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Abstract   In this paper the authors focus on credit connections as a potential source of 
systemic risk. In particular, they seek to answer the following question: how do we 
find densely connected subsets of nodes within a credit network? The question is 
relevant for policy, since these subsets are likely to channel any shock affecting the 
network. As it turns out, a reliable answer can be obtained with the aid of complex 
network theory. In particular, the authors show how it is possible to take advantage of 
the ‘community detection’ network literature. The proposed answer entails two 
subsequent steps. Firstly, the authors need to verify the hypothesis that the network 
under study truly has communities. Secondly, they need to devise a reliable algorithm 
to find those communities. In order to be sure that a given algorithm works, they need 
to test it over a sample of random benchmark networks with known communities. To 
overcome the limitation of existing benchmarks, the authors introduce a new model 
and test alternative algorithms, obtaining very good results with an adapted spectral 
decomposition method. To illustrate this method they provide a community description 
of the Japanese bank-firm credit network, getting evidence of a strengthening of 
communities over time and finding support for the well-known Japanese ‘main bank’ 
system. Thus, the authors find comfort both from simulations and from real data on the 
possibility to apply community detection methods to credit markets. They believe that 
this method can fruitfully complement the study of contagious defaults, since the 
likelihood of intracommunity default contagion is expected to be high. 
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1 Introduction

Since the outbreak of the global crisis, policy makers have been haunted by
the nightmare of a global financial meltdown breaking out of incontrollable
feedbacks spreading across financial markets. In order to avoid this scenario,
it became imperative to identify the potential sources of system-wide shocks,
i.e. the sources of systemic risk.

Although many transmission channels for systemic risk have been listed
by the literature (Brunnermeier, 2009), in this paper we will focus on those
determined by the reciprocal claims between institutions over credit markets.
The interconnectedness of credit institutions is a source of counterparty risk
on interbank credit markets, which has been addressed recently by a num-
ber of theoretical models tackling the problem of contagious defaults (Gai
and Kapadia, 2010; Amini et al., 2010, 2012; Battiston et al., 2012). These
models, which go beyond previous simulation based works (Nier et al., 2007;
Elsinger et al., 2006), rely on complex network theory, which has become
a prominent tool in this field. In fact, network theory provides a rigorous
representation of complex interactions, as well as the possibility to predict
their static and dynamic behavior in many cases1.

Regarding the case in point, it’s natural to conceive credit markets as
networks in which nodes represent agents and links represent credit claims
and liabilities. Most works in this field focus specifically on the interbank
market, since the latter is particularly relevant for financial stability and,
at the same time, well suited for a representation with basic network the-
ory. While earlier contributions (Allen and Gale, 2000) stressed the benefits
of increasing diversification, suggesting that the more connections, the bet-
ter for financial stability, more recently a growing number of works have
challenged this view, showing that diversification is not always beneficial for
stability. For instance, the recent model of Battiston et al. (2012) shows
that, if market-related effects are considered along with credit-related effects
by introducing a financial accelerator mechanism, then a potential trade-off
between individual risk and systemic risk may exist for increasing connectiv-
ity of the network. Similar results are provided by Gai and Kapadia (2010),
who show that financial systems exhibit a robust-yet-fragile tendency: while
the probability of contagion may be low, once a default cascade is started its
spread may be quite large. This effect is non monotonic in connectivity: for
a given range of values, connectivity increases the chances that institutions
surviving the effects of the initial default will be exposed to more than one
defaulting counterpart after the first round of contagion, thus making them

1For an economics oriented introduction see Vega-Redondo (2007) or Jackson (2008).
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more vulnerable to a second-round default.
The empirical support for the relevance of contagious defaults in the in-

terbank market is mixed. This is not surprising at all, since empirical works
in this field rely on a variety of simulation based approaches and diverse be-
havioral assumptions 2. For instance, those works which examine the effects
of idiosyncratic shocks affecting a single bank, come to the conclusion that
the scope of contagion is limited (Elsinger et al., 2006; Upper and Worms,
2004; Mistrulli, 2011). By adopting a more realistic setting, e.g. taking into
account correlated market shocks and short-term 100% losses for creditors,
quite different results have been obtained (Cont et al., 2012). Notwithstand-
ing this uncertainty, central banks are getting more and more interested in
network analysis, supporting network-related research and dissemination, al-
though most empirical work in this direction still looks merely descriptive
(Castrén and Kavonius, 2009; ECB, 2010).

In this paper, instead of dealing directly with contagious defaults, we wish
to answer the following related question: how do we find densely connected
subsets of nodes within a given credit network? As it turns out, we can
provide a rigorous answer by drawing from a growing body of literature de-
voted to community detection in complex networks (Fortunato, 2010). This
answer is very important for any analysis of contagious defaults. In fact, the
dynamics of any contagion process depends crucially on the topology of the
network at the moment of the initial shock. This fact agrees with the follow-
ing simple intuition: whenever a shock affects a node of a financial network,
it will be transmitted to her neighbors with a probability that is proportional
to the strength of their linkage to the shocked node. Thus, finding strongly
connected subsets of nodes allows us to identify those regions of the network
which are most likely to be hit when a specific subset of nodes is shocked
initially. In this sense, community detection allows to outline the general
“risk maps” invoked by policy makers.

The rest of the paper is organized as follows. As a first step, we shortly
review the related literature on complex networks and community detection
(sec. 2). Subsequently (sec. 3) we focus on a benchmark model which
displays modular structure, i.e. it is endowed with significant communities
as defined at the end of sec. 2. Then we test alternative community detection
algorithms over the benchmark model examining both the case of strong, i.e.
non overlapping, and weak, overlapping, communities (sec. 4). After having
verified that a spectral decomposition algorithm provides the best results,
we apply the same algorithm to real data in order to provide a community
description of the Japanese bank-firm credit network (sec. 5). Finally, the

2For a survey see Upper (2011).
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conclusive section summarizes the main results of the paper.

2 Related literature

In this paper we adopt a statistical equilibrium approach to the represen-
tation of credit markets 3. Statistical means that the claim wij of agent i
towards agent j is viewed as the realization of a random variable, defined
over a discrete nonnegative domain. The market as a whole is nothing more
than the collection of all these variables, that can be represented as a random
matrix W with entries which are statistically independent but non necessar-
ily equally distributed. Each realization of W represents a possible state or
configuration of the market, and the collection of all these market states,
together with a probability distribution over states P (W ), is called a sta-
tistical ensemble. Equilibrium means instead that, if the market is allowed
to relax without external disturbances, it will converge to the stable prob-
ability distribution P ∗(W ) which is obtained by solving the model itself4.
As explained below, when the model is adequately constrained, it’s possi-
ble to make the ensemble reflect some desirable economic property, like the
expected balancing of supply and demand (see note 7).

Against this backdrop, the transition to complex networks theory appears
very natural. In fact, the representation of markets outlined above is nothing
different from the matrix representation of a directed network G, according
to which the strength of the link i → j is given by wij

5. In particular,
while the interbank market is a simple (weighted and directed) network,
credit relationships between banks and firms are represented by a bipartite
(weighted and directed) network, i.e. a network whose nodes can be divided
into two disjoint sets F and B such that every link connects an element of
F with an element of B. The usual matrix representation of a bipartite
network is given by a rectangular matrix W ∈ Nn×m

+ , where n = |F | and
m = |B|. The analysis of these networks is addressed either with specific
tools or by generalizing the standard tools in various ways. In this paper we

3For the general idea of using statistical equilibrium as a key tool in macroeconomics
see Aoki and Yoshikawa (2006)

4There is a bijective relationship between a given model and the corresponding en-
semble, since solving a given model means actually to find the particular P ∗ which is
consistent with the constraints of that model. For this reason the terms “model” and
“market ensemble”, “network ensemble” or simply “ensemble” can be used as equivalents.

5For this reason, in this paper the terms “market” and “network” are used as equivalents
even if, strictly speaking, a market is a directed weighted network. If G instead is a binary
network, its links can take only binary values, and thus its matrix representation is given
by the adjacency matrix A with binary entries.
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follow mainly the latter route, because we wish to provide a general method
which may be readily applied both to interbank networks and to bank-firms
credit networks. Indeed, most of the tools we provide can be applied readily
to any interaction occurring among economic agents or entities, provided
that this interaction can be represented by a nonnegative matrix of arbitrary
shape.

As mentioned above, we are interested in network ensembles displaying
desirable properties. Park and Newman (2004) have proposed a general
methodology for building ensembles of networks, with a fixed number n of
nodes, satisfying linear and non linear constraints over the expected values
of network observables. We may translate these constraints into equivalent
ones defined over the strength matrix W :

E
[
~F (W )

]
= ~c (2.1)

where ~c is a vector of arbitrary values for the constrained observables.
Park and Newman (2004) have showed, in analogy with equilibrium sta-
tistical physics, that P ∗ is a Boltzmann-Gibbs probability distribution over
network configurations. Since the Boltzmann-Gibbs distribution belongs to
the exponential family of probability distributions, networks belonging in
the resulting ensemble are labeled as exponential networks. In particular,
they provide a solution of this model when the constraints are represented
by the strength distribution ~w of the network 6. Given our previous mar-
ket description, strengths represent in credit networks the expected lending
and borrowing of the agents. By allowing for arbitrary strengths, this ap-
proach provides a decisive improvement with respect to current economic
models, which usually adopt the unrealistic assumption of agents with iden-
tical strengths (Allen and Gale, 2000), introducing instead heterogeneity in
the modeling of market interactions 7.

Exponential networks don’t represent the only ensemble which may com-
ply with the heterogeneity of strengths. In the already mentioned commu-
nity detection literature, a different model is usually employed as statistical

6By strength of a node i in a weighted network we define the sum wi =
∑

j 6=i wij . If
W is asymmetric, i.e. G is directed, we need to distinguish between the out-strength and
in-strength of the node i, and thus we have two distinct distributions ~wout and ~win. The
degree of a node i, instead, is defined over the binary matrix A as the sum di =

∑
j 6=i aij .

If A is asymmetric, again we need to distinguish between the out-degree and in-degree of
the node i. In the case of weighted networks, it’s useful to define v =

∑
i wi, where v is

said to be the volume of G.
7Incidentally, we observe that heterogeneity doesn’t necessarily imply disequilibrium

in this context. In fact, for any two out- and in-strength distributions we have that∑
i w

out
i =

∑
i w

in
i = v, i.e. that the market is expected to clear.
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benchmark. This model is related to the modularity function Q, originally
introduced by Newman and Girvan (2004) in order to provide a stopping
criterion for their community detection algorithm 8.

In order to introduce this model, it is convenient to adjust the definition
of Q. We employ the normalized matrix K∗ = K−E[K] instead of the mod-
ularity matrix B = W −E[W ] as defined by Newman and Girvan, since the
former displays some useful properties 9. Thus, our definition of modularity
reads

Q(W ) ∝
∑
ij

k∗
ijδ(hi, hj) (2.2)

where hi, hj denote community membership.
In general, we know that W =

∑r−1
i=0 σiuiv

T
i for W ∈ Rn×m, where the

σi are the (decreasing) singular values (SV) of W , and the ui and vi are
its left and right singular vectors. In particular, we know that σ0(K) = 1
for all K and consequently that uT

0 = (
√
wout

1 /v, . . .
√

wout
n /v) and v0 =

(
√
win

1 /v, . . .
√
win

m/v) (Bargigli and Gallegati, 2011). It’s easy to see that
the matrix K∗ is the normalized counterpart of B. In fact, we have that

B = W − E[W ] = D
1
2
out

[
K − u0v

T
0

]
D

1
2
in, since the elements of E[W ] are

defined, in the directed case, as follows

E[wij] =
wout

i win
j

v
(2.3)

Squartini and Garlaschelli (2011) have showed that this expectation can-
not be derived from exponential networks. For this purpose we need to
introduce a different ensemble which can be labeled as binomial networks. In
this ensemble the wij are binomially distributed with parameters v (see note
6) and pij (Bargigli and Gallegati, 2011). In the directed case, the parameters
pij are obtained by solving the following maximum entropy problem:

max
p

g(p) = −
n∑

i=1

m∑
j=1

pij ln pij (2.4)

subject to the following constraints:

8For further details see below, note 12.
9Normalization is obtained, e.g. for a symmetric weighted network, by introducing

the normalized matrix K = D− 1
2WD− 1

2 where D is a diagonal matrix with elements

{w1, w2, . . . , wn}. In case of directed networks, normalization becomes K = D
− 1

2
outWD

− 1
2

in

with obvious adaptation of the diagonal matrices.
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m∑
j=1

pij = ri

n∑
i=1

pij = cj

pij > 0

where ri = wout
i /v, cj = win

j /v.
Using the linear constraints of the problem, we can obtain the following

explicit solution (Bargigli and Gallegati, 2011):

pij =
wout

i win
j

v2
(2.5)

from which we get the required expectation (2.3).
The fundamental property of binomial networks is that their expecta-

tion E[W ] is a rank-1 matrix, since its rows and columns are all linearly
dependent. Thanks to this property, the model defines a “community free”
expectation of a (weighted and directed) network with given strength distri-
bution. In fact, it’s easy to see from eq. (2.2) that Q (E[W ]) ≡ 0. On the
other hand, it is also true that Q (E[W ]) 6= E[Q(W )] > 0, since networks
in the ensemble will be obviously different from E[W ]. We may systematize
these arguments with the following three definitions:

• E[W ] is the community free network

• the communities of all networks G ∈ G, where G stands for the binomial
ensemble, are statistically non significant, since they are the outcome
of a random fluctuation around E[W ].

• the communities of networks G /∈ G are statistically significant.

Thus, to be sure that we detect significant communities, we need to verify
the null hypothesis H0 : G ∈ G. In the next section, we will show how it is
possible to obtain this result.

Finally, we may wonder why we are so interested in an expectation of
the form (2.3). From the very nature of the ME problem (2.4) we see that
binomial networks provide the maximally diversified model which satisfy the
constraint over strength distributions. From a systemic risk perspective, this
is convenient since it allows us to focus on the specific network risk condi-
tioned to a given distribution of debt and credit within the network. By

7



comparing a given real network with a sample of binomial networks with
the same expected strength distributions, we are able to detect the risk in
excess of the risk level observed on a maximally diversified network. The
strength distributions represent an independent source of risk, which needs
to be clearly separated from network risk itself. Although a binomial net-
work contains no risky exposures by construction, it may be nonetheless very
fragile because of an excessive level of lending or borrowing. Thus, we may
define network risk as the default rate in excess of the default rate which
may be observed on a sample of binomial networks 10.

3 The Modular Binomial Model

Artificial networks displaying a modular structure represent a very precious
tool for testing community detection algorithms (Lancichinetti and Fortu-
nato, 2009a). In these networks the assignment of nodes to communities is
specified in advance by the researcher and the algorithm’s task becomes to
recover the known community subdivision of agents in the network. Then we
can compare how good are alternative algorithms at this job with the help
of some suitable measure, like normalized mutual information (see below).

We can induce a modular structure in the binomial network of the pre-
vious section by fixing the weights between agents belonging to different ar-
bitrary defined communities. Instead of providing different weight values for
each combination of communities, like in Bianconi (2009, 2008), we simplify
by adding to the problem (2.4) the following constraint:∑

ij

(1− δij)pij = s (3.1)

where δij = 1 if the two agents belong to the same community. The matrix
∆ with elements δij is a co-membership matrix which can be obtained by self-
multiplication of the community matrix M = (m0|m2|. . . |mc−1) ∈ {0, 1}n×q,
where q stands for the number of communities and we have ∀i that

∑
j mij =

1 , i.e. nodes belong to one community only. By solving for pij in the first
order conditions we obtain

pij = exp(λi + µj + θ(1− δij)) = xiyjz
1−δij (3.2)

10As it turns out, binomial networks are usually found to underestimate the extent
of contagion (van Lelyveld and Liedorp, 2006; Mistrulli, 2011), which means that real
networks are indeed an independent source of risk in the sense just explained. But it is
also conceivable that real networks are less risky than binomial networks in some cases.
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where λi, µj and θ are Lagrange multipliers. From this expression we
derive a system of n+m+ 1 coupled equations

xi

∑
j

yjz
1−δij = ri ∀i = 1 . . . n

yj
∑
i

xiz
1−δij = cj ∀j = 1 . . .m∑

ij

(1− δij)xiyjz
1−δij = s

which, once solved numerically, delivers what we call the modular bino-
mial (MB) model. In practice, it is convenient to specify s as follows

s = µ
∑
ij

(1− δij)p̄ij (3.3)

with µ ∈ (0, 1] and p̄ij specified as in eq. (2.5). In this way we assign
to inter-modular connections a fraction µ of the ME probability obtained in
the binomial model. Thus, it becomes possible to produce a continuum of
networks ensembles with increasingly significant modular structure, ranging
from a (significant) community-free network coincident with the binomial
model (µ = 1) to a quasi-disconnected union of (significant) communities
(µ = ε for a small ε). The results of this procedure for a sample of 100
randomly generated MB networks with q = 10, for each value of µ and
different size distributions of communities, are depicted in Fig. 1. While
agents are randomly assigned to communities, the strength sequence used
for the simulations is taken from real data, namely from the Japanese credit
network data analyzed below (see section 5). In particular, we employ the
strength distribution of the 211 Japanese banks recorded during the year
2000.

The lines of Fig. 1 represent the average largest singular values of K ∈
R211×211

+ for these samples 11. As underlined in many contributions (e.g.
Chauhan et al. (2009) or Mitrovi and Tadi (2009)), the spectral, and SV
related, properties of different network-related matrices are connected to the
modular structure of the network itself. In particular, the spectral or singular
gap, i.e. the largest difference between eigenvalues or SVs, clearly identifies
the number of communities (Ng et al,, 2001). We can verify from Fig. (1)
that in our samples the number of non unitary SV which are bounded away

11Regarding the statistics collected from MB simulations, we stress that we observed
always a low variability within samples, resulting in very small standard errors. Thus we
don’t need to build larger samples in order to obtain robust results.
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Figure 1: Average SVs of K for randomly generated MB networks with
10 communities of different size distributions: (a) uniform; (b) power law
(α = 1.4) with sizes ranging from 10 to 50 nodes; (c) power law (α = 1.4) with
sizes ranging from 5 to 100 nodes; (d) power law (α = 1.4) with unconstrained
size
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Table 1: p-values for the null hypothesis that MB networks belong to the
binomial ensemble

µ max p-value min p-value µ max p-value min p-value
0.1 0.0010 0.0010 0.91 0.0959 0.0954
0.2 0.0012 0.0012 0.92 0.1211 0.1205
0.3 0.0014 0.0014 0.93 0.1580 0.1569
0.4 0.0020 0.0020 0.94 0.2142 0.2127
0.5 0.0030 0.0030 0.95 0.3066 0.3035
0.6 0.0047 0.0047 0.96 0.4729 0.4672
0.7 0.0085 0.0085 0.97 0.8156 0.8050
0.8 0.0193 0.0193 0.98 0.9999 0.9999
0.9 0.0777 0.0773 0.99 0.9999 0.9999

from zero is equal to q − 1, as expected, although q may become harder to
detect when the size distribution of communities becomes more uneven (see
subfigs (c) and (d)), since in this case we have very small communities which
are more difficult to identify.

It is instructive to verify the null hypothesis H0 : G ∈ G for MB networks
(see end of sec. 2). Of course, we expect H0 to be rejected if µ is not too
close to unity. We can employ for this task the statistical test devised in
Bargigli and Gallegati (2011):

P
(
Σ2(K) > λ

)
6 nm

λv
(3.4)

for K ∈ Rn×m
+ , where v is the volume of the network (see note 6) and

Σ2(K) =
∑

ij(kij − E[kij])
2. Following the definitions of sec. 2, if H0 is

rejected the network contains statistically significant communities. In order
to compute the test of eq. (3.4), we need to know the singular values of K.
In fact, from the Eckart-Young low rank approximation theorem we derive
that Σ2(K) =

∑r−1
k=1 σ

2
k, where the sigmas now stand for the SVs of K and

r is the rank of K. In tab. (1) we reproduce the maximal and minimal
p-value obtained on samples of 100 networks, for each value of µ, using eq.
(3.4). The p-values are quite stable within samples, and increasing in µ as
expected. In particular, the null hypothesis is clearly rejected for µ 6 0.9.

We can employ the same test in order to recover the number of commu-
nities in MB networks in a more rigorous way than by visual inspection. The
basic idea is simple: if we order the singular modes of K by the decreasing
magnitude of the associated SVs (excluding the largest one), and subtract
from K iteratively those singular modes, we let K converge to its expecta-
tion under the binomial model. Then, if we compute the test (3.4) at each

11



step and record the resulting p-value, at some step we obtain that the null
hypothesis is not rejected anymore, which means that all the significant com-
munities have been subtracted away from the network. In practice, it turns
out that q is best detected by observing the increments of the p-values, since
the maximum of the increments is associated with the singular gap. As we
see from fig. 2, this method works pretty well when the modular structure is
clear enough (2a and 2b) and for µ 6 0.5.
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Figure 2: Average ∆ p-values computed from (3.4) for MB networks with
10 communities of different size distributions: (a) uniform; (b) power law
(α = 1.4) with sizes ranging from 10 to 50 nodes; (c) power law (α = 1.4) with
sizes ranging from 5 to 100 nodes; (d) power law (α = 1.4) with unconstrained
size. The true number of communities is signaled by the black vertical line.

As it turns out from the analysis of real data (see section 5), the constraint
of non-overlapping community membership of nodes, introduced above, may
not describe adequately real credit networks. By relaxing this assumption,
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we introduce weak (i.e. overlapping) communities instead of strong (i.e.
non overlapping) communities. In practice, we obtain the latter by allowing∑

j mij > 1 for some i in our ME problem. From fig. 3, we see that the
behavior of simulated networks changes drastically: as the fraction β of nodes
belonging to 2 different communities increases, the modular structure of the
network becomes less clear.

From a geometrical point of view, the reason is intuitive. With strong
communities the rows of M , representing nodes, may be divided in orthog-
onal subsets, corresponding to the communities, which give rise to clearly
separated singular modes. With weak communities orthogonality is violated,
and the stronger this violation the harder it is to recover clearly separated
singular modes. In the limit case when all nodes belong to all communities,
we simply recover binomial networks, which don’t display significant singular
modes. Thus, we may conclude that weak communities can cohabit with a
clear modular structure only if the fraction of overlapping nodes is low. Not
surprisingly, the more blurred modular structure of weak communities makes
it harder to recover q with the help of eq. (3.4). From fig. 4 we see that q is
correctly recovered only for low overlapping rates (4c and 4d).

4 Test of community detection algorithms

As underlined above, the availability of artificial modular benchmarks is of
utmost importance for developing reliable community detection methods.
In fact, given the complexity of the task, we are never sure of the result
we obtain with a given procedure unless we can trace back this result to a
previously known correct answer (Fortunato, 2010). From this perspective,
MB networks are particularly effective because they deliver the same features
of existing benchmarks (Lancichinetti and Fortunato, 2009a) by allowing for
weighted, directed and even bipartite networks, as well as for both strong and
weak communities (see sec. 3), while they don’t require to make hypotheses
on the strength distributions. Thus, the confidence in the tests performed
on MB networks is bolstered by the fact that we build artificial modular
networks which display important properties, such as strength distributions,
that are equal on average to those of some real network under study.

In this section we don’t aim to perform a systematic comparison of the
main community detection procedures, since such comparison is already
available in the literature (Lancichinetti and Fortunato, 2009b). Instead,
we will focus on two different algorithms. The first one is Infomap (Ros-
vall and Bergstrom, 2008), which is widely held as the most reliable method
since modularity-based methods have been challenged by the discovery of a
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Figure 3: Average normalized singular values of MB networks with 10
bounded (max: 100; min: 5) power-law distributed communities for different
overlapping rates: (a) β = 1; (b) β = 0.1; (c) β = 0.05; (d) β = 0.01
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Figure 4: Average ∆ p-values computed from (3.4) for MB networks with 10
bounded (max: 100; min: 5) power-law distributed communities for different
overlapping rates: (a) β = 1; (b) β = 0.1; (c) β = 0.05; (d) β = 0.01
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resolution bias 12. The second one is an adaptation of the spectral method
proposed by Donetti and Muñoz (2005).

The main motivation to perform this comparison is that spectral meth-
ods can be applied also to bipartite networks, while this is not possible for
Infomap. In fact, this method employs the properties of Markov chains by
defining a random walk over a directed network by means of the stochastic
matrix S obtained by suitably normalizing W . But the convergence of the
random walk over a directed network requires the latter to be strongly con-
nected, a condition which, by construction, cannot be fulfilled by bipartite
networks. On the other hand, the available community detection methods for
bipartite networks fail to deliver very good results or otherwise are subject to
severe computational limits (Sawardecker et al., 2009), so that improvements
are strongly needed in this area.

We complement these methods with the approach of statistically validated
networks (SVNet) proposed by Tumminello et al. (2011). This approach
evaluates the probability to observe a given strength value wij = x, e.g. in a
symmetric network, against the hypergeometric probability distribution:

wij ∼ H(x|wi, wj, v) =

(
wi

x

)(
v−wi

wj−x

)(
v
wj

) (4.1)

The intuition is clear: the probability is obtained by enumerating the
possible extraction sequences (without replacement) of length wj in which
we obtain exactly x successes out of wi favorable cases contained in the urn
with v elements. The probability of the event {wij > x} is

P {wij > x} = 1−
x−1∑
wij=0

H(x|wi, wj, v) (4.2)

The link between i and j is validated only if it is highly unlikely when
evaluated using eq. (4.2), i.e. when the null hypothesis that wij is distributed
according toH(x|wi, wj, v) is rejected. The link validation procedure involves
multiple hypothesis testing. Therefore the statistical threshold must be cor-
rected for multiple comparisons by employing Bonferroni correction, i. e. by

12Q was introduced with the double purpose to evaluate the assignment of nodes to a
given number q of communities and to expand or shrink q itself (Fortunato, 2010). The
maximization of Q has become a popular method of community detection, until Fortunato
and Barthélemy (2007) have showed that this method is plagued by a resolution bias, i.e.
it is unable to detect correctly small communities. To overcome the resolution bias many
solutions have been proposed, none of which delivers an equivalent solution to the original
problem that modularity was meant to solve.
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setting the rejection threshold for the null hypothesis at
p

T
where T is the

number of hypotheses to be tested (T = n2 in the case of a network with
n nodes) and p is the chosen confidence level. Once the procedure is com-
pleted, we obtain a binary, possibly directed, validated network which can
be useful to solve the community detection problem in two ways: firstly, by
looking at the components of the validated network 13, which may reflect, at
some extent, the underlying community assignment; secondly, by letting the
algorithms work more efficiently than on the original network. Next we are
going to pursue both strategies, in order to verify the contribution of this
approach over MB networks.

By adopting the hypergeometric distribution we refer our expectation
to the so-called configuration model (Molloy and Reed, 1995; Newman et
al., 2001), in which the strength distributions are fixed exactly and not on
average. In order to adapt the SVNet approach to our needs we only need
to replace the hypergeometric distribution with the binomial distribution:

wij ∼ B(x|pij, v) =
(
v

x

)
pxij(1− pij)

v−x (4.3)

If we evaluate the strengths of a MB network using eq. (4.3), we expect
only within-community connections to be validated. Thus, as claimed above,
the components of the valid network may reflect communities.

Regarding the spectral algorithm, we introduce the following two mod-
ifications with respect to Donetti and Muñoz (2005): 1. the number q of
communities is determined by means of eq. (3.4) and not by means of mod-
ularity optimization; 2. spectral decomposition is performed over K and not
over the Laplacian L. Except for these differences, we perform the same
steps: 1. the eigenvectors associated to the q largest eigenvalues are com-
puted; 2. each node in the network is treated like a point in the q − 1 -
dimensional space with coordinates given by the node’s projections onto the
first q − 1 nontrivial eigenvectors; 3. hierarchical clustering is applied over
the nodes’ coordinates in order to obtain q clusters. In particular, we ob-
served the best performance using complete-linkage clustering over angular
distances.

To sum up, the methods employed in the tests are listed as follows: “In-
fomap” denotes the algorithm introduced in Rosvall and Bergstrom (2008);
“Natural partition” denotes the partition corresponding to the components
of the SVnet; “Spectral” denotes our adaptation of the algorithm introduced
in Donetti and Muñoz (2005); the suffix “on SV net” denotes the fact that

13The components of a network are defined as its maximal connected subsets of nodes.
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the (Infomap or spectral) algorithm is applied to the SVnet. In order to ver-
ify the effectiveness of all these algorithms, we adopt the widely used measure
of normalized mutual information between two random variables (Fortunato,
2010):

Inorm(X, Y ) =
I(X, Y )√

|H(X)H(Y )|
(4.4)

where H stands for the entropy of the random variable and I(X, Y ) =
H(X) − H(X|Y ) = H(X) + H(Y ) − H(X,Y ). In our case, Inorm is used
to compare the partition obtained employing some community detection al-
gorithm with the one originally employed to solve the MB problem or, as
we can say more shortly, to compare the recovered partition P with the true
partition P ∗. In practice, for each node the assignment to a community is
considered as a random variable taking values in {0, 1, . . . , q − 1}. Then, if
the true and recovered partition are equal, we obtain that Inorm(P, P

∗) = 1.
The results of the tests performed over MB networks are depicted in

fig. 5. The lines represent the average values of Inorm(P, P
∗) over samples

of 100 artificial networks. Again, we remark that within-sample variability
is very low, so that we don’t need to build larger samples. Our results
provide a unequivocal indication: the best performance is obtained with the
spectral algorithm applied to the original network. Further, we observe that
SVnets help improve significantly the performance of Infomap for low µ, while
they generally worsen the performance of the spectral algorithm. Also, the
natural partition is showed to represent faithfully the underlying community
structure, except for uneven community size distributions (subfig. 5d).

In order to extend our testing framework to the case of weak communities,
we need to complement our partition methods with a procedure to detect
the overlapping nodes between two or more different communities. For this
purpose we adapt the method proposed by Lancichinetti et al. (2009), which
evaluates the probability that a given node external to a given community
has k links (or equivalently a link with weight k) with that community. In
particular, the procedure runs as follows: 1. we start with a preliminary
partition of the network into q communities; 2. for each community we
compute, either on a binary version of the original network or on the SVnet,
the number k of links running between that community and each external
node; 3. we evaluate the probability of observing k links under the null model
using the binomial distribution (4.3) with suitably adapted parameters; 4. we
correct for multiple hypothesis testing by requiring that, in order to validate
the inclusion of r nodes into the q communities, the overall probability of
their links doesn’t exceed a threshold p, i. e. we employ again Bonferroni
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Figure 5: Tests over samples of 100 MB networks: (a) 422 nodes with 10
communities of uniform size distribution; (b) 211 nodes with 10 communities
of uniform size distribution; (c) 211 nodes with 10 bounded (max: 50; min:
10) power-law distributed communities; (d) 211 nodes with 10 bounded (max:
100; min: 5) power-law distributed communities.
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correction, lowering the acceptance probabilities as r increases. As a final
step, we need also to adapt Inorm(P, P

∗) as suggested by Radicchi et al.
(2011) in order to compare correctly the resulting assignment.

The results obtained are summarized in fig. 6. In this context the suffix
“on SV net”, when referred to the spectral algorithm, has a different mean-
ing than before. Since we know that performing spectral partition over the
SVnet has a negative effect, we proceed as follows: we apply the spectral
algorithm to the original network, while the procedure for the recovery of
overlapping nodes is performed either on the binarized version of the original
network or on the SVnet. Instead, in the case of Infomap, both the partition
procedure and the recovery of overlapping nodes are applied either on the
former or on the latter. We observe that the best performance is obtained
with spectral partition, and particularly when the recovery of overlapping
nodes is performed over the SVnet.

5 Real credit networks

In this section we are going to apply the methods devised above to a dataset
describing credit relationships between Japanese firms and banks. This
dataset, which has been analyzed under different perspectives in previous
works (De Masi et al., 2011; Fujiwara, 2009; Fujiwara and Aoyama, 2008;
Bargigli and Gallegati, 2011), includes firms listed in the Japanese stock-
exchange markets. Data are compiled from firms’ financial statements, inte-
grated by a survey of Nikkei Media Marketing, Inc. in Tokyo. They include
the indication of the amount of borrowing obtained from each financial in-
stitution, subdivided in short-term debt and long-term debt. Financial in-
stitutions, which for sake of simplicity are referred to as “banks”, consist of
long-term credit banks, city banks, regional banks (primary and secondary),
trust banks and insurance companies, all of which represent the universe of
financial institutions in Japan 14.

We already know that bank-firm relationships are represented by a (weighted
and directed) bipartite network, where the strengths are given by the amounts
of credit/debt and the bipartite sets are represented by firms F and banks B
respectively. In this context, a correct assignment requires that each commu-
nity contains at least one element from each bipartite set. In fact, two firms
(banks) may belong to the same community only if both are strongly con-
nected to the same banks (firms). Thus, the smallest bipartite community is
made of a single firm and a single bank. For this reason, we follow Barber

14For a more extensive description of this network the reader can refer to De Masi et
al. (2011).
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Figure 6: Tests over samples of 100 MB networks with overlapping rate
β = 0.05: (a) 422 nodes with 10 communities of uniform size distribution;
(b) 211 nodes with 10 communities of uniform size distribution; (c) 211 nodes
with 10 bounded (max: 50; min: 10) power-law distributed communities;
(d) 211 nodes with 10 bounded (max: 100; min: 5) power-law distributed
communities.

21



Table 2: Descriptive statistics of the Dataset

Year Firms Banks Links

2000 2,629 211 27,389
2001 2,714 204 26,597
2002 2,739 202 24,555
2003 2,700 192 22,585
2004 2,700 190 21,919
2005 2,674 182 21,811

(2007) in classifying both bipartite sets simultaneously. To this purpose, we
can work directly with K obtained from W as defined in sec. 2, which has
shape |F |×|B| and entries equal to the amounts of credit/debt between each
bank and firm in G. In this case, we employ the singular vectors of K as in-
puts for the spectral decomposition method described in section 4. We resort
to spectral decomposition since, as explained in the same section, Infomap
cannot be applied to bipartite networks. Finally, we detect multi-community
nodes by means of the probabilistic procedure described in the final part of
the previous section.

The first step of the analysis is to determine the number of communities
by means of the procedure based on eq. (3.4). In fig. 7 we draw for total
credit data the squared SVs and the first differences of p-values as we did
for artificial networks (we obtained equivalent graphs for partial data). We
observe that the tail of the ranked SVs line is regular like in fig. 1. This
fact suggests that Japanese real networks have a clear community structure,
with a very limited overlap of communities. On the other hand, the p-values
grow in a very regular way and display a very clear peak, as we observed in
fig 2. Thus the number of communities can be safely detected from SV data
according to our previous tests.

By comparing the complete results displayed in tab. 3 with tab. 2, we see
that the number of communities tracks quite closely the number of banks in
the dataset. This suggests that, while Japanese quoted firms may entertain
relationships with a number of banks, at the same time they tend to cluster
either around a single bank or, possibly, around a limited number of banks
as their “special” partners. This result is consistent with previous analysis
performed on the same dataset, as well as with the widely known Japanese
“main bank system” (De Masi et al., 2011).

In tabs. 4, 5, 6 we report some summary statistics computed as a result
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Figure 7: Number of communities in the Japanese credit networks - total
credit data.
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Table 3: Number of communities

Year Short term Long term Total
2000 169 192 199
2001 164 184 192
2002 158 182 188
2003 155 175 181
2004 149 174 176
2005 144 171 173

of our community detection procedure. From the second line of each table
we see that our hypothesis of a limited community overlap is confirmed, as
the fraction of multi-community nodes never exceeds significantly the 3%
threshold. The large majority of nodes within these subsets are represented
by banks, as expected. Further, we see that the total fraction is mostly higher
than the partial ones, which would suggest that the overlapping patterns for
different maturities tend to be complementary, i.e. multi-community nodes
at one level don’t act as such at a different level. It’s noteworthy that the
very limited degree of overlap coexists with high connectivity, since almost
all of the nodes in each network are included in the largest component of the
SVnet, as we observe from the first line of each table. Since a comprehensive
planning of connections at the network level is excluded, here we find a clear
sign of self-organization, as nodes behave spontaneously in such a way as
to obtain a (quasi) optimal state in which connectivity is maximized while
community overlap is minimized.

Links running between nodes in the same community carry only a minor
portion of the total weight of the network. This is not surprising since “in-
ternal” links themselves represent a minority of total links. The latter is an
interesting outcome: the participants of Japanese credit networks are likely
to entertain a large number of relationship which may be defined as “weak”
instead of focusing only on preferential relationships, and cutting all the re-
maining ties. This behavior is likely to be explained either by an implicit
assurance against the eventuality of a disruption of preferential relationships
or by complementary factors like, for instance, information gathering (De
Masi et al., 2011). At any rate, we can detect a first clue of the effectiveness
of our community assignment in the fact that the fraction of internal weight
is always higher than the fraction of internal links. A more cogent measure
is obtained by adapting Newman’s modularity:
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Q = Tr(D) = Tr(RTBS) (5.1)

where R and S are the community matrices obtained for the firms and
banks bipartite sets respectively and B is the Newman’s modularity matrix
(see sec. 3). In order to obtain comparable values across different networks,
we divide Q by the number of internal links. Since

∑
ij dij = 0, the sum

of the off-diagonal cells of D is equal to −Q by construction. Thus we
divide the latter value by the (higher) number of external links in the last
line of each table. The resulting values confirm the argument, advanced in
Bargigli and Gallegati (2011), that in the Japanese credit network preferential
connections with a small number of nodes are traded against the relatively
modest downsizing of a large number of non preferential connections, instead
of being traded against a reduction in the overall number of links.

Our community statistics are also informative of the temporal evolution
of the networks. For instance, we see that the fraction of internal links
and internal weight is increasing over time, especially for short-term data.
The tendency towards a more pronounced community structure is consistent
with the results of Bargigli and Gallegati (2011), where it was found that the
distance between the observed networks and their expected configuration
under the binomial model was growing over time. Curiously, this tendency
is associated more to a decrease of external Q than to an increase of internal
Q.

Table 4: Statistics: total data

Stats 2000 2001 2002 2003 2004 2005

Size of largest valid component 2,836 2,914 2,936 2,889 2,882 2,850

Fraction of multi-community nodes 0.0303 0.0260 0.0282 0.0239 0.0242 0.0280

Fraction of internal links 0.1359 0.1423 0.1584 0.1728 0.1736 0.1748

Fraction of internal weight 0.1681 0.1828 0.1905 0.2144 0.2229 0.2103

Mean Q per internal link 2,992.4 3,022.8 2,866.3 2,887.1 2,895.9 2,676.4

Mean Q per external link -468.6 -502.3 -540.4 -602.6 -608.4 -566.5

As a final step, we plot the distributions of community size (fig. 8) and
of the number of communities to which each nodes belongs (fig. 9). From
the figures we see no sign of fat tails, since all distributions appear linear on
a semilog scale. Regarding community size, we don’t find in our data very
large communities, although the tail of the distribution tends to become
higher over time. This result is consistent with the previous remarks on the
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Table 5: Statistics: long-term data

Stats 2000 2001 2002 2003 2004 2005

Size of largest valid component 2,372 2,457 2,495 2,467 2,474 2,449

Fraction of multi-community nodes 0.0231 0.0252 0.0244 0.0243 0.0221 0.0232

Fraction of internal links 0.1526 0.1769 0.1907 0.1885 0.2081 0.2020

Fraction of internal weight 0.1748 0.2113 0.2076 0.2237 0.2408 0.2131

Mean Q per internal link 2,497.2 2,514.2 2,399.4 2,641.0 2,491.9 2,320.7

Mean Q per external link -450.0 -542.3 -568.8 -613.6 -655.0 -587.3

Table 6: Statistics: short-term data

Stats 2000 2001 2002 2003 2004 2005

Size of largest valid component 2,564 2,595 2,585 2,503 2,378 2,324

Fraction of multi-community nodes 0.0230 0.0227 0.0224 0.0231 0.0231 0.0236

Fraction of internal links 0.1640 0.1722 0.1920 0.2036 0.2145 0.2228

Fraction of internal weight 0.1914 0.2158 0.2491 0.2984 0.3010 0.2879

Mean Q per internal link 1,788.0 1,811.9 1,859.8 1,989.1 1,708.7 1,544.0

Mean Q per external link -350.6 -377.0 -442.9 -509.5 -469.6 -442.6
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high number of external links (which is reflected in the relatively small size
of communities), as well as with the evolution towards a more pronounced
community structure over time. It’s also interesting to observe that very
small communities are detected with our procedure (down to the theoretical
minimum), so that, as expected, we discover no sign of a resolution bias in
our results.

Finally, regarding fig. 9, we remark that some nodes are likely to be part
not just of two, but of many communities. The role of these small subsets
could turn out to be qualitatively and/or quantitatively relevant within the
overall system, e.g. with respect to shock transmission. For this reason, it
might be worth to carry out a more detailed analysis of this phenomenon.

6 Conclusions

It is worth to summarize the main findings of our analysis. As a first step,
we have shortly presented, in sec. 2, a variety of techniques for building
artificial network models satisfying sets of constraints on network observables.
Then, in sec. 3 we have applied one of these techniques to obtain ensembles
of random networks endowed with a community structure, which we called
modular binomial (MB) networks. We showed that the SVD properties of
MB networks reveal their community structure and, in particular, that it’s
possible to detect the number of communities contained in MB networks by
looking at their singular values.

This result helps us to overcome the limitations of modularity as a device
to detect the correct number of communities (note 12). Instead, in sec. 4 we
resort to alternative algorithms, such as Infomap and spectral decomposition,
complemented by the “Statistically validated networks” approach. Further,
since we cannot exclude the possibility that communities in real networks
overlap, we introduce the notion of weak communities by letting some nodes
be part of more than a single community. In order to detect the overlapping
nodes, we adopt the solution proposed by Radicchi et al. (2011) of adding
single nodes to an initial partition with the help of statistical inference. Both
in the case of strong and of weak communities, we obtain the best results by
applying the spectral decomposition algorithm to the original (non validated)
network.

In order to illustrate our method, in sec. 5 we have applied the spectral
decomposition algorithm to the Japanese credit dataset. Firstly, we have
obtained the number of communities by using singular values, and observed
that Japanese firms tend to cluster around a single bank as their major part-
ner, a result which is consistent with the Japanese “main bank” system (De
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Figure 8: Community size distribution
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Figure 9: Distribution of nodes by the number of their communities
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Masi et al., 2011). Secondly, we showed that the real networks under study
are highly connected (since the largest valid component spans most of the
nodes), while at the same time the fraction of overlapping nodes between
communities is quite limited (and mostly represented by banks). Thirdly,
we observed that the majority of links is external to communities. Taken
together, these findings show that the connectivity of Japanese credit net-
work is much higher of the one we could expect by taking into account only
within-community (internal) connections. In other terms, Japanese firms and
banks entertain a high number of links which we could define as “weak” since
they connect those nodes to other nodes belonging to different communities.
Lastly, we confirm the findings of Bargigli and Gallegati (2011) in that we
find evidence of a strengthening of the community structure over time, with
an increasing number of internal links and a growing size of communities
themselves.

Thus, we find comfort both from simulations and from real data regarding
the possibility to apply a suitably adapted community detection method to
credit markets. As explained in section 2, the existence of statistically signifi-
cant communities is assessed by comparing real markets with the expectation
of the binomial network ensemble. The latter provides the maximally diver-
sified model satisfying a constraint over strength distributions, i.e. over the
expected lending or borrowing of the agents. Thanks to this property, bino-
mial networks allow us to define, for a real credit market, network risk as the
default rate in excess of the default rate which is expected in the binomial
ensemble. The comparison between the binomial ensemble and real mar-
kets has already showed, in some cases, that the latter are indeed a source
of network risk (van Lelyveld and Liedorp, 2006; Mistrulli, 2011). Starting
from these premises, we believe that our method can fruitfully complement
the study of contagious defaults. The next step in this direction is to esti-
mate the weight of intracommunity default contagion, which is expected to
be high, under different scenarios. We leave this task for future research.

References

Allen, F., Gale, D., 2000. Financial contagion. Journal of Political Economy,
108(1): 1–33.

Amini, H., Cont, R., Minca, A., 2010. Resilience to Contagion in Financial
Networks. SSRN eLibrary.

Amini, H., Cont, R., Minca, A., 2012. Stress Testing the Resilience of Finan-

30

http://ideas.repec.org/p/arx/papers/1112.5687.html
http://ideas.repec.org/p/arx/papers/1112.5687.html
http://ideas.repec.org/a/ucp/jpolec/v108y2001i1p1-33.html
http://ideas.repec.org/a/wsi/ijtafx/v15y2012i01p1250006-1-1250006-20.html


cial Networks. International Journal of Theoretical and Applied Finance,
15(1).

Aoki, M. , Yoshikawa, H., 2006. Reconstructing Macroeconomics, Cambridge
University Press.

Barber, M.J., 2007. Modularity and community detection in bipartite net-
works. Physical Review E, 76:066102, December.

Bargigli, L., Gallegati, M., 2011. Random digraphs with given expected
degree sequences: A model for economic networks. Journal of Economic
Behavior & Organization, 78(3):396 – 411.

Battiston, S., Delli Gatti, D., Gallegati, M., Greenwald, B.C., Stiglitz, J.E.,
2012. Liaisons dangereuses: Increasing connectivity, risk sharing, and sys-
temic risk. Journal of Economic Dynamics & Control, 36(8):1121 – 1141.

Bianconi, G., 2008. The entropy of randomized network ensembles. EPL
(Europhysics Letters), 81(2):28005.

Bianconi, G., 2009. Entropy of network ensembles. Physical Review E,
79(3):036114, March.

Brunnermeier, M.K., 2009. Deciphering the liquidity and credit crunch 2007-
2008. Journal of Economic Perspectives, 23(1): 77–100, Winter.

Castrén, O., Kavonius, I.K., 2009. Balance sheet interlinkages and macro-
financial risk analysis in the euro area. Working Paper Series 1124, Euro-
pean Central Bank, December.

Chauhan, S., Girvan, M., Ott, E., 2009. Spectral properties of networks with
community structure. Physical Review E, 80(5):056114, November.

Cont, R., Moussa, A., Santos, E.B., 2012. Network Structure and Systemic
Risk in Banking Systems, in Fouque, J.P., & Langsam, J. (eds.),Handbook
of Systemic Risk, Cambridge University Press.

De Masi, G., Fujiwara, Y., Gallegati, M., Greenwald, B.C., Stiglitz, J.E.,
2011. An analysis of the Japanese credit network. Evolutionary and Insti-
tutional Economics Review, 7(2): 209-232.

Donetti, L., Muñoz, M. A., 2005. Improved spectral algorithm for the detec-
tion of network communities. AIP Conference Proceedings, 779:104–107,
July 2005.

31

http://ideas.repec.org/a/wsi/ijtafx/v15y2012i01p1250006-1-1250006-20.html
http://ideas.repec.org/a/eee/jeborg/v78y2011i3p396-411.html
http://ideas.repec.org/a/eee/jeborg/v78y2011i3p396-411.html
http://ideas.repec.org/a/aea/jecper/v23y2009i1p77-100.html
http://ideas.repec.org/a/aea/jecper/v23y2009i1p77-100.html
http://ideas.repec.org/p/ecb/ecbwps/20091124.html
http://ideas.repec.org/p/ecb/ecbwps/20091124.html
http://www.sciencedirect.com/science/article/pii/S0165188912000899
http://www.sciencedirect.com/science/article/pii/S0165188912000899
http://www.sciencedirect.com/science/article/pii/S0165188912000899
http://www.citeulike.org/group/15022/article/4236393
http://www.citeulike.org/user/dpf/article/6218765
http://www.citeulike.org/user/dpf/article/6218765
http://www.econbiz.de/en/search/detailed-view/doc/all/an-analysis-of-the-japanese-credit-network-masi-giulia/10009182102/?no_cache=1
http://www.econbiz.de/en/search/detailed-view/doc/all/an-analysis-of-the-japanese-credit-network-masi-giulia/10009182102/?no_cache=1
http://ergodic.ugr.es/mamunoz/papers/PROC_AIP_Communit.pdf
http://ergodic.ugr.es/mamunoz/papers/PROC_AIP_Communit.pdf


Elsinger, H., Lehar, A., Summer, M., 2006. Systemically important banks:
an analysis for the European banking system. International Economics
and Economic Policy, 3(1):73–89.
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