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Fourth moments of multivariate GARCH processes

Christian M. Hafner*
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Abstract

This paper derives conditions for the existence of fourth moments of multivariate GARCH
processes in the general vector specification and gives explicit results for the fourth moments
and autocovariances of the squares and cross-products. Results are provided for the kurtosis
and co-kurtosis between components. An impulse response function for kurtosis and co-
kurtosis is defined that allows to analyse the expectation of the (co-)kurtosis conditional on
an initial shock. For a bivariate exchange rate series, these functions indicate that there is
a trade-off between conditional variance and conditional kurtosis: the conditional variance
increases with the size of the shocks, but the conditional kurtosis decreases.

Keywords: multivariate GARCH, fourth moments, kurtosis, co-kurtosis, impulse response
function
JEL classification: C22
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1 Introduction

Multivariate GARCH models have been frequently used in modelling volatility of multivariate
time series. To give one example of the numerous applications in finance, Bollerslev, Engle and
Wooldridge (1988) used a multivariate GARCH-M model to estimate time-varying betas within
the capital asset pricing model. GARCH-type models capture conditional heteroskedasticity
and leptokurtosis, two common features of financial data. Moreover, the statistical theory is
developping. For example, Jeantheau (1998) has proved strong consistency of quasi maximum
likelihood (QML) estimators of multivariate GARCH models, extending previous results of Lee
and Hansen (1994) and Lumsdaine (1996) on univariate GARCH models.

An often used measure for the thickness of the tails is the kurtosis, or the standardized
fourth moment. When fitting a model, one may therefore want to reproduce not only the first
two moments, but also the fourth moment. For example, having estimated the model based on
QML, the question arises which innovation distribution one should use in simulation studies such
that the empirical kurtosis is approximated. In finance, this is particularly important for option
pricing, where the degree of excess kurtosis determines the shape of the so-called smile. A second
example is the estimation by generalized method of moments (GMM), where the efficiency may
often be improved using correctly specified skewness and kurtosis, see e.g. Meddahi and Renault
(1997) and Broze, Francq and Zakoian (2000). A last example is to use the kurtosis in hedging
strategies, as shown by Mahieu (1995, ch.6) for foreign exchange risks.

Fourth moments of univariate GARCH models were investigated by He and Terisvirta (1999)
and Karanasos (1999). This paper provides results for the general multivariate GARCH(p, q)
process in vector specification. This specification nests all popular linear specifications such as
the BEKK specification of Engle and Kroner (1995), the constant conditional correlation model
of Bollerslev (1990), and the factor GARCH models of Diebold and Nerlove (1989) and Engle,
Ng and Rothschild (1990). In Section 2, we provide explicit results for the case of Gaussian
innovations. In Section 3, we discuss the relationship between the (co-)kurtosis and measures
for conditional heteroskedasticity. Furthermore, impulse response functions are defined for the
kurtosis and the co-kurtosis. In Section 4, an empirical example of a bivariate exchange rate
series shows that multi-step predictions of kurtosis have the inverse shape of corresponding
volatility predictions: they are small for large initial shocks and large for small shocks. Proofs

of the theorems are provided in the appendix.

2 Main results

Consider the general multivariate GARCH(p, g) model for the vector of a random error term &,

with K components,

Er = Htl/2€t (1)



q P
hi =vech(Hy) = w+ Z Aim—i + 2 Bjvech(H;_;) (2)
i=1 j=1

where w = vech(Q), n; = vech(eie}) and N x N, N = K(K + 1)/2 parameter matrices Q, 4;, B;.

Throughout the paper, vec denotes the operator that stacks all columns of a matrix into a vector,

and vech denotes the operator that stacks only the lower triangular part including the diagonal

of a symmetric matrix into a vector. The innovation vector &; is assumed to be i.i.d. with mean

zero and identity covariance matrix. Denoting the information set available at time ¢ by F;, we

have the conditional moments E[e; | F;—1] = 0 and Var(e; | Fi—1) = Hy. A sufficient condition

for the conditional covariance matrix H; to be positive definite is that each of the parameter

matrices is positive definite. Note that (1) is a strong GARCH model by the definition of Drost

and Nijman (1993).

By rearranging terms, the multivariate GARCH(p, ¢) model can be represented as a VARMA

(max(p, g),p) model,

max(p,q)

p
N =w+ Z (A,‘ + Bi)nt—i — Z Bjut_j + ug, (3)
i=1 j=1

where u; = 1, — hy is a white noise vector, i.e., E[u;] = 0, E[uyu}] = £, and E[uul] = 0 for s # t.
In (3), weset Agp1=...=A,=0ifp>qgand Byp1 =...=B;=0if ¢ > p.

Assumption 1 All eigenvalues of the matriz Z?;af((p’Q)(Ai + B;) have modulus smaller than

one.

The multivariate GARCH(p, ¢) model is covariance stationary if and only if Assumption 1

holds. In that case, the unconditional covariance matrix ¥ = Var(e;) is given by

max(p,q)

-1
o= vech(E) = (IN — Z (Az + Bz)) w.

=1

From the VARMA representation (3) it is possible to obtain the pure VM A (00) representation

o0

m=0+y Py,

i=0
where the N X N matrices ®; can be determined recursively by &y = Iy, ®; = —B; + Z;-Zl(Aj +
Bj)®;_;,i=1,2,..., see Liitkepohl (1993, pp. 220). Now, the autocovariance of 7 is given by

L(r) = E[(mn—o)(m—r— 0)']

o0
= 3 845,80 (4)
=0
Using the notation ¥, = E[nn}] and ¥}, = E[h:h}], we can write ¥,, = £, — Xp, and T'(0) =

/
X, —oo.



Autocorrelations are obtained by
R(r) =W™'T(n)W™, (5)

where W is a diagonal matrix with the square roots of the diagonal elements of I'(0) on its
diagonal.

In order to give explicit results, one has to assume a specific distribution for the innovations
&. In the following, we will assume the most popular one, a multivariate normal distribution.
Extensions to other distributions such as the multivariate t-distribution are left to future re-

search.
Assumption 2 The innovations & are normally distributed, & ~ N (0, Ik).
Theorem 1 Under Assumption 2,
vec(Xy) = Grvec(Xh), (6)

where
Gk =2(Lk ® Lx)(Ix2 ® Nk )(Ik ® Ckk ® Ik)(Dx ® Di) + Iy2,

with Ly, Dy, Crn denoting the elimination, duplication and commutation matrices, respectively,
and Ny, = (I2 + Cpp) /2.

See Magnus (1988) for definition and properties of L,,, Dy, Cpypn, and N,,. The matrix Gx

is square of order N2. For example, in the bivariate case it is given by

300 00O0O0O0TO
020100000
001020000
0201000O0O0°TO0
Go=|1 001020000
00 0O0O030O0O0
000020100
000O0O0OT1O0Z2PO0
000O0O0OO0OO0OTO 3
As a corollary, we obtain vec(X,) = (Gx — Iy2)vec(Xy). This can be used to calculate the

autocovariances according to (4).

Theorem 2 Under Assumption 2, fourth moments of the multivariate GARCH(p,q) model are
finite, if and only if all eigenvalues of the matriz Y ;o1 (®; @ ®;)(Gk — I2) have modulus smaller
than one. In that case, the fourth moment is given by

o

-1
vee(X,) = Gk (INQ — Z(@Z ® ;) (Gk — IN2)> vec(oa'). (7)

=1



Note that in the special case where all A; and B; are zero, i.e. the case of a Gaussian white
noise vector process, all ®;’s are zero and, hence, vec(%,) = Ggvec(oo’).
If models of small order are considered, there are ways to find simpler expressions than (7).

For the popular multivariate GARCH(1,1) model, we can derive the following results.

Theorem 3 Under Assumption 2, fourth moments of the multivariate GARCH(1,1) model are

finite, if and only if all eigenvalues of the matriz
Z7=(A®A)Gk+AQB+B®A+B®B (8)
have modulus smaller than one. In that case, the fourth moment is given by
vec(Sy) = Gr(In2 — Z) ' vec (ww' +wo'(A+ B)' + (A + B)ow') . (9)

Note that in the univariate case, K = 1, we have G; = 3 and obtain as a special case of

equation (9) with obvious notation

w? + 2wo(a + )
1—3a2 —2a8 — 8%’

Elef] = 3

where 0 = w/(1 — @ — ), and finally the well-known formula for the kurtosis of a univariate
GARCH(1,1) process
Ele}] 6’

=3 .
E[e7]? Tz 3a? —2af — pB?

3 Impulse response functions for kurtosis and co-kurtosis

In practice, one often considers fourth moments that are normalized with the square of the
variance. In the multivariate case, Mardia (1970) has defined a measure of multivariate kurtosis
for i.i.d. random variables. Suppose that X is a p-dimensional random vector with mean g and

covariance matrix ¥. Mardia’s measure is given by

Bap = E[{(X — )= (X — w)}?],

which is the mean of the squared Mahalanobis distance of X from its mean ;. The measure (2,
is invariant with respect to affine transformations and reduces to the standard kurtosis in the
univariate case.

In our setting with 4 = 0, conditional and unconditional covariance matrix ¥; and %,

respectively, an analogous measure would be
Bop = E[{e 2 ler}?). (10)

The reason for using ¥ rather than ¥; is that in the latter case the multivariate kurtosis would
be trivial, i.e. only depending on the distribution of &, but not on the dynamics of 3;. For the
notion (10), however, it is difficult to derive explicit results in the multivariate GARCH case.



In the following, we will therefore consider alternative measures based on the fourth moments
of single components of the process. These measures are not invariant with respect to general

affine transformations, but only with respect to scalar transformations.

Definition 1 Let the kurtosis of the i — th component of €; be defined as

The extension to a co-kurtosis between two components is given in the following definition.

Definition 2 Let the co-kurtosis of the i-th and j-th component of e, be defined as

E[ﬁ?ﬁ?t]

AL

k

Let us elaborate a little further on the notion of co-kurtosis. For a Gaussian i.i.d. process,
it is well-known that the co-kurtosis takes the value k;; = 1 + 2p12j, where p;; is the correlation
between the ¢ — th and j — th component. In the case of conditional heteroskedasticity, the

following theorem gives useful expressions for the kurtosis and the co-kurtosis.

Theorem 4 Under assumption 2, the kurtosis and co-kurtosis can be expressed as

n 3 Var(thi,t) ’

T4

2 Var(hijs) + Covlhiiy, hy
k= 1+ 20, + 22 us) J”(;’?( sitoPit),
1Y 77

ki =3

where h;jy is the ij-th element of Hy and oj; the ii-th element of X.

The formula for k;; can already be found in Gouriéroux (1997, pp.38). The kurtosis is linked
to a natural measure of conditional heteroskedasticity, Var(h; ;) /ogi. Whenever the conditional
variance is stochastic, the kurtosis is larger than three.

The co-kurtosis is linked to the covariance between the conditional variances and to the
variance of the conditional covariance. The stronger the conditional variances are correlated
and the higher the variance of the conditional covariance, the higher also the co-kurtosis.

In the following, we investigate the behavior of the expected kurtosis conditional on an initial
shock. In a multivariate framework, a shock can occur in either one of the components, provided
that it is independent of the other components. This is essentially the definition of news given
by Hafner and Herwartz (1998a), as opposed to the definition of Gallant, Rossi and Tauchen
(1993), who let shocks occur in the dependent error term e;. In our case, a shock appears in
the i.i.d. innovation vector &, where one can arbitrarily consider alternative scenarios without

getting into conflict with dependence.



Definition 3 We define the impulse response function of the kurtosis as

. E[eg,t—}-s ‘ ft,Ht]

Ks.ii =
s,u(gt) E[Ezz,t—i—s ‘ gt,Ht]Z

and of the co-kurtosis as

K (ft) — E[gzz,t—ksg?,t—ks | gtaHt]
o E[ezz,t—ks ‘ gta Ht]E[é‘?,H—s | ft,Ht]

The state of H; will usually be fixed at the steady state, i.e., Hy = 3. Then, a variety of
independent shocks &; may be considered.
Note that k1,(&) = 3 and k1,4;(&) = 1+ 2Corr(eit41,€541 | F:)?. Furthermore, it is

interesting to investigate the behavior of K, ;;(&;) and ks 4;(§;) for s — oco. In analogy to the

definition of persistence in variance by Bollerslev and Engle (1993), we give in the following a

definition of persistence in kurtosis.
Definition 4 The stochastic process €; is defined to be persistent in kurtosis if

limsup | k,,45(&) — kij [0 a.s.

§—00

for somei,5=1,..., K.

The multivariate GARCH(p, ¢) model is persistent in kurtosis if at least one of the eigenvalues
of the matrix Y ;°;(®; ® ®;)(Gx — In2) has a modulus equal or greater than one. In the case
of the multivariate GARCH(1, 1) model, the relevant matrix simplifies to Z, given in (8). If &
is not persistent in kurtosis, the closeness of the eigenvalue with maximum norm to unity may
be considered as a measure for the ‘degree of persistence’.

The nominator of (11) is the square of the volatility impulse reponse function as defined by
Hafner and Herwartz (1998a). It is given by the ii-th element of Vi(&;),

Vs(&) = E[€t+s€§+s | &, Hy = X].

The impulse response functions are easily calculated recursively. For example, for the multivari-
ate GARCH(1,1) model we have

vech(V1 (&) = w + Avech(SY/2¢,£/51/2) + Bvech(%),

and, for s > 1,
vech(V;(&1)) = w + (A + B)vech(Vs—1(&)).-

For the fourth moment, we denote

Fs (€t) = E[nt+s77£+s | ft, Ht = E]



and obtain vec(Fs(&)) = Grvec(Fy (&)) with

vec(FY (§)) = vec(vech(V1(€))vech (Vi (&))")

and, for s > 1,
vec(Fy (&) = v + Zvec(Fy_, (&),

where Z is given in (8), and v = vec(ww' + (A + B)ow' + wo'(A + B)'). The impulse response

functions are then given by
Fo 6y (&)
ksi(€t) = 7 oy
" VsQ,u(éht)
where [(i) =1+ (¢ — 1)(K + 1), and

Fo a0y (&)
Vsii(€6) Vs, (&)

Ks,ij(§t) =

4 Empirical Example

For an empirical illustration, let us consider the bivariate exchange rate series DEM/USD and
GBP/USD from december 31, 1979 to april 1, 1994, as discussed by Hafner and Herwartz
(1998a). We fitted a BEKK-GARCH(1,1) model to the residuals of a VAR(5) model. The
eigenvalues of the matrix Z all lie between 0.914 and 0.976, implying finite fourth moments but
a high persistence in kurtosis. The kurtosis as implied by the parameter estimates and assuming
that the innovations are Gaussian are 3.50 for DEM/USD, 3.80 for GBP/USD and 2.52 for the
co-kurtosis. This is considerably smaller than the empirical kurtosis of 4.94 for the residuals of
DEM/USD, 5.47 for the residuals of GBP/USD, and 3.78 for the co-kurtosis of the residuals. It
is a well-known empirical effect: conditional heteroskedasticity is often not sufficient to explain
the excess kurtosis of financial returns. If one wants to capture distributional properties such
as the kurtosis, one may prefer to use fat-tailed distributions for the innovations, such as a
multivariate t-distribution.

Table 1 reports the autocorrelations of 7, calculated using equation (5). For this, the
infinite sum was truncated at 1000, with ®;,7 > 1000 being very close to zero. Clearly, the
diagonal elements of R(7) are higher than the off-diagonal elements. For example, the first
order autocorrelation of €2, (DEM/USD) is 0.1370, of €3, (GBP/USD) it is 0.1573, and of the
cross-product it is 0.1281. For all autocorrelations, the decay of the autocorrelation function is
slow, corresponding to the large eigenvalues of the matrix Z.

Impulse response functions for the kurtosis and co-kurtosis are calculated and visualized in
the following way: First, one component of & is fixed to zero, the other varied on an interval [-
5,5]. Then, k4 and Ks,4j are calculated as a function of this intitial shock vector over a horizon
of 100 days, s = 1,2,...,100. The corresponding functions are shown in Figure 1 to Figure

6. Starting from their initial values, i.e., 3 for s and 1+ 2Corr(g; 11,5441 | Fi)? for ks,



T 1 2 3 4 ) 10 50 100

Corr[e},, €2 . T] 0.137 0.132 0.128 0.123 0.119 0.100 0.026 0.007
Corrle t62t, g2 g N 0.050 0.048 0.047 0.046 0.045 0.040 0.016 0.006
Corr[e3,, €2 g - 0.043 0.042 0.041 0.040 0.039 0.034 0.013 0.005
Corrle

2
1
1
2
2
2y €1t 7E20 1) 0.026 0.027 0.028 0.028 0.029 0.031 0.027 0.014
1
Corr[e3,,&1,t—rE2,4—7] 0.060 0.060 0.059 0.059 0.058 0.055 0.033 0.016
2

1

[
[
[
[
Cortleseas, €1,0—r€2,0—7) | 0128 0.125 0.123 0.120 0.117 0.106 0.047 0.019
[
[
[
[

Corrled, €3, ,] 0.037 0.038 0.039 0.039 0.040 0.042 0.040 0.023
Corrleseat, €3] 0.045 0.046 0.047 0.048 0.049 0.052 0.049 0.028
Corr[e3, €3, ,] 0.157 0.155 0.152 0.150 0.148 0.136 0.072 0.033

Table 1: Autocorrelations of ny with lag T, calculated using equation

(5) and parameter estimates for the bivariate exchange rate series.

the functions exhibit a typical shape: although increasing for most of the shocks, the predicted
kurtosis increases much stronger when the initial shock is close to zero than when it is large. This
is the inverse of the typical shape of volatility impulse response functions (Hafner and Herwartz,
1998a). They were shown to increase for large positive or negative shocks. Thus, we can state
that for the exchange rates considered, there is a trade-off between predicted volatilities and
predicted kurtosis at a horizon larger than one time period.

The multivariate strong GARCH model restricts the conditional one-step kurtosis to a con-
stant, 3 in the case of normal innovations. On the other hand, the above analysis shows that
multi-step predictions of the kurtosis are not constant but depend on the initial shock. One may
ask if the restriction implied by a strong GARCH model is justified. Indeed, there is empirical
evidence for high-frequency exchange rates that also the one-step prediction of the kurtosis is
non-trivial, see Bossaerts, Hardle and Hafner (1996) and Hafner (1998, pp.144). In a nonpara-
metric framework, they show that the one-step predicted kurtosis has an inverted U-shape, much
like the ones we find here for longer horizons.

A second possibility to visualize impulse response functions is to fix a time horizon and
consider alternative scenarios for the two components of &. This is done in Figure 7 to 9, where
we fix s at 10, which corresponds to two weeks, and let & ; and {3 vary between -5 and 5.
Both kurtosis functions decrease with large shocks of the same sign in both components. The
maximum appears to be close to zero shocks and on a ridge combining shocks of opposite sign.
This is different for the co-kurtosis (Figure 9), where the impulse response function increases

slightly with shocks of the same sign and decreases strongly with shocks of opposite sign.



5 Concluding remarks

This paper provides explicit results for the fourth moment structure of multivariate GARCH(p, q)
processes in their general vector specification. Unlike second moments, fourth moments crucially
depend on the innovation distribution, for which we assume a Gaussian distribution. Future
research will have to investigate other distributions, in particular distributions with fat tails
that allow for a better fit with financial time series. Furthermore, our empirical example of a
bivariate exchange rate series showed that there seems to be a trade-off between conditional
variance and conditional kurtosis. However, the one-step conditional kurtosis in the strong
GARCH specification is restricted to be a constant. It might be interesting to investigate
weak GARCH models that explicitly model the conditional kurtosis. The issue of temporal
aggregation of multivariate GARCH models has not been addressed yet. Results as in Drost
and Nijman (1993) and Drost and Werker (1996) for univariate GARCH models would certainly
be useful to investigate the change of kurtosis when the sampling frequency is changed. If the
analogy to univariate models holds, then the kurtosis and co-kurtosis should converge to the
values for a Gaussian distribution under temporal aggregation. Last, but not least, the results of
this paper will have to be extended to multivariate GARCH processes allowing for asymmetric
impacts of positive and negative shocks to volatility, as in Hafner and Herwartz (1998b) and
Kroner and Ng (1998), who both use threshold variables.

Appendix
Proof of Theorem 1: Applying Theorem 10.2 of Magnus (1988), we have
Var(vec(eiey) | Fi—1) = 2Nk (H; @ Hy).
By definition, n; = Lgvec(eie}), so that
Var(n; | F4-1) = 2Lx Nk (Hy @ Hy) L.
Applying the vec-operator, we get
vec(Var[n, | Fi—1]) = 2(Lk ® Lk)(Ix» ® Ni)vec(H; ® Hy).

Now, vec(H; ® H;) can be expressed as the product of the vecs using the commutation matrix
C to obtain

vec(Var[n | Fi—1]) = 2(Lk ® Lk )(Ix2 ® Nk)(Ik ® Cxk ® I )(vec(H;) ® vec(Hy)).

By definition, vec(H;) = Dghy, so that vec(H) ® vec(Hy) = (Dg ® Dg)vec(hihy). Recalling
the notation
X, = E[Var(n | Fi1)] + Zp

10



with X5, = E[h:h}], and taking vecs, the result is obtained. O
Proof of Theorem 2: Since I'(0) = £, — o0’ and £, = £, — X5, we can write

o
=) 05y, — By) P} + 00
1=0

Taking vecs and applying Theorem 1, we obtain

o0

Ggvec(Xp) = Z(CPZ ® ®;) (G — Iy2)vec(Zy) + vec(oa'),
i=0

and, since ¢ = Iy,
)
(IN2 — Z(‘I’Z ®P)(Gk — INz)) vec(Xy) = VeC(O'U’).
=1

The matrix Iy2 — > 21 (P ® Y;)(Gx — In2) is invertible if and only if all its eigenvalues have
modulus smaller than one. O

Proof of Theorem 3: Taking expectations, we have

Efvec(hihy)] =7 + (A® A)E[vec(m—17;_1)]
+ {(A® B)+ (B® A) + (B ® B)}E[vec(hi—1h;_,)],

where v = vec(ww' + (A + B)ow' + wo'(A + B)'). Since the unconditional expectations are
independent of time and vec(3,) = Ggvec(XZ)) by Theorem 1, one obtains

(In2 — Z)vec(Zp) =

with Z = (A® A) Gk + (AQ® B) + (B® A) + (B ® B). The matrix Iy2 — Z is invertible if and
only if all eigenvalues of Z have modulus smaller than one. O

Proof of Theorem 4: Only the equation for k;; will be proved. We have

E[Ezte o= E[E[Ezgtg_?t | Fi1]]
= Elhithj; + Qh?j,t]
= 0405 + Cov(hit, hjt) +2 (Var(hij,t) + U,LQJ) .

Dividing by o3;0;;, the result is obtained. O

11
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Figure 1: Impulse response function of the kurtosis of DEM/USD
to a shock in DEM/USD. The right azis displays the time horizon
s=1...,100, the left azis the shock & ;.
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Figure 2: Impulse response function of the kurtosis of DEM/USD
to a shock in GBP/USD. The right azis displays the time horizon
s =1...,100, the left axis the shock & .
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Figure 6: Impulse response function of the co-kurtosis to a shock in
GBP/USD. The right azis displays the time horizon s = 1...,100,
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Figure 7: Impulse response function at s = 10 of the kurtosis of
DEM/USD to a simultaneous shock. The right azis displays a shock
in GBP/USD, the left azis a shock in DEM/USD.
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Figure 8: Impulse response function at s = 10 of the kurtosis of
GBP/USD to a simultaneous shock. The right azis displays a shock
in GBP/USD, the left azis a shock in DEM/USD.
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