi (g, A > 0). It has a density

(1.4) o= (52) e (Y 10t

(see e.g. Chikara and Folks (1989)). Denote by G™* this experiment indexed again by
JerF.

Our first result (Theorem 1) states that, as ¢ goes to 0, the deficiency distance of
these two experiments tends to 0 if n = n. goes to infinity in such a way that
en. — oo. As an important consequence, we obtain that the statistic consisting of the
hitting times of levels ¢/n, 1 = 1,... ,n of the diffusion (Y;,¢ > 0), i. e. the statistic
(Tyyn(Y), ¢ =1,...,n) is asymptotically sufficient (Corollary 1). Here again, these
results extend those obtained in the parametric drift estimation problem for diffusion

hitting times (Genon—Catalot and Larédo (1987), Larédo (1990)).

The experiment G™* can be seen as a nonparametric regression model with independent
data. Using results of Grama and Nussbaum (1998) for such models, we arrive at
a Gaussian approximation for our diffusion experiment (1.2). Indeed, consider an
experiment given by an observed signal in white noise

(1.5) dZ, = [M*(w)du + %qu L 0<u<l, Zo=0

with ¢ tending to 0 and f € F. Taking n. = [¢7?] (where [¢7?] denotes the largest
integer < £7?), we prove that "= and the signal-in-white-noise model (1.5) are asymp-
totically equivalent (Theorem 2).
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Another approximating experiment is given by an observed inhomogeneous Poisson
process on [0, 1] with intensity ¢ f(u), u € [0,1] where f € F. For this step we use
the asymptotic equivalence of the Poisson process with (1.5) which is essentially shown
in Grama and Nussbaum (1998). This approximation seems to be more convenient for
some purposes than (1.5), especially when inference on f rather than on 12 is desired.
As an application, we derive the Korostelev constant (exact asymptotic minimax risk
for sup norm loss) for the diffusion drift f € F from the corresponding result in the
Poisson process model.

Consider the special case where the restriction of the drift function f to [0, 1] is not only
positive, but is also assumed to have integral one. It has been shown in Nussbaum
(1996) that when 72 = n takes integer values then the signal-in-white-noise model
(1.5) is asymptotically equivalent to the experiment given by n observed i. i. d. variables
having density f on the unit interval. We thus obtain a rather unexpected connection
between the i. i. d. model and the diffusion experiment (1.2), in the sense of asymptotic
equivalence (Corollary 2).

Section 2 contains the notations, the statement of the main results, and some recap on
the Le Cam deficiency distance A. In Section 3 we introduce an experiment which is
exactly equivalent to the triangular array (X!, =1,...,n), but comparable to the
diffusion experiment &, as in Milstein and Nussbaum (1998). Using this experiment,
in Section 4 we compute a bound for the A-distance between the diffusion experiment
(1.2) and the other ones. In Section 5 we present the argument leading on to the Gauss-
ian experiment, specializing the exponential family nonparametric regression model of
Grama and Nussbaum (1998) to the inverse Gaussian case. In section 6 the Poisson

approximation is proved, and in section 7 we discuss asymptotic minimax estimation.

2. NOTATIONS AND MAIN RESULTS

2.1. Definition of the experiments. Let (2, A4, (A;):i>0,P) be a probability space
endowed with a filtration (A4;) satisfying the usual conditions, and let (W}, ¢t > 0) be
an (A;)- Brownian motion defined on Q. For f: R — R, consider the process Y;
defined by the stochastic differential equation (1.2).

The parameter ¢ is assumed to be known. The function f varies in a set F = Fx
associated with two positive constants K, m . defined by the following conditions:

(C1) f(z)>m, VzeR
(€2) 7(0) < K. |f(x) - fw)| < Kle —y|  VeyeR.

It follows from (C'1),(C2) that any function f € F satisfies the linear growth con-
dition 0 < f(x) < K(1 + |z|). Hence the stochastic differential equation (1.2) has a
unique strong solution (Y;, ¢ > 0). Let T1(Y) be the first hitting time of level 1 by the
sample path (Y;, ¢ > 0). Condition (C1) implies that 71(Y") is finite almost surely. The
first experiment considered here is associated with the observation (Y;, ¢t € [0, T1(Y)]).
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We are now able to construct the canonical experiment. Let C(R*,R) be the space
of continuous real functions defined on R*, let (X;, ¢ > 0) be the canonical process of

C(RT,R), Cf =o0(X,,s<t), C=[),Co and C= \/tZOCl"

Denote by Pf the distribution of (Y;, ¢ > 0) defined by (1.2) on (C(R*,R),C). Now,
for 2 € C(R*,R)and a € R, let

(2.1) Ty(z) =inf{t > 0: z(t) = a}.
Define T'= T1(X) the hitting time of level 1 by the canonical process (X;, ¢ > 0) and
let
T,E £
(2.2) P = Pf|Cr

be the restriction of P; to the o-algebra Cr. The first experiment is now described

by

(2.3) %:(OﬁﬂRM&&ﬁﬁf&FD.

Let us now present the second experiment. For (u, ) € (R*)?, we denote by 1G/(u, \)
the Inverse Gaussian distribution with density given in (1.4). The mean of this distribu-
tion is p and the variance is p®/X . Consider now a triangular array of n independent
random variables (X!, i =1,...,n) such that

(2.4) x@~1@<gﬁ_1»*ﬂr%4>.

n

The realization of such a triangular array can be obtained in the following way. Let
B'....,B" be n independent Brownian motions and set

iy — 1 — 1
(2.5) Xi = inf{t>0: i;—+f(

1 —1

P
)t+eBy = g}

1 : 1
= inf{t >0: —f( t+ By = —}1.
£ ne

Then X! ~ IG (n‘l(f(i_Tl))_l, n_QE_Q), and from the scaling properties of the inverse
Gaussian distribution (cf. (3.7) below) it follows that for X! = nX? we have (2.4).
Define

(2.6) P o=L(X),...,X0).

This second experiment is now described by

7) G = (R™ B(R™), {P% . f € F}).
where B(R™) denotes the Borel o- algebra of R”.

The third experiment is defined by

(2.8) & = (C([0,1],R),B,{Q%, f € F})
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where B is the Borel sigma algebra of C'([0,1],R), and Q% denotes the distribution of
the process (Z,, 0 < u < 1) given by

(2.9) dZ, = [ (u)du + %qu L 0<u<l1,Z =0

Let @; be the distribution of an inhomogeneous Poisson process with intensity e =2 f(u),
u € [0,1] on the unit interval. Consider the experiment

(2.10) & = (M. By, {Q5. [ € F}).

where (M, By) is the appropriate measurable space of integer valued measures. Finally,
let 7y = Fi km be the subset of those f € F which integrate to one; these are
probability densities. Let &, be the subexperiments of & ¢ = 0,1 with parameter
space F; and let £} be the experiment given by n i. 1. d. random variables with density
f € Fi on the unit interval. Our aim is to compare these experiments which are
indexed by the same parameter set F = Fk , (or the set Fy C F, respectively), but
which are defined on different observation spaces.

Remark 1. Let us point out that, except for &5, f need not be defined outside the
interval [0, 1]. Thus the parameter can be taken to be the restriction of the function f to
the interval [0, 1], for the experiments G™*, £ and &} . In fact, for &, our results show
that we could have defined f on [0, 1] only and take any extension of f on R satisfying
the conditions of F, as for instance f(z) = f(0) for = <0 ; f(z) = f(1)
for + > 1. Note that in model (1.2), the sample path (Y;,t <T(Y)) converges in
P -probability unformly as ¢ — 0 to the solution of the ordinary differential equation
(1.1) (y(t),t <Ti(y)). Thus asymptotically the domain where f is observed collapses
to this latter set of values which is exactly the interval [0, 1].

2.2. Statement of results. The notions of deficiency distance of experiments and
asymptotic sufficiency are briefly reviewed in the next subsection.

Theorem 1. If as ¢ — 0, n = n. — oo in such a way that en. — oo then the
experiments £ and G™° are asymptotically equivalent, i. e. for the Le Cam deficiency
distance A we have

A(E5,G™) = 0as — 0.

Since the mapping ¢ — T,(Y) is increasing from [0,1] to [0,71(Y)], the statistic
(Ti/(Y), © = 1,...,n) is well defined. An important consequence of Theorem 1 is
the following.

Corollary 1. Under the conditions of Theorem 1, for the diffusion model (Y, t > 0)
observed up to Ty(Y') the statistic (T;y,(Y), t = 1,...,n) defined by the hitting times of
levels i/n, 1 = 1,...,n is asymplotically sufficient as e — 0.

The next two results state asymptotic equivalence between the signal-in-white-noise
model & defined in (2.8), the diffusion experiment £ and the Poisson experiment £} .
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Theorem 2. We have
A(E,E) = 0as ¢ —0.
Theorem 3. We have

A(E5,E) = 0as ¢ = 0.

Theorem 2 also implies an i. i. d. approximation. The function class F; is contained in
the class for which the signal-in-white-noise model and the i. i. d. model with n data
on the unit interval are asymptotically equivalent if £ = n=!/2, ¢f. Nussbaum (1996).
It then easily follows that A (51571, Sg) — 0. as €72 — oo along integer values.

Corollary 2. Suppose that ¢ takes values ¢ = n='/? where n is integer. Then
A(5§71,5§) —0as n— oo.

Remark 2. The result of Theorem 3 can be confirmed by calculating the asymptotic
Fisher information in both models. Indeed, asymptotic equivalence in the Le Cam sense
for the nonparametric models entails the same for parametric submodels, and hence
equality of asymptotic Fisher information for regular cases. Consider a parametric
submodel of (1.2) where f = f3, 9 € O, O is an open interval and the process is
observed between 0 and T1(Y"). According to Genon-Catalot and Larédo (1987), if the
model is sufficiently regular, then the asymptotic Fisher information (divided by £7?)
is

= <%fﬁ(x)>2f51($)dw-

This coincides with the Fisher information (divided by n) in a Poisson process model
with intensity n fg, ¥ € O, or for a model of n 1. 1. d. observations with density fy on
[0,1] if all fs integrate to one.

Remark 3. Kutoyants (1985) and (1994), chap. 4.1 considers nonparametric estima-
tion of the drift function f for model 1.2, when it is continuously observed on a fixed
time interval [0, T'], under the assumption that f is bounded away from 0. Using kernel
type estimates, he proves that the rates of convergence are identical to those of density
estimation for i. 1. d. variables, for a given smoothness condition on f. The equivalences
stated in Theorem 2 and Corollary 2 imply such a result for our model with random
stopping time T,(Y), but have much more implications (cf. section 7). In the model
with fixed T', special conditions have to be imposed to ensure that the drift function
f(z) can be estimated on a given interval € [0, a], in view of the fact that the solution
y(1) of the underlying differential equation (1.1) depends on the unknown f. Thus if
f is to be estimated on a given interval [0, a], it appears more natural to observe the
process until 7,(Y’) as in our model. Comparing the diffusion experiments with fixed
and random stopping times is of interest, but is beyond the scope of this paper.
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2.3. The Le Cam deficiency distance. This pseudo distance is generally denoted
by A. In what follows, all measurable spaces (called sample spaces) are supposed to
be Polish metric spaces equipped with their Borel o-algebras.

Consider two experiments with the same parameter space F ,say € = (X, A, {Py, f € F})
and G = (V,B,{Qy, f € F}), but with possibly different sample spaces. Assume that
the two families { Py, f € F} and {Qy, f € F} are dominated.

Consider now a Markov kernel M(z,dy) from (X, A) to (V,B),i.e. for all B € Bthe
mapping  — M(z, B) is A- measurable and for all x € X', M(x,dy) is a probability
measure on (Y, B). Denote by M P; the image probability measure of P; under the
kernel M, i. e.

MP¢(B) = /XM(:L’,B)Pf(d:E) for B e B.

The experiment ME = (Y, B,{M Py, f € F}) is called a randomization of € by the
kernel M. It has the same sample space as G. Let M denote the set of Markov
kernels from (X, A)to (Y, B).

Definition 1. The deficiency of € with respect to G is given by
0(E,G) = inf MP; — ,
(£,9) = inf sup M Pr = Qsllry -
where ||-||7 denotes the total variation norm for measures.

Definition 2. The deficiency distance A is given by
A(£,G) = max{5(£, ), 6(G. €)1

In fact A is a pseudo-distance. Two experiments are said to be equivalent whenever
A(E,G) =0. In the sequel we shall use two basic properties of A.

Property 1: Let 7' : (X, A) — (),B) be a measurable mapping and let T'E the
image experiment of € by the (deterministic) kernel 7'. Then, A(E,TE) =0 if and
only if T is a sufficient statistic for the experiment &.

Property 2: Let the experiments £ and G have the same sample space (X, A) = (Y, B))
and define

Ao(€,G) =sup ||Pr — QfllTv.
fer

Then
(2.11) A(E,G) < Ao(€,G).

Consider now sequences &.,G. for ¢ — 0; here everything except the parameter space
F may depend on e.
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Definition 3. (i) The sequences E.,G. are called asymptotically equivalent (or ac-
companying experiments) if A(E.,G.) — 0.

(it) Let G., E. be two experiments having the same sample space, and let T, be a suf-
ficient statistic in G. with values in an arbitrary measurable space (possibly depending
on ). The statistic T. is called asymptotically sufficient for &, if Ag(E.,G.) — 0.

3. AN ACCOMPANYING DIFFUSION EXPERIMENT

It is well known and clear from its definition that it is difficult to compute the A-
distance between two experiments when they are not defined on the same measurable

space. So, following Brown and Low (1996), Milstein and Nussbaum (1998), we define

. —=Nn,E . .
another experiment G = which has the same observation space as & .

Let (t,z) € RT x C(R*,R). Consider, for i = 1,...,n the times T;/,(z) = inf{t >
0, z(t) = i/n}, To(z) = 0 and the function

- 1—1
(3.1) fall,2z) = Zf ( n ) ]‘(T(i_l)/n(z),Ti/n(z)](t)'

Define the diffusion type process (Y, ¢ > 0) on (9,4, (A:)s>0,P) as the solution of
the stochastic differential equation

dY, = [o(t,Y)dl + edW,
Yo 0.
Let Ty(Y) be the first hitting time of level 1 by the path Y. Again, by condition (C1),

Ti(Y) is finite almost surely, and we can describe the experiment associated with the
observation (Y, t € [0,7:(Y)]). Denote by Py . the distribution of Yy, t > 0) on
(C(RT,R),C) and set

(3.2)

7T,€ Ne
PTL,f — n,f|CT
Here T' is the first hitting time of level 1 by the canonical process of C(R*,R).

The accompanying experiment is defined as

o _ (C(RﬂR),CT, (PTe [ e 5’-"}) .
Lemma 1. (i) The statistic z — (Tj/,(2), 1 = 1,... ,n) is sufficient for the experi-
ment G

(i) The experiments G™* and G are exactly equivalent, i. e.

A(G™,G") =0 for alln>1, ¢ > 0.

The proof of Lemma 1 is based upon a precise description of the process Y;. Let us
define by induction a sequence of processes and stopping times as follows. Let

Xo(t) = f(0)t + eW; and
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Tin = T1/(Xo) =inf{1 >0: Xo(t) = n'}.

Then, by induction, for : =1,...,n and 79 = 0

7 — 1
(3.3) Xi—l(t) =f < ) Lte (Wf+‘f(z‘—1)/n B WT(e‘—l)/n)

n

(3.4) Tifn = T(i=1)/n + Ti/a(Xiz1).

Lemma 2. The hitting times of levels i /n by the process Y, are given by

Tz/n(Y) = Ti/n; 7= 1, ey N

Moreover, if

(3.5) X =n(Tyu(Y) = Tipp(Y), i=1,..ym
then the triangular array (X),...,X) has the distribution P; , described in (2.4),

(2.6)

Proof. For t € [0,7y/,] we have Y; = Xo(t) and Tl/n(Y) = T1/n. Consider now
t € (T1/n, T2/n); then

— 1 1
Yi= - +f (E) (t_ Tl/n) +e (Wt - W‘nm) .

Thus ?‘rl/n+u =n"" + Xi(u) for v € [0,72/, — T1/n], and T3/, (Y) = 73/, since by
construction 74/, — 7y, = T1/,(X1). By induction, if ¢ € (7(i—1)/n, Ti/n] then

— — 1  — 1
(3.6) V=" - f (Z ) (t=Ti-1y/m) +e (Wf - WT(i—l)/n)

and T;/,(Y) = 7(i—1)/a+T1/n(Xiz1) = Tijn. Thisholds for ¢ = 1,...,n. Now the random
variables 7;, are stopping times of (A¢)ss0. Thus (Wuﬁ(é_l)/n — WT(Z._I)/“> is a

u>0
Brownian motion independent of AT(‘—l)/ for all ¢ = 1,...,n. Hence the random
variables (Ti/n — T(i_l)/n), ¢ = 1,...,n are independent, and by construction 7/, —

T(i—1)/n has the inverse Gaussian distribution

oo (1(52)) )

i. e. the distribution of the random variables )N(; defined in (2.5). The following scaling
property of the inverse Gaussian can easily be verified using the density formula (1.4):
fora >0

(3.7) Z ~ 1G(p, A) implies aZ ~ [G(ap, aX).

Consequently X! = n)N(; has distribution I'G <<f (i_—1>)_1 ,n_1£_2>. O

n
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Proof of Lemma1. Let P° denote the distribution of (¢W;, ¢ > 0) on (C(R*,R),C),
and P; the restriction of P° to Cr. Then by the Girsanov formula

APy
—(Y) = /fntYdYt——/ A, Y)dt

- ?@f(Z_ )i (5

Hence, S = ( Z/n(Y) — T(i—l)/n(?)a 1=1,..., n) is a sufficient statistic for the exper-
iment G defined by <7t, t < Tl(Y)). This gives (i). Since by Lemma 2, SGH° =
g™ , we obtain that the two experiments are equivalent by Property 1. O

) (Tipn(Y) = Tizayn(Y)) -

4. A BOUND FOR THE A-DISTANCE

In this section, we prove a proposition from which Theorem 1 can be derived. It follows
from the results of Section 3 and the triangular inequality that

—=N,E

A(&,6™) = A(&.G7):
Now & and G have the same sample space (C(R*,R),Cr). So applying Property
2 (see (2.11)) we get the bound

A(E,G™) < Ao (E,G™F) = sup ||PJ,T€ PTE v
feF

Lemma 3. We have

HPTE _ PTE

1 I el ((ne)™2 +n~" +2)"/?

uniformly over f € F, where [&‘ is the constant defining F and C(m) is a constant
which depends only on m.

Proof. We use here an upper bound given in Jacod and Shiryaev (1987), §4b, Theorem
4.21, p. 279, for the total variation norm between the distributions of two diffusion
type processes having the same constant diffusion coefficient. Let hf be the Hellinger
process of order 1/2 between P; and F;f . For z € C(R*,R) it is given by

hi(z) = 1 /Ou(f(z(t)) — fu(t, 2))%dt, for u > 0.

Qg2

Since the two processes (Y;) and (Y) have the same initial distribution (Y; = Y = 0),
the inequality for the total variation distance is

(4.1) |PFe — PTe vy < 44/ Bpe (D),

with T'= Ty(X). It is worth noting that this inequality is not symmetric: for the right
hand side of (4.1), we may choose to take the expectation either with respect to Py ; |

or with respect to P; . The choice Psf makes the computation easier here.
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Let us set Ep- f(h%) = F(n,e). We have

1

B(n) = <5 / (V) = Falt V) d

Tin(Y) = i—1\\?
[ (s (53 e
Now, using Lemma 2 and (3.3)-(3.6),
T:/n(Y) o i —1 2 Tifn _ 71— 1 2
B fY,f—f< )) dt = B (fYt—f< )) i
/Tu—l)/n(V) <( ) " /T(z‘—wn e &
. / B (f(?w(i_l)/n)—f(ﬁl)) du
Ty yn(Xiz1) i P 2
[ ) ()

Tl/n( g 1)
< KQE/ X? | (u)du,
0

where K is the Lipschitz constant of f and X;_; is a Brownian motion starting from
0 with drift coefficient f((z —1)/n) and diffusion coefficient ¢ (see ( 3.3), (3.4)).

It is well known that this last expectation can be computed explicitly.

Lemma 4. Let X(u) = 0u+ eW,, u > 0 be a Brownian motion with drift 6 > 0. Let
T, = T,(X) be the first hitting time of level a. Then for a > 0

Ta 3 2.2 4

E X2 d:a__ﬁ E_
X = 25— St o

Proof. We shall use classical properties of diffusion exit times from a bounded interval
(cf. Karlin and Taylor (1981), Chap. 15, problem C, pp. 193-198). Let s(u) =
exp (—260u/ec?) and

S() = /0 s(u)du = % (1 — exp (—%))

be the scale density and the scale function of the diffusion X(u), respectively. For
b <0 < a, the first exit time of the interval (b,a)is 7 = T, A Ty. It is well known (see
e. g. Karlin and Taylor (1981), Chap. 15 ) that

/ X?(u)du = ¢, ,(0)

where , , = ¢ is the solution of the ordinary differential equation
2

"(x) + 0 (z) = —2 b<z<a
o(b) = ¢la)=0.
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The solution is found to be

oy0(1) = / e, €)¢%d6

where G(z,¢) is the Green function:

S(z)—=S(b))(S(a)—S(&
9 (5(2) S((ﬂ)))_(g&)) <>>£2;(£), for b<a<¢<a,

S(a)=S(z))(S(&)-S(b
2 () sga)))—(S((b)) ())6281(5)7 for b<{<z<a.

Therefore ¢, ,(0) can be split into two terms:

_2ASO) = SO) [ £
enal®) = SB[ s - sy Lo

2AS(a) = SO) [° o &
2 (5(a) — 5(0) JREGRE O H %

By continuity of sample paths, as b\, —oc, Ty /* o0 and 7 /T, almost surely. Thus

Ta
) X% (u)du = lim ¢, ,(0).
b——o0 !

0
Furthermore, for all £ € (b, 0] we have

S5(§) — 5(b)
U< Sy =s0)

Therefore, by letting b — —oo and noting S(b) — —o0, we get

< 1.

g X e = 2 {/OG(S(CL)—S(U)) u du—l—(S(a)—S(O))/o 22 }

0 e? s(u) oo S(u)
A somewhat lengthy but straightforward computation of the above integrals completes
the proof. O
Coming back to the proof of Proposition 3, we get
4

1 "1 2 1 e
E(n 2NN 2 3 D 9z 2o Ty o, '
(n.e) < gk {Z T ) e 2 D) T w2 f3<%>}

=1 =1

< K*? 1 1 11 N g2

— 8 |3(me)?m  2nm?  2md [’
This completes the proof of Proposition 3. O
Proof of Theorem 1 We have,

(4.2) A(E,G™°) < KC(m) (L + 1 + 52> ’

(ne)?  n

which tends to 0 as ¢ = 0 if n =n. — oo such that en, — occ. O
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Remark 4. If n is chosen such that ent/? = 1 4+ o(1) then the three terms in the
upper bound of (4.2) are of order ¢*. This implies a rate of convergence n~=12% for the
A-distance.

Proof of Corollary 1: By Proposition 1, the statistic z — (Tj/,(2), 2 =1,... ,n) is
sufficient for the experiment G . In Proposition 3 it is shown that AO(ES,Gn’E) tends
to zero. The statistic is thus asymptotically sufficient in &5 according to Definition 3

(Gi). O
5. EXPONENTIAL FAMILY REGRESSION AND WHITE NOISE

Theorem 2 will be proved via the asymptotic equivalence of observed hitting time

increments X', i = 1,... ,n (the inverse Gaussian array (3.5)) and the Gaussian white
noise (2.9), formally
(5.1) A(G™=, &) — 0.

The heuristic background of this result is as follows. Assume first that

(5.2) £7? takes integer values, n = n, = ¢*

and consider the subset of our parameter space Fk ,, consisting of constant functions
J) =9, 1t € R (for ¥ € © = [m, K] ). In this case, the X! in (2.4) are i.i.d.
inverse Gaussian [G(ﬂ_l, 1). For these, it is well known that the sample mean X,, =
n=t 3" X§ is a sufficient statistic, and is asymptotically normal

(5.3) n'2 (X, —97") £ N(0,97%).
This suggests an approximation of the experiment by the Gaussian family
(5.4) (N (07 n=197%), 9 € ©)

(cf. Le Cam (1986), chap. 11 on global asymptotic normality). Let now g be a smooth
one-to-one function on (0,00); then g¢(X,) is asymptotically normal with centering
g(¥™"). In particular if g fulfills

()20 =1, 1€ ©
i.e. g is a variance stabilizing transformation for X,, then (5.3) implies
(5.5) 0% (g(X,) — g(97)) S N(0,1).

In the present case, g(z) = 227'/% is variance stabilizing. Note that ¢(X,,) is a sufficient
statistic along with X,,; then (5.5) suggests another approximation to the experiment
of 1.1i.d. inverse Gaussian data X :

(5.6) {N (2191/2,11_1) e @} :
valid simultaneously with (5.4)).

Suppose now that f(t) is not constant but smooth, more precisely f € Fg . Then the
above argument should be applicable, heuristically, locally around a given argument .
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Since 9 in (5.6) then stands for f(¢), we are led to the signal-in-white-noise model (1.5)
as an asymptotically equivalent experiment. Below we make this argument precise, on
the basis of an exponential family representation of the inverse Gaussian law and the
results of Grama and Nussbaum (1998) for nonparametric regression models.

In the latter paper the following model is considered. Let P be an exponential family
on the real line in canonical form given by measures

(5.7) by (d1) = exp (OU(1) — V(0)) w(d1)

with real parameter § € O, where O is an open (possibly infinite) interval in R, v is
sigma-finite measure, U(¢) is a measurable function and V' (0) is given by exp (V(0)) =
[ exp (0U(t)) v(dt). Let g : [0,1] = © be an unknown regression function, assumed to
be in a nonparametric set X, and suppose independent observations Z:, i = 1,...,n
such that £(Z!) = Hg(ijny> ¢ = 1,... ,n. Under smoothness assumptions on the func-
tions g € ¥ it 1s shown that this regression experiment can be approximated, in the
sense of A-distance, by a Gaussian white noise model

(5.8) dZ, =T (g(1))dt +n~2dW,, t€]0,1],

where the function I'(#) : © — R is determined by the parametric family P. If 1(0) is
the Fisher information in P then

9
(5.9) I'(9) = / I(u)?du.
0
The heuristics of this result is similar to (5.3)—(5.6).

To put the present experiment G™*° into this framework, note that for the choice of
n according to (5.2) the conditions of Theorem 1 are fulfilled (i.e. n. — +oo and
ene = &' — oo as ¢ — 0). The distribution of X! is now IG ((f(%))_l,l) which
can be written (cf. (1.4))

L(XE)(dr) = exp <_%f2(i—71) L]

)) v(dt)

with

1 1
dt) = - 1 t)dt.
() = ——exp (=57 ) % Lol

In (5.7) consider the case where v is defined as above and
(5.10) Uty = —t, V(0) = —(20)"/%

Note that p, = IG((20)7/2,1) for § € (0, 00), so that u, is defined for all 8 € (0, o).
We thus have £(X!) = p, for 8 = f2((: — 1)/n)/2. Setting now g(z) = f*(z)/2, we
arrive in the framework of Grama and Nussbaum (1998). Note that the A-distance
between two experiments is not changed under one-to-one reparametrization, and the
mapping from f to ¢ is one-to-one under our assumptions. Thus we can invoke the
Gaussian approximation (5.8) for the regression experiment indexed by g, and obtain
a result for the present experiments £, G™* indexed by f.
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Proof of Theorem 2 . We argue first under assumption (5.2). The conditions on
f guarantee that m < f(z) < 2K for x € [0,1], with m > 0. Evidently g satisfies a
uniform Lipschitz condition:

lg(z) —g(y)] = %IfQ(l’) - Ay)] = % |f(x) + )l 1f(x) = fy)]
(5.11) < %41( |f(z) — f(y)| <2K* |z —y|, z,y €[0,1]

and moreover, for z € [0, 1],
(5.12) g(x) € [m?*/2,2K7].
Let ¥ = ¥(m, K) be the set of all functions g satisfying (5.11) and (5.12). Thus all

conditions assumed in Grama and Nussbaum (1998) are satisfied. By Theorem 12
in this paper we obtain a Gaussian white noise approximation in the A-sense, as an
experiment (5.8) with g € ¥. The function I' is determined by the exponential family
(g, 0 € (0,00)) as an appropriate variance stabilizing transform according to (5.9).
Let us determine I'.

It is well known that in the exponential family (5.7) the Fisher information 7(8) is
given by I(8) = V"(0). In the inverse Gaussian case we obtain from (5.10)

d2
Vi) = —W(Qe)m: (20)2,

re) = /H(ZU)_?’/‘ldu = 2(26)/4,
0
so that (5.8) becomes (up to an equivalence, given by multiplication with 1/2)
Az, = (29()"/*dt + %n‘l/Qth, t€0,1].
Substituting g(¢) = f*(¢)/2 we get
dZ; = f2(t)dt + %n-l/wwf, t € [0,1].
We have shown (5.1); invoking Theorem 1 completes the proof under assumption (5.2).

For general values of ¢, set n = n. = [¢72] and s, = nZ'e2. Define X! = 71X,
1 =1,...,n; the )A(; represent an equivalent experiment. According to (3.7) we have
)A(; ~1G ((ssf(i_Tl))_l, 1). Since s, — 1, the functions s. f, f € Fk,, are elements of a
slightly enlarged function class Fgi v (for K’ > K, 0 < m' < m and sufficiently small
¢). The previous argument applied to Fxr,,» now establishes asymptotic equivalence
to

1
dz, = s} 2 (1) dt + §n_1/2th, t€[0,1],

and by multiplication with s2M? this is exactly equivalent to (1.5). O
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6. POISSON APPROXIMATION

The heuristics for the Poisson approximation is as follows. Suppose that ¢ in (5.5) is
not chosen as variance stabilizing but simply as g(z) = 27!, i.e. we are interested in
the parameter ). We obtain asymptotic normality of the sufficient statistic X ': (5.5)
becomes

n2 (X1 —9) £ N(0,9),

which coincides with the asymptotic distribution of the sample mean of n independent
Poisson variables with parameter ¢. This suggests that for general smooth f € Fik .,
for the experiment G™* we might also have a Poisson process approximation with inten-
sity n f(t), or when f has integral one, one of empirical process type with i. i. d. data
having density f. In this section we discuss only the Poisson approximation; it was
already argued in connection with Corollary 2 that the i. 1. d. approximation is an
immediate consequence of Nussbaum (1996) and Theorem 2.

Recall that the experiment £ was defined by an observed inhomogeneous Poisson
process II on [0, 1] with intensity e=? f(u), u € [0, 1] where f € F; the respective laws
were Q; More precisely, for nonintersecting measurable sets Ay, A in [0, 1] the random
variables II(4;), i = 1,2 are independent with Poisson distribution Po(¢™* [, f). Define
also a discretized Poisson experiment &5 ; as follows: for n = n. = [¢7?] and 5. =
nZ'e~2, observations are n independent r.v.’s TI* with Poisson distribution

Po(s.f((i —1)/n)), i =1,... ,n where f € F. The following result is a Poisson analog

of Brown and Low (1996).

Lemma 5.

(6.1) A(E5,8,) —+0as 0.

Proof. Consider a step function approximation of f

_ “ i—1
fn(u):Zf< - >1<<z’—1)/n>¢/n](U)-

Let Q; be the law of the Poisson process with intensity =2 f,, and H(-,-) be Hellinger
distance for measures. According to a well known estimate for laws of Poisson processes

(cf. Reiss (1993), Theorem 3.2.1) we have

2 (Q5.Q5) <7 [ (7o) = 1) d

(0,1]
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For f € F, the function f'/? satisfies a uniform Lipschitz condition for some constant
K, hence the right side above is

=2 V2(4) — FY2((i = 1)/n))* du
[ U = s i)

< R [ e (li= /)

i=1 (i-1)/n
< e TH(KY)? = 0.

Now if G5 is the experiment {Q?, fe .7:} then

(6.2) A (85,G5) < sup H? (05,Q5) — 0.
feFr
Define intervals .J; = ((¢ — 1)/n,1/n]. For an observed Poisson process II, consider

the statistic U,(II) = (II(J;),7 = 1,...,n). By the Neyman criterion applied to the
density of Q% (cf. Reiss (1993), Theorem 3.1.1), it is easy to see that U, is a sufficient

statistic in G5. Let @?d = L(U,) under Qj}, then &, = {@?dyf € f} and hence
A (gg, §7d) = 0. In conjunction with (6.2) this proves the lemma. O

Proof of Theorem 3. Assume (5.2); the proof for general values of € requires a slight
modification, similar to the last paragraph of the proof of Theorem 2. The discretized
Poisson experiment &; ; where L(IT) = Po(f((i — 1)/n)), i =1,...,n, f € Fisa
special case of the nonparametric regression model of Grama and Nussbaum (1998),
cf. example [1] there. As noted already in the proof of Theorem 2, 0 < m < f(z) < 2K
for f € F, z € [0,1] so that all required conditions on f are satisfied. As shown in
Grama and Nussbaum (1998), the discretized Poisson process & ; is asymptotically
equivalent to the white noise model (2.9), i.e. A(&5 ;&) — 0 for n = n. = 72, s0
that Lemma 5 and Theorem 2 yield the result. O

7. ASYMPTOTIC MINIMAX RISK FOR SUP-NORM LOSS

As an application of asymptotic equivalence, we derive the exact asymptotic minimax
risk for nonparametric estimation of f in the sup-norm for the diffusion experiment
&;. Such an exact asymptotic minimax risk (also called an ”optimal constant” for
an optimal rate of convergence) has been found by Korostelev (1993) in a Gaussian
nonparametric regression model. Donoho (1994) and Leonov (1997) established a con-
nection to optimal recovery; Korostelev and Nussbaum (1999) derived an analog for
nonparametric density estimation. It should be mentioned that Korostelev’s result
represents a sup-norm loss analog of the Pinsker constant, which pertains to Lj-loss

(Pinsker (1980)).

For the continuous Poisson process model £ with intensity e f, the Korostelev con-
stant for estimating f € F can easily be found, based on the analogy with density
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estimation for i. i. d. data. We first state this result, and then use asymptotic equiv-
alence to the diffusion model (1.2) in a straightforward manner to carry over the risk
asymptotics.

Define v, = (c2loge2)'/3, let ||-||., be the sup-norm for bounded functions on [0, 1]
and let W be the set of continuous nondecreasing functions w(w), u > 0 such that
w(0) = 0. In the Poisson process experiment & consider the minimax risk

(7.1) re(&5,w) =inf sup Ejw (1/’?1 f_f‘(x)

f fE€EFKm
where expectation E% is with respect to the law Q; and the infimum is taken over all

estimators f of f.

Theorem 4. For any m, K such that 0 < m < K and for any bounded function
w e W we have
limr.(E5,w) = w(K?/32'/3),

e—0

Proof. For a model of n i. i. d. observations with density f on the unit inter-
val and ¢ = n'/2, Korostelev and Nussbaum (1999) established the limit of r.(-,w)
when the function class F is given by all densities which fulfill a Lipschitz condition

|f(z) = f(y)| < K|z —y|. Set
(7:2) B.=sup || fll..
feF

and
Ay = max {g(0) : [|gll, < 1,9 € Fo}

where Fj is the class functions on R fulfilling |f(z) — f(y)| < |z — y| and |||, is the
norm in Lz(R). The limit of r.(-, w) for the density case is w(C') where

2B*K> 1/3

3

For the Poisson process case with intensity e=2 f, the proof needs only minor mod-
ifications. Moreover, the restriction that f integrates to one can be dropped in the
Poisson case; one needs only to find the appropriate constant B,. It is easy to see
that if F = Fr,m in (7.2) then B, = 2K, and this value is attained by the function
f(z) = K 4+ Kz at * = 1. Another look at the proof in the density case reveals that
the result remains true under an additional restriction f(z) > m > 0 for some m < K.

Donoho (1994), section 2.2 gives A; = ((Qﬁ—l— (8 + 1)/4ﬁ2)ﬁ/(25+1) for B =1, i.e.
Ay = (3/2)'3, thus from (7.3)

(7.3) C =C(K,B.) = A <

9 1/3
C = (3/2)\/? (%) = (25%)'* O

To obtain the analog in the diffusion model, let r.(&;, w) be the sup-norm risk corre-
sponding to (7.1) in the diffusion experiment & for the same norming sequrence .,
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i.e. expectation E% is taken with respect to the law Pf’s given by (2.2). As a conse-
quence of asymptotic equivalence (Theorem 3), we obtain r.(&;, w) —r.(&5,w) — 0 as
e — 0 (cf. Brown and Low (1996) for details on the decision theoretic meaning of the
A-distance). An immediate consequence is the following.

Corollary 3. For any m, K such that 0 < m < K and for any bounded function
w € W we have

limr. (&, w) = w(K2/321/3).

e—0
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