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Abstract

This paper investigates optimal policy in the presence of anticipated (or news) shocks.

We determine the optimal unrestricted and restricted policy response in a general

rational expectations model and show that, if shocks are news shocks, the optimal un-

restricted control rule under commitment contains a forward-looking element. As an

example, we lay out a micro-founded hybrid New Keynesian model and show i) that

anticipated cost-push shocks entail higher welfare losses than unanticipated shocks of

equal size and ii) that the inclusion of forward-looking elements enhances distinctly

the performance of simple optimized interest rate rules.

JEL classification: C61, E52

Keywords : News Shocks, Optimal Monetary Policy, Optimal Simple Rules

‡
Address: Faculty of Business, Economics and Social Sciences, TU Dortmund University, Vogelpothsweg
87, 44227 Dortmund, Germany. Phone: ++49-231-755-5403, E-mail : roland.winkler@tu-dortmund.de

§
Address: Department of Economics, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098 Kiel,
Germany. Phone: ++49-431-880-1449, Fax : ++49-431-880-2228, E-mail : wohltmann@economics.uni-
kiel.de



1 Introduction

Recently, a number of macroeconometric studies emphasized the role of anticipated shocks

as sources of macroeconomic fluctuations. Beaudry and Portier (2006) find that more than

one-half of business cycle fluctuations are caused by news concerning future technological

opportunities. Davis (2007) and Fujiwara, Hirose, and Shintani (2008) analyze the impor-

tance of anticipated shocks in medium-scale New Keynesian DSGE models and find that

these disturbances are important components of aggregate fluctuations. Schmitt-Grohé

and Uribe (2008) conduct a Bayesian estimation of a real-business cycle model and find

that anticipated shocks are the most important source of aggregate fluctuations. In partic-

ular, they show that anticipated shocks explain two thirds of the volatility in consumption,

output, investment, and employment.

In light of these findings, we investigate optimal policy in a rational expectations

models with news shocks. In particular, we asked whether the anticipation of future shocks

has a stabilizing and therefore welfare-enhancing effect when compared to unanticipated

shocks. Furthermore, we investigate whether news shocks change the structure of optimal

policy rules. In order to conduct an analysis of the (welfare) effects of anticipated shocks,

this paper presents a general solution method for linear dynamic rational expectations

models with anticipated shocks and optimal policy. Our method extends the work of

Söderlind (1999), who uses the generalized Schur decomposition method, advocated by

Klein (2000), to solve linear rational expectations models with optimal policy. However,

Söderlind (1999) only considers stochastic models with white noise shocks which are, by

definition, unpredictable.

As an economic example, we lay out a calibrated New Keynesian model for a closed

and cashless economy with internal habit formation in consumption preferences, a variant

of Calvo price staggering with partial indexation to past inflation and a time-varying wage

mark-up which represents a typical cost-push shock. We compare the effects of mark-up

shocks under optimal monetary policy for different lengths of the anticipation period.

We find i) that anticipated cost shocks entail higher welfare losses than unanticipated

cost disturbances of equal magnitude and ii) that forward-looking elements enhances the
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performance of simple optimized interest rate rules when agents learn about future distur-

bances in advance. We provide a rationale for this result by demonstrating that, if shocks

are news shocks, the optimal unrestricted control rule under commitment contains as a

basic principle a forward-looking element.

The paper is organized as follows. Section 2 discusses optimal policies in RE models

with anticipated temporary shocks. We first determine the optimal unrestricted policy

under precommitment and calculate the minimum value of the intertemporal loss function.

We then consider (optimal) simple rules and demonstrate how the Schur decomposition

can be used to solve the model under these conditions. Section 3 presents the hybrid New

Keynesian model and discusses the effects of anticipated and unanticipated cost-push

shocks. Finally, Section 4 provides concluding remarks.

2 The Model

In this paper we discuss the following linear rational expectational model

A




wt+1

Et vt+1


 = B



wt

vt


+ Cut +Dνt+1 , (1)

where wt is an n1 × 1 vector of predetermined variables, assuming w0 given, vt an n2 × 1

vector of non-predetermined variables, ut an m× 1 vector of policy instruments, and νt+1

an r×1 vector of exogenous shocks. The matrices A and B are n×n (where n = n1+n2),

while the matrices C and D are n × m and n × r respectively. We allow matrix A to

be singular which is the case if static (intratemporal) equations are included within the

dynamic relationships. The vector w, composed of backward-looking variables, can include

exogenous variables, following autoregressive processes. Et vt+1 denotes model consistent

(rational) expectations of vt+1 formed at time t. We assume that the shocks are anticipated
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by the public in advance and take the following form

νt =





ν for t = τ > 0

0 for t 6= τ ,

(2)

where ν = (ν1, . . . , νr)
′ is a constant non-zero r × 1 vector. It is assumed that at time

t = 0 the public anticipates a shock of the form outlined in (2) to take place at some

future date τ > 0. Note that τ also defines the lengths of the anticipation period. Since

shocks are anticipated by the public we have Et νt+1 = νt+1. For notational convenience,

we define the n × 1 vector kt = (w′
t, v

′
t)
′. Assume that the policy maker´s welfare loss at

time t is given by

Jt =
1

2
Et

∞∑

i=0

λi{k′t+iW̃kt+i + 2k′t+iPut+i + u′t+iRut+i} , (3)

where W̃ and R are symmetric and non-negative definite, P is n×m, and 0 < λ ≤ 1.

2.1 Optimal Policy with Precommitment

We are now going to develop the policy maker´s optimal policy rule at time t = 0. It is

assumed that the policy maker is able to commit to such a rule. From the Lagrangian

L0 =
1

2
E0

∞∑

t=0

λt{k′tW̃kt + 2k′tPut + u′tRut + 2ρ′t+1[Bkt + Cut +Dνt+1 −Akt+1]} (4)

with the n × 1 multiplier ρt+1, we get the first-order conditions with respect to ρt+1, kt,

and ut:




A 0n×m 0n×n

0n×n 0n×m λB′

0m×n 0m×m −C ′







kt+1

ut+1

ρt+1




=




B C 0n×n

−λW̃ −λP A′

P ′ R 0m×n







kt

ut

ρt




+




D

0n×r

0m×r




νt+1 . (5)

To solve the system of equations in (5), expand the state and costate vector kt and ρt

as (w′
t, v

′
t)
′ and (ρ′wt, ρ

′
vt)

′ respectively and rearrange the rows of the (2n+m) × 1 vector
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(k′t, u
′
t, ρ

′
t)
′ by placing the predetermined vector ρvt after wt. Since vt is forward-looking

with an arbitrarily chosen initial value v0, the corresponding Lagrange multiplier ρvt is

predetermined with an initial value ρv0 = 0. Rearrange the columns of the (2n + m) ×

(2n+m) matrices in (5) according to the re-ordering of (k′t, u
′
t, ρt)

′ and write the result as

F



w̃t+1

ṽt+1


 = G



w̃t

ṽt


+




D

0n×r

0m×r




νt+1 , (6)

where w̃t = (w′
t, ρ

′
vt)

′ and ṽt = (v′t, u
′
t, ρ

′
wt)

′. The n× 1 vector w̃t contains the ’backward-

looking’ variables of (5) while the (n + m) × 1 vector ṽt contains the ’forward-looking’

variables.

Equation (5) implies that the (2n+m)×(2n+m) matrix F is singular. To solve equation

(6) we apply the generalized Schur decomposition method (Söderlind, 1999; Klein, 2000).

The decomposition of the square matrices F and G is given by F = Q
′
SZ

′
, G = Q

′
TZ

′
or

equivalently QFZ = S, QGZ = T , where Q,Z, S, and T are square matrices of complex

numbers, S and T are upper triangular and Q and Z are unitary, i.e. Q · Q
′
= Q

′
· Q =

I(2n+m)×(2n+m) = Z ·Z
′
= Z

′
·Z, where the non-singular matrix Q

′
is the transpose of Q,

which denotes the complex conjugate of Q. Z
′
is the transpose of the complex conjugate

of Z. The matrices S and T can be arranged in such a way that the block with the stable

generalized eigenvalues (the ith diagonal element of T divided by the ith diagonal element

of S) comes first. Premultiply both sides of equation (6) with Q and define auxiliary

variables z̃t and x̃t so that



z̃t

x̃t


 = Z

′



w̃t

ṽt


 . (7)
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Partitioning the triangular matrices S and T in order to conform with z̃ and x̃. Then set

Q




D

0n×r

0m×r




=



Q1

Q2


 , (8)

where Q1 is n× r and Q2 is (n+m)× r. We then obtain the equivalent system




S11 S12

0(n+m)×n S22






z̃t+1

x̃t+1


 =




T11 T12

0(n+m)×n T22






z̃t

x̃t


+



Q1

Q2


 νt+1 , (9)

where the n×n matrix S11 and the (n+m)× (n+m) matrix T22 are invertible while S22

is singular. The square matrix T11 may also be singular. The lower block of equation (9)

contains the unstable generalized eigenvalues and must be solved forward. Since

x̃t+s = M2x̃t+s+1 − T−1
22 Q2νt+s+1 (s = 0, 1, 2, . . .) , (10)

where M2 = T−1
22 S22, the unique stable solution for x̃t is given by

x̃t = −
∞∑

s=0

M s
2T

−1
22 Q2νt+s+1 (11)

The upper block of (9) contains the stable generalized eigenvalues and can be solved

backward. Since

z̃t+1 = M1z̃t + S−1
11 (T12x̃t − S12x̃t+1) + S−1

11 Q1νt+1 , (12)

where M1 = S−1
11 T11 (which in general is not invertible), the general solution is given by

z̃t = M t
1K +

t−1∑

s=0

M t−s−1
1 S−1

11 (T12x̃s − S12x̃s+1 +Q1νs+1) (13)

The constant K can be determined using the initial value of the predetermined vector

w̃. By premultiplying equation (7) with Z and by partitioning the matrix Z to conform
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with the dimension of z̃ and x̃, we obtain



w̃t

ṽt


 =



Z11 Z12

Z21 Z22






z̃t

x̃t


 (14)

and therefore w̃0 = Z11z̃0+Z12x̃0 with w̃0 = (w′
0, 0

′
n2×1)

′, z̃0 = K, and x̃0 = −M τ−1
2 T−1

22 Q2ν,

where it is assumed that τ > 0.1 The constant K is then given by K = Z−1
11 w̃0−Z−1

11 Z12x̃0,

provided the inverse Z−1
11 exists. A necessary condition is that the dynamic system (6) has

the saddle path property, i.e., that the number of backward-looking variables (n1+n2 = n)

coincides with the number of stable generalized eigenvalues (Söderlind, 1999; Klein, 2000).

If Z11 is invertible, equation (14) implies

ṽt = Nw̃t + Ẑx̃t , (15)

where N = Z21Z
−1
11 and Ẑ = Z22 − Z21Z

−1
11 Z12. Write equation (15) as




vt

ut

ρw t




=




N11 N12

N21 N22

N31 N32







wt

ρv t


+




Ẑ1

Ẑ2

Ẑ3




x̃t (16)

and assume the n2 × n2 matrix N12 is invertible. The optimal control rule under commit-

ment or implicit instrument rule can then be written as

ut = N21wt +N22ρv t + Ẑ2x̃t , (17)

To obtain a convergent adjustment process for t ≥ τ , x̃t must be set equal to zero. Hence,

for t ≥ τ , the vector of policy instruments, ut, depends only on backward-looking state

and costate variables.2 For t < τ , however, ut depends on the auxiliary (jump) state

1In the special case τ = 0 (unanticipated shocks) we have x̃0 = 0 and z̃t = (S−1

11 T11)
tK+(S−1

11 T11)
tS−1

11 Q1ν

implying z̃0 = K +S−1

11 Q1ν and K = Z−1

11 w̃0 −S−1

11 Q1ν with w0 6= 0. By contrast, the initial value w0 can
be normalized to zero if τ > 0.

2For the case of unanticipated shocks (τ = 0) the history dependence of the optimal control rule was already
shown by Currie and Levine (1993).
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variable x̃t of the generalized Schur-transformed system (9).3

It is well-known, however, that such an optimal unrestricted control rule can not

be implemented as an explicit instrument rule for two reasons. First, it leads to an

indeterminacy problem. Second, the rule is rather complicated since it depends on all

endogenous model variables as well as on the exogenous shock processes. However, from

the structure of the optimal control rule we can infer that an optimal simple monetary

policy rule should also contain a forward-looking element. We demonstrate that this

conjecture is indeed true by evaluating optimal simple rules for a hybrid New Keynesian

model.

To determine the minimum value of the loss function Jt at time t = 0, we express Jt

as function of w̃ and ṽ. The loss function (3) can be written as

Jt =
1

2

∞∑

i=0

λi(k′t+i, u
′
t+i)H



kt+i

ut+i


 =

1

2

∞∑

i=0

λi(w′
t+i, v

′
t+i, u

′
t+i)H




wt+i

vt+i

ut+i




, (18)

where the (n+m)× (n+m) matrix H is given by

H =



W̃ P

P ′ R


 (19)

with H = H ′.

2.2 (Optimal) Simple Rules

The policy maker could alternatively commit to a suboptimal simple rule of the form

ut = Λkt +ΨEt kt+1 , (20)

3If the n2 × n2 matrix N12 is invertible it is possible to substitute the predetermined costate variables pv,t
by the original state variables vt and wt. The implicit instrument rule can then alternatively be expressed
as it = Γvvt + Γwwt + Γx̃x̃t, where Γv = N22N

−1

12 , Γw = N21 −N22N
−1

12 N11, and Γx̃ = −Ẑ2 +N22N
−1

12 Ẑ1.
Since x̃t = 0 for t ≥ τ , the optimal control rule is only a linear function of the original state variables
vt and wt. For t < τ , the auxiliary jump variable x̃t can not be eliminated from the optimal implicit
instrument rule.
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where the constant matrices Λ and Ψ are m × n. Assuming rational expectations and

exogenous shocks of the form (2) which are anticipated in t = 0, we obtain the dynamic

system



A 0n×m

Ψ 0m×m






kt+1

ut+1


 =




B C

−Λ Im×m






kt

ut


+




D

0m×r


 νt+1 . (21)

The generalized Schur decomposition yields the system of equations

F



w̃t+1

ṽt+1


 = G



w̃t

ṽt


+




D

0m×r


 νt+1 , (22)

where w̃ = w is an n1 × 1 vector, ṽ = (v′, u′)′ is an (n2 + m) × 1 vector and where the

square matrices F and G are (n +m) × (n +m) with the decomposition QFZ = S and

QGZ = T , where Q, Z, S, and T are (n+m)× (n+m) matrices. Since



w̃

ṽ


 =



Z11 Z12

Z21 Z22






z̃

x̃


 , (23)

the matrices Z11, Z12, Z21, and Z22 are now n1 × n1, n1 × (n2 +m), (n2 +m) × n1, and

(n2 + m) × (n2 + m) respectively. The auxiliary variables z̃ and x̃ satisfy the following

system of equations




S11 S12

0(n2+m)×n1
S22






z̃t+1

x̃t+1


 =




T11 T12

0(n+m)×n1
T22






z̃t

x̃t


+



Q1

Q2


 νt+1 , (24)

where S11 and T11 are n1×n1 matrices, S22 and T22 are (n2+m)× (n2+m) and S12 and

T12 are n1 × (n2 +m). The matrices Q1 and Q2 are n1 × r and (n2 +m)× r respectively

with



Q1

Q2


 = Q




D

0m×r


 . (25)
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The solution of (24) is given by (11) and (13). For t ≥ τ , we obtain ṽt = Nw̃t = Nwt,

where N = Z21Z
−1
11 is now an (n2 +m)× n1 matrix.

The loss function (18) simplifies to

Jt =
1

2

∞∑

i=0

λi(w′
t+i, ṽ

′
t+i)H



wt+i

ṽt+i


 . (26)

The minimization of J0 with respect to the coefficients of the matrices Λ and Ψ yields

an optimal simple rule of the form (20).

3 Example: A Hybrid New Keynesian Model

The model is a standard New Keynesian model for a closed and cashless economy with

monopolistic competition in goods and labor markets and with the additional features

of internal habit formation in consumption preferences, a variant of the Calvo (1983)

mechanism with partial indexation of non-optimized prices to past inflation, and a time-

varying wage mark-up which represents a cost-push shock.4

After log-linearization, the model consists of hybrid IS and Phillips curves. The hybrid

IS curve is given by

Ŷt = κ1Ŷt−1 + κ2 Et Ŷt+1 − κ3 Et Ŷt+2 − κ4(R̂t − Et π̂t+1) , (27)

where Ŷt is the percentage deviation of output from its steady state, R̂t is the percentage

deviation of the nominal interest rate, and π̂t is the percentage deviation of inflation.

The parameters are as follows: κ1 = h
1+h+βh2 , κ2 = 1+βh+βh2

1+h+βh2 , κ3 = βh
1+h+βh2 , and κ4 =

(1−h)(1−βh)
σ(1+h+βh2)

. β is the discount factor, σ > 0 is the inverse of the intertemporal elasticity of

substitution in consumption, and h ≥ 0 measures the degree of internal habit formation in

consumption preferences. Note that the term −κ3 Et Ŷt+2 results from the assumption of

internal habit formation. In the alternative case of external habit formation (or ”keeping

up with the Joneses”) the IS curve will be a linear function only of Ŷt−1, Et Ŷt+1, and of the

4Similar models are used by Smets and Wouters (2003), Giannoni and Woodford (2004), or Casares (2006).
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real interest rate, R̂t −Et π̂t+1. Note that for h = 0, we obtain the purely forward-looking

New Keynesian IS curve.

Under the assumption of Calvo price setting with partial indexation of non-optimized

prices to past inflation, the log-linearized price setting equation can be written as

π̂t = ω1 Et π̂t+1 + ω2π̂t−1 +Θm̂ct , (28)

where m̂ct denotes linearized real marginal costs, ω1 = β
1+βγ

, ω2 = γ
1+βγ

, and Θ =

(1−βθ)(1−θ)
θ(1+βγ) . γ is the degree of price indexation and θ is the usual Calvo parameter. Note

that for γ = 0, equation (28) collapses into a purely forward-looking price setting equation.

By assuming monopolistic competition in labor markets and a constant returns to scale

technology with labor as the only input factor in production, we obtain the following rela-

tion between real marginal costs, m̂ct, the real wage, ŵt, the marginal rate of substitution

between consumption and leisure, m̂rst, and the output gap Ŷt.
5

m̂ct = ŵt = λ̂w,t + m̂rst = λ̂w,t + (η + δ1)Ŷt − δ2Ŷt−1 − βδ2 E Ŷt+1 , (29)

where η > 0 is the inverse of the Frisch elasticity of labor supply, δ1 = σ(1+βh2)
(1−h)(1−βh) , and

δ2 =
hσ

(1−h)(1−βh) . The log-linearized wage mark-up λ̂w,t is described by the AR(1) process

λ̂w,t = ξwλ̂w,t−1 + et . (30)

The dependence of real marginal costs on past and future output is driven by the as-

sumption of internal habit formation in consumption. Note that for h = 0, we obtain

m̂ct = λ̂w,t + (η + σ)Ŷt.

By inserting equation (29) into equation (28), we obtain a hybrid New Keynesian

5Note that in our model the level of output in the absence of nominal rigidities (the natural level) Y n
t is

constant. Thus, the linearized output Ŷt coincides with the linearized output gap Ŷ
g

t = Ŷt − Ŷ n
t , where

Ŷ n
t = 0.
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Phillips curve of the following form

π̂t = ω1 Et π̂t+1 + ω2π̂t−1 + ω3Ŷt − ω4Ŷt−1 − βω4 Et Ŷt+1 +Θλ̂w,t , (31)

where ω3 = Θ(η+ δ1) and ω4 = Θδ2. Note that for γ = h = 0, this equation collapses into

the purely forward-looking New Keynesian Phillips curve.

Following Woodford (2003, Ch. 6) and Giannoni and Woodford (2004), a second-order

approximation to the households’ utility yields a loss function of the form

J0 = E0

∞∑

t=0

λt

(
(π̂t − γπ̂t−1)

2 + αY (Ŷt − δŶt−1)
2

)
, (32)

where αY =
Θhσλp

(1+λp)δ(1−βh)(1−h) , (1 + λp) is the mark-up in the goods market, and δ is the

smaller root of the quadratic equation

hσ

(1− βh)(1− h)
(1 + βδ2) =

(
η +

σ

(1− βh)(1− h)
(1 + βh2)

)
δ . (33)

We follow Giannoni and Woodford (2004) and Casares (2006) by assuming that the

monetary authority is concerned about the volatility of the nominal interest rate. There-

fore, we augment the welfare-theoretic loss function by the additional term αRR̂
2
t , where

αR measures the weight on interest rate stabilization.

The monetary authority then seeks to minimize the loss function

J0 = E0

∞∑

t=0

λt

(
(π̂t − γπ̂t−1)

2 + αY (Ŷt − δŶt−1)
2 + αRR̂

2
t

)
, (34)

subjected to the equations (30), (31), and (27). Note that in our model, the discount

factor of the policy-maker, λ, is equal to the household’s discount factor β.

In order to solve the model by using the methods outlined in Section 2, we define the

policy objective parameters Ŷ o
t = Ŷt− δŶt−1 and π̂o

t = π̂t− γπ̂t−1. Furthermore, we define

the auxiliary variables π̃t = π̂t−1, Ỹt = Ŷt−1, and st = Et Ŷt+1. If we add the definition of

the real interest rate r̂t = R̂t−Et π̂t+1, we finally obtain a 3×1 vector wt of predetermined
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variables given by wt = (λ̂w,t, π̃t, Ỹt)
′, a 6×1 vector vt of non-predetermined variables given

by vt = (π̂t, Ŷt, st, r̂t, π̂
o
t , Ŷ

o
t )

′, the vector of policy instruments ut which is simply the scalar

ut = R̂t, and the 1× 1 shock vector νt = et.

We complete the description of the model by presenting the calibration. The time unit

is one quarter. The discount rate is equal to β = 0.99, implying a quarterly steady-state

real interest rate of approximately one percent. The intertemporal elasticity of substitution

is assumed to be σ = 2. We follow Casares (2006) and set the habit formation parameter

to h = 0.85 implying that the weight on lagged output in the IS equation is 1/3. The

calibrated η = 3 implies a labor supply elasticity with respect to the real wage of 1/3. λp

is set to 8/7 which implies a steady-state mark-up in the goods market of approximately

14 percent. We assume the linearized wage mark-up λ̂w,t to be persistent and choose ξw

equal to 0.8. In our baseline scenario, the Calvo parameter θ is set to 0.75 implying an

average duration of price contracts of one year. In order to check whether our welfare

results will also hold in the case of flexible price adjustment, we set θ = 0.05. The price

indexation parameter γ is set to 0.45 which is roughly equal to the value reported by Smets

and Wouters (2003). This implies that the weight on lagged inflation in the Phillips curve

equation is 0.31.

The parameter values chosen for our model imply a weight on output in the policy-

makers’ objective function of approximately αY = 0.69. Following Casares (2006), we set

αR = 0.0088 implying a small preference for interest rate smoothing.

For the analysis concerning anticipated and unanticipated shocks, we assume that

the economy is in a deterministic steady-state until period t = 0. In the case of an

unanticipated shock, the mark-up λ̂w,t jumps by one percent in period t = 0 and begins

to fall thereafter. In the case of an anticipated shock, the agents anticipate in period

t = 0 that a one percent increase in the mark-up will take place at some future date τ > 0.

They also know that the mark-up will subsequently decline according to the autoregressive

process (30), where now et = 1 for t = τ and et = 0 for t 6= τ . Note that τ also defines

the length of the anticipation period or the time interval between t = 0 and t = τ . In

order to obtain impulse response functions and welfare results, we simulate the dynamic
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adjustment paths and the welfare loss function by using the methods outlined in Section

2.

3.1 Unrestricted Optimal Monetary Policy

Figure 1 depicts the impulse response functions of inflation, output, nominal, and real

interest rates under unrestricted optimal monetary policy. The solid lines with circles

represent the responses to an unforeseen cost-push shock that emerged in period t = 0.

The solid lines with squares, triangles, and stars represent responses to a cost-push shock

whose realization in period τ = 1, τ = 2, or τ = 3 is anticipated in period t = 0.
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Figure 1: Impulse response functions under unrestricted optimal monetary policy.

Notes : Solid lines with circles denote responses to an unanticipated cost-push
shock, solid lines with squares, triangles, and stars denote responses to an anticipated
cost-push shock taking place in period τ = 1, τ = 2, and τ = 3.

An unanticipated rise in the wage mark-up puts upward pressure on the prices of

intermediate goods and hence on inflation. Despite the instantaneous jump in inflation,

the real interest rate rises due to the sharp increase in the nominal interest rate. The

increase in the real interest rate induces households to postpone consumption implying
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an abrupt drop in output. Subsequently, the nominal interest rate continues to rise. This

leads – in conjunction with the decline in inflation – to hump-shaped response functions

of the real interest rate and output.

In the case of anticipated shocks, the optimal policy calls for a decline in nominal and

real interest rates in response to the anticipation of a future rise in marginal costs. At

the latest with the occurrence of the anticipated shock in period τ , the nominal and real

interest rates start to rise and display a hump-shaped development. Inflation declines in

response to the anticipation of the future rise in marginal costs. After this initial decline,

inflation starts to rise and peaks in the period when the anticipated shock materializes.

Output displays a hump-shaped downturn, starting at the point of anticipation, t = 0.

The drop in output is thereby amplified by the lengths of the anticipation period τ .

A visual inspection of the impulse response functions suggests that the anticipation of

future shocks leads to an increase in the volatility of inflation, output as well as nominal

and real interest rates which is in turn increasing with the lead time τ . This observation is

in line with the results of Fève, Matheron, and Sahuc (2009). They consider a stylized one-

dimensional purely forward-looking rational expectations model with an anticipated shock

and demonstrate that the volatility of the endogenous variable is an increasing function

of the length of the time period between the anticipation and the realization of the shock,

τ .

The destabilizing effect of anticipations does not imply necessarily that the welfare

loss which is a positive function of economic volatility is also increasing with the lead time

τ . The reason is the opposite effect of discounting the future impacts of the shock from

period τ to period t = 0.6

The welfare effects of anticipations are shown in Figure 2 which displays the welfare

loss, J0, as a function of the time span between the anticipation and the occurrence of

the cost-push shock (a) in our baseline model; (b) in the case of no price indexation,

γ = 0; (c) in the case of no habit formation in consumption, h = 0; (d) in the case of a

6This is true although the impact or anticipation effect which measures the initial jump of a variable taking
place at the time of anticipation is inversely related to the time span between the anticipation and the
realization of the cost-push shock.
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Figure 2: Welfare loss for different lengths of the anticipation period under unrestricted
optimal monetary policy

purely forward-looking New Keynesian model, γ = h = 0; (d) in the case of highly flexible

prices, θ = 0.05; (e) in the case where the policy maker does not care about interest rate
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stabilization, αR = 0.

The welfare function exhibits – independent of the model specifications – a hump-

shaped pattern implying that for a realistic time span between the anticipation and the

realization of cost-push shocks, anticipated disturbances entail higher welfare losses than

unanticipated disturbances of equal size. The rationale is that the discounting effect is

dominated by the volatility effect. A welfare gain from anticipating can only be achieved

for very large (and unrealistic) values of τ .

3.2 Optimal Simple Monetary Policy Rules

In the following, we will check correctness of the conjecture that simple rules which include

forward-looking elements perform better when the economy is hit by news shock. In order

to do so, we consider a set of possible simple interest rate rules and minimize the policy

maker’s loss function with respect to the coefficients of the respective rule. The rules

considered are variants of the interest rate rule proposed by Taylor (1993) which describes

the nominal interest rate as a linear function, f , of current inflation, πt, and the current

output gap, Ŷt. We employ the following forward-looking variants of the Taylor rule: i)

R̂t = f(π̂t, Ŷt,Et π̂t+1), ii) R̂t = f(π̂t, Ŷt,Et Ŷt+1), iii) R̂t = f(π̂t, Ŷt,Et π̂t+1,Et Ŷt+1), iv)

R̂t = f(Ŷt,Et π̂t+1), v) R̂t = f(π̂t,Et Ŷt+1), and vi) R̂t = f(Et π̂t+1,Et Ŷt+1). We consider

three different values for the length of the anticipation period, τ : τ = 0, τ = 3, and τ = 8.

τ = 0 implies an unanticipated shock, τ = 3 and τ = 8 imply that agents learn about the

exogenous disturbance three and eight quarters in advance, respectively.7

The results of our numerical simulations are shown in Table 1. It is shown that

the inclusion of forward-looking elements is significantly welfare-improving if the oc-

currence of the shock is anticipated in advance. Take, for instance, the rule R̂t =

f(π̂t, Ŷt,Et π̂t+1,Et Ŷt+1), where the interest rate reacts not solely to current inflation and

output gap, but also to the expected future values π̂t+1 and Ŷt+1. This rule performs

significantly better than the original Taylor rule for both τ = 3 and τ = 8. Note, however,

7Note that a rule which is found to be optimal in the case of an unanticipated shock will not be optimal in
the case of, for instance, τ = 3 . Therefore, we reoptimize the coefficients of a given rule when τ changes.
This approach is necessary for a reasonable comparison of different optimal simple rules given a specific
timing of the exogenous disturbance.
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Table 1: Performance of optimal simple rules

τ = 0 τ = 3 τ = 8

Rule Loss Relative loss Loss Relative loss Loss Relative loss

Unrestricted optimal policy 0.62 100.00 1.16 100.00 1.16 100.00

R̂t = f(π̂t, Ŷt) 0.67 108.71 1.74 150.33 1.75 150.21

R̂t = f(π̂t, Ŷt,Et π̂t+1) 0.67 107.26 1.51 130.09 1.58 136.24

R̂t = f(π̂t, Ŷt,Et Ŷt+1) 0.65 104.86 1.54 132.41 1.62 139.62

R̂t = f(π̂t, Ŷt,Et π̂t+1,Et Ŷt+1) 0.65 105.31 1.40 120.77 1.41 121.21

R̂t = f(Ŷt,Et π̂t+1) 0.69 110.96 4.11 353.91 5.07 436.59

R̂t = f(π̂t,Et Ŷt+1) 0.68 109.23 1.74 149.50 1.74 149.53

R̂t = f(Et π̂t+1,Et Ŷt+1) 0.69 111.53 4.04 348.11 4.98 428.45

Note: The relative loss is the percentage of the absolute loss from the simple rule relative to the absolute

loss from the optimal unrestricted monetary policy.

that purely forward-looking rules that react not at all on current economic conditions

such as R̂t = f(Et π̂t+1,Et Ŷt+1) perform remarkably worse than an optimized standard

Taylor rule. But this is completely in line with the conclusion drawn from the inspection

of the optimal control rule (17) which contains current state variables and forward-looking

elements if the policy maker is faced with anticipated shocks. It is worth noticing that

rules which do not include the actual level of inflation perform distinctly worse.

4 Conclusion

In this paper, we presented a method to solve linear dynamic rational expectations models

with anticipated shocks and optimal policy by using the generalized Schur decomposition

method. Furthermore, we determine the optimal unrestricted and restricted policy re-

sponses to anticipated shocks. Our approach also allows for the evaluation of the widely

discussed case of unpredictable shocks and can therefore be seen as a generalization of the

methods summarized by Söderlind (1999).

We demonstrated our method by means of a calibrated New Keynesian model with

internal habit formation in consumption preferences, a variant of Calvo price staggering

with partial indexation to past inflation, a time-varying wage mark-up which represents

a typical cost-push shock, and a utility-based loss function. We simulated the model

economy’s responses to unanticipated and anticipated cost-push shocks under the unre-

stricted optimal monetary policy. We showed that anticipated shocks amplify both, the
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stagflationary effects of cost-push shocks and the overall welfare loss.

This paper offered a novel insight about the optimal conduct of monetary policy by

demonstrating that anticipated shocks provide a rationale for the inclusion of forward-

looking elements in optimal monetary policy rules. We demonstrated that the optimal

implicit instrument rule derived from the solution of an optimal control problem comprises

a forward-looking element when disturbances are anticipated in advance. In the standard

case of unanticipated shocks, this rule is only a linear function of backward-looking state

variables. We infer from this general result that optimal simple (monetary) policy rules

should also contain a forward-looking element. We show that this conjecture is indeed true

by evaluating a set of optimal simple rules within the hybrid New Keynesian model. For

anticipated shocks, we find that partly forward-looking simple rules are welfare-enhancing

when compared to a standard optimized Taylor rule. However, consistent with our theo-

retical result, the inclusion of forward-looking elements does not significantly enhance the

performance of optimal simple rules if shocks occur unexpectedly.
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