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Multi-Asset Portfolio Optimization and Out-of-Sample Performance:

An Evaluation of Black-Litterman, Mean Variance and

Naive Diversification Approaches

Abstract.

The Black-Litterman (BL) model aims to enhance aigdlecation decisions by overcoming
the weaknesses of standard mean-variance (MV)qgbiortbptimization. In this study we
implement the BL model in a multi-asset portfolmntext. Using an investment universe of
global stock indices, bonds, and commodities, wpieaally test the out-of-sample portfolio
performance of BL optimized portfolios and compéne results to mean-variance (MV),
minimum-variance, and naive diversified portfolidgN-rule) for the period from January
1993 to December 2011. We find that BL optimizedtfptios perform better than MV and
naive diversified portfolios in terms of out-of-sple Sharpe ratios even after controlling for
different levels of risk aversion, realistic inve®nt constraints, and transaction costs.
Interestingly, the BL approach is well suited tteahte most of the shortcomings of MV
optimization. The resulting portfolios are leskyisare more diversified across asset classes,
and have less extreme asset allocations. Sengiéimalyses indicate that the outperformance
of the BL model is due to the consideration of tekability of return estimates and a lower
portfolio turnover.
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1. INTRODUCTION

The traditional mean-variance (MV) optimization (Mewitz, 1952) has played a
prominent role in modern financial theory for matgcades. It provides the investor with the
optimal asset allocation if future asset returres karown and if portfolio risk and return are
the only relevant parameters. In practical apgbecest estimation errors in the input
parameters, corner solutions, and high transaatmsts resulting from extreme portfolio
reallocations often result in a poor out-of-samplertfolio performance. Practitioners
frequently try to cope with these problems by impdating constraints on the portfolio
weights and turnover. Black and Litterman (1992)pmse an alternative approach to deal
with the shortcomings of MV and to improve portfolperformance. Their approach has
gained increasing attraction among practitionexgpfsingly, the academic literature has
paid little attention to this model so far. One adbage of the Black-Litterman (BL) model is
that it combines two sources of information - ‘|dbjve’ and ‘implied’ return estimates -
thereby reducing the sensitivity of portfolio weigh In contrast to MV optimization,
investors have the choice either to provide reastimates for each asset or to stay neutral for
some assets they feel uncomfortable in providitigbke future return estimates. Moreover,
the reliability of each return estimate can be ipooated enabling investors to distinguish

between qualified estimates and pure guesses.

So far the academic literature provides little empl evidence analyzing the
performance of the BL model in an out-of-sampletirsgt Although several studies
investigate the rationale of the BL model and agplp calculate efficient frontiers, there
exists no evidence that in an out-of-sample opttnon the BL model generates a superior
portfolio performance relative to MV, minimum-vanige, or naive diversified benchmark
portfolios. We contribute to the literature by tegtthe BL model empirically in that we
conduct out-of-sample multi-asset portfolio optiatians for the period from January 1993 to
December 2011. We implement BL, MV, minimum-variares well as naive diversification
approaches and evaluate the respective portfolrfonpeance results. The main research
guestion is whether the BL model is able to allevithe problems of MV optimization and
whether it generates a superior out-of-sample glartfperformance. We compute several
performance measures and evaluate the BL portfaiosomparison to MV, minimum-
variance, and naive diversified benchmark portfolia addition, the literature is extended by
implementing the BL model on multi-asset portfolio€luding global stocks, bonds, and

commodities rather than stock-only portfolios.



Our empirical results offer new insights in sevedahensions. We find that the BL
model can successfully be applied to multi-assetf@m optimization by using strategic
weights for the different asset classes. BL optadiportfolios exhibit a consistently higher
out-of-sample portfolio performance, they includelaager number of assets than MV
optimized portfolios, and they are better diveesifiacross asset classes. The superior out-of-
sample performance of the BL model is due to trditmehal information on the reliability of
return estimates (‘views’) and a lower portfoliartaver. In an analysis of sub-periods we
find that the BL model outperforms MV and naive atsified portfolios particularly in
recessionary periods and that BL-optimized poxlexhibit lower turnover and superior

diversification properties. Finally, our resultg aobust to variations of the input parameters.

The remainder of the paper is organized as follolssection 2 we review the
literature on MV optimization, naive diversificatioules, and the BL approach. In section 3
the methodology of the BL model and the employedopmance measures are described.
The data and some descriptive statistics are peadvid section 4. Our empirical results are

presented and discussed in section 5. Section @untes.

2. LITERATURE REVIEW

2.1. Mean-Variance-Optimization

The traditional mean-variance (MV) optimization (Mewitz, 1952) is widely
employed in the academic literature. A number ofligts use MV optimization to analyze the
diversification benefits of an additional assetsslan a multi asset portfolio context. These
studies usually employ mean-variance spanning tegitsanalyze the diversification benefits
of emerging equity markets (Bekaert and Urias, 198%n, Nijman and Werker, 2001), real
estate (Chiang and Lee, 2007), small cap stockse{Re 2005), microfinance funds (Galema,
Lensink, Spierdijk, 2011), commodities (Daskalagkiadopoulos (2011) or hedge funds
(Bessler, Holler, Kurmann, 2012). These studievigmevidence that investing in additional

asset classes may be attractive for investorssges&iimprove their risk-return profile.

In these approaches the portfolios’ expected nisk returns are estimated relying on
historical data. These historical estimates, howesaee subject to a substantial level of
uncertainty. Hence, the expectations on the pasoisk-return structure may not materialize
ex post. In fact, an early study by Jobson and ieofk981a) highlights the large estimation



errors in using sample estimates and the poor es&mple performances of MV strategies.
Estimation errors of returns, however, are muchevwitical than those of the covariance
matrix since their effect on the optimized porifolieights is about ten times larger (Chopra
and Ziemba, 1993). In the MV optimization framewoadssets with the highest estimation
errors tend to obtain the highest portfolio weightesulting in ‘estimation error
maximization’ (Michaud, 1989). Additionally, the M¥lpproach tends to generate extreme
portfolio allocations and low levels of diversiftaan across asset classes (Broadie, 1993), i.e.
the optimized portfolios are usually corner solasio Furthermore, mean-variance optimal
portfolio weights are highly sensitive to changasthe input parameters which results in
radical portfolio reallocations even for small \ions in expected return estimates (Best and
Grauer, 1991).

A number of authors propose variations and extessad the MV approach trying to
cope with these shortcomings. These approacheg rfaogn imposing portfolio constraints
(Frost and Savarino, 1988; Jagannathan and Ma,, B¥¥3ler, Holler and Kurmann, 2012) to
the use of factor models (Chan, Karceski and Latak, 1999) and Bayesian methods for
estimating the MV input parameters. Prominent Beyeapproaches include the Bayes-Stein
shrinkage estimation (Jorion, 1985 and 1986), wisichinks the return estimates from the
sample mean returns towards the minimum variancefglio return, and approaches
proposed by Pastor (2000) and Pastor and Stami{20gh) which builds on the prior belief
in an asset-pricing model such as the CAPM or diffadtor model, e.g. the three-factor
Fama and French model (1993). However, to evalingteontribution of these extensions in
a more realistic environment, the performance efdptimization rules has to be evaluated in
an out-of-sample setting in comparison to adequaachmark portfolios. Prominent
benchmark portfolios and popular investment stiategiclude naive diversified portfolios

such as the 1/N-portfolio, which is discussed mrlext section.
2.2. Naive Diversification: 1/N

Naive diversified portfolios are usually based osimple asset allocation strategy
such as the 1/N-rule, which suggests to split tlealth uniformly between the available
investment opportunities. In an early study Jobaond Korkie (1980) find that the ‘naive
formation rules such as the equal weight rule agperform the Markowitz rule.” Duchin and
Levy (2009) provide a comparison of the 1/N rulethwthe Markowitz mean-variance
optimization using 30 Fama-French industry portielfor the period from 1991-2007. They

conclude that the 1/N strategy outperforms MV optation for individual small portfolios,

5



but that for large portfolios (i.e. institutionahviestors) the Markowitz strategy provides
superior results in an out-of-sample framework. #weo recent study by DeMiguel, Garlappi
and Uppal (2009) analyzes whether MV strategiesthadvarious variations adopted in the
literature outperform a naive diversified 1/N polith across a wide range of different asset
allocation datasets. Using several performance uneasDeMiguel, Garlappi and Uppal
(2009) find that none of the different MV strategjis able to consistently outperform the
naive equal weighted benchmark (1/N) in an outamiysle application. However, the analysis
by Kirby and Ostdiek (2012) suggests that the tesaf DeMiguel, Garlappi and Uppal
(2009) are largely driven by their research desigd their choice of asset allocation datasets.
Nevertheless, the results of Kirby and Ostdiek Z0eveal that a high turnover mostly
erodes the benefits of MV optimization when tratisaiccosts are included. These findings
might explain why the naive diversification approaexperiences an increasing interest
among academicians and practitioners alike. Bernamtt Thaler (2001) provide evidence that
the 1/N-rule is also a popular strategy for priviateestors. More than a third of the analyzed
direct contribution plan participants allocate tressets equally among the investment options
offered in these plans. Pflug, Pichler and Woz&P@l2) suggest that the 1/N approach is the
optimal investment strategy even under high modwiguity. They demonstrate numerically
that MV optimized portfolios convergence to the farm portfolio if model uncertainty

increases.
2.3. The Black-Litterman Approach

The Black-Litterman model (1992) was developed ntben twenty years ago in a
professional asset management environment and gim@e experiences an increasing
attention among quantitative portfolio managerstdi®z! and Scowcroft, 2000; Jones, Lim
and Zangari, 2007). In the academic literature isd\authors analyze the rationale of the BL
model and provide examples for applying the methaglo (Satchell and Scowcroft, 2000;
Lee, 2000; Drobetz, 2001; Idzerek, 2005). For eXamyeucci (2006) proposes an extension
of the BL model to non-normally distributed markethereas Herold (2005) provides an
alternative approach to compute implied returnsiaf@wongse et al. (2012) propose an
extension for incorporating qualitative views iretform of linear inequalities. An overview
of the BL model and its extensions are providet\alters (2011) and Meucci (2010).

Even if several studies analyze the rationale ef Bh model, apply it to compute
efficient frontiers, and provide model extensiottee academic literature does hardly offer

any empirical evidence documenting the performaoicéhe BL model in out-of-sample
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applications. So far there is no evidence that Bhemodel generates superior portfolio
performance results relative to MV, minimum-varianor naive diversified benchmark
portfolios. In addition, the literature on the BLodel does not provide a satisfying answer
how to generate adequate ‘subjective’ return esémand how to quantify the reliability of
these estimates. Several studies simply assumeeeaogly given estimates (He and
Litterman 1999, Lee 2000, Drobetz 2001, Idzorek3)0fhd suggest confidence intervals of
the return estimates as a measure of uncertaingcKBand Litterman 1992, Drobetz 2001).
As the portfolio performance critically dependstbe exogenously assumed estimates, these
approaches are hardly capable to evaluate the tdy@yusness of the BL model in

comparison to MV and naive diversified benchmankfpbos.

3. METHODOLOGY

3.1. The Black-Litterman approach

The BL model combines two sources of informationolatain return estimates:
‘neutral’ return estimates implied in market weghthich are also referred to as ‘implied’
returns and ‘subjective’ return estimates thatadse referred to as ‘views'. ‘Implied returns’
are derived by market or benchmark weights anduaegl as a prior. The basic idea is that
investors should only depart from the market orchemark weights if they have reliable
information and estimates on future returns, whdifier from the implied market or
benchmark expectations. ‘Implied’ returns are dstiwsing the simple assumption that the
observed market or benchmark weights of assetthareesult of a risk-return optimization.
More precisely it is assumed that market partidipamaximize the utility function U:

@ maxU =w'M, —gaf > w

whereo is the vector of portfolio weight$]e is the vector of implied asset excess retutns,
is the variance-covariance matrix, ardd is the investor's risk aversion coefficient.

Maximizing the unrestricted utility function ressiin the optimal portfolios weights:

(2) w=(%)"N,



Assuming that the observable market weighisare the average optimized portfolio weights

of investors, the average excess-return estimétiae onarket can be calculated as:
©® MN.=0Xw

In the BL framework the vector of implied excestures (I¢) is combined with the
investor's views expressed in the vectory)(Qncorporating the reliability of each view
guantified in the matrix¢¢). To derive the combined return estimates, thgimal Black-
Litterman (1992) paper references the Theil’'s miestimation model (Theil, 1971), while
several authors also suggest a Baysian estimatoaieihiLee, 2000; Drobetz, 2001). Figure 1
illustrates the procedure of the BL approach.

[Figure 1 about here]

We briefly describe the intuition of combining theturn estimates following Theil’s
mixed estimation approach. It is assumed that mapkxcess returndlf) and subjective
views (Q) are estimators for the mathematically correct sxeeturn estimatesd). Hence,
the correct excess return estimateg ¢an be written as implied excess return estim@igs

plus an error termmf, where () is the identity matrix:
@) Me=10u+n with 7~N(@O7X)

The error term1() is assumed to be normally distributed with a asace proportional
to the historic variance-covariance matriX).( The proportional factort) reflects the

uncertainty of implied returns.

The subjective excess return estimateg (@n be written as a linear combination with
the error termgd), where (P) is a binary matrix which contains itifermation for which asset

a subjective return estimate is considered.
B Q. =Py +& with £€~N(0,Q)

The matrix Q) is the covariance matrix of the error terms agpresents the reliability of
subjective estimates. Implied returns and subjeastimates can be combined as:

o [o]e ]



Applying a generalized least square procedure léadbe estimator of combined excess

return estimates which after some simplificatioas be written as:
~ -1 TA-1p|™? -1 TA-1
7 i BL:[(rz) +PTQ P] [(rz) N+P'Q Q]

The resulting return estimate can be interpreted agighted average of implied returns and
subjective return estimates (Lee 2000) with resp@¢he correlation structure. The weights
are the uncertainty factors of implied returmps gnd subjective return estimate3)(which
will be discussed in the following section.

Satchell and Scowscroft (2000) show that the pimsteariance covariance matrix is:
® T, =z+{z)+Pop’

After computing combined return estimates and tbstqyior variance-covariance matrix a
traditional risk-return optimization is conduct@daximizing the investor’s utility.

©) m(?-XU =W fheg _ng Lg @

We implement realistic investment constraints, rigmee budget restriction, an
exclusion of short-selling, an upper bound on thatfplio volatility and solve the
maximization problem numerically. The volatility restraint allows us to differentiate
between different investor types in terms of tla@sired portfolio volatility rather than risk
aversion coefficients, which are intuitively diffic to quantify. We keep the risk aversion
coefficient constant at a level of 2. For MV optoaiion, we implement the same
optimization procedure. The only difference is tfatthe MV approach the vector of mean
historic excess returngy) and the historic variance-covariance-matd) &re used while in
the BL framework combined excess return estimafgs,;() and the posterior variance-
covariance-matrixXg,) are plugged in. For the time period from Januk893 to December
2011 we calculate monthly out-of-sample optimizediplios at every first trading day of the

month, using the BL, MV and minimum-variance apjgioa
3.2.  Uncertainty of implied returns

Before implementing the BL model the uncertaintyapaeter of implied returnsc)(
has to be specified. In the literature the valussdufor €) usually range from 0.025 to 0.3



(Black and Litterman, (1992); He and Litterman, 429 Idzorek, (2005)Drobetz, 2001). For
very small valuest(~0) the combined returns converge to implied retamd the optimized
portfolio converges to the market portfolio or trespective benchmark. For large values
(t—o0) the combined returns converge to the ‘views’ Hreloptimized portfolio converges to
the mean-variance portfolio in which the ‘viewseahe underlying return estimates. The
parameter 1) controls how distinctly the optimized portfolioay depart from the market
portfolio or the underlying benchmark. Hence, tlagameter ) may be calibrated using a
desired tracking error. We start with setting tlaeameter 1) at a level of 0.1 and analyze
variations between 0.025 and 0.30 in a robustnesskc

3.3.  Uncertainty of ‘subjective’ return estimates

Furthermore, the uncertainty of ‘views’ has to Bpressed in the matriX)), which is
a diagonal matrix comprising the variance of thereterms §) of the ‘views’ on its diagonal.
Values offside the diagonal would represent cotiaia between the error terms of different
‘views’ which in the BL model are assumed to beozflack and Litterman, 1992). If the
variance of error terms is large, the uncertairftthe respective ‘view’ is high. In this case

the optimized portfolio weight will be close to therket or benchmark weight.

Drobetz (2001) suggests using confidence interfi@lsestimating the uncertainty of
‘views’. However, mutually estimating returns aheit respective confidence intervals might
be a challenging task for analyst and might hiralesuccessful implementation of the BL
model. Several authors propose to simply assumeaime or a proportional uncertainty for
subjective estimates as for implied returns (He lattdrman, 1999; Meucci, 2010) by setting
(Q) as:

10) Q=P@Z)P’

In this approach the resulting combined returmessties are independent of the choice
of (t) but no additional information on the reliabiliéy ‘views’ is included. We suggest that
the out-of sample performance of the BL model sthdad enhanced if reasonable and time-
varying information on the reliability of views isonsidered. Therefore, we measure the
reliability of each view (i) by computing the hisito variance of the error terms;)( where
(i) is the difference of the subjective return ester(g;) for an asset (i) in month (t) and the
realized return (f) of asset (i) in month (t). We employ a 12-montloving estimation

window to calculate the historic variance of theoerterms and employ different window
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lengths in a robustness check. The idea is thahioncertain market environment when the
last month’s return estimates depart strongly fritve realized returns the investor should
stick closer to the benchmark. On the other hamdtable market conditions when the last
months subjective return estimates were close ¢ordllized returns, we would expect the

subjective estimate for the next month to be meliable.

We analyze the contribution of this historic reildy measure by comparing the out-
of-sample portfolio performance of our approachhwiite assumption of equal uncertainty
used by He and Litterman (1999) and Meucci (20W)ich substitutes¢§) according to
equation (10).

3.4. Setting strategic weights and constructing benchmérportfolios

To apply the BL model on a multi-asset portfolio wse an investment universe
consisting of global stocks, bonds, and commodifiescalculate implied returns we employ
strategic weights for all asset classes. This iesplihat the optimized portfolio weights
converge to the strategic weights if the reliapildf the ‘views’ is low. An alternative
approach is to employ market weights of the agsetslculate implied returns. However this
would be problematic for several reasons. For codities, market weights would be
difficult to measure, while for bonds market weghwould be problematic due to their
relatively heavy weight in comparison to stocksjclhwould imply that investors allocate an
extreme high proportion of their assets to bontithey do not have ‘subjective’ return
estimates or if the reliability of these estimaiesow. Since this might not be an adequate

assumption for all investors, we rather rely oatsigic weights.

We account for three different investor types canservative’, a ‘moderate’ and an
offensive’ one - and set different strategic wesgfdar bonds, commodities, and stocks for
each type. To determine the strategic weight ofroodities we rely on the results of earlier
studies. Anson (1999) who analyzes US stocks andsor the period from 1974 to 1997
suggests that a moderate investor should allocatend 15% to commodities, while a less
risk-averse investor should allocate over 20% tmmodities. Erb and Harvey (2006) derive
an optimal portfolio weight for commodities of 18%ased on these results we set the
strategic weight for commodities to 5%, 15% and 28%the conservative, moderate and
offensive investor clienteles, respectively. Fumhere, we assume that the conservative
investor allocates strategically 80% in bonds, Wwhmight be, for instance, realistic for
pension funds. For the offensive investor we asstima¢ he only invests 10% in bonds
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strategically, but he might employ higher bond Wésgn case of stock market downturns or
high market uncertainty using bonds as a safe haMam moderate investor type is assumed
to exhibit a strategic weight of bonds of 45% whistright in between the offensive and
conservative bond weights. The strategic weights tfee different investor types are
summarized in table 1. These strategic weightiatenly used to compute implied returns
as input for the BL model but to construct a naiduweersified benchmark for each investor
type as well. This benchmark statically investslinassets using the strategic weights shown
in table 1 (BM | st.w.). A second benchmark (BM1IN) follows the simple 1/N-rule in
which all considered assets are equally weightedh Benchmark portfolios, as well as all

optimized portfolios are rebalanced at every tratling day of each month.
[Table 1 about here]

We compute ‘implicit’ return estimates for each edsand for each investor type
according to equation (3). To derive the maximulovetd portfolio risk used as optimization
constraint we rely on historic benchmark vola#gi before the evaluation period from
January 1988 to December 1992 and add a premiwatiolw for some reasonable deviation
from the benchmark. More precisely, we assume maxirdesired portfolio volatilities for
the ‘conservative’, ‘moderate’, and ‘offensive’ gstor clienteles of 5%, 10%, and 15% p.a.,

respectively (see table 1), which we assume toiagtant over time.
3.5. Subjective return estimates

To successfully implement the BL model the deteation of ‘subjective’ return
estimates is crucial. To be able to compare theltsesf BL and MV optimization the same
return estimates have to be used in both approa@iase a common approach in MV
optimization is to use mean historic returns asirreestimates, we implement this simple
approach in the BL framework as well, using a mgwstimation window of 12 month in the
base case and analyzing different estimation wirsdiova robustness check. However, the BL
approach additionally considers the reliabilitytloé ‘subjective’ estimates as additional input
parameter. As mentioned above we measure theitgyiab historic mean return estimates as
the variance of the historic differences of foréedsand realized returns, using a 12-months
moving estimation window in the base case and airayvarious window sizes in a
robustness check. Hence, the historic return estimé& an asset is assumed to be more

reliable if the historic error of forecasted rewira lower.
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3.6. Performance measures

We calculate several performance measures to dealua optimized portfolios. First,
we compute the moments of the net portfolio retufaier transaction costs) for each
optimization strategy (i). Further, we compute th&-of-sample net Sharpe ratio as the
fraction of the out-of-sample mean net excess-neforean return after transaction costs less

risk-free rate) divided by the standard deviatibouwt-of-sample net returns.

. R -R
@3) SRy =—o——

A

Net i

We use the two-sample statistic for comparing Shagpios as proposed by Opdyke
(2007) to test if the difference in Sharpe ratibswe portfolios is significant. In contrast to
earlier Sharpe ratio tests as proposed by JobsbKarkie (1981b) or Lo (2002) this test can
be applied under very general conditions — statipaad ergodic returns. Most importantly
for our analysis the test permits auto-correlatedl @on-normal distributed returns and allows

for a likely high correlation between the portfoliturns of different strategies.

As a further risk measure besides volatility, wenpate the maximum drawdown, as
proposed by Grossman and Zhou (1993), which reflge maximum accumulated loss that
an investor may suffer in the worst case duringwihele investment period from 2000 to
2011. An advantage of the MDD measure is that ésdoot draw any assumption on the
return distribution. We compute the percentage mari drawdown (MDD) of strategy (i)
as:

P
@4) MDD, = Maxi,rD(o,T)leaXi,m(o,r)(’—

-0 Hl

— B
N—
[E—

where (R+) is the price of portfolio (i) at time (t), when tipertfolio is bought and (R) is the

price of portfolio (i) at time), when the portfolio is sold.

Further, we compute the portfolio turnover, in lingth Daskalaki, Skiadopoulos
(2011), and DeMiguel et al. (2009), which quansifitne amount of trading required to
implement a certain strategy. The portfolio turnoyBT;) of strategy (i) is the average
absolute change of the portfolio weighig pver the T rebalancing points in time and across

the N assets:
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We account for trading costs by assuming propaatidransaction costs of 30 basis

1 T N
a5 PT =23 > (@ -a,e
t=1 j=1

points of the transaction volume in the base casecampute the percentage trading costs
generated by a certain strategy. We investigatanipact of differing trading costs in the
robustness check. Additionally we compute the opech portfolios tracking error and

information ratio by relying on the benchmark I,ieris the reference portfolio for BL.

4. DATA

To construct multi-asset portfolios we include glbbtocks, bonds, and commodities
in the investment universe. We use tow geographBCMstock indices covering both
developed and emerging markets: MSCI World and M$Dierging Markets, both
denominated in US dollar. Emerging markets usugligvide higher stock returns than
developed markets which are related to additionsk factors such as illiquidity or
institutional and political conditions (Igbal et.,aP010). Chiou et al. (2009) show that
international diversification is beneficial for USvestors by reducing portfolio volatility and
improving risk-adjusted returns. Their results helden including investment constraints
such as a short-sale constraint and are also @videtime-rolling efficient frontiers and in

out-of-sample tests.

Bonds are usually negatively correlated with staankg are considered as a safe haven
during stock market downturns. To ensure their fioncas a low risk investment we use US
Government bonds. Thereby we exclude default aneicay risk from the bond investment.
We rely on the Bank of America / Merill Lynch US-@anment Bond Index (all maturities)
to represent investments in bonds. In additionivetude the Bank of America / Merill Lynch
US High Yield 100 Bond Index in order to add an@syre to default risk factors. This index
is expected to yield higher returns than Governnbemids, but at the same time to provide a

lower volatility than stock indices.

The S&P GSCI Light Energy Index represents the symd to commodity
investments. This diversified commodity index eweabinvestors to participate in price
changes in a wide range of commodity markets. Wihiée often used S&P GSCI Index is

mainly driven by energy prices, the S&P GSCI Ligmergy Index is more balanced across
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different commodity classes. It reflects the pra®velopments on the future markets for
energy (37.4%), agricultural products (31.2%) amdstock (10%) as well as industry metals
(14%) and precious metals (7.4%Lommodities are expected to provide low corretsti
with the traditional asset classes stocks and bemdt® their prices are related to additional
risk factors such as weather, geographical conwitior supply constraints. Moreover, as
several studies document a positive correlatioorwget commodity returns and future
inflation, investments in commodities might be usesda hedge against inflation (e.g. Bodie
and Rosanky, 1980; Erb and Harvey, 2006; GortonRmalwenhorst, 2006). Several studies
find that an inclusion of commodities improves #iécient frontier of stock-bond portfolios
(e.g. Satyanarayan and Varangis, 1996; Abanomeywarthur, 1999; Anson, 1999; Jensen
et. al., 2000). However, a recent study of CheurtgMiu (2010) indicates that diversification
benefits of commodities are regime-dependent@askalaki and Skiadopoulos (2011) report
that portfolio improvements of commodities are pogsent in out-of sample MV optimized
portfolios Since a large strand of the literature finds ewage for the positive role of
commodities in portfolio optimization, we includeramodities as another asset class in our

analysis.

We obtain monthly total return index data for altlices for the time period from
January 1988 to December 2011 from Thomson ReD@tastream. All data is denominated
in US dollar. As risk-free rate we use the yieldaahree month US T-Bill. Table 2 provides
descriptive statistics of the monthly asset retudnsng the whole evaluation period from
January 1993 to December 2011.

[Table 2 about here]

The table shows similar annualized mean returnstoeck and bond indices ranging
between 6.16% and 8% p.a. The average return afaimenodity index is slightly lower than
the average risk free rate of 3.12% during thegagniesulting in a negative Sharpe ratio. The
highest Sharpe Ratio of 0.655 is generated by tBe Gdvernmental Bond Index. The
maximum drawdowns (MDD) of the assets reveals thatmaximal loss an investor could
have suffered during the observed period by inkgsin stocks was between 55.16% and
63.04% of the invested capital. This figure wasgidy 60% for commodities, 27.21% for the
US High Yield Bond Index, and 5.29% for the US Goweent Bond Index. The Jarque-Bera
statistics is significant for all asset classesnt¢g the assumption of normal distributed

! Index weights in parentheses are of 30th of Deee2b11.
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returns has to be rejected for the whole period.

For implementing an out-of-sample portfolio optiatibn with the BL and MV
approach, we estimate the variance-covariance xraatid historic mean returns using rolling
estimation windows. Rolling estimation windows pode/ the advantage that they are more
responsive to structural breaks than expandingnasttn windows. In the base case we use
estimation windows of 36 months for the varianceac@mnce matrix and 12 month for
returns. We choose a longer estimation windowHerdovariance matrix since we expect the
correlation structure to be more stable over titmentreturns. Different window sizes are
considered in a sensitivity analysis. For thesetsh@bservation windows the assumption of
normal distributed returns cannot be rejected dral dpplication of the mean-variance

framework is reasonable.

Table 3 provides evidence on potential diversifaratoenefits in terms of pair-wise
correlation coefficients. Over the entire period thversification benefits across stock indices
are limited. The correlation between the MSCI Waidl MSCI Emerging Markets is highly
significant and larger than 0.8 indicating a straesgmovement of developed and emerging
market stocks. While the US High Yield Bond IndexdaCommodities provide a slightly
larger diversification effect with correlation céiefents ranging between 0.35 and 0.65, the
highest diversification potential is provided byetldS Government Bond Index, which is
reflected in negative correlation coefficients. €equently, we expect to find significant
portfolio benefits by applying the BL and MV framerks on a multi-asset portfolio,

including bonds and commodities, rather than otoeksonly portfolio.

[Table 3 about here]

5. EMPIRICAL RESULTS
5.1. Results for the base case

To analyze whether the BL mixed estimation approadhances historic return
estimates we compute monthly out-of-sample estonagrrors (mean squared errors) of
forecasted returns. The results are presentedblie 4a BL forecasts are derived by combining
implied returns with ‘views’. Implied returns areoroputed using the strategic weights
presented in table 1. Within the asset class stihekstrategic weights are assumed to be 25%
for emerging markets and 75% for developed mark&tsordingly, within the asset class

bonds the strategic weights are set 75% for Goventah Bond Index and 25% for the High
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Yield Bond Index. The same asset weights are usaxnstruct the naive diversified Bond
Index Benchmark I. ‘Views’ are historic mean rewumsing a 12-month rolling estimation
window. The results reveal that BL return forecasthibit lower estimation errors in

comparison to simple historic means, which wouldibed in traditional MV optimization.
[Table 4 about here]

To analyze whether the improved return forecasemstate to a significant
outperformance of BL optimized portfolios in comigan to MV, we compute out-of sample
BL, MV and minimum variance optimized portfolioscatwo naive diversified benchmark
portfolios. Table 5 summarizes the empirical restdir the evaluation period from January
1993 to December 2011. We compute sample momenpomtiolio returns and portfolio
performance measures for the three investor typ@sservative’, ‘moderate’ and ‘offensive’.
All data is computed net of transaction costs. lbath the BL and MV optimization we use
historic mean returns as (subjective) return eggmaBenchmarks | is computed according to
the asset weights in table 1. Benchmark Il is amalg weighted (1/N) portfolio in which all
five asset classes obtain a portfolio weight of 2@ portfolios are rebalanced at the first
trading day of each month. The results reveal Blabptimized portfolios exhibit a better
performance in terms of net Sharpe ratio than Mhimum-variance and both benchmark
portfolios for all investor types-or the moderate and offensive investors the ofgpaance
of the BL portfolio in comparison to MV is signidat. The insignificant result for the
conservative investor is not surprising since Bthand MV optimization converge to the
minimum-variance portfolio for high risk aversionBoth risk measures volatility and
maximum drawdown (MDD) indicate a consistently lowisk of the BL optimized portfolios
in comparison to MV, independently of the invedigre The lower risk is also reflected in a

lower absolute sample skewness of BL portfoliamet in comparison to all other portfolios.

The average portfolio turnover is an indicator flee amount of trading and, hence,
transaction costs generated by implementing a inexatimization strategy. However,
transaction costs are already priced in the nermemaximum drawdown and Sharpe ratio
measure. The results show that for all investoresythe BL approach exhibits a lower
portfolio turnover and, therefore, lower transactamsts and less extreme reallocations of the
optimized portfolios in comparison to the MV apprbarhe average number of assets in the
optimized portfolio as an indicator for the divéisation of the optimized portfolios across
asset-classes is on average higher for BL pord#dhan for MV portfolios. Consequently, BL

portfolios tend to be better diversified acroseasksses.
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[Table 5 about here]

Figure 2 shows the optimized portfolio weights dgrthe period 1993-2011 for BL
and MV optimization for the three investor typeslihe with the turnover and diversification
measures, the figure reveals less extreme portfeladlocations and a higher benchmark

orientation of the BL optimized portfolios in conmgan to MV.
[Figure 2 about here]
5.2. Sensitivity Analyses

Next, we perform various sensitivity analyses t@athif our results are robust to
changes in the input datdo test whether the outperformance of the BL apghvoss
responsive to the optimization constraint ‘maximaliowed portfolio volatility’, presented in
table 1, we vary the maximum allowed portfolio iy, while keeping the strategic weights
of stocks, bonds and commodities constant at e & 40%, 45% and 15%, respectively
Panel | of table 6 shows that the BL approach gegasrconsistently and significantly higher
net Sharpe ratios than MV optimization and bothchemark portfolios for all considered
volatility constraints. Additionally, we find lower portfolio risks refleetd in a lower
maximum drawdown (MDD), a higher degree of divécsifion across asset classes expressed
in a larger number of assets in the optimized pbatf a lower portfolio turnover and a higher

information ratio for BL optimized portfolios in ogparison to MV portfolios.

In panels Il and Il of table 6, we present theutessfor different estimation windows
for the variance-covariance matrix and the retwstineates. As before, we find consistently
higher net Sharpe ratios for the BL approach in gamson to MV optimization and both
benchmark portfolios. The results get insignificdot too short or too long estimation
windows for the return estimates. For short esimmatwwindows the portfolio turnover
increases dramatically, resulting in immense tram@a costs and a relatively lower
outperformance in comparison to the naive divedifbenchmark portfolios. For long
estimation windows of 18 month and more the respensss to structural breaks such as a
stock market downturn is lower, resulting in a loweat-of-sample Sharpe ratio. Additionally
an analysis of the auto correlation functions o #sset returns shows that returns are
significantly correlated with the last months rewonly, while returns with a lag larger than

12 month do not have almost any explanatory power.
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Additionally, we observe a better performance of dgitimized portfolios in terms of
maximum drawdown, diversification, turnover, antbmmation ratios. Based on these results,
we identify an optimal estimation window of 36 t® Aonth for the covariance matrix and 12
month for the return estimates. The insignificamiperformance of the BL model for too long
and too short return estimation windows highligihis importance of accurate and responsive
return estimates. However, further research isirequo analyze the performance of the BL
approach when using alternative return estimategs iBsue will be addressed in a further
study.

[Table 6 about here]

To derive additional insights for explaining themerformance of the BL approach we
conduct a further sensitivity analysis, varying Bie parameterstj and 2). The results are
shown in table 7. To analyze the contribution @& tmcertainty measur@) of views, we
alternatively apply the approach used by He antedotan (1999) and Meucci (2010) and
substitute Q) according to equation (10). In this case we syng@isume the same uncertainty
for ‘views’ as for ‘implied’ returns. Hence, no atidnal information on the reliability of
‘views’ is considered. The results show that thppraach leads to an almost complete
disappearance of the outperformance of the BL modebmparison to MV. Therefore, we
infer that a major part of the outperformance of 8L model can be explained by the
consideration of additional information on the abllity of return estimates. This leads to an
investment close to the benchmark or market paotiol case of uncertain market conditions
and high deviations from the benchmark or marketfplco, when markets are more stable

and return forecast errors are low.
[Table 7 about here]

Next, we vary the parameter) On a range from 0.025 to 0.3 which captures robst
the documented approaches in the literature (Béak Litterman, 1992: He and Litterman,
1999; ldzorek, 2005Drobetz, 2001). The results show that the BL madgperforms MV
optimization for all considered values af).(This is not only true for the out-of-sample
Sharpe ratios but also for the risk measure “maringwawdown” (MDD), the diversification
measure “average number of assets”, the portfalimower, and the information ratio
measures. Further, we observe that the BL portfotieviation from the benchmark declines
with lower values of1) which is reflected in lower tracking errors fomler ()-values. This

is in line with the interpretation oft) as an uncertainty measure of implied returns and
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confirms its function to control the desired dematfrom the benchmark or market portfolio.
Further, we find that for our sample®-¢alue of 0.05 is superior to all other analyzedes.
As expected, for tiny values of)( close to zero, we find that the unconstraineithuped BL
portfolio equals exactly the benchmark portfolioa e other hand, for infinite large values
of (1), the optimized BL portfolio is equivalent to tiV optimized portfolio. A further
variation of Q) reveals that the outperformance of the BL poidfid robust to changes in the
estimation window ofQ) for all considered cases from 6 to 36 months.

To investigate the impact of the assumed levelrahdaction costs, we vary the
variable transaction costs from 5 to 50 basis goifihe net Sharpe ratio measures for BL,
MV and the two benchmark portfolios are reportedaible 8. Again, the results reveal that
the BL portfolio performs significantly better thahe MV approach and better than both
naive diversified benchmark portfolios for all cmesed levels of transaction costs. However,
for large transaction costs of 50 basis points oranthe lower portfolio turnover of both
benchmark portfolios gets more pronounced leading lower level of significance of their
relative underperformance to the BL portfolio. Homw levels of transaction costs the
significance level of the outperformance of the Bartfolio relative to the MV portfolio is
lower, illustrating that the lower level of portfolturnover relatively to MV is an additional

driver of the outperformance of the BL approach.
[Table 8 about here]

Finally, we analyze the impact of the chosen refegeportfolio for the BL portfolio
performance. So far, we applied the strategic wsifr stocks, bonds, and commodities as
presented in table 1 (BL-st.w.). Now, we consideo @alternative reference portfolios. The
first is a naive diversified portfolio in which ahe five considered assets obtain the same
strategic weight of 20% (BL-1/N). The second apploases the minimum variance portfolio
as reference portfolio (BL-MinVar). This approack particularly reasonable for a
conservative investor, since it implies that ineesthold the minimum variance portfolio if
they do not have information on future returnshar teliability of return forecasts (‘views’) is
low. The results for different reference portfolim® presented in table 9. The results reveal
that for all considered reference portfolios the &atimization leads to consistently better
portfolio performances in comparison to MV and bbémchmark portfolios and all investor
types. Not surprisingly, we find that for the comnsgive investor type the BL-MinVar
approach performs slightly better than the BL-sgat-weights approach in terms of net
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Sharpe Ratio and portfolio volatility. For offensivnvestors, however, the BL model with

strategic weights as reference portfolio perfornasgimally better.
[Table 9 about here]
5.3. Performance of optimized portfolios in different maket environments

To examine the performance of the BL, MV and mimmuariance portfolios in different
market environments, we separate the total timegdretween 1993 and 2011 into several
sub-periods. We determine expansionary and recessicsub-periods on an ex ante basis
following the approach proposed by Jensen and M&R&©3). This approach builds on the
monetary cycle defined as the first change of tiwrtsterm interest rate by the central bank
that runs counter to the previous trend. In linthvidessler et al. (2012) we rely on changes in
the federal funds target rate augmented by sigmédgnating from the stock market. As in
Bessler et al. (2012) it is assumed that the stoaiket signals a change in the business cycle
if the 24-months moving average of the MSCI Wosddcrossed by the actual index from
below (expansionary state) or above (recessiortatg)s For the transition from one state to
another it is required that both instruments, tleneatary policy as well as the stock market,
provide a consistent signal, thereby reducing thabability of incorrect signals. Figure 3
shows the definition of sub-periods as well asrianetary policy and stock market signals,

where shaded areas denote down markets/recessjuaravys.

The first sub-period ranges from January 1993 tmdey 2001 and covers a number
of events such as the Asian crisis, the Russiaautiefand the build-up of the technology
bubble. This period comprises 96 months and carcHagacterized as ‘expanding’ with
increasing values in developed stock markets aladively high interest rates with a T-Bill
yielding on average 4.77% p.a.. The second sulmgbetween February 2001 and June 2004
covers the end of the new economy bubble and thgesuient rebound of international stock
markets. The second period comprises 41 monthsamdye characterized as ‘recessionary’
with bearish stock markets and an average riskrixgeof 1.85% p.a. (average yield of a 3-
month T-Bill). The third sub-period from July 2004 February 2008 comprises 48 months
and covers bullish stock markets and high interatds. The average risk free rate in this
period is 3.67% p.a.. The final sub-period from 8faR008 to December 2011 includes 47
months and incorporates the recent financial ctigs led to significant declines in the values
of equities and alternative asset classes, sucbrasodities and Hedge Funds. The average
risk free rate in the fourth period was 0.37% p.a..
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Table 10 summarizes the performance measures obuheof sample optimized
portfolios for the four sub-periods for the moderatvestor type. We analyzed the sub-
periods for the conservative and offensive invesli@nteles as well. Since the results do not
change qualitatively, we only report the performanteasures for the moderate investor type
for the sake of clarity and simplicity. In the BbhdMV optimized portfolios the maximum
expected volatility is constrained to 10% p.a.. freg BL optimization the strategic weights
are set according to table 1: 45% for bonds, 15¢edonmodities and 40% for stocks. These
weights are also used to compute the naive divendiienchmark I. In benchmark 1l all assets
are equally weighted (1/N). All portfolios are rédeced at the first trading day of every

month.

For both recessionary sub-periods we find signifilgahigher Sharpe ratios for the BL
optimized portfolios in comparison to MV and a ketperformance in comparison to both
naive diversified benchmark portfolios as well. Hoth expansionary periods we find a
relatively smaller and insignificant outperformarafeBL in comparison to MV. In the third
sub-sample, which covers the bullish stock marketaveen July 2004 and February 2008 we
find that the naive diversified portfolios outperfoboth BL and MV optimized portfolios.

However the difference in Sharpe ratios is insigatit.

Consistently with the analysis for the full sampies find that for all sub-periods BL
optimized portfolios are less risky than MV and tboiaive diversified portfolios which is
indicated by a lower maximum drawdown. Furthermdre,analysis of the portfolio turnover
reveals consistently lower turnovers and, henogetdransaction costs for BL compared to
MV for all sub-periods. Additionally, we find th&br all sub-periods BL portfolios are better
diversified across asset classes than MV portfoldsich is indicated by a higher average

number of assets in the optimized portfolios.

Overall, we find that the BL model outperforms M¥danaive diversified portfolios
particularly in recessionary periods. In expansigngeriods the outperformance in
comparison to MV is insignificant and naive divéesl portfolios even perform better in one
sub-period. In terms of the maximum drawdown, @bdf turnover and portfolio

diversification the results for all sub-periods aomsistent with the results for the full sample.

[Table 10 about here]
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6. CONCLUSION

We analyze the out-of-sample performance of BLroj&ed portfolios in comparison to
MV, minimum variance and naive diversified benchknguortfolios using multi-asset
portfolios. To ensure the comparability of MV ant Bptimization, we use the same historic
return estimates in both approaches. While in thé &pproach the historic estimates are
directly used in the optimization condition, in tiig approach the estimates are first
combined with implied returns, considering thealility of each historic estimate.

Our empirical results contribute to the literatimeseveral ways. First, we find that the
BL model can successfully be applied on multi-ags®tfolios, rather than to stock-only
portfolios, by using strategic weights for the drfnt asset classes or using the minimum
variance portfolio as reference portfolio. For gegiod from January 1993 to December 2011,
we find that BL optimized portfolios exhibit congstly higher out-of-sample portfolio
performances in terms of net Sharpe ratios andisfkemeasure ‘maximum drawdown’ in
comparison to MV, minimum variance and two benchmaortfolios. While in line with
DeMiguel et al. (2009), the MV approach fails in sh@ases to significantly outperform a
naive equally weighted (1/N) benchmark, the BL nhosignificantly outperforms both
considered static benchmark portfolios in almodt ainsidered cases. Moreover, BL
optimized portfolios include, on average, a largember of assets than MV optimized
portfolios and, therefore, are better diversifiectoas asset classes. A further sensitivity
analysis reveals that the out-of-sample outperfoceaof the BL model is driven by the
consideration of additional information on the abiiity of return estimates (‘views’) and by a

lower portfolio turnover.

Furthermore we separate the full sample from Janii@®3 to December 2011 into four
sub-periods based on the monetary cycle and stackansignals, following the approach of
Bessler et al. (2012). We find that the BL modetpeaforms MV and naive diversified
portfolios particularly in recessionary periods. eTther benefits of the BL optimized
portfolios such as the lower maximum drawdowns, ltheer portfolio turnover and the
higher portfolio diversification could be observé all sub-periods consistently with the

results for the full sample.

Finally, we find that for conservative investorsngsthe minimum variance portfolio as
reference portfolio in the BL approach performgtsiiy better in terms of net Sharpe ratios
than setting strategic weights. Our results areisbko all considered variations of the input
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parameters. However, further research is requmeelvaluate the BL portfolio performance
for other than historic return estimates. We widldeess this research question in another

study.

24



References

Abanomey, Walid S., and Ike Mathur, 1999, The heddienefits of commodity futures in
international portfolio constructiodpurnal of Alternative Investments 2, 51-62.

Anson, Mark J. P., 1999, Maximizing utility with monodity futures diversificationJournal
of Portfolio Management 25, 86-94.

Bekaert, Geert, and Michael S. Urias, 1996, Diviesgion, integration and emerging market
closed-end fundslournal of Finance 51, 3, 835-869.

Bessler, Wolfgang, Julian Holler, and Philipp Kuimma2012, Hedge funds and optimal asset
allocation: Bayesian expectations and spanning,tEstancial Markets and Portfolio
Management 26, 109-141

Best, Michael J., and Robert R. Grauer, 1991, @nstmsitivity of mean-variance-efficient
portfolios to changes in asset means: some analyicd computational resuliReview
of Financial Studies 4, 2, 315.

Benartzi, Shlomo, and Richard H. Thaler, 2001, RaiWwersification strategies in defined
contribution saving plangymerican Economic Review 91, 1, 79-98.

Black, Fischer, and Robert Litterman, 1992, Glgimatfolio optimizationFinancial Analysts
Journal 48, 5, 28-43.

Bodie, Zvi, and Victor I. Rosansky, 1980, Risk aeturn in commodity futured;inancial
Analysts Journal 36, 27-39.

Broadie, Mark, 1993, Computing efficient frontiausing estimated parameteinnals of
operations research 45, 21-58.

Chan, Louis K. C., Jason J. Karceski, and Josebhigkok, 1999, On portfolio optimization:
forecasting covariances and choosing the risk mdeiew of Financial Sudies 12,
937-974.

Cheung, C. Sherman, and Peter Miu, 2010, Divegtiba benefits of commodity futures,
Journal of International Financial Markets, Institutions, and Money 20, 451-474.

Chiang, Kevin C. H., and Ming-Long Lee, 2007, Smag tests on public and private real
estate,Journal of Real Estate Portfolio Management 13, 1, 7-15.

Chiou, Wan-Jiun P., Alice C. Lee, and Chiu-Chi Aaig, 2009, Do investors still benefit
from international diversification with investmetwnstraints?The Quarterly Review of
Economics and Finance 49, 448-483.

Chopra, Vijay K., and William T. Ziemba, 1993, Té#ect of errors in means, variances, and
covariances on optimal portfolio choideurnal of Portfolio Management 19, 2, 6-11.

Daskalaki Charoula, and George S. Skiadopoulos,1,208hould investors include
commodities in their portfolios after all? New esrate, Journal of Banking & Finance
35, 2606-2626.

DeMiguel, Victor, Lorenzo Garlappi, and Raman UppaD09, Optimal versus naive

25



diversification: how inefficient is the 1/N portfol strategy?,Review of Financial
Sudies 22, 1915-1953.

Drobetz, Wolfgang, 2001, How to avoid the pitfaits portfolio optimization? Putting the
Black-Litterman approach at workJournal of Financial Markets and Portfolio
Management 15, 1, 59-75.

Duchin, Ran, and Haim Levy, 2009, Markowitz versius talmudic portfolio diversification
strategiesJournal of Portfolio Management 35, 71-74.

Erb, Claude B., and Campbell R. Harvey, 2006, Treteggic and tactical value of commodity
futures,Financial Analysts Journal 62, 69-97.

Fama, Eugene F., and Kenneth R. French, 1993, Comislofactos in the returns of stocks
and bondsJournal of Financial Economics 33, 3-56.

Ferreira Miguel A., and Pedro Santa-Clara, 201Ie€asting stock market returns: The sum
of parts is more than the wholsurnal of Economics 100, 2011, 514-537.

Frost, Peter A., and James E. Savarino, 1988, Etierbperformance: constrain portfolio
weights,Journal of Portfolio Management 15, 29-34.

Galema, Rients, Robert Lensink and Laura Spier@{k,1, International diversification and
microfinance Journal of International Money & Finance 30, 3, 507-515.

Gorton, Gary B., and K. Geert Rouwenhorst, 200&td-and fantasies about commodity
futures,Financial Analysts Journal 62, 47-68.

Grossman, Sanford J., and Zhongquan Zhou, 1993im@ptinvestment strategies for
controlling drawdownsiathematical Finance 3, 1993, 241-276.

He, Guangliang, and Robert Litterman, 1999, Thaeitiin behind the Black Litterman model
portfolios, Investment Management Research, Goldman Sachs Quantitative Resources
Group, 1-15

Herold, UIf, 2005, Computing implied returns in aeamingful way, Journal of Asset
Management 6, 1, 53-64.

Idzorek, Thomas M., 2005, A step-by-step guide ublo the Black-Litterman model,
incorporating user specified confidence lev€lsicago: 1bbotson Associates, 1-32.

Igbal, Javed, Robert Brooks, and Don U. A. Galaged2010, Testing conditional asset
pricing models: An emerging market perspectieynal of International Money and
Finance 29, 5, 897-918.

Jagannathan, Ravi, and Tongshu Ma, 2003, Risk tieduin large portfolios: why imposing
the wrong constraint helpgurnal of finance 58, 1651-1683.

Jensen, Gerald R., Robert R. Johnson, and JeffreyMBtcer, 2000, Efficient use of
commodity futures in diversified portfoliodournal of Futures Markets 20, 489-506.

Jensen, Gerald R., and Jeffrey M. Mercer, 2003, Weidence on optimal asset allocation,
Financial Review 38, 435-454.

26



Jobson, J. D., and Bob M. Korkie, 1980, Estimatfon Markowitz efficient portfolios,
Journal of the American Satistical Association 75, 544-554.

Jobson, J. D., and Bob M. Korkie, B. 1981a, Puttulgrkowitz theory to workJournal of
Portfolio Management, 70-74.

Jobson, J. D., and Bob M. Korkie, 1981b, Perforneamgpothesis testing with the Sharpe and
Treynor measure3he Journal of Finance, 36(4), 889-908.

Jones, Robert, Terence Lim, and Peter J. Zang@fiy,2The Black—Litterman model for
structured equity portfolioslournal of Portfolio Management 33, 2, 24-33.

Jorion, Philippe, 1985, International portfolio drgification with estimation riskJournal of
Business 58, 259-78.

Jorion, Philippe, 1986, Bayes—Stein estimationgdortfolio analysis,Journal of Financial
and Quantitative Analysis 21, 279-292.

Kirby, Chris, and Barbara Ostdiek, 2012, It's all the timing: simple active portfolio
strategies that outperform naive diversificatidoyrnal of Financial and Quantitative
Analysis (forthcoming)

Lee, Wai, 2000, Advanced theory and methodologyaofical asset allocatiofNew Hope:
Frank J. Fabozzi Associates, 125-136.

Lo, Andrew W., 2002, The statistics of sharpe sgtiéinancial Analysts Journal 58(4), 36-
52.

Markowitz, Harry, 1952, Portfolio selectiodgurnal of Finance 7, 1, 77-91.

Meucci, Attilio, 2006, Beyond Black-Litterman ingmtice: a five-step recipe to input views
on non-normal marketsRisk 19, 9, 114-119.

Meucci, Attilio, 2010, The Black-Litterman approadriginal model and extensions; The
Encyclopedia of Quantitative Finance, Wiley.

Michaud, Richard O., 1989, The Markowitz optimipatienigma: is the optimized optimal?,
Financial Analysts Journal 45, 1, 31-42.

Opdyke, John Douglas, 2007, Comparing Sharpe ratmsvhere are the p-valuegournal
of Asset Management 8, 5, 308-336.

Petrella, Giovanni, 2005, Are euro area small ¢apks an asset class? Evidence from mean-
variance spanning testuropean Financial Management 11, 2, 229-253.

Pastor, Lubos, 2000, Portfolio selection and apsietng models,Journal of Finance 50,
179-223.

Pastor, Lubos, and Robert F. Stambaugh, 2000, Qumgpasset pricing models: An
investment perspectivdournal of Financial Economics 56, 335—-381.

Pflug, Georg Ch., Alois Pichler, and David Wozal#2012, The 1/N investment strategy is
optimal under high model ambiguityournal of Finance and Banking 36, 410-417.

27



Roon, Frans A. de, Theo E. Nijman, and Bas J. MtkRéfe 2001, Testing for mean-variance
spanning with short sales constraints and trarmactiosts: the case of emerging
markets Journal Of Finance 56, 2, 721-742.

Satchell, Stephen, and Alan Scowcroft, 2000, A dsifoation of the Black Litterman model:
managing quantitative and traditional portfolio stiactions, Journal of Asset
Management, 39-53.

Satyanarayan, Sudhakar, and Panos Varangis, 199€érsfication benefits of commodity
assets in global portfoliodpurnal of Investing 5, 69-78.

Theil, Henry, 1971, Principles of Econometridd)ey.

Walters, Jay, 2011, The Black-Litterman model itadeWorking Paper Series, Harvard
Management Company

28



Table 1: Strategic Weights and Benchmark Portfolios

Benchmark portfolio weights Historic volatility of Optimization constrain
Investor type Bonds Commodities Stocks benchmark portfolio max. portfolio volatility
conservative 80% 5% 15% 4.58% 5.00% p.a.
moderate 45% 15% 40% 6.66% 10.00% p.a.
offensive 10% 25% 65% 9.72% 15.00% p.a.

This table provides the strategic weights for thee¢ analyzed investor types: conservative, moeesat
offensive, which are used to compute implied reestimates. Within the asset class stocks and bemésging
market stocks and high yield bonds obtain a stiategight of 25% while developed market stocks and
government bonds obtain a strategic weight of 78#.assume that the three investor types prefendnman
expected portfolio volatility of 5%, 10% and 15%gspectively. We compute two alternative benchmark
portfolios. Benchmark | is computed using the sigat weights presented in this table. Benchmaik d naive
diversified 1/N benchmark, in which all five assktsses obtain a portfolio weight of 20%.

Table 2: Descriptive statistics of asset returns (Januagdi®ecember 2011)

MSCI Emerging US Gov. US High Yield S&P GSCI
MSCI World Markets Bondindex Bondindex Light Energy

Mean Return p.a. 6,71% 8,00% 6,16% 7,31% 2,66%
SD p.a. 16,61% 25,40% 4,64% 8,44% 16,58%
Skewness -0,897 -0,934 -0,037 -1,467 -1,228
Kurtosis 5,337 5,928 4,259 10,444 8,447
Sharpe Ratio 0,216 0,192 0,655 0,496 -0,028
MDD 55,16% 63,04% 5,29% 27,21% 59,95%
JB 82.47% 114.61%* 15.10%* 608.24*+* 339.20%**
Observations 228 228 228 228 228

This table provides sample moments, Sharpe ralagimum Drawdown and Jarque-Bera statistics ofefight
asset classes considered in the empirical analyhis.time period covers the months from January31@9
December 2011. ‘Mean Return p.a.” denotes annuhlimee-series mean of monthly returns while ‘SD.’p.a
denotes the associated annualized standard devig&kewness’ and ‘Kurtosis’ represent the thirdl dourth
moment of the return distribution. ‘Sharpe Ratibows the annualized Sharpe ratios of the respeetset
classes using the average 1993 -2011 risk-freeesttaate of 3.12% per year. MDD shows the maximum
drawdown of the respective asset class during #nimg from January 1993 to December 2011 and ‘dBhe
Jarque-Bera statistic for testing normality of ratu *** ** * indicate statistical significancetahe 1%, 5%,
and 10% level, respectively.
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Table 3: Correlation matrix of asset classes (January 1B@8ember 2011)

MSCI Emerging US Gov. US High Yield S&P GSCI
MSCI World Markets Bondindex Bondindex Light Energy
MSCI World 1
MSCI Emerging Marke: 0.811*** 1
US Gov. Bondindex -0.182** -0,221%* 1
US High Yield Bondinde 0.652*** 0.619*** -0.06¢ 1
S&P GSCI Light Energy  0.470** 0.463*** -0.128** 0.353* 1

This table provides the correlation matrix for t&set classes considered in the analysis oveintieeperiod
January 1993 to December 2011. ***, ** * indicatalues significantly different from 0 at the 1%, 5%nd

10% level, respectively.

Table 4: Mean squared error of monthly out-of-sample foreamhseturns

Black Litterman mixed estimation View
conservative moderate offensive 12 month mean
MSCI World 0.227% 0.227% 0.227% 0.245%
MSCI Emerging Markets 0.533% 0.532% 0.532% 0.583%
US Gov. Bondindex 0.018% 0.018% 0.018% 0.019%
US High Yield Bondindex 0.060% 0.059% 0.059% 0.063%
S&P GSCI Light Energy  0.226% 0.227% 0.227% 0.255%

This table documents mean-squared errors (MSE)ooftimly forecasted returns. Forecasts are compugied u
the BL mixed estimation approach (combining 12-rhaneans as “views” with implied returns) and thews

as used in MV.
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Table 5: Empirical Results for the full sample (evaluati@ripd 1993-2011):

Investor type: Minimum

conservative Black-Litterman Mean-Variance{/ariance BM | (st.w.) BM Il (1/N)
Net mean return p.a. 7.81% 7.29% 6.09% 6.29% 6.08%
Volatility p.a. 5.16% 6.08% 4.17% 4.86% 11.08%
Skewness -0.23 -1.14 -0.48 -1.11 -1.48
Kurtosis 3.70 8.30 4.26 8.11 9.41
Jarque-Bera 6.63** 316.14** 23.77%* 294 .52*** 473.16**
Net Sharpe Ratio 0.91" 0.68 0.71 0.65 0.27

Net MDD 5.99% 9.41% 7.45% 13.99% 40.59%
Avrg. number of assets  3.32 2.69 3.71 8.00 8.00
Avrg. turnover p.a. 2.13 2.67 0.77 0.18 0.29
Tracking Error 1.16% 1.37% 0.73% /

Information Ratio 1.31 0.73 -0.28 / /

Obs. 228 228 228 228 228
Ir:\(;zztr(;rt;ype. Black-Litterman Mean-Variancxa\“;ngs?e BM | (st.w.) BM Il (1/N)
Net mean return p.a. 9.58% 8.21% / 6.03% 6.08%
Volatility p.a. 8.65% 10.37% / 9.16% 11.08%
Skewness -0.53 -0.72 / -1.37 -1.48
Kurtosis 4.98 5.62 8.84 9.41
Jarque-Bera 47.83** 85.14%+* / 395.82*+* 473.16**
Net Sharpe Ratio 0.75 ™M 0.49 / 0.32 0.27

Net MDD 9.46% 16.18% / 35.10% 40.59%
Avrg. number of assets  3.26 2.16 / 8.00 8.00
Avrg. turnover p.a. 3.32 4.44 0.27 0.29
Tracking Error 2.03% 2.50% /

Information Ratio 1.75 0.86 / / /

Obs. 228 228 228 228 228
Lr;;ls:sti/;type. Black-Litterman Mean-Varianc%\g]rli:::g?3 BM | (st.w.) BM Il (1/N)
Net mean return p.a. 11.72% 10.35% / 5.81% 6.08%
Volatility p.a. 11.68% 13.62% / 14.27% 11.08%
Skewness -0.34 -0.42 / -1.26 -1.48
Kurtosis 5.17 5.17 8.01 9.41
Jarque-Bera 49.16*** 51.14%+* / 299.35*** 473.16**
Net Sharpe Ratio 0.74 ™ 0.53 / 0.19 0.27

Net MDD 14.39% 24.59% / 50.99% 40.59%
Avrg. number of assets  3.12 1.72 / 8.00 8.00
Avrg. turnover p.a. 3.62 4.61 0.25 0.29
Tracking Error 2.63% 3.52% /

Information Ratio 2.25 1.27 / / /

Obs. 228 228 228 228 228

This table reports the portfolio performance meestior the full sample from 1993-2011 in the baasecIn the
BL and MV approach (subjective) return estimatesraean historic returns using a rolling estimationdow
of 12-month. The variance-covariance matrix is gaed using a 36-month moving estimation windawtHe
BL model the parametet)(is set equal to 0.1 is computed using the variance of historic retimrecast
errors (12-month rolling estimation window). In tB& and MV optimized portfolios the maximum expette
volatility is constrained to 5%, 10%, and 15% fbe tconservative, moderate, and offensive investpe,t
respectively. Benchmark | is computed using thetas®ights presented in table 1. In Benchmarkllibasets
are equally weighted (1/N). Benchmark | is the mefiee portfolio for BL and is used to compute tragkerrors
and information ratios. All portfolios are rebaladcat the first trading day of every month. * [/ ( #/##%)
['/"/"™] represents a significant higher Sharpe Ratio ey to Mean-Variance, (Benchmark 1), [Benchmark
1] at the 10%- / 5%- / 1%-level, respectively.
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Table 6: Robustness Check |
(1) Variation of maximum allowed portfolio volatyi

Maximum Volatility p.a. 5,00% 7,50% 10% 15% 20% Benchmark
BL MV BL MV BL MV BL MV BL MV I (stw.) Il (I/N)

Net Sharpe Ratio 0927 0.68° 0.80 " 0.54 0.75 " 0.49 0.75"" 0.53 0.74™" 0.49 0.32 0.27

Net MDD 5.88% 9.41%  7.58% 11.54% 9.46% 16.18% 11.18% 24.59%6.41% 27.98%  35.10% 40.59%

Avrg. number of assets 3.64 2.69 3.45 2.41 3.26 2.16 3.00 1.71 2.76 1.35 8.00 8.00

Avrg. turnover p.a. 2.00 2.67 2.80 3.79 3.32 4.44 3.91 4.61 4.07 4.36 0.27 0.29

Information Ratio 1.06 0.67 1.50 0.76 1.75 0.86 2.26 1.46 362. 1.39 / /

(1) Variation of estimation window for varianceas@riance matrix

Estimation window 12 24 36 48 60 Benchmark

# month BL MV BL MV BL MV BL MV BL MV I (stw.) Il (1/N)

Net Sharpe Ratio 0.63""  0.56 0.737™0.48 0.75 ™™ 0.49 0.75 7" 0.46 0.73"™ 0.47 0.32 0.27

Net MDD 16.13% 18.28% 14.58% 15.73% 9.46% 16.18% 8.97% 16.99%  8.76% 18.26%  35.10% 40.59%

Avrg. number of assets 3.04 1.90 3.14 2.09 3.26 2.16 3.38 2.24 3.41 2.29 8.00 8.00

Avrg. turnover p.a. 4.34 4.63 3.56 4.33 3.32 4.44 3.48 4.60 3.27 4.59 0.27 0.29

Information Ratio 1.65 1.37 1.94 0.90 1.75 0.86 1.59 0.76 451. 0.76 / /

(1) Variation of estimation window for historiceturn estimatesx

Estimation window 1 6 12 18 24 Benchmark

# month BL MV BL MV BL MV BL MV BL MV I (stw.) 1l (1/N)

Net Sharpe Ratio  0.45 0.23 0.57 0.32 0.75"™ 0.49 056  0.33 0.51 0.29 0.32 0.27

Net MDD 14.48% 22.69% 15.65% 24.93% 9.46% 16.18% 17.45% 20.58%  23.99% 32.08%  35.10% 40.59%

Avrg. number of assets 2.97 2.01 3.1 2.15 3.26 2.16 3.38 13 2. 3.38 2.12 8.00 8.00

Avrg. turnover p.a. 12.30 15.29 4.76 6.41 3.32 4.44 292 074 2.49 3.42 0.27 0.29

Information Ratio 0.46 -0.24 1.01 0.17 1.75 0.86 1.15 0.18 .950 0.04 / /

Base Case: Moderate investor maximum portfolio tili§a10% p.a.. Strategic weights: Bonds: 45%, Goadities: 15%; Stocks: 40%. * [ ** [ *xx (¥ MM represents
a significant higher Sharpe Ratio compared to Méariance, (Benchmark I), [Benchmark Il] at the 108®%- / 1%-level, respectively. Benchmark | is qaeed of 45%
Bonds, 15% Commodities, 40% stocks. In Benchmaell lhssets are equally weighted (1/N). Benchmasktthe reference portfolio for BL and is used ¢anpute information
ratios.
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Table 7: Robustness Check II: Variation of BL model paramsete

Variation of parameter)

MV Black Litterman BM I (st.w.)
Parametet (t—x) 0.3 0.15 0.1 0.05 0025 Q=PFX)PT ¢ & 0)
Net Sharpe Ratio 0.49 0.67"  0.71¥" 075" 077" 0.67*" 0.51 0.32
Net MDD 16.18% 10.01% 9.58% 9.46% 10.34%  20.82% 15.74% 0%6.1
Avrg. number of assets 2.16 2.86 3.06 3.26 3.87 4.37 234 .00 8
Avrg. turnover p.a. 4.44 3.88 3.56 3.32 2.79 2.14 4.45 0.27
Tracking Error 2.50% 2.20% 2.12% 2.03% 1.68% 1.20% 2.40% /
Information Ratio 0.86 1.30 1.58 1.75 2.08 2.10 0.92 /
Variation of estimation window for uncertainty meess of views ()
Estimation window for MV Black Littermau BM | (st.w.)
Q # month Q-0 3 6 12 1€ 24 3€ (Q —> x)
Net Sharpe Ratio 0.49 0.52 068 0.75 "™ 0.73"" 0.76™"™ 0.74""  0.32
Net MDD 16.18% 13.01% 13.66% 9.46% 10.53% 10.64% 11.08% 35.10%
Avrg. number of assets 2.16 2.89 3.15 3.26 3.22 3.26 3.30 8.00
Avrg. turnover p.a.  4.44 6.28 4.28 3.32 3.10 2.98 2.98 0.27
Tracking Error 2.50% 2.17% 2.18% 2.03%  2.07% 2.09% 2.07% /
Information Ratio 0.86 0.86 1.47 1.75 1.61 1.41 1.33 /

Base Case: Moderate investor maximum portfolio tldla 10% p.a.. Strategic weights: Bonds: 45%,
Commodities: 15%; Stocks: 40%. * [ ** [ *x #F##H [V ranresents a significant higher Sharpe Ratio
compared to Mean-Variance, (Benchmark 1), [Benchmidlr at the 10%- / 5%- / 1%-level, respectively.

Benchmark | is composed of 45% Bonds, 15% Comnex]id0% stocks. In Benchmark Il all assets arelgqua

weighted (1/N). Benchmark | is the reference pdidftor BL and is used to compute information ratio

Table 8: Robustness Check lll: Variation of transaction sost

Variable transaction costs in bp 10 20 30 40 50

Net Sharpe Ratio BL 0.85( "™ 0.82¢""™ 078" 0.74¢ "™ o0.70¢*™  0.668 7"
Net Sharpe Ratio MV 0.60%" 0.58: 0.53¢ 0.49( 0.44¢ 0.40(
Net Sharpe Ratio BM | (st.w.)0.32¢ 0.32¢ 0.32( 0.317 0.31¢ 0.31(
Net Sharpe Ratio BM Il (1/N) 0.273 0.272 0.269 0.267 0.264 0.260

Base Case: Moderate investor maximum portfolio tlidla 10% p.a.. Strategic weights: Bonds: 45%,

Commodities: 15%; Stocks: 400, * [ *x [ xwx #E##S [T ranresents a significant higher Sharpe Ratio
compared to Mean-Variance, (Benchmark 1), [Benchmidlr at the 10%- / 5%- / 1%-level, respectively.

Benchmark | is composed of 45% Bonds, 15% Comnex]id0% stocks. In Benchmark Il all assets arelgqua

weighted (1/N). Benchmark | is the reference pdidftor BL and is used to compute information ratio
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Table 9: Robustness Check IV: Alternative Reference podfoli

BL-st.w. BL-1/N BL-MinVar MV MinVar BM | (st.w.) BM Il (1/N)
¢ |Net meanreturnp.a. 7.81% 7.79% 7.86% 7.29% 6.09% 6.29% .08%6
8 |Volatilty p.a. 5.16% 5.22% 5.13% 6.08% 4.17% 4.86% 11.08%
§ Net Sharpe Ratio 0.91" 0.8¢" 0.9:" 0.6¢" 0.71 0.6t 0.27
S |Net MDD 5.99% 6.07% 6.17% 9.41% 7.45% 13.99% 40.59%
© [Avrg. number of assets 3.32 3.79 3.20 2.69 3.71 8.00 8.00
Avrg. turnover p.a.  2.13 2.06 2.11 2.67 0.77 0.18 0.29
Net mean return p.a. 9.58% 9.51% 9.28% 8.21% / 9%6.03 6.08%
% Volatility p.a. 8.65% 8.87% 8.05% 10.37% / 9.16% 08%
G |Net Sharpe Ratio 0.78*™ 072" 076" 0.49 / 0.32 0.27
g Net MDD 9.46% 11.02% 9.21% 16.18% / 35.10% 40.59%
Avrg. number of assets 3.26 3.48 2.86 2.16 / 8.00 00 8.
Avrg. turnover p.a. 3.32 3.29 3.27 4.44 / 0.27 0.29
Net mean return p.a. 11.72% 11.32% 10.37% 10.35% / 5.81% 6.08%
@ |Volatility p.a. 11.68% 11.30% 9.85% 13.62% / 14.27% 11.08%
@ |Net Sharpe Ratio 0.7 7™ 077%™ 07" o5 ) 0.1¢ 0.27
% Net MDD 14.39% 11.67% 12.10% 24.59% / 50.99% 40.59%
Avrg. number of assets 3.12 3.21 2.63 1.72 / 8.00 00 8.
Avrg. turnover p.a. 3.62 3.83 3.88 4.61 / 0.25 0.29

This table reports portfolio performance measuoegte full sample from 1993-2011 using differeeffierence
portfolios in the BL approach. In the BL and MV apaches (subjective) return estimates are meaoriuist
returns using a rolling estimation window of 12-rttarirhe variance-covariance matrix is calculatadgia 36-
month moving estimation window. In the BL model frerameter1) is set equal to 0.1€)) is computed using
the variance of historic return forecast errors-ifichth rolling estimation window). Benchmark | isneputed
using the asset weights presented in table 1. hclBeaark 1l all assets are equally weighted (1/Rgnchmark |
is the reference portfolio for BL-st.w. and is usecompute BL-st.w. and MV information ratios. Bamark |
is the reference portfolio for BL-1/N and is useddompute BL-1/N information ratios. In the BL-Mia¥Y
approach the reference portfolio is the minimumiaraze portfolio. All portfolios are rebalanced aetfirst
trading day of every month. * / ** [ xxx ##### [T rapresents a significant higher Sharpe Ratio aret
to Mean-Variance, (Benchmark 1), [Benchmark litta 10%- / 5%- / 1%-level, respectively.
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Table 10: Robustness Check V: Analysis of Sub-Periods

January 1993-January 2001  Black-Literman Mean-Variance BM I (st.w.) BM Il (3)
Net mean return p.a. 10.25% 10.41% 7.86% 6.74%
Volatility p.a. 9.16% 11.08% 6.90% 8.30%
Net Sharpe Ratio 0.60 0.51 0.45 0.24
Net MDD 9.46% 12.93% 15.32% 19.41%
Avrg. number of assets 2.95 2.09 8.00 8.00
Avrg. turnover p.a. 4.16 5.48 0.22 0.26
Avrg risk free rate 4.77%

Obs. 96

February 2001-June 2004 Black-Litterman Mean-Variance BM | (st.w.) BM I (1)
Net mean return p.a. 7.77% 5.01% 3.71% 5.19%
Volatility p.a. 6.40% 8.05% 8.32% 10.00%
Net Sharpe Ratio 0.92* 0.39 0.22 0.33
Net MDD 6.52% 10.67% 14.19% 17.37%
Avrg. number of assets 2.76 1.90 8.00 8.00
Avrg. turnover p.a. 2.67 4.42 0.30 0.31
Avrg risk free rate 1.85%

Obs. 41

July 2004 - February 2008 Black-Litterman Mean-Variance BM | (st.w.) BM Il (3)
Net mean return p.a. 13.81% 11.97% 10.51% 12.44%
Volatility p.a. 9.41% 11.35% 5.08% 6.66%
Net Sharpe Ratio 1.08 0.73 1.35 1.32
Net MDD 6.63% 10.48% 34.14% 39.57%
Avrg. number of assets 3.84 2.59 8.00 8.00
Avrg. turnover p.a. 3.45 4.20 0.22 0.25
Avrg risk free rate 3.67%

Obs. 44

March 2008 - December 2011 Black-Litterman Mean-Variance BM | (st.w.) BM Il (1/N)
Net mean return p.a. 5.84% 3.00% 0.14% -0.43%
Volatility p.a. 8.63% 9.75% 15.04% 18.10%
Net Sharpe Ratio 0.63* 0.27 -0.01 -0.04
Net MDD 9.34% 16.18% 35.10% 40.59%
Avrg. number of assets 3.81 2.13 8.00 8.00
Avrg. turnover p.a. 2.02 2.57 0.39 0.38
Avrg risk free rate 0.37%

Obs. 47

This table reports portfolio performance measuasttie four sub-periods from 1993-2011 for the nmatke
investor type. In the BL and MV approach (subjez}iveturn estimates are mean historic returns wsirailing
estimation window of 12-month. The variance-covaci& matrix is calculated using a 36-month moving
estimation window. In the BL model the parametgrig set equal to 0.1€¥) is computed using the variance of
historic return forecast errors (12-month rollirgjimation window). In the BL and MV optimized patibs the
maximum expected volatility is constrained to 10%. pFor the BL optimization the strategic weigate set
according to table 1: 45% for bonds, 15% for comitiesl and 40% for stocks. These weights are used to
compute the naive diversified benchmark |, as welbenchmark 1l all assets are equally weightg@lY1All
portfolios are rebalanced at the first trading dagvery month. * / ** [ *** (#/##/###), T/TT/TTT] represents a
significant higher Sharpe Ratio compared to Meanaree, (Benchmark I), [Benchmark II] at the 109%%- /
1%-level, respectively.
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Figure 1: The Procedure of the Black-Litterman Approach (leka2005)

Riskaversion Historic Vector of Subjective Reliability of
coefficient variance- marketweights/ return subjective return
covariance-matrix |[strategic weights estimates estimates
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v y v
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Distribution of equilibrium/implied returns Distribution of subjective return estimates
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Figure 2: BL andMV optimized portfolio weights (base ca
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This figure reports the optimized portfolio weiglitg the full sample from 19¢-2011 in the base ca In the
BL and MV approacl{subjective) return estima are mean historic returns usingaling estimation windov
of 12-month. The variancesvariance matrix is calculated using emonth moving estimation windouln the
BL modelthe parametert) is set equal to 0.1 is conputed using the variance of historic return foré
errors (12month rolling estimation windowIn the BL and MV optimized portfolios the maximumpectec
volatility is constrained to 5%, 10%, and 15% fbe tconservative, moderate, and offensive inv type,
respectivelyAll portfolios are rebalanced at the first tradiay of every montt
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Figure 3: Definition of sub-periods
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The figure shows the definition of individual subrpds conditional on monetary policy signals adl a® stock
market signals. Shaded areas denote down marlsgtsgienary periods.
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