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Abstract

We examine whether the robustifying nature of Taylor rule cross-

checking under model uncertainty carries over to the case of parameter

uncertainty. Adjusting monetary policy based on this kind of cross-

checking can improve the outcome for the monetary authority in se-

lected specifications. This, however, depends on the functional form

and also on the degree of the misspecification. Increasing the relative

weight attached to Taylor rule cross-checking results in a trade-off be-

tween a reduction of loss and higher standard deviations of the relative

losses. In cases where the monetary authority is not able to commit,

it may be beneficial only to selectively adjust its monetary policy.
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1 Introduction

The Taylor rule is a widely used concept in monetary macroeconomics. Even

though the idea is simple, it has been used in various areas. Taylor (1993)

employs a positive analysis in the sense that he points out that the rule

explains U.S. monetary policy extraordinarily well. Subsequently, this finding

has been frequently captured and confirmed. Gerlach and Schnabel (2000)

apply the concept to pre-European Monetary Union data and estimate a

policy rule for Euro area countries. They show that monetary policy can

also be described well by a Taylor rule and obtain similar coefficient estimates

as the ones initially assumed by Taylor (1993). Other studies suggest that

using real time data and projections for estimating the policy rule parameters

might even improve the explanatory power of the Taylor rule (Orphanides

and Wieland, 2008).

On the other hand, Taylor rules can be used in order to ex-post evaluate

monetary policy and therefore to employ a normative analysis. The quality

of monetary policy can be assessed by comparing actual developments in the

short term interest rate with the interest rate implied by a Taylor rule, in

other words policy was too loose when the monetary policy instrument was

below the Taylor rule-implied interest rate, whereas it was too tight if it was

above the implied rate. Poole (2007) defines monetary policy following the

Taylor rule as being “systematic”, hence he is able to find periods where U.S.

monetary policy is not systematic according to his definition.

Furthermore, the Taylor principle, in other words the requirement for

the coefficient on inflation in a Taylor rule to exceed unity, plays a key role
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when it comes to determinacy in New Keynesian Dynamic Stochastic Gen-

eral Equilibrium (DSGE) models. In stylized DSGE models, this condition

is equivalent to meeting the Blanchard and Kahn (1980) regularity condi-

tions. This, in some way, very technical condition is interesting in view of

the fact that it also provides an economic interpretation. The monetary au-

thority should sufficiently increase its policy instrument in order to be able

to influence the evolution of the real interest rate. On the contrary, a reac-

tion less than one-to-one to inflation is not enough to offset the change in

inflation which in turn might trigger an increase in inflation expectations,

thereby leading to higher future inflation. Empirical studies follow this idea

and evaluate the quality of monetary policy by examining the responsiveness

of the interest rate to developments in the inflation rate. Judd and Rude-

busch (1998) look at monetary policy of different Federal Reserve chairmen

in terms of estimated policy reaction functions. The Burns chairmanship,

for example, is identified as being less responsive to inflation which is put

forward as a reason for high realized inflation during the same time period.

Hence, the Taylor rule might also have some value in evaluating the quality

of monetary policy, or, put differently, it provides information about what a

“good” action for a monetary authority might be.

The fact that interest rates based on the Taylor rule are indeed an indi-

cator for adequate monetary policy is reflected in selected statements from

either policy makers or academics. Governor Janet Yellen indicated the Tay-

lor rule as a means of providing her “a rough sense of whether or not the

funds rate is at a reasonable level”. “I do not disagree with the Greenbook

strategy. But the Taylor rule and other rules ... call for a rate in the 5 per-
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cent range, which is where we already are. Therefore, I am not imagining

another 150 basis points.” (FOMC transcripts, January 31 to February 1,

1995). Among others, Taylor and Williams (2010) argue that Taylor rules

“are designed to take account of only the most basic principle of monetary

policy [and] ... because they are not fine-tuned to specific assumptions, they

are more robust to mistaken assumptions.” We therefore try to investigate

the usefulness of the Taylor rule for monetary policy as a “guideline” in the

sense that it provides valuable information for the monetary authority about

the adequateness of its monetary policy.

Røisland and Sveen (2011) show that the Taylor rule can robustify mon-

etary policy in case of model uncertainty, in other words in the case of a

complete mismatch between the model that the monetary authority uses in

order to determine its monetary policy and the true model and therefore the

true data generating process of the economy. They find that in such a frame-

work, even putting a small weight on the information resulting from Taylor

rule cross-checking in the process of the determination of optimal monetary

policy is able to insure against bad outcomes. In an empirical exercise, they

argue that actual monetary policy may be described by optimal monetary

policy which incorporates cross-checking of this kind. Other approaches on

cross-checking are discussed, for instance, in Beck and Wieland (2008) and

Christiano and Rostagno (2001). Their approaches can be seen as alterna-

tives to the robust policy proposed by Hansen and Sargent (2008) which

is discussed for DSGE models in Giordani and Söderlind (2004) where the

monetary authority also has a reference model at hand and considers the

possibility of a bad shock hitting the model economy. This approach is fre-
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quently referred to as an “evil agent” choosing the worst possible shock for

the economy.

The results of Røisland and Sveen (2011), however, crucially depend on

the assumption of a complete mismatch between the model that the monetary

authority uses for the conduct of its monetary policy and the true data gener-

ating process of the economy. The monetary authority is completely ignorant

in terms of realizing that there is a mismatch between the assumed trans-

mission mechanism and the actual one. As this ignorance is time-invariant,

any issues related to learning are ruled out. Hence, even as time t approaches

infinity and the monetary authority obtains all available information, it will

never be able to learn about the true data generating process and it will

therefore never update its model used for policy determination accordingly.

We take an intermediate point of view where some degree of learning is

assumed to have already taken place in the past such that the monetary

authority is only faced with uncertainty on the side of the parameters of

the true data generating process due to, for instance, insufficient estimation

techniques, rather than the entire transmission mechanism itself.1 Hence,

we consider certainty with respect to the structure of the economy but un-

certainty of the monetary authority about model parameters which clearly

influences the effectiveness of its monetary policy. The question then arises

whether the robustifying nature of Taylor rule cross-checking under complete

model uncertainty in the spirit of Røisland and Sveen (2011) carries over to

the case of parameter uncertainty. In particular, we are interested in the issue

1For other approaches on parameter uncertainty, see for instance Giannoni (2007),
Söderström (2002), or Tillmann (2011).
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how much attention the monetary authority should pay to the information

resulting from this kind of cross-checking.

We find that whether or not Taylor rule cross-checking is beneficial for

the monetary authority in terms of a reduction of loss incurred from infla-

tion and output deviating from the respective steady-state values crucially

hinges on the functional form and also the degree of the parameter misspeci-

fication. In particular, much attention of the monetary authority should be

paid to choosing the appropriate relative weight λ∆ which it attaches to the

information resulting from Taylor rule cross-checking. Increasing this weight

involves a trade-off for the monetary authority in selected specifications. On

the one hand, an increase in the weight is associated with an increase in the

average gain for the monetary authority in terms of a reduction of loss. On

the other hand, increasing the weight increases the standard deviation of the

resulting relative losses. Hence, the choice of λ∆ will also heavily depend on

the risk aversion and also on the information set of the monetary authority,

in other words its knowledge about the functional form of the parameter

misspecification.

In cases where the monetary authority is not able to credibly commit to an

announced policy, it may in principle be beneficial only to selectively adjust

its policy using the information resulting from Taylor rule cross-checking.

The monetary authority should do so when it has reasons to believe that the

true data generating process differs from the assumed one. In this framework,

the detection of potential regime switches is of particular importance.
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2 The theoretical framework

2.1 The conduct of monetary policy

In most cases, a Taylor-type rule is specified in order to close a DSGE model

where the nominal interest rate is a function of inflation and some measure

of economic activity. However, in our case, this step is obsolete because our

aim is to replace an otherwise exogenously specified policy rule by a policy

rule that is obtained from the optimization problem of the monetary author-

ity. We assume that the monetary policy objective can be summarized by

a simple quadratic loss function. That is to say that the monetary author-

ity wants to minimize the weighted sum of the variances of certain target

variables. This approach is standard and for example presented in Clarida

et al. (1999). However, we note that this loss function is not derived from

welfare-theoretical considerations. On the contrary, it is an ad-hoc objective

function trying to describe preferences of the monetary authority. One could

also think of this loss function as a way to model flexible inflation targeting

as introduced by Svensson (1999) where the monetary authority seeks to sta-

bilize inflation, output, and potentially other target variables simultaneously.

We define the “traditional” per period loss function as

Lt ≡ λππ̂
2
t + λyŷ

2
t , (1)

where the parameters λπ and λy capture the importance of stabilizing infla-

tion π̂t and output ŷt, respectively. We set λπ = 1 so that λy captures the

relative importance of stabilizing output to stabilizing inflation. Variables
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with circumflex denote log-deviations from the steady-state.

Motivated by the statements about the usefulness of the Taylor rule

quoted in the introduction, one might think that equation (1) does not cap-

ture the actual objective of the monetary authority. More precisely, the

“traditional” per period loss function does not incorporate deviations of the

interest rate implied by optimal monetary policy from the interest rate im-

plied by a Taylor-type rule. Hence, in the standard approach, such interest

rate deviations are considered irrelevant for the conduct of monetary pol-

icy. However, previous research suggests that the monetary authority might

be better off following a Taylor-type rule. In the case of uncertainty, the

monetary authority may want to insure itself against model misspecification,

meaning that it seeks to robustify its policy. Røisland and Sveen (2011) show

that the Taylor rule can indeed robustify monetary policy in case of model

uncertainty, in other words in the case of a complete mismatch between the

model that the monetary authority uses in order to determine its monetary

policy and the true data generating process of the economy.

We assume that there are two types of models. The first model is referred

to as the reference model of the monetary authority which reflects its belief

of how the economy is structured and what the model parameters are. In

principal, the reference model may or may not entirely reflect the true data

generating process of the economy. This gives rise to the second type of

model, which we call the true model. This model describes the true structure

of the economy and may differ from the reference model. In fact, we assume

that both the reference model and the true model are structurally identi-

cal and therefore reflect the same monetary policy transmission mechanism.
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However, there is a misspecification on the side of the model parameters

as the monetary authority is not able to perfectly estimate the model pa-

rameters. This approach is realistic in the sense that we do not believe the

monetary authority (at least in the long run) to get it wrong in terms of the

reference model which is the basic implication of Røisland and Sveen (2011).

Hence, we let the monetary authority at least optimize using the correct

structural model.

The monetary authority uses the reference model to determine its optimal

policy in the sense that this policy is the result of an optimization problem

and knows about its biased view of the world. It is therefore crucial to note

that the resulting policy is “optimal” just in the reference model. In case of

parameter misspecification the policy may very well turn out to be subopti-

mal and it is difficult to judge ex ante, what the quantitative consequences

of a mismatch between the monetary authority’s reference model and the

true data generating process in terms of loss will be. Hence, it might be

beneficial to find some way to insure against those misspecification as the

exact functional form of the misspecification is assumed to be unknown.

In what follows, we do not argue that the monetary authority should

completely and mechanically follow the Taylor rule in setting the interest

rate. Still, it might be favorable to perform cross-checking in the spirit of

Røisland and Sveen (2011) and let the information resulting from Taylor rule

cross-checking influence the conduct of monetary policy. In other words, the

monetary authority should be able to adjust its monetary policy according

to the signals that it receives from performing this kind of cross-checking.

Therefore, we redefine the monetary authority’s objective by an augmented
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loss function L̃t. Consider that the monetary authority also reacts to devia-

tions of the policy instrument from the Taylor rule-implied interest rate. We

define this spread as

∆t ≡ ît − îTt , (2)

where îTt denotes an interest rate implied by the Taylor rule. The specific

form that we use is standard and reads

îTt ≡ φππ̂t + φyŷt, (3)

where we use the original parameter values from Taylor (1993), in other words

φπ = 1.5 and φy = 0.5. Then, we augment the standard loss function (1)

by a cross-checking term representing the squared interest rate spread and a

corresponding weighting parameter λ∆. Hence,

L̃t ≡ λππ̂
2
t + λyŷ

2
t + λ∆∆

2
t . (4)

Equation (4) belongs to the class of “modified” loss functions, with the

most well-known examples presented in Rogoff (1985) and Walsh (1995).

In order to empirically motivate this approach, consider figure 1 where we

plot the squared value of ∆t against the loss resulting from the period loss

function (1). We compute those series from actual quarterly U.S. data. The

figure suggests that there is a relationship between the monetary authority’s

loss and deviations of the federal funds rate from the Taylor rule-implied
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Figure 1: Losses and squared deviations between the federal funds rate and
the Taylor rule-implied interest rate for the U.S. .

interest rate. Both series are positively correlated. Therefore, it seems to be

the case that the economy experiences higher losses when deviations of the

policy instrument from the Taylor rule-implied interest rate are large and

vice versa.

Since the monetary authority faces a dynamic problem, it minimizes a

discounted “lifetime” loss function

L0 = E0

∞∑

t=0

(1− β)βtL̃t, (5)

where 0 < β < 1 is the discount factor subject to the equations characterizing

the reference model. The standard approach of flexible inflation targeting is

nested by setting λ∆ = 0 in (4). The assumption of a lifetime loss function

becomes mainly important when we consider optimal monetary policy under

commitment. Since under commitment the monetary authority is able to

credibly convince the public that it will stick to a particular policy, it is able

to influence the agents’ expectations. This enables the monetary authority,

compared to a discretionary policy maker, to obtain lower future losses at
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the cost of higher losses today. We employ a numerical approach to calculate

the optimal monetary policy under commitment. In particular, we follow

Svensson (2010), who also shows how to solve a linear quadratic regulator

(LQR) problem with rational expectations.2

Let the linear dynamic model equations be



X̂t+1

Hx̂t+1|t


 = A



X̂t

x̂t


+Bît +



C

0


 εt+1, (6)

where X̂t is an (nX × 1)-vector of predetermined variables, x̂t is an (nx × 1)-

vector of non-predetermined variables, εt+1 is an (nε × 1)-vector of i.i.d.

shocks with mean zero, and x̂t+1|t is the expectation of x̂t+1 conditional on

information available at time t.

Consider the case of commitment. Minimizing the loss function (5) sub-

ject to the linear dynamic model equations (6) with respect to X̂t, x̂t, and ît

yields nX + nx + 1 first-order conditions represented by

Ā′



ξt+1|t

Ξt


 = W




X̂t

x̂t

ît



+

1

β
H̄ ′



ξt

Ξt−1


 , (7)

where ξt and Ξt−1 are (nX × 1)- and (nx × 1)-vectors of non-predetermined

and predetermined Lagrange multipliers, respectively. Ā and H̄ are matrices

conformable with the vectors of stacked Lagrange multipliers and W is the

diagonal weighting matrix of the LQR problem. It will in general be the case

2Dennis (2007), Dennis (2004), or Söderlind (1999) suggest alternative solution methods
to the LQR problem which are equivalent to the method in Svensson (2010).
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that the optimal monetary policy under commitment resulting from setting

up the Lagrangian function and taking the first-order conditions necessarily

relates the interest rate ît to the predetermined variables of the model. Hence,

optimal monetary policy under commitment relates the interest rate to X̃t ≡[
X̂ ′

t Ξ′
t−1

]′
. The unique equilibrium explicit instrument rule is then given

by

ît = FiX̃t, (8)

where Fi is an (1×nX̃)-vector and nX̃ ≡ nX+nx. Different instrument rules,

however, have different determinacy properties (Svensson, 2010). As such, it

may be necessary to generate an implicit instrument rule which relates the

policy instrument also to the non-predetermined variables of the model in

order to ensure determinacy. Define an arbitrary (1 × nx̃)-vector K where

nx̃ ≡ nX + nx and also for convenience assume that K(1, nx + 1) = 0. Then,

a non-unique equilibrium implicit instrument rule is given by

ît = FiX̃t = FiX̃t +K(x̃t − FX̃t) = F̃ X̃t +Kx̃t,

where x̃t ≡

[
x̂′t î′t ξ′t

]′
.

When one wants to implement a policy which is optimal in a certain model

with one set of parameters into a different potentially misspecified model, the

first-order condition of the Lagrangian with respect to the interest rate ît (in

other words the last row of (7)) is replaced by the policy resulting from the

optimization problem of the monetary authority.
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In the case of discretionary policy, the Lagrange multipliers will not play

a role for optimal monetary policy. The interest rate will only be a linear

function of the predetermined variables X̂t and implementing a policy only

involves replacing an otherwise exogenously specified policy rule. A non-

unique equilibrium implicit instrument rule can be constructed in a similar

way as before (Svensson, 2010).

2.2 The model economy

In order to determine the optimal monetary policy on the basis of the ref-

erence model and to simulate data using the true model, we use a standard

DSGE model incorporating sticky wages and prices. The linearized model we

employ is closely related to the one developed by Smets and Wouters (2003).

Hence, we use a model that is on the one hand accepted in the profession, and

on the other hand captures the most relevant frictions necessary to fit actual

data. Our calibration can be found in tables 1 and 2 and mostly follows the

results in Smets and Wouters (2003) for their estimated Euro area model.

In what follows, we will just give a brief and mostly non-technical overview

of the model features.3 We focus on the general structure of the model

commenting on the frictions implemented. The linearized model equations

are summarized in the Appendix.

The economy is inhabited by a continuum of households who maximize

their expected lifetime utility. Those households decide upon their intertem-

poral allocation of consumption and are subject to external habit formation

3For readers interested in the details and the derivation of the model, we recommend
to consult Smets and Wouters (2003).
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Parameter Description Value
β discount factor 0.999
τ depreciation rate of capital 0.025 ∗

α capital output ratio 0.3 ∗

1/ψ elasticity of cap. util. cost 0.169 ∗

γp degree of partial indexation prices 0.469 ∗

γw degree of partial indexation wages 0.763 ∗

ξp Calvo price stickiness 0.908 ∗

ξw Calvo wage stickiness 0.737 ∗

λw markup in wage setting 0.5 ∗

σl inverse elasticity of labor supply 2.400 ∗

σc coeff. of relative risk aversion 1.353 ∗

h habit portion of past consumption 0.573 ∗

φ 1+ share of fixed cost in prod. 1.408 ∗

1/ϕ investment adj. cost 6.771 ∗

invy investment share of GDP 8.8τ (∗)
cy consumption share of GDP 1− 0.18− invy (∗)
r̄k steady-state return on capital 1/β − 1 + τ (∗)

Table 1: Calibrated model parameters. Parameters marked with “∗” are
directly considered for misspecification whereas those marked with “(∗)” will
be affected indirectly.
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Parameter Description Value
ρǫl AR for labor supply shock 0.889
ρǫa AR for productivity shock 0.823
ρǫb AR for preference shock 0.855
ρǫg AR for government expenditure shock 0.949
ρǫinv

AR for investment shock 0.927
ρw AR for wage markup shock (i.i.d.) 0
ρq AR for return on equity shock (i.i.d.) 0
ρλp

AR for price markup shock (i.i.d.) 0
σǫl stand. dev. of labor supply shock 3.520
σǫa stand. dev. of productivity shock 0.598
σǫb stand. dev. of preference shock 0.336
σg stand. dev. of government expenditures shock 0.325
σǫinv

stand. dev. of investment shock 0.085
σλp

stand. dev. of price markup shock 0.160
σλw

stand. dev. of wage markup shock 0.289
σǫq stand. dev. of equity premium shock 0.604

Table 2: Calibrated shock processes

meaning that today’s utility depends not only on today’s consumption but

also on last period’s aggregate consumption. Technically, consumption habits

work as if one assumed consumption adjustment cost, thus they induce con-

sumers to adjust consumption levels more gradually. According to Abel

(1990), this effect is sometimes referred to as “catching up with the Jone-

ses”, capturing the idea that households compare their consumption level to

the one of neighboring households’. Furthermore, they intratemproally face

a labor/leisure decision. A shock to the discount factor as well as a shock

to preferences are added to the households’ optimization problem. House-

holds face a budget constraint which allows them to shift funds intertem-

porally via riskless bonds and have labor income, income from investment

into state-contingent securities, and income from capital investments. Note
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that a variable capital utilization rate is assumed which in turn affects house-

holds’ return on capital and improves upon the persistence of the variables in

sticky prices general equilibrium models (Dotsey and King, 2006). Therefore,

it might be preferable to first increase the utilization rate before extending

the existing capital stock.

Wages are set in a staggered way following Erceg et al. (2000). With a

fixed and exogenous probability 1 − ξw wages can be reoptimized whereas

with the converse probability, wages cannot be adjusted. As a result, wages

are set in a forward looking manner such that future expectations of wages

also become relevant for current wages. It is assumed that those wages which

cannot be reoptimized are subject to partial indexation which makes current

wages also depend on past wages.

On the one hand, households decide about their investment into the capi-

tal stock. This investment will be available for production with a one-period

lag. On the other hand, households influence the capital utilization rate

which determines how intensively the existing capital stock is used. This

is of particular importance as households face capital adjustment costs that

induce a wedge between the marginal product of capital and its rental rate,

introducing a variable price for capital.

The production sector consists of final and intermediate goods producers.

Final goods producers construct consumption goods using intermediate goods

and sell them to households. Furthermore, they are subject to cost-push

shocks. The intermediate goods sector uses utilized capital and labor for

production. In order to motivate price setting on the side of the firms, they

act under monopolistic competition. Hence, firms have some degree of market
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power. Prices are set according to Calvo (1983), in other words, firms are able

to reoptimize prices with a fixed and exogenous probability 1 − ξp whereas

the non-optimized prices are partially indexed to last period’s inflation. This

induces price setting to be forward and backward looking at the same time

which results in a hybrid version of the New Keynesian Phillips curve.

As indicated before, we do not adopt the monetary policy rule used in

Smets and Wouters (2003) since it is our goal to implement what would have

been the optimal policy in one model into a different potentially misspecified

model.

3 Simulation

3.1 Simulation setup

As pointed out earlier, we assume that some degree of learning has already

taken place in the past such that the monetary authority is only faced with

uncertainty on the side of the parameters of the true data generating pro-

cess. Consequently, the monetary authority is completely aware of the true

structure of the economy but does not know all relevant parameters entirely.

At a first stage, we assume that the parameters of the reference model

show a misspecification of a systematic form. That is to say that the mone-

tary authority for some reason systematically over- or underestimates some

parameters of the true model. Here, we assume that the estimation bias is

of magnitude 2.5% or 5.0%. The parameters that we consider for misspeci-

fication are marked with “∗” in table 1. The reason for this choice is twofold.
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First, the standard deviations of the shocks that are incorporated in the ref-

erence model do not influence optimal monetary policy. This is the so-called

certainty equivalence property (Svensson, 2010). Second, we exclude those

parameters that might exceed critical thresholds when they are increased or

decreased in an ad-hoc way. This is for instance of particular importance

for the parameters indicating the autocorrelation coefficients of the shock

processes and also the discount factor β. Parameters marked with “(∗)” are

affected indirectly. Subsequently, we think of the misspecification as being

of a random nature. In this case, parameters of the true model are randomly

either overestimated, underestimated, or pinned down correctly.

Optimal monetary policy under commitment is obtained using the refer-

ence model of the monetary authority. For all subsequent analyses, we fix

the weighting parameters λπ and λy to 1 and 2/3, respectively. As we are

interested in the relative importance of the squared interest rate spread, we

choose λ∆ ∈ [0; 0.25]. For the model simulations, the true model is used

which is closed using the policy obtained from the optimization problem of

the monetary authority using the reference model. Since squared deviations

of the interest rate from the Taylor rule-implied interest rate are irrelevant

from a welfare-theoretical perspective, there is no reason why one should eval-

uate the monetary authority’s loss using the per period loss function given

by equation (4) with λ∆ 6= 0. A reasonable alternative is to compute the

loss with respect to the traditional per period loss function (1) even though

the optimal policy is determined using (4). Therefore, it is important to

note that for model evaluation and loss determination λ∆ is set equal to

zero in all cases. This is in line with Røisland and Sveen (2011) and ensures
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comparability of the simulation results.

We perform simulations of the true model for λ∆ ∈ [0; 0.25]. For each

value of λ∆, we perform a set of N = 100 simulations, each containing

T = 5, 000 simulated quarters. By doing so, we ensure that for each set of

simulated time series, simulated quarters that are more than T periods ahead

are negligible for loss evaluation.

3.2 Simulation results – commitment

Figures 2 up to 6 show the simulation results where figures 2 and 3 refer to

the case where the true model parameters are systematically overestimated

compared to the reference model that is used to determine monetary policy,

whereas figures 4 and 5 represent the case of a systematic underestimation.

Furthermore, we consider the case where the parameters are randomly either

overestimated, underestimated, or pinned down correctly by the monetary

authority in figure 6. Within each figure, we plot in the upper panel the

average relative loss between using the traditional loss function (1) for the

determination of monetary policy and using loss function (4) that is adjusted

for a Taylor rule cross-checking term. When the respective values exceeds

100%, adding the cross-checking term is on average beneficial in terms of

the monetary authority’s objective. Since we simulate the true model for

each value of λ∆ N = 100 times, we end up with a whole distribution of

relative losses such that we are able to compute the standard deviations of

the relative losses. The respective plot can be found in the lower left panel.

Furthermore, conditional on assuming Gaussian relative losses, we plot the

19



0 0.05 0.1 0.15 0.2 0.25
92

94

96

98

100

102

λ∆

R
el

at
iv

e 
lo

ss
 in

 %

0 0.05 0.1 0.15 0.2 0.25
0

1

2

3

4

5

6

λ∆

S
.D

. o
f r

el
at

iv
e 

lo
ss

 in
 %

0 0.05 0.1 0.15 0.2 0.25
0

20

40

60

80

100

λ∆

P
ro

b(
R

el
at

iv
e 

lo
ss

 <
 1

00
) 

in
 %

Figure 2: True parameters are 5% lower compared to the reference model.

probability that Taylor rule cross-checking is not beneficial for the monetary

authority, in other words the probability that the relative loss will be smaller

than 100%.

Consider first the case where the parameters of the true model are system-

atically 5% lower compared to the parameter values of the reference model in

figure 2. We find that the monetary authority is on average able to improve

the resulting loss in the region where λ∆ = [0; 0.06]. Hence, there is only a

small window for choosing λ∆ in a beneficial way. Therefore, the monetary

authority has to be cautious as attaching too much weight on the information

resulting from Taylor rule cross-checking is not harmless. Choosing higher
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Figure 3: True parameters are 2.5% lower compared to the reference model.

values of λ∆ increases the volatility of the relative losses. Hence, it becomes

riskier for the monetary authority to increase the relative weight.

Figure 3 shows a more optimistic picture. When the true parameters

are overestimated and in fact 2.5% lower compared to the parameters of the

reference model, the monetary authority is on average able to generate im-

provements in terms of the relative loss over the whole range λ∆ ∈ [0; 0.25]

with a maximum average gain at λ∆ = 0.23. Hence, here the monetary au-

thority would be better off adjusting its policy instrument into the direction

of the Taylor rule-implied interest rate. The standard deviation of the rela-

tive losses is lower compared to the previous case and also increases steadily
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Figure 4: True parameters are 5% higher compared to the reference model.

with λ∆. This impression is also recovered from the probability of ending up

worse compared to the baseline case. The probability is rather low and in

fact only increases gradually.

The case where the true parameter values are in fact 5% larger compared

to the reference model is depicted in figure 4. Putting even a very low weight

on the Taylor rule cross-checking term worsens the situation of the monetary

authority in terms of the relative loss. The average relative loss immediately

falls below 100%, reflecting that the loss when sticking to the non-adjusted

policy is smaller. A weight of λ∆ = 0.25, for instance, results in a loss which

is on average twice as large compared to the baseline case. The standard
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Figure 5: True parameters are 2.5% higher compared to the reference model.

deviation increases and approaches a value of 3%. The lower right panel

emphasizes that putting a positive weight on λ∆ will almost always increase

the loss. Hence, for this parameter specification, the monetary authority

should not use the Taylor rule when deciding about its monetary policy as

this has on average strong negative effects on the associated losses.

Next, we analyze the case where the true parameter values are 2.5% larger

compared to the reference model. In figure 5, the results are qualitatively

similar compared to the previous case, in other words adjusting monetary

policy for Taylor rule cross-checking deteriorates the monetary authority’s

loss. However, the effect is weaker. The standard deviation approaches a
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Figure 6: True parameters are either 2.5% lower, 2.5% higher, or pinned
down correctly compared to the reference model.

similar value of about 2.5%. The probability of ending up worse compared

to the baseline case is around 100% and can hardly be distinguished from

the certainty case.

After having discussed a systematic over- and underestimation of the

model parameters we now turn to the case where the misspecification is

of a random nature. More precisely, we assume that a given parameter is

overestimated with a probability of 40%, underestimated with a probability

of 40%, and pinned down correctly with the converse probability.

In this setup we have to undertake an intermediate step in order to ensure

determinacy of the model in all simulations. Since we do not a priori know
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whether a certain combination of parameters leads to a determinate solution

of the model, the parameter combinations have to be checked for determinacy

first. If a combination yields an indeterminate solution, the random draw

is not accepted and another combination is generated. We then end up

with a set of 100 misspecified parameter combinations at our disposal. The

subsequent analysis is the same as before such that the the corresponding

graphs can be found in figure 6.

The results are qualitatively similar to the ones obtained in figures 4 and

5. Hence, adding the cross-checking term will on average generate a higher

loss for the monetary authority. The impact, however, seems to be smaller in

the sense that the relative loss does not decrease as much. The probability

of ending worse compared to the baseline case is slightly above 80%.

Summing up, we find that whether or not cross-checking is beneficial for

the monetary authority crucially hinges on the type and also the degree of

the parameter misspecification. This makes it necessary for the monetary

authority to determine which parameters are subject to uncertainty, in other

words which parameters are likely to be estimated with error. Hence, whether

or not cross-checking is beneficial also depends on the information set of the

monetary authority. This point is of particular importance as our results sug-

gest that for some parameter specifications, Taylor rule cross-checking may

even have severe effects on the relative loss and therefore on the monetary

policy objective.
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3.3 Simulation results – discretion

If the monetary authority is able to commit to a certain policy, it may or

may not be beneficial to let the information resulting from Taylor rule cross-

checking influence the conduct of monetary policy depending on the type of

parameter misspecification. In what follows, we drop this assumption and

assume instead that no technology is available such that the monetary au-

thority is not able to credibly commit to an announced policy. Whether

or not commitment or discretion is a more adequate depiction of reality is

not obvious (Friedman and Woodford, 2010). Schaumburg and Tambalotti

(2007) and Debortoli and Nunes (2007), for instance, argue that an interme-

diate case may perhaps be more realistic. Besides the fact that discretionary

policy may or may not describe actual monetary policy, analyzing this case

enables us to consider non-constant model parameters.

Recall that a drawback of Røisland and Sveen (2011) results from the

fact that the monetary authority is ignorant in terms of realizing that there

is a mismatch between the assumed transmission mechanism and the actual

one. The same argument, even though in an alleviated form, also applies to

our analysis so far. It is reasonable to believe that the monetary authority

realizes in the long run that there is a missmatch on the side of the parameters

of the true data generating process compared to its reference model.

As in the previous section, we assume that there are two types of mod-

els. The first model is the reference model of the monetary authority which

reflects its belief of how the economy is structured. The second model dif-

fers from the reference model in the sense that it may contain a different set
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of model parameters. The true underlying economy and therefore the true

data generating process are now assumed to be instationary in the sense that

the true data generating process potentially switches from one period to the

next. To make this operational, we assume that the set of model parameters

switches according to a Markov process. We argue that this feature makes

the setup of the previous analysis more realistic as it is hard to believe that

the monetary authority does not learn the true parameters over time if the

true model parameters persistently differ from the reference model parame-

ters. In this new environment, even if the monetary authority was somehow

able to ex-post assess whether or not its reference model was identical to

the true underlying economy in the previous period, this does not provide

any valuable information for the conduct of its future monetary policy as the

transmission mechanism may change in the subsequent period according to

the assumed Markov process.

Furthermore, reconsidering the quotes mentioned in the introduction, it

seems more plausible that the monetary authority selectively adjusts its pol-

icy using the information resulting from Taylor rule cross-checking. Hence,

when no commitment is possible and the monetary authority is able to reop-

timize in each period, it may be optimal to adjust its monetary policy only

if the monetary authority is for some reason convinced that the reference

model differs from the true model economy.

As a starting point, we assume that the monetary authority perfectly

detects regime switches. That is to say that the monetary authority knows

for sure whether or not its reference model is currently identical to the true

economy. It is important, however, that the parameters of the true data gen-

27



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

105

110

115

120

p

R
el

at
iv

e 
lo

ss
 in

 %

 

 
Always/selective
Never/selective

Figure 7: Relative losses for different model probabilities p.

erating process are still assumed to be unknown and that precise estimation

is not feasible.

Since our previous results suggest that for the commitment case, adjust-

ing optimal policy according to a Taylor rule is not always advantageous, we

would expect a similar result to materialize under discretionary policy. For

this reason, we only consider a case where Taylor rule cross-checking actually

helped to improve losses. We therefore look at the case where the true pa-

rameters are 2.5% lower compared to the reference model and set λ∆ = 0.23.

Subsequently, we let the probability p of the Markov process that the true

model economy is not identical to the monetary authority’s reference model

increase from 0 up to 1. The loss evaluation is carried out in the same form as

before. We present the simulation results with respect to the relative losses

in figure 7. The solid line represents the loss when the monetary authority

always uses the augmented loss function in order to determine its monetary

policy divided by the loss when it only selectively uses the augmented loss

function. We call the latter case “selective monetary policy adjustment”. The

dashed line represents the relative loss when the monetary authority never
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Figure 8: Relative losses for different detection probabilities d.

adjusts the objective function for a cross-checking term divided by the se-

lective monetary policy adjustment loss. Values greater than 100% indicate

that selective adjustment is beneficial compared to the respective alternative.

Figure 7 shows that if p is small, the monetary authority gains a lot in terms

of loss when it adjusts its policy selectively instead of always. We find the

maximum gain at p = 0 where the monetary authority is able to improve the

loss by about 18%. When p = 1, in other words when the true model is not

equal to the reference model, there is no gain as both policies are identical

by construction. For 0 < p < 1, the relative loss decreases almost linearly to

100%. The results are similar but less pronounced when comparing the never

with the selective adjustment policy. We find that over the whole range of

p, the relative losses are always greater than 100% except for the case where

p = 0. In the latter case, the two policies are again identical by construction.

However, the maximum gain is 2% and rather small. Under this parameter

constellation, the monetary authority does not do harm when using selective

monetary policy adjustment.

Finally, we relax the in some way unrealistic assumption that the mon-
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etary authority is able to perfectly detect regime switches. In this respect,

we assume that there is an exogenous probability d of detecting the current

parameter state. In figure 8 we present the simulation results for d ∈ [0.6; 1].

Again, we compare selective monetary policy adjustment to an optimal pol-

icy where the monetary authority always adjusts its policy according to a

Taylor rule and an optimal policy where it never does so. Overall, we find

that the selective adjustment policy turns out to be beneficial on average

as long as the detection probability is greater or equal to 0.82. Hence, the

monetary authority does not necessarily need to detect regime switches with

certainty.

4 Conclusion

This paper builds upon Røisland and Sveen (2011) and sheds light on the

question whether the robustifying nature of Taylor rule cross-checking in their

spirit carries over to the case of parameter uncertainty. We consider certainty

with respect to the structure of the economy but uncertainty of the monetary

authority about model parameters. In particular, we also examine how much

attention the monetary authority should pay to choosing the relative weight

λ∆ for the conduct of its monetary policy.

Considering optimal commitment policy, our results suggest that whether

or not cross-checking is beneficial for the monetary authority in terms of

a reduction of loss incurred from inflation and output deviating from the

respective steady-state values crucially hinges on the functional form and

also the degree of the parameter misspecification. Hence, it is necessary for
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the monetary authority to determine which parameters are mostly subject to

uncertainty, in other words are likely to be estimated with error. This renders

the information set of the monetary authority relevant. This point is pivotal

as we find that for some parameter specifications, Taylor rule cross-checking

may have severe effects on the monetary policy objective.

Therefore, much attention of the monetary authority should be paid to

choosing the appropriate relative weight λ∆ which it attaches to the informa-

tion resulting from Taylor rule cross-checking. Increasing the weight involves

a trade-off in some specifications as an increase in the weight is associated

with an increase in both the average gain for the monetary authority and the

standard deviation of the relative losses. Hence, the choice of the relative

weight will also depend on the risk aversion of the monetary authority.

When no technology is available such that the monetary authority is not

able to credibly commit to an announced policy, we consider the case of dis-

cretionary policy. This enables us to analyze the case where the monetary

authority adjusts its policy only in times when there are reasons to believe

that the true data generating process differs from the assumed one. For our

particular parameter constellation, we find that selective monetary policy ad-

justment can be beneficial in terms of relative losses even though the current

parameter state can only be detected imperfectly. It is up to future research

to propose reliable mechanisms that enable the monetary authority to detect

regime switches with sufficient accuracy.
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Appendix

This section summarizes the linearized model equations that are used in or-

der to determine optimal policy and to simulate the true model. The model

is closely related to the one introduced by Smets and Wouters (2003) but it

lacks a monetary policy reaction function which is replaced by a policy re-

sulting from the optimization problem of the monetary authority. Variables

with circumflex denote log-deviations from the steady-state.

Capital accumulation in the economy evolves according to

k̂t = (1− τ)k̂t−1 + τ învt−1.

Labor demand is summarized by

l̂t = −ŵt + (1− ψ)r̂kt + k̂t−1.

The goods market clearing condition is

ŷt = (1− τky − gy)ĉt + τky învt + ǫgt .

Production in the economy is described by

ŷt = φǫat + φαk̂t−1 + φαψr̂kt + φ(1− α)l̂t.
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Intertemporal allocation of consumption features habit formation and is de-

termined by

ĉt =
h

1 + h
ĉt−1 +

1

1 + h
Etĉt+1 −

1− h

(1 + h)σc
(r̂t − Etπ̂t+1) +

1− h

(1 + h) σc
ǫ̂bt .

Investment is related to Tobin‘s q and follows

învt =
1

1 + β
învt−1 +

β

1 + β
Etînvt+1 +

ϕ

1 + β
q̂t + ǫ̂invt .

Tobin‘s q evolves according to

q̂t = (r̂t − Etπ̂t+1) +
1− τ

1− τ + r̄k
Etq̂t+1 +

r̄k

1− τ + r̄k
Etr̂

k
t+1 + ηqt .

The hybrid New Keynesian Phillips curve reads

π̂t =
β

1 + βγp
Etπ̂t+1 +

γp
1 + βγp

π̂t−1

+
1

1 + βγp

(1− βξp)(1− ξp)

ξp

[
αr̂kt + (1− α)ŵt − ǫ̂at

]
+ ηpt .

Wages are described by

ŵt =
β

1 + β
Etŵt+1 +

1

1 + β
ŵt−1 +

β

1 + β
Etπ̂t+1 −

1 + βγw
1 + β

π̂t

+
γw

1 + β
π̂t−1 −

1

1 + β

(1− βξw)(1− ξw)(
1 + (1+λw)σl

λw

)
ξw

×

[
ŵt − σl l̂t −

σc
1− h

(ĉt − hĉt−1) + ǫ̂lt

]
+ ηwt .
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