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Abstract

Tests for unit roots in univariate time series with level shifts are proposed and investigated� The

level shift is assumed to occur at a known time� It may be a simple one�time shift which can

be captured by a dummy variable or it may have a more general form which can be modeled

by some general nonlinear transition function� There may also be more than one shift point and

there may be other deterministic terms such as a linear trend term or seasonal components� It is

proposed to estimate the deterministic parts of the series in a �rst step by a generalized least squares

procedure
 subtract the estimated deterministic terms from the series and apply standard unit root

tests to the residuals� It is shown that the tests have known asymptotic distributions under the

null hypothesis of a unit root and nearly optimal asymptotic power under local alternatives� The

procedure is applied to German macroeconomic time series which have a level shift in ���� where

the reuni�cation took place�
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� Introduction

Today it is common practice in time series econometrics to investigate the trending proper�

ties of the variables of interest at an early stage of an analysis� In particular� testing for unit

roots is done routinely to check the possibility of stochastic trends in the data generation

process 	DGP
� Such preliminary investigations are of central importance because their out�

come determines to some extent which models and inference procedures are suitable in the

subsequent analysis� Unfortunately� the usual tests for unit roots are beset with problems�

In particular� they are unreliable if structural shifts have occurred during the sample period

	see� e�g�� Perron 	����

� Since many time series of interest in applied work have quite ob�

vious shifts in their levels the problem is of considerable importance and it is not surprising

that it has received substantial attention in the literature 	see� e�g�� Perron 	����
� Perron �

Vogelsang 	����
� Rappoport � Reichlin 	����
� Zivot � Andrews 	����
� Banerjee� Lums�

daine � Stock 	����
� Amsler � Lee 	���

� Ghysels � Perron 	����
� Leybourne� Newbold

� Vougas 	����
� Monta�n�es � Reyes 	����

� Di�erent assumptions regarding the DGP

have been made in this context� For instance� the break point may be known or unknown�

it may be a shift in the level of a series or it may be a break in the deterministic trend

component�

In this study we will assume that the change point is known and we will allow for very

general types of shifts which include a number of shift functions that have been proposed

in the literature so far� The shift function is set up as a general nonlinear function which

depends on unknown parameters� The assumption of a known break point may be regarded

as restrictive in some cases� However� there are also many situations where it is quite realistic�

For instance� in many German macroeconomic time series there is a shift in ���� when the

German reuni�cation took place� Examples will be given in Sec� 
�

The idea underlying our tests is to estimate and remove the deterministic part of the DGP

�rst and then to apply well�known tests for unit roots to the adjusted data� The deterministic

part may include a linear trend term and seasonal components in addition to a quite general

nonlinear function representing the shift in the mean of the DGP� Our approach generalizes

results of Amsler � Lee 	���

 who consider more special shift functions� The resulting unit

root tests have distributions under the null hypothesis which are well�known from the unit

root literature� Critical values are therefore readily available� A similar approach was also

�



suggested by Leybourne� Newbold � Vougas 	����
 who do not assume prior knowledge

of the break date and propose to remove the deterministic parts by a least squares 	LS


procedure� The disadvantage of their proposal is� however� that the asymptotic distribution

of the resulting unit root tests needs to be evaluated by simulation methods on an individual

basis� whereas in our approach the asymptotic null distribution of the test statistic does not

depend on individual properties of the DGP or the deterministic part� Moreover� our tests

are asymptotically nearly optimal under local alternatives in the same way as in Elliott�

Rothenberg � Stock 	����
�

The structure of the paper is as follows� In the next section the general model is presented

and some special cases are discussed in detail� Section � considers estimation of the nuisance

parameters of the DGP and the tests for unit roots are presented in Section �� Empirical

examples are given in Section 
 and conclusions follow in Section �� Proofs are deferred to

the appendix�

The following general notation is used� The lag and di�erencing operators are denoted

by L and �� respectively� that is� for a time series variable yt we de�ne Lyt � yt�� and

�yt � yt� yt��� The symbol I	d
 is used to denote a process which is integrated of order d�

that is� it is stationary or asymptotically stationary after di�erencing d times while it is still

nonstationary after di�erencing just d�� times� The symbols
p
� and

d
� signify convergence

in probability and in distribution� respectively� Independently� identically distributed will

be abbreviated as iid	�� �
� where the �rst and second moments are indicated in parentheses

in the usual way� Furthermore� O	�
� o	�
� Op	�
 and op	�
 are the usual symbols for the order

of convergence and convergence in probability� respectively� of a sequence� We use �min	A


	�max	A

 to denote the minimal 	maximal
 eigenvalue of the matrix A� Moreover� k � k and

k � k� denote the Euclidean norm and the operator norm� respectively 	see� e�g�� L�utkepohl

	����
 for de�nitions and properties
� GLS is used to abbreviate generalized least squares

and sup and inf are short for supremum and in�mum� respectively� The n�dimensional

Euclidean space is denoted by Rn�

�



� A General Model and some Special Cases

We consider a model of the general form

yt � �t� gt	�

�� � xt� t � �� �� � � � � 	���


where the scalar �� the 	m� �
 vector � and the 	k � �
 vector � are unknown parameters

and gt	�
 is a 	k� �
 vector of deterministic sequences depending on the parameters �� The

quantity xt represents an unobservable stochastic error term which is assumed to have a

�nite order autoregressive 	AR
 representation of order p�

a	L
xt � �t� 	���


where a	L
 � � � a�L � � � � � apL
p is a polynomial in the lag operator and �t � iid	�� ��
�

Assumptions for the initial values will be discussed later� The essential requirement is that

they must be independent of the sample size T �

We are interested in testing the null hypothesis that xt is I	�
 against the alternative

that it is I	�
� Therefore� we assume that the lag polynomial a	L
 can be factored as

a	L
 � 	�� �L
b	L
 	���


where b	L
 � �� b�L� � � � � bp��L
p�� has all its zeros outside the unit circle if p 	 �� while

�� 
 � � �� Although the parameter space of � is restricted to the interval 	��� �� this will

not be taken into account in subsequent estimation and testing procedures�

With respect to the function gt	�
 it is assumed that the �rst component is unity so that

the �rst component of � de�nes the level parameter of yt� Speci�cally we have�

gt	�
 � �� � ft	�

��� 	���


where ft	�
 is a 	k��
�dimensional deterministic sequence to be described below� The reason

why the trend term has not been included in the function gt	�
 is that treating it separately

is convenient later on� For illustrative purposes we give examples of possible sequences ft	�


in the following�

A simple version of a function ft	�
 that has been considered in the literature 	see� e�g��

Amsler � Lee 	���


 is one which represents a single shift in the mean�

ft	�
 � d�t ��

���
��
�� t 
 T�

�� t � T�
	��



�



that is� d�t is a shift dummy variable and we assume that T� is known� An easy extension

of this model would be to allow for more than one shift and�or include impulse dummy

variables in addition�

Although assuming a shift in the mean at some time point may be reasonable occasionally

one may sometimes wish to consider models in which the e�ect of the dummies is gradual

or smoother than in 	��

 	see Leybourne� Newbold � Vougas 	����
 for a discussion of

reasons
� One possibility to achieve this is to de�ne

ft	�
 � �t	�
 ��

���
��
�� t 
 T�

�� expf��	t� T�
g� t � T�
	���


or

ft	�
 �

���
��
�� t 
 T�

expf��	t� T�
g� t � T�
	���


with � 	 � an unknown parameter� Both of these functions generate smooth transitions of

the mean and they could be combined as two components of the function gt	�
 in which case

the parameters may di�er� of course� Similar ideas have been used in modeling the transition

of regression equations in smooth transition regression models 	e�g�� Granger � Ter�asvirta

	����
� Lin � Ter�asvirta 	����

� Of course� these are just examples of various possibilities

one might consider� They are related to the cumulative distribution function and the density

function of the exponential distribution� In the same way one may consider other density

functions or distribution functions�

Another possibility to model smooth e�ects of dummies is to follow the approach used

in intervention analysis 	see Box � Tiao 	���

 and Franses � Haldrup 	����
 for a recent

application to unit root testing
� In this context we may consider a shift function

�	L



	L

d�t�

where d�t is a step dummy as de�ned in 	��

� �	L
 � �� � ��L � � � � � �qL
q and 
	L
 �

� � 
�L � � � � � 
rL
r are lag polynomials such that the zeros of 
	L
 lie outside the unit

circle� This latter condition guarantees that the interpretation of the dummy is basically the

same as in 	��

� Indeed� if unit roots were allowed in 
	L
 so that 
	�
 � �� the e�ect of

the step dummy would essentially change the slope parameter � at T� whereas in the present

paper we are interested in modeling level shifts� In terms of the basic model 	���
�	���
 we

�



can write the shift function as

ft	�
 �

�
d�t

	L


� � � � �
d��t�q


	L


��
� 	���


where the components of � are given by the unknown coe�cients of 
	L
�

A simple special case of 	���
 is obtained by choosing �	L
 � �� and 
	L
 � � � �L�

where � � � 
 � is a reasonable additional assumption� The model obtained in this way

is actually very close to 	���
 or 	���
 the main di�erence being that the sequences in 	���


and 	���
 are bounded between zero and one while 	� � �L
��d�t takes values larger than

one� To put this another way� the parameter � in 	���
 or 	���
 a�ects only the shape of the

sequence ft	�
 while � in 	���
 a�ects both the shape and the size of the shift function�

The parameters � and � in the model 	���
 are supposed to be completely unrestricted

although the case where � � � a priori will be discussed� Conditions required for the pa�

rameters � and the sequence ft	�
 are collected in the following set of assumptions�

Assumption �

�a� The parameter space of �� denoted by �� is a compact subset of Rm�

�b� For each t � �� �� � � �� ft	�
 is a continuous function of � and

sup
T

TX
t��

sup
���

k�ft	�
k 
�

where f�	�
 � ��

�c� There exists a real number � 	 � and an integer T� such that� for all T � T��

inf
���

�min

�
TX
t��

�gt	�
�gt	�

�

�
� ��

where we de�ne �g�	�
 � �� � f�	�

���� �

Thus� we restrict the parameter space of � to be compact� This is a standard assumption

in nonlinear estimation and testing problems� The same is true for the continuity requirement

in Assumption �	b
� Assuming that the parameter space � is de�ned in a suitable way

the summability condition in Assumption �	b
 holds in the applications we have in mind

and in that sense it is not restrictive� To understand why the summability condition in






Assumption �	b
� as well as the condition in Assumption �	c
� is formulated for di�erences

of the sequences ft	�
 and gt	�
� recall that our intention is to study unit root testing�

Therefore we shall consider estimation of the parameters �� � and � under the null hypothesis

that the error process in 	���
 contains a unit root� E�cient estimation then requires that

the variables in 	���
 are di�erenced� which explains why di�erences appear in Assumption

�� To see the meaning of the condition in Assumption �	c
� suppose �rst that the value of

the parameter � is known and that the parameters � and � are estimated by applying LS

to the di�erenced model� which is optimal under the null hypothesis when p � �� Then

Assumption �	c
 guarantees that the regressors �gt	�
 in this LS estimation are linearly

independent for T large enough� When the value of � is known there is of course no need

to include the in�mum in the condition of Assumption �	c
� That� however� is needed when

the value of � is not known and has to be estimated� Since consistent estimation of � is not

possible we have to impose an assumption which guarantees that the above mentioned linear

independence of regressors holds whatever the value of �� This is achieved by Assumption

�	c
� Consistent estimation of �� as well as �� is not possible because� by Assumption �	b
�

the variation of 	the di�erenced
 regressors does not increase as T ���

Since ft	�
 � �f�	�
 � � � � � �ft	�
 it follows from Assumption �	b
 that the sequence

ft	�
 and hence gt	�
 is bounded uniformly in � and t� Assumption �	b
 also implies that

the series in Assumption �	c
 converges uniformly in � and that the limit is a continuous

function of �� Thus� Assumptions �	b
 and 	c
 could also be formulated by replacing the

�nite series by corresponding in�nite series� An advantage of the present formulation is that

it also applies when the sequence ft	�
 and hence gt	�
 depends on T � We have not made

this feature explicit because it is not needed in the present application of Assumption ��

This dependence on T is obtained� for instance� if asymptotic results are derived under the

assumption that T��T or T � T� is constant�

Finally� note that Assumption � implies that� for each value of �� the sequence gt	�


de�nes a slowly evolving trend if the terminology in Condition B of Elliott� Rothenberg �

Stock 	����
 is used� Our conditions are stronger than those assumed by these authors�

however� Although it might be possible to weaken Assumption � we will not pursue this

matter because in its present form Assumption � is convenient and applies to the previously

discussed example models� Overall the model 	���
 and Assumption � provide a general

�



	parametric
 framework for testing for a unit root in the context of slowly evolving trends�

To illustrate the implications of Assumption � it may be helpful to consider what it

implies in terms of the example models 	��

 � 	���
� First� for 	��

 the assumption is

obviously satis�ed� Note that ft	�
 in 	��

 actually does not depend on any parameter and�

hence� Assumption �	a
 is trivially satis�ed here�

Next consider the function ft	�
 speci�ed in 	���
� To meet the compactness requirement

of Assumption �	a
 we have to assume that � 
 d� � � � d� 
 �� Assuming an upper

bound does not appear to be very serious because one can choose d� such that e�d� is very

close to zero so that� for � � d�� the sequence ft	�
 behaves essentially like the dummy

variable d�t� It is also clear that a lower bound condition� � � d�� is necessary because when

the value of � gets small the slope of the sequence ft	�
 decreases and in the limit where

� � � we have ft	�
 � � for all t and hence no shift� Obviously� this case has to be excluded�

Now consider Assumption �	b
� We have

�ft	�
 �

���
��
�� t � T�

fexp	�
� �g expf��	t� T�
g� t 	 T�
�

From this expression it can be seen that the summability condition of Assumption �	b
 holds

while the continuity requirement is obvious� Note that here it is not necessary to restrict the

values of � 	except � � �
� As to Assumption �	c
� the above expression of �ft	�
 shows that

the sum of squares of these variables has a positive limit and� when � 
 d� � � is assumed�

this holds uniformly for all �� It is similarly clear that �ft	�
 and the constant term cannot

be 	asymptotically
 linearly dependent so that Assumption �	c
 holds� A similar discussion

also can be given for 	���
�

Finally� consider the function in 	���
� Since unit roots in 
	L
 are to be avoided the

compactness requirement of Assumption �	a
 is met by assuming that the zeros of 
	L
 are

outside the unit circle and are� hence� bounded away from the unit circle� that is� 
	L
 �� �

for jLj � � � � for some 	small
 � 	 �� This assumption also implies that the summabil�

ity condition of Assumption �	b
 holds while the continuity condition therein is obviously

satis�ed� Since the condition of Assumption �	c
 is also straightforward to verify we can

conclude that the function in 	���
 �ts our general framework�

Given the generality of our shift term� the model 	���
 is quite �exible� For some time

series it is still not general enough� however� In particular� if seasonal time series are con�

�



sidered one may want to include seasonal dummy variables in addition to the deterministic

parts in 	���
� In this case we may simply use a model

yt �
qX

i��

�isit � �t� gt	�

�� � xt� t � �� �� � � � � 	���


where the �i are scalar parameters and the sit 	i � �� � � � � q
 represent seasonal dummy

variables� For instance� for quarterly data� sit assumes the value � if t is associated with

the ith quarter and zero otherwise� For quarterly data we use q � � seasonal dummies

because an intercept term is included in gt	�
� For convenience we focus on the model 	���


in the following theoretical analysis because adding seasonal dummies has no impact on the

asymptotic properties of our test statistics but only complicates the notation� Occasionally

we will comment on the changes necessary for including seasonal dummies because they are

used in the empirical examples in Section 
�

� Estimation of Nuisance Parameters

In the next section we shall develop a test procedure for the unit root hypothesis � � � in

the context of the general model 	���
� This test procedure requires suitable estimators for

the nuisance parameters �� � and �� Our approach for estimating these parameters is similar

to that in Elliott� Rothenberg � Stock 	����
 and Hwang � Schmidt 	����
� These authors

used GLS estimators of the trend parameters to detrend the observed series� Then the unit

root hypothesis is tested on the trend adjusted series� Unlike in the analogous multivariate

case considered by Saikkonen � L�utkepohl 	����
 our GLS estimation does not necessarily

assume validity of the null hypothesis but is based on appropriate local alternatives to be

speci�ed by the analyst� Thus� suppose that the error process xt de�ned by 	���
 and 	���


is near integrated so that

� � �T � � �
c

T
� 	���


where c � � is a �xed real number� Then the generating process of xt can be written as

�xt �
c

T
xt�� � b	L
���t� t � �� �� � � � 	���


For simplicity we make the initial value assumption x� � � although our asymptotic results

also hold under more general conditions 	cf� Elliott et al� 	����
� where the implications of

�



initial value assumptions are also discussed
� It follows from the stated assumptions that

T����x�sT �
d
� �Bc	s
� 	���


where � � ��b	�
 and Bc	s
 �
R s
� expfc	s � u
gdB�	u
 with B�	u
 a standard Brownian

motion 	cf� Elliott et al� 	����

�

Our GLS estimation assumes employing an empirical counterpart of the parameter c�

This means that we shall replace c by a chosen value �c and act as if �c � c would hold� The

choice of �c will be discussed later� Now� if ��T � � � �c
T
� the idea is to �rst transform the

variables in 	���
 by the �lter � � ��TL� For convenience we will use matrix notation and

de�ne

Y � �y� � 	y� � ��Ty�
 � � � � � 	yT � ��T yT��
�
��

Z� � �� � 	�� ��T 
 � � � � � 	T � ��T 	T � �

�
�

and

Z�	�
 � �g�	�
 � 	g�	�
� ��Tg�	�

 � � � � � 	gT 	�
� ��TgT��	�

�
��

Here� for simplicity� the notation ignores the dependence of the quantities on the chosen

value �c� Using this notation� the transformed form of 	���
 can be written as

Y � Z	�
�� U� 	���


where Z	�
 � �Z� � Z�	�
�� � � �� � ���� and U � �u� � � � � � uT �
� is an error term such that

ut � xt � ��Txt��� It follows from the de�nitions that

ut � b	L
���t � T��	c� �c
xt��
def
� u

��	
t � T��	c� �c
xt��� 	��



The second term on the r�h�s� of this equation is asymptotically negligible because� as a

consequence of 	���
� T��max��t�T jxtj � Op	T
����
� Thus� we shall consider a nonlinear

GLS estimation of 	���
 by proceeding in the same way as in the case c � � or under the

null hypothesis� The reason why we still do not assume �c � � is that choosing �c 
 � yields

more powerful tests 	see Elliott et al� 	����

� This means that our GLS estimation is based

on the covariance matrix resulting from the �rst term on the r�h�s� of 	��

� Hence� de�ning

U ��	 � �u
��	
� � � � � � u

��	
T �

�� we shall consider the covariance matrix of U ��	 or� more conveniently�

the matrix  	b
 � ���Cov	U ��	
� where b � �b� � � � � � bp���
�� Our GLS estimators are thus

obtained by minimizing the generalized sum of squares function

QT 	�� �� b
 � 	Y � Z	�
�
� 	b
��	Y � Z	�
�
� 	���


�



Note that in this estimation method an !arbitrary" initial value assumption is only made for

x� but not for xt� t 
 ��

The following technical assumption is helpful when asymptotic properties of the above

GLS estimator are studied�

Assumption ��

For some � 	 �� b	L
 �� � for jLj � � � �� that is� the roots of b	L
 are bounded away from

the unit circle� �

Thus� we restrict the roots of the lag polynomial b	L
 in the same way as for the lag

polynomial 
	L
 in 	���
 to meet Assumption �� Assumption � implies that the parameter

space for b is compact� It simpli�es proofs and is therefore attractive� For this reason similar

assumptions have also been quite common in the statistical analysis of stationary ARMA

models� Although it is not necessary to specify a value of � a priori in practice� it may be

useful to check the location of the roots of the estimate of b	L
� If roots very close to the

unit circle are found the original model speci�cation may not be appropriate and unit root

tests based on it may not be on �rm grounds� In particular� if b	L
 has a near unit root our

null hypothesis means that we have a process which is nearly I	�
 and this feature would be

useful to take into account in the analysis�

It is shown in the appendix that when Assumptions � and � hold� GLS estimators obtained

by minimizing the function QT 	�� �� b
 exist for all T large enough� We shall demonstrate

here that the same result holds for all values of T provided the matrix Z	�
 is of full column

rank for all � 	 �� First observe that this condition implies that� for any �xed values of � and

b� the 	ordinary
 GLS estimator of �� denoted by #�	�� b
� obviously exists� By Assumption

�	b
� Z	�
 is a continuous function of � while the continuity of  	b
 in b is well�known� This

implies that #�	�� b
 is continuous in 	�� b
 and from its de�nition one obtains� for any values

of � and b�

QT 	�� �� b
 � QT 	#�	�� b
� �� b
 � inf
��b

QT 	#�	�� b
� �� b
� 	���


The continuity of #�	�� b
 implies that QT 	#�	�� b
� �� b
 is continuous in 	�� b
 so that the

in�mum in 	���
 is attained at � � #� and b � #b� say� if the parameter spaces of � and b are

compact� This� however� follows from Assumptions �	a
 and �� Thus� #� � #�	#��#b
� #� and

��



#b are nonlinear GLS estimators of the parameters �� � and b� respectively� The additional

assumption made about the rank of the matrix Z	�
 to obtain this result is natural and not

restrictive� It is easily seen to hold in the special cases discussed in the previous section� Its

asymptotic counterpart is the condition in Assumption �	c
�

The above discussion implies that we can write

#� � 	Z	#�
� 	#b
��Z	#�

��Z	#�
� 	#b
��Y� 	���


Of course� the computation of #� still requires iterative methods� However� if preliminary

estimators of � and b are available they can be used on the r�h�s� of 	���
 in place of � and

b� respectively� to yield a feasible GLS estimator of �� This idea is implicit in some of the

procedures to be discussed below�

If Z	�
 is independent of �� like in 	��

� the above GLS estimation is simple because we

have a linear regression model with AR	p� �
 errors� If computationally simple alternatives

are desired one can then also consider conventional two�step estimators or even estimate � by

LS� The asymptotic properties of our test procedures are the same even if these estimators

are employed� However� in �nite samples it may be worthwhile to use proper 	nonlinear


GLS estimators which are still very simple�

When Z	�
 is not independent of � the situation is more complicated although usually

still quite feasible� When the value of � is �xed we have the situation discussed above so

that a grid search over the values of � may provide a convenient estimation procedure when

� is scalar or possibly even when it is two�dimensional but takes values in a reasonably small

set� Since consistent estimation of � is not possible 	see below
 and since it may often be

su�cient to obtain a relatively rough estimate of a smoothness parameter like the one in

	���
 or 	���
� a fairly coarse grid may su�ce� If grid search is not used one can apply one

of the available nonlinear estimation algorithms 	see� e�g�� Judge et al� 	���
� Appendix B


or Seber � Wild 	����� Chapters �� and ��

�

Asymptotic properties of the above nonlinear GLS estimators are described in the follow�

ing lemma which is proven in the Appendix where also other proofs are given� The estimator

#� is partitioned as #� � �#� � #���� conformably with the partition of �� The lemma assumes

local alternatives speci�ed by 	���
 so that the null hypothesis is obtained by setting c � ��

��



Lemma ��

Suppose that Assumptions � and � hold and also that the matrix Z	�
 is of full column rank

for all T � k � � and all � 	 �� Then�

#� � � �Op	�
� 	���


#� � � �Op	�
� 	����


#b
p
� b 	����


and

T ���	#�� �

d
� �

�
�Bc	�
� �	�� �


Z �

�
sBc	s
ds

	
� 	����


where � � 	�� �c
�	�� �c� �c���
� �

We have included the condition for the rank of the matrix Z	�
 in Lemma � because

it is plausible and simpli�es the exposition� It is seen in the proof that� as a consequence

of Assumption �	c
� this condition always holds for T large enough� Lemma � shows that

the estimators #b and #� are consistent but #� and #� are not� These latter estimators are only

bounded in probability� For #� this is� of course� trivial because the parameter space of �

is compact by assumption� However� for #� the situation is di�erent because the parameter

space of � is totally unrestricted� Since Assumption �	b
 implies that gt	�
 � ��T gt��	�
 


�gt	�
 � � as t � � the inconsistency of the estimators #� and #� is expected 	for more

details� see Seber � Wild 	����� p� 
�
�
��
 and Wu 	����

� The limiting distribution

obtained for the estimator #� in 	����
 agrees with that obtained by Elliott et al� 	����
 in

a model with gt	�
 � ��

The following example may be helpful for seeing more clearly how the procedure works

and why� for instance� #� is not consistent in general� Consider the function in 	��

 which

implies a gt	�
 independent of � and � � 	��� ��

� is just the coe�cient vector associated

��



with the constant and the step dummy d�t� In this case

Z	�
 �



��������������������

� � �

�� ��T �� ��T �
���

���
���

T� � ��T 	T� � �
 �� ��T �

T� � �� ��TT� �� ��T �� ��T
���

���
���

T � ��T 	T � �
 �� ��T �� ��T



��������������������

and computing estimators is very easy for p � �� For higher order processes an iterated GLS

method may be used� for instance� where � and � are �rst estimated by LS from 	���
� Then

an estimator for b is determined from the residuals again by LS� This estimator is used in

setting up  	#b
 and in obtaining second round estimators of � by replacing  	b
 in 	���
 by

 	#b
� The procedure may be repeated until convergence or it may be stopped after a small

number of iterations� Since �� is estimated separately from the �rst T� observations only� it

is clear that the estimator does not improve if T� is �xed and T increases� Note that from

observation T� � � onwards the sample contains information on the sum �� � �� only and

not on �� and �� separately�

We close this section by noting that the case where the model does not contain a linear

trend term can be handled in a straightforward way� Then the trend is simply dropped from

	���
 and the above estimation procedure is modi�ed accordingly� The results in Lemma

� for b� � and � continue to hold in this case� as the derivations in the appendix show� A

similar comment applies if seasonal dummy variables are added to the model� In that case

appropriate columns for the seasonal dummies have to be added to the matrix Z� Clearly� the

associated parameter estimates are consistent� It is argued in the Appendix that including

seasonal dummies has no impact on the asymptotic properties of the other estimators�

� Testing Procedures

Once the nuisance parameters in 	���
 have been estimated one can form the residual series

#xt � yt � #�t � gt	#�

�#� and use it to obtain unit root tests� There are several possibilities in

this respect� For instance� Elliott et al� 	����
 consider Dickey�Fuller 	DF
 tests� We shall

��



only give a detailed discussion of one approach and brie�y mention some other possibilities�

Consider the auxiliary regression model

#xt � �#xt�� � u�t � t � �� � � � � T� 	���


where #x� � �� In the previous section it was seen that if #xt is replaced by xt the covariance

matrix of the error term in 	���
 is �� 	b
� Since the parameter b is estimated to obtain #xt

it seems reasonable to use this estimator also here and base a unit root test on 	���
 with

� estimated by feasible GLS with weight matrix  	#b
��� Thus� if #X � �#x� � � � � � #xT �
� and

#X�� � �� � #x� � � � � � #xT���
� we introduce the estimator

#� � 	 #X �
�� 	#b


�� #X��

�� #X �

�� 	#b

�� #X� 	���


We also need an estimator of the error variance ��� Based on the GLS estimation of 	���


we use

#�� � T��	 #X � #X��#�

� 	#b
��	 #X � #X��#�
� 	���


For testing the null hypothesis we can now introduce the !t�statistic"

� � 	 #X �
�� 	

#b
�� #X��

���	#�� �
�#�� 	���


The limiting distribution of this test statistic is given in the following theorem which again

assumes the local alternatives de�ned in 	���
�

Theorem ��

Suppose the assumptions of Lemma � hold� Then�

�
d
�
�

�

�Z �

�
Gc	s$ �c


�ds
	����

	Gc	�$ �c

� � �
�

where

Gc	s$ �c
 � Bc	s
� s
�
�Bc	�
� �	�� �


Z �

�
sBc	s
ds

	
�

�

The limiting distribution in Theorem � is the same which Elliott et al� 	����
 obtained

for their t�statistic in a model whose deterministic part only contained a mean value and

linear trend term� The limiting null distribution� obtained by setting c � �� is free of

��



unknown nuisance parameters but depends on the quantity �c� Elliott at al� 	����
 suggest

using �c � ����
 and give some critical values for this choice in their Table I�C 	see their

paper for a motivation of this choice and further discussion
� Since our alternative is I	�
�

small values of � are critical� Elliott et al� 	����
 show that with the above choice of �c the

asymptotic local power of their t�test is nearly optimal for all values of c� From their results

and Theorem � we can conclude that this is also the case for our test� Hence� substantial

gains in local power may be possible relative to other tests�

It may be worth noting that to avoid the initial value assumption #x� � � one could con�

sider 	���
 for t � �� � � � � T and modify #X� #X�� and  	#b
 accordingly� The given formulation

has been used to avoid rede�ning  	#b
�

In the same way as in Elliott et al� 	����
 we could derive point optimal tests� These

tests would be based on the statistics #��	�
 and #��	��T 
 de�ned by replacing #� in 	���
 by

unity and ��T � respectively� According to the simulation results of Elliott et al� 	����
 the

overall properties of their DF t�statistic appeared somewhat better than those of the point

optimal tests� Their DF t�statistic is not similar to our � but is based on a regression of #xt

on #xt��� � � � � #xt�p� t � p � �� � � � � T � This approach could also be used here to obtain a test

statistic with the same limiting distribution as � �

Finally� note that if we have the a priori restriction � � � the above test remains the

same except that in this case �c � �� is recommended and the limiting null distribution is

then the same as in an AR	p
 model without any deterministic terms� Power gains can be

considerable compared to tests whose properties depend on deterministic terms as in Elliott

et al� 	����
� It may also be worth noting that seasonal dummies may be included without

a�ecting the limiting distribution of our test statistic as is shown in the Appendix�

� Examples

To illustrate the use of the tests presented in the foregoing we consider three German time

series with obvious shifts at the time of the German reuni�cation� In particular� we will

investigate the unit root properties of quarterly real GNP 	���
	�
 � ����	�

� money stock

M� 	����	�
 � ����	�

 and M� 	����	�
 � ����	�

� None of the series is seasonally adjusted��

�Data sources� GNP � quarterly� seasonally unadjusted data� ������� � ���	�
� West Germany� ���	��� �

������� all of Germany� Deutsches Institut f�ur Wirtschaftsforschung� Volkswirtschaftliche Gesamtrechnung�

�




The logarithms of the three variables are plotted in Figures � � � together with some other

functions and series which will be discussed later� In the �gures it is seen that the three series

all have seasonal patterns and clear shifts in ���� where the German uni�cation occurred�y

Seasonal dummies are included in the models to take care of the seasonal components and

the shifts in ���� are dealt with by including a shift dummy as in 	��

 or alternatively by

using the transition functions in 	���
 and 	���
 with q � r � �� Thus� we consider the

following � versions of the shift function ft	�
�

f
��	
t 	�
 � d�t� f

��	
t 	�
 � �t	�
 and f

�
	
t 	�
 �

�
d��t

�� �L
�
d��t��

�� �L

��
�

A smooth transition to a new level is at least a possibility for the series under consideration

because the East German economy entered into a transition process which changed the

economy in a fundamental way� Since f
��	
t 	�
 and f

�
	
t 	�
 contain a single parameter only�

estimation of � is done by nonlinear GLS with a grid search over the relevant part of the

space of ��

For comparison purposes we also performed regular augmented Dickey�Fuller 	ADF
 tests

with a linear trend� Perron 	����
 showed that these tests may have low power if there is

a level shift in the time series considered� The results of all the tests are given in Table �

together with critical values� The lag lengths are chosen such that residual autocorrelation

is largely eliminated� that is� models with increasing lag lengths were �tted until the residual

autocorrelation was insigni�cant� The orders used in the tests are also shown in Table ��z

We will now discuss the test results in detail in conjunction with the estimation results for

the shift functions�

In addition to the graphs of the series the estimated shift functions and the series adjusted

for deterministic terms are also depicted in the �gures� In particular� #x
�i	
t denotes the adjusted

series obtained by subtracting the intercept� seasonal dummies� the trend and the shift

function based on f
�i	
t 	#�
� i � �� �� �� �� where f

��	
t � �� that is� the shift is ignored for

M� � quarterly� seasonally unadjusted data� ���	��� � ���	��� West Germany� ���	��� � ������� all of

Germany� OECD�

M� � quarterly� seasonally unadjusted data� ���
��� � ���	�
� West Germany� ���	��� � ������� all of

Germany� Monatsbericht der Deutschen Bundesbank�
yDue to the speci
c de
nitions of the data the shift occurs in the third quarter in GNP and M� and in

the fourth quarter of ���	 in M��

zUsing AR order � in all tests we obtained qualitatively similar results�

��



Table �� Unit Root Tests

ADF test � test

AR value of critical values� critical values��

Variable order test statistic �� �	� f
���
t

��� f
���
t

��� f
���
t

��� �� �	�

log GNP � �
��
 ����� ����� ����	 ����	 �
���

log M� � ����
 ����� ����� �
��� �
��� �
��� �
��� �
���

log M� � �
��� ����� ����� �	��	 �	��	 �����
� Source� MacKinnon ������� �� Source� Elliott et al� ������ Table I�C� T ����

i � �� For log GNP the estimated shifts based on f
��	
t and f

��	
t 	#�
 are similar which is also

re�ected in the adjusted #x
�i	
t 	i � �� �
� Whereas #x

��	
t has a clear shift in ���� this is not

the case for #x
�i	
t 	i � �� �
� The shift based on f

�
	
t 	#�
 is quite di�erent from the previous

ones� After a steep increase in ���� it declines towards zero and� hence� the shift slowly

disappears� For German GNP this outcome is quite plausible assuming that the situation in

all of Germany slowly approaches the preuni�cation situation in West Germany� The shift

functions based on f
��	
t and f

��	
t 	#�
 cannot re�ect this kind of behavior because they are not

su�ciently �exible� Thus� in this case for modeling the shift allowing for some �exibility

may be advantageous� The adjusted series #x
�
	
t also does not display a clear shift in ����

and� hence� the shift my be captured adequately by f
�
	
t 	#�
 as well� Despite the shift in the

series and despite the di�erences in capturing the shift the ADF and � tests all reach the

same conclusions� They do not reject a unit root in log GNP� Thus the tests con�rm that

the choice of shift function is not critical in this case�

Looking at Figure �� the situation is seen to be a bit di�erent for log M�� In this case a

step dummy 	f
��	
t 
 results in a smaller shift than the other two shift functions� For f

��	
t 	#�


and f
�
	
t 	#�
 also quite steep shifts are obtained with a short adjustment period� At a 
%

signi�cance level all tests indicate a unit root in log M� 	see Table �
� However� the value

of the � test corresponding to f
��	
t is signi�cant at the ��% level� Hence� in this case� not

being able to reject the unit root hypothesis may just be a re�ection of insu�cient power of

unit root tests in the presence of a shift in the deterministic component� Alternatively� the

step dummy may be too restrictive in this case to capture the actual shift in the series and�

hence� the tests based on f
��	
t 	#�
 and f

�
	
t 	#�
 may be more reliable� In any case the evidence

against a unit root in log M� is not very strong�

��



The estimated shift functions for log M� are displayed in Figure �� For f
��	
t and f

��	
t 	#�


a one�time shift of very similar size is obtained� As for log GNP the shift based on f
�
	
t 	#�
 is

quite di�erent� After the jump in ���� it slowly tends back towards zero� Again� this kind of

shift is not unreasonable if there is a transition towards the preuni�cation situation in West

Germany� Despite the di�erences in the shift functions the test results are again robust and

unanimously point to a unit root in log M�� Thus� overall our results con�rm unit roots in

log GNP and log M� even if deterministic shifts are allowed for whereas the evidence for a

unit root in log M� is less clear in this case�

� Conclusions

In this study we have proposed new tests for unit roots in univariate time series with a

shift in the mean� The timing of the shift is assumed to be known and the form of the

shift may be of a very general type ranging from a simple one�time step to a longer term

smooth adjustment to a new level� Also there may be more than one shift and there may be

further deterministic terms such as a linear trend and seasonal components� It is proposed

to estimate the deterministic part of the series �rst by a GLS procedure� The estimated

deterministic part is then subtracted from the original series and a unit root test is performed

on the residual series� Although there are various di�erent tests that can be used in the

second step of the procedure we have focused on Dickey�Fuller type tests as proposed by

Elliott et al� 	����
� The asymptotic distribution under the null of a unit root is nonstandard

but critical values are available in the literature� We have illustrated the tests using German

macroeconomic time series which have a level shift in ���� where the German reuni�cation

occurred�

��



Appendix� Proofs

A�� Proof of Lemma �

Using the de�nitions of the previous sections we �rst observe that

Z� �



���������

�

�� �c
T

���

�� �c�T��	
T



���������

and Z�	�
 �



���������

g�	�

�

�g�	�

� � �c

T
g�	�


�

���

�gT 	�

� � �c

T
gT��	�


�



���������
�

From this expression of Z� it is straightforward to check that

T��Z �
�Z� � �� �c� �c�



�O	T��


def
� h	�c
 �O	T��
�

	A��


Recall from Section � that the sequence gt	�
 is bounded uniformly over � and t� Thus� using

the above expression of Z�	�
 and Assumption �	b
 we �nd that

T����Z �
�Z�	�
 � O	T����
 	A��


and

Z�	�

�Z�	�
 �

TX
t��

�gt	�
�gt	�

� �O	T��
 	A��


uniformly in �� Combining 	A��
� 	A��
 and denoting D�T � diag�T
��� � Ik� yields

D��
�T Z	�


�Z	�
D��
�T � diag

h
h	�c
 �

PT
t���gt	�
�gt	�


�
i
�O	T����


def
� MT 	�
 �O	T����


	A��


uniformly in �� We note in passing that 	A��
 implies that the matrix Z	�
 is of full column

rank for all � and all T large enough because� by Assumption �	c
� the matrix MT 	�
 is

positive de�nite for all � and all T large enough�

Next note that� by Assumption �� the spectral density function of the stationary process

u
��	
t � b	L
���t is bounded and bounded away from zero uniformly over the permissible space

of b� This implies that there exist numbers K and �K such that

� 
 K � �min 	 	b

 � �max 	 	b

 � �K 
� 	A�



��



	cf� Elliott et al� 	����
� proof of Lemma A��
� From 	A��
� 	A�

 and the continuity of

eigenvalues we thus �nd that

�min

�
D��

�T Z	
#�
� 	#b
��Z	#�
D��

�T

�
� �K���min

�
D��

�T Z	
#�
�Z	#�
D��

�T

�
� �K���min	MT 	#�

 � o	�
�

Since �min	MT 	#�

 � � 	 � for T � T� by Assumption �	c
 it follows from the above that

�����D��
�T Z	#�


� 	#b
��Z	#�
D��
�T

���
����
�
� O	�
� 	A��


where k � k� signi�es the operator norm of a matrix�

Next note that

Y � Z	#�
�� ��

where � � U � 	Z�	�
�Z�	#�

� with U as in 	���
� Note also that � is not a function of the

parameters � and � because here � and � signify true parameter values� From this and 	���


one obtains

#�� � �
�
Z	#�
� 	#b
��Z	#�


���
Z	#�
� 	#b
���

which in conjunction with 	A��
 and the norm inequality kABk � kAk�kBk implies

kD�T 	#�� �
k � O	�

���D��

�T Z	
#�
� 	#b
���

��� �
Hence� if we show that

D��
�T Z	

#�
� 	#b
��� � Op	�
� 	A��


we can conclude

D�T 	#�� �
 � Op	�
 	A��


which proves 	����
�

To justify 	A��
� let Z�p��		#�
 be the 		p� �
� 	k� �

 matrix containing the �rst p� �

rows of Z	#�
 and let ��p��	 be the p � � vector containing the �rst p � � components of ��

Furthermore� let  �p��		#b
 be the 		p � �
 � 	p � �

 dimensional counterpart of  	#b
 and

de�ne #b	L
 � �� #b�L� � � � � #bp��L
p��� Then we can write

D��
�T Z	

#�
� 	#b
��� � D��
�T Z�p��		#�


� �p��		#b

����p��	 �D��

�T

TX
t�p

�#b	L
Zt	#�
��#b	L
�t�� 	A��


where Zt	#�
 		k � �
 � �
 is the tth row of the matrix Z	#�
 and �t is the tth component of

the vector �� By the de�nitions and our previous derivations it is clear that the �rst term

��



on the right hand side of 	A��
 is of order Op	�
 and its �rst component is actually of order

Op	T
����
�

To analyse the second term on the right hand side of 	A��
� let �t denote the tth component

of the vector 	Z�	�
 � Z�	#�

� so that �t � ut � �t with ut as in 	��

� It follows from

Assumption �	b
 that the sequence �t is absolutely summable� while Assumption � implies

that the coe�cients of the polynomial b	L
 belong to a bounded set� Thus� using these facts�

the expressions of Z� and Z�	�
 given at the beginning of the proof� the de�nition of Zt	#�
�

and Assumption �	b
 we �nd that

D��
�T

TX
t�p

�#b	L
Zt	#�
��#b	L
�t� �



�� Op	T

����


Op	�




�� � 	A���


where the partition is after the �rst component� Now we can conclude that the second term

on the right hand side of 	A��
 is of order Op	�
 if

D��
�T

TX
t�p

�#b	L
Zt	#�
��#b	L
ut� � Op	�
 	A���


or if

T����
TX
t�p

Z��t�iut�j � Op	�
 	A���


and
TX
t�p

Z��t�i	#�
ut�j � Op	�
� 	A���


where i� j � �� � � � � p� � and the partition Zt	#�
 � �Z�t � Z�t	#�

��� has been used� Since Z�t �

�� �c�t��	
T

it follows from 	��

 and well�known properties of stationary and near integrated

processes that 	A���
 holds� To justify 	A���
� recall from 	��

 that ut � u
��	
t �	c��c
T��xt��

with u
��	
t � b	L
���t and notice that the left hand side of 	A���
 is dominated by

TX
t�p

sup
���

kZ��t�i	�
kju
��	
t�jj� jc� �cjT

�� max
��t�T

jxtj
TX
t�p

sup
���

kZ��t�i	�
k�

Since Z�t	�
 � �gt	�
 � T���cgt��	�
 it follows from Assumption �	b
 that sup��� kZ�t	�
k

is summable� Thus� the �rst term in the last expression is of order Op	�
 because Eju
��	
t�jj is

a �nite constant while the second term is of order Op	T
����
 because T��max��t�T jxtj �

Op	T
����
� as noticed below 	��

� Hence� we can conclude that 	A���
 also holds and�

furthermore� that the second term on the right hand side of 	A��
 is of order Op	�
� As a

whole� we have thus established 	A��
 and thereby 	A��
 as well� As already noticed� this

��



proves 	����
 while 	���
 holds by the assumed compactness of the parameter space �� To

complete the proof� we still need to show 	����
 and 	����
�

To prove 	����
� that is the consistency of #b� it will be useful to let b�� �� and �� � ��� � �
�
��
�

stand for the true values of the indicated parameters� We also introduce the notation

r	�� �
 � Z	�
�� Z	��
��

� Z�	�� ��
 � Z�	�
� � Z�	��
���

Thus� since U � Y � Z	��
��� we have Y � Z	�
� � U � r	�� �
 and furthermore

QT 	�� �� b
 � U � 	b
��U � �U � 	b
��r	�� �
 � r	�� �
� 	b
��r	�� �

def
� Q�T 	b
 �Q�T 	�� �� b
 �Q
T 	�� �� b
�

In the same way as in 	A��
 we can write

T��Q�T 	b
 � T��U �
�p��	 �p��		b


��U�p��	 � T��
TX
t�p

�b	L
ut�
� � 	A���


where the vector U�p��	 contains the �rst p�� components of U � Using 	A�

� 	��

� the fact

that the coe�cients of b	L
 belong to a bounded set� and well�known properties of stationary

and near integrated processes we can conclude from 	A���
 that

T��Q�T 	b

p
�� �Q�	b
� 	A��



where the convergence is uniform in b and the right hand side equals the variance of the

stationary process b	L
b�	L

���t with b�	L
 de�ned in terms of b�� It is also well�known that

�Q�	b
 is continuous and that �Q�	b
 � �Q�	b�
 with equality if and only if b � b��

It will be shown later that

T��QiT 	#�� #��#b
 � op	�
� i � �� �� 	A���


Assuming this for the moment� one obtains

T��QT 	��� ��� b�
 � T��QT 	#�� #��#b


� T��Q�T 	#b
 � op	�
�

where the �rst relation is based on the de�nitions of the estimators #�T � #�T and #bT and the

second one on 	A���
� Since QT 	��� ��� b�
 � Q�T 	b�
 the above inequality and 	A��

 give

�Q�	#b
� �Q�	b�
 � op	�
 and� since �Q�	b
 is uniquely minimized at b � b�� the consistency of

#b follows�

��



To show 	A���
 consider the case i � �� Since 	A��
 implies #�� �� � Op	T
����
 we have

by using �rst 	A�

 and then 	A��
�

	#�� ��

�Z �

� 	
#b
��Z� � K��	#�� ��


�kZ�k
� � Op	�
�

Similarly�

	Z�	#�
#� � Z�	��
��

� 	#b
��	Z�	#�
#� � Z�	��
��


� K��kZ�	#�
#� � Z�	��
��k
�

� �K��kZ�	#�
k
�k#�k� � �K��kZ�	��
k

�k��k
�

� Op	�
�

where the equality is a straightforward consequence of 	A��
� Assumption �	b
 and the result

#� � Op	�
 obtained from 	A��
� Now� to see that 	A���
 holds for i � �� recall the de�nition

of Q
T 	�� �� b
 and use the latter expression of r	�� �
 in conjunction with the above results

and the Cauchy�Schwarz inequality� Moreover� it can be deduced from this� the fact that

T��Q�T 	#b
 � Op	�
 obtained from 	A��

 and the Cauchy�Schwarz inequality that 	A���


holds for i � �� Thus� we have proved the consistency of #b�

Finally� we have to demonstrate 	����
� Treating  	#b
�� in the same way as in 	A��
 and

	A���
 and using arguments similar to those for 	A��
 it can be seen that

T����Z �
� 	

#b
��Z�	#�
 � Op	T
����
�

Hence�

D��
�T Z	

#�
� 	#b
��Z	#�
D��
�T � diag�T

��Z �
� 	

#b
��Z� � Z�	#�

� 	#b
��Z�	#�
� �Op	T

����
�

From this� 	A��
� and Lemma A�� of Saikkonen � L�utkepohl 	����
 it follows that a similar

equality also holds for the corresponding inverses� which together with 	A��
 implies

T ���	#�� �
 � 	T��Z �
� 	

#b
��Z�

��T����Z �

� 	
#b
��� � op	�


� 	T��Z �
� 	

#b
��Z�

��T����Z �

� 	
#b
��U � op	�
�

Here the latter equality follows from the analysis given for 	A��
 	see in particular 	A���



and the fact that the inverse is bounded by 	A��
� In the last expression we can treat the

inverse in the same way as in 	A��
 and 	A���
� use the consistency of the estimator #b and

arguments used earlier in the proof to conclude that #b can be replaced by the true parameter

value� The arguments given in the proof of Lemma A�� of Elliott et al� 	����
 then imply

��



that  	#b
�� can further be replaced by ���IT and that the limiting distribution of #� is the

same as stated on p� ��
 of that paper� This completes the proof of Lemma ��

To see how seasonal dummies a�ect the result of Lemma �� let Z
 be the matrix contain�

ing the values of the seasonal dummies corresponding to y�� � � � � yT transformed by the �lter

�� ��TL� Assume that the seasonal dummies are linearly independent and also that the con�

stant term is linearly independent of the seasonal dummies� Then T��Z �

 	b


��Z
 converges

to a positive de�nite limit while T��Z �

 	b


��Z� � o	�
 and T����Z �

 	b


��Z�	�
 � o	�


uniformly in b and �� These last facts can be established by using arguments similar to

those in the proof of Lemma �� Since the argument used in 	A��
 can also be used to show

that T����Z �

 	b


��� � Op	�
 uniformly in b it follows that the estimation of the coe�cients

of the seasonal dummies is asymptotically orthogonal to the estimation of other regression

coe�cients so that the coe�cient estimators related to the seasonal dummies are consistent

and the results of Lemma � still hold in the stated form�

A�� Proof of Theorem �

First observe that

#xt � xt � 	#�� �
t� gt	#�

�#� � gt	�


��� 	A���


Since gt	�
 is bounded uniformly over � and t� it follows from this� 	���
 and Lemma � that

T����#x�Ts�
d
�� �Gc	s$ �c
� 	A���


We also note that from 	A���
� Lemma � and Assumption � it is straightforward to conclude

that� for i� j � �� � � � � p� ��

T��PT
t�p�#xt�i�#xt�j � T��PT

t�p�xt�i�xt�j � op	�


� T��PT
t�p u

��	
t�iu

��	
t�j � op	�
�

	A���


Now� treating the inverse  	#b
�� in the same way as in 	A��
 and 	A���
 we �nd that

T�� #X �
�� 	

#b
�� #X�� � T��PT
t�p�

#b	L
#xt���
� � op	�


� #b	�
�T��PT
t�p #x

�
t�� � op	�


d
�� ��

R �
� Gc	s$ �c


�ds�

	A���


Here the second equality is a simple consequence of 	A���
� 	A���
 and the representation

#b	L
 � #b	�
 � #b�	L
�� The last relation follows from the consistency of #b� 	A���
 and the

��



continuous mapping theorem� In the same way we also have

T�� #X �
�� 	

#b
��	 #X � #X��
 � T��PT
t�p�

#b	L
#xt����#b	L
�#xt� � op	�


� �
�
T���#b	L
#xt�

� � �
�
T��PT

t�p�#b	L
�#xt�
� � op	�


d
�� �

�
��Gc	�$ �c


� � �
�
���

	A���


Here the second relation is due to a simple algebraic identity 	cf� Phillips 	����
� Equations

	A�
 and 	A�

� while the third one can be obtained from 	A���
� 	A���
 and arguments

used above� These arguments in conjunction with the result #� � ��Op	T
��
 obtained from

	A���
 and 	A���
 also imply that #�� � �� � op	�
� The stated result follows from this fact�

	A���
� 	A���
 and the continuous mapping theorem� Thereby the proof is complete�

Now suppose that seasonal dummies are included in the model� Then� according to what

was said above about parameter estimation in this context it is clear that the counterpart

of the residual series #xt obtained in this case still satis�es 	A���
 and� furthermore� that the

resulting test statistic has the same limiting distribution as in the model where no seasonal

dummies are included�
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