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Abstract

An introduction to vector autoregressive �VAR� analysis is given with special em�
phasis on cointegration� The models� estimating their parameters and specifying the
autoregressive order� the cointegrating rank and other restrictions are discussed� Pos�
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and forecast error variance decompositions are presented as tools for analyzing VAR
models�
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� Introduction

Over the last two decades vector autoregressive �VAR� processes have become popu�
lar tools for econometric analyses� The poor forecast performance of some large scale
econometric simultaneous equations models has shed doubt on their usefulness for
econometric analysis in general and has resulted in Sims
 ������ critique of macroe�
conometric modeling and his recommendation to use VAR models instead� There
are some major dierences between classical econometric models and VAR models�
In VAR analyses it is not uncommon to treat all variables as endogenous a priori�
Exogeneity is not assumed at the outset but may be the result of a detailed statis�
tical analysis whereas in classical econometric models a large number of variables is
typically assumed to be exogenous� Moreover� VAR models are usually constructed
for a small number of variables only and emphasis is placed on rich dynamics with
potentially many lags of the endogenous variables under study� In its basic form the
model is set up in reduced form� For example� in Sims
 ������ classical article he
uses a system for quarterly data consisting of the variables money� real GNP� un�
employment� wages� price level and import prices and he includes four lags of each
variable in each of the equations� In contrast� classical econometric models often con�
tain dozens or even hundreds of equations with very few lags only and many a priori
restrictions to identify the model �see Uebe ������ for examples�� In particular� the
�incredible
 identifying a priori restrictions were criticized by Sims� In VAR analy�
ses� impulse responses of the variables are often used for analyzing the interactions
between the variables under consideration� In the past years it has become apparent
that many problems of interest to econometricians cannot be analyzed in this way
without any identifying restrictions� Therefore� structural VAR models are now often
used in practice� Moreover� the invention of cointegration has resulted in speci�c
parameterizations which support the analysis of the cointegration structure�

A variable is called integrated of order d �I�d�� if stochastic trends or unit roots can
be removed by dierencing the variable d times� In the following it is assumed that all
variables are at most I��� if not otherwise stated� In other words� for any time series
variable ykt it is assumed that �ykt � ykt � yk�t�� has no stochastic trend� Note�
however� that �ykt may still have deterministic components such as a polynomial
trend or a deterministic seasonal component� Note also that a variable without a
stochastic trend or unit root is sometimes called I���� A set of I��� variables is called
cointegrated if a linear combination exists which is I��� �Granger ������� Engle �
Granger �������� The cointegrating relations are often interpreted as the connecting
links to the relations derived from economic theory� Therefore they are of particular
interest in an analysis of a set of time series variables�

In the following I will �rst discuss some of the models which are now in common
use in VAR analyses� Estimation and speci�cation of these models will be considered
in Sections � and �� respectively� Forecasting� impulse response analysis and other
possible uses of VAR models are presented in Section �� Conclusions and extensions
are considered in Section �� Nowadays a number of books are available which treat
modern developments in VAR modeling and dynamic econometric analysis more gen�
erally in some detail� For example� L�utkepohl ������ gives a broad overview of many
aspects of VAR models and their analysis� Hendry ������ treats recent developments
in general dynamic econometric modeling� Banerjee� Dolado� Galbraith � Hendry

	



������� Johansen ������ and Hatanaka ������ focus on models for integrated and
cointegrated variables and Hamilton ������ contains an introductory treatment of
VAR models and related issues� Articles which survey vector autoregressive model�
ing include Watson ������ and L�utkepohl � Breitung ������� These references may
be consulted for further details on some of the issues discussed in the following� for
examples and further references�

� Vector Autoregressive and Error Correction Mod�

els

The characteristics of the variables involved determine to some extent which model is
a suitable representation of the data generation process �DGP�� For instance� trending
properties and seasonal �uctuations are of importance in setting up a suitable model�
In the following we will focus on systems which contain potentially I��� and I���
variables� For convenience� the original concept of cointegration is extended by calling
any linear combination which is I��� a cointegration relation although this terminology
is not in the spirit of the original de�nition because it can result in a linear combination
of I��� variables being called a cointegration relation�

In some of the following review� we allow for deterministic components such as
polynomial trends� For these terms we assume for convenience that they are at most
linear� In other words� we exclude higher order polynomial trend terms� For practical
purposes this assumption is not a severe limitation� For simplicity we ignore seasonal
dummy variables and other deterministic seasonal terms although they are often used
in practice� Including them does not change the results and analysis in any essential
way�

Given a set of K time series variables yt � �y�t� � � � � yKt�
�� the basic VAR model

without deterministic components has the form

yt � A�yt�� � � � �� Apyt�p � ut � AY t�p
t�� � ut� �	���

where A � �A� � � � � � Ap�� the Ai are �K � K� coe�cient matrices� Y t�p
t�� �

�y�t��� � � � � y
�
t�p�

� and ut � �u�t� � � � � uKt�
� is an unobservable zero mean white noise

process with time invariant positive de�nite covariance matrix �u� That is� the ut
are serially uncorrelated or independent� The model �	��� is brie�y referred to as a
VAR�p� process because the number of lags is p�

A VAR�p� process is stable if

det�IK �A�z � � � � �Apz
p� �� � for jzj � �� �	�	�

Assuming that it has been initiated in the in�nite past� it generates stationary time
series which have time invariant means� variances and autocovariance structure� If
the determinantal polynomial in �	�	� has a root for z � � �i�e�� a unit root�� then
some or all of the variables are I��� and they may also be cointegrated� Thus� the
present model is general enough to accommodate variables with stochastic trends� On
the other hand� it is not the most convenient representation if interest centers on the
cointegrating relations because they do not appear explicitly in �	���� They are more
easily analyzed within a vector error correction model �VECM� which is obtained
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from �	��� by subtracting yt�� from both sides of the equality sign and rearranging
terms� A VECM has the form

�yt � �yt������yt��� � � ���p���yt�p���ut � �yt�����Y t�p��
t�� �ut� �	���

where � � ��IK � A� � � � � � Ap�� �i � ��Ai�� � � � � � Ap� �i � �� � � � � p � ���

� � ��� � � � � � �p��� and �Y t�p��
t�� � Y t�p��

t�� � Y t�p
t�� � Because �yt does not contain

stochastic trends by our assumption that all variables are at most I���� the term �yt��
is the only one which contains I��� variables� Hence� �yt�� must also be I���� Thus�
it contains the cointegrating relations� The �j �j � �� � � � � p� �� are often referred to
as the short�term or short�run parameters while �yt�� is sometimes called long�run
part� The model in �	��� will be abbreviated as VECM�p� because p is the largest
lag of the levels yt that appear in the corresponding levels VAR version of the model�
Given a VECM�p� it is easy to see that the Aj parameter matrices of the levels VAR
form may be obtained as A� � �� ��� IK � Ai � �i � �i�� for i � 	� � � � � p� �� and
Ap � ��p���

If the VAR�p� process has unit roots� that is� det�IK � A�z � � � � � Apz
p� � �

for z � �� the matrix � is singular� Suppose it has rank r� i�e�� rk��� � r� Then
it is well�known that � can be written as a product � � ���� where � and � are
�K � r� matrices with rk��� � rk��� � r� Premultiplying an I��� vector by some
matrix results again in an I��� process� Hence� premultiplying �yt�� � ���yt��
by ��������� shows that ��yt�� is I��� and� therefore� contains the cointegrating
relations� Hence� there are r � rk��� linearly independent cointegrating relations
among the components of yt� The matrices � and � are not unique because� for any
nonsingular �r � r� matrix R� de�ning �� � �R� and �� � �R�� gives ����

�

� ��
Hence� there are many possible � matrices that contain the cointegrating relations
or some linear transformation of them� Consequently� cointegrating relations with
economic content cannot be extracted purely from the observed time series� Some
nonsample information is required to identify them uniquely�

Special cases included in �	��� are I��� processes for which r � K and systems that
have a stable VAR representation in �rst dierences� In the latter case� r � � and the
term �yt�� disappears in �	���� These boundary cases do not represent cointegrated
systems in the usual sense� There are also cases where no genuine cointegration is
present even if the model �	��� has a cointegrating rank strictly between � and K�
Suppose� for instance� that all variables but one are stationary� Then the cointegrating
rank is K � � although the I��� variable is not cointegrated with the other variables�
Similarly� there could be K � r unrelated nonstationary variables and r stationary
components� Generally� for each stationary variable in the system there can be a
column in the matrix � with a unit in one position and zeros elsewhere� In these
cases there is no genuine cointegration� Still it is convenient to include these cases in
the present framework because they can be accommodated easily as far as estimation
and inference is concerned� Of course� the special properties of the variables may be
important in the interpretation of a system and� hence� a dierent treatment of the
special cases may be necessary in this respect�

In practice the basic models �	��� and �	��� are usually too restrictive to represent
the main characteristics of the data� In particular� deterministic terms such as an
intercept� a linear trend term or seasonal dummy variables may be required for a
proper representation of the data� There are two ways to include deterministic terms�
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The �rst possibility is to represent the observed variables yt as a sum of a deterministic
term and a stochastic part�

yt � �t � xt� �	���

where �t is the deterministic term and xt is a stochastic process which may have a VAR
or VECM representation as in �	��� or �	���� that is� xt � A�xt��� � � ��Apxt�p�ut
or �xt � �xt�� � ���xt�� � � � � � �p���xt�p�� � ut� If �t is a linear trend term�
that is� �t � �� � ��t� for example� yt has a VAR�p� representation of the form

yt � �� � ��t�A�yt�� � � � ��Apyt�p � ut � �� � ��t�AY t�p
t�� � ut� �	���

where �� � ����� �
Pp

j�� jAj��� and �� � ����� In other words� �� and �� satisfy
a set of restrictions� Note� however� that if �	��� is regarded as the basic model with�
out restrictions for �i� i � �� �� the model can in principle generate quadratic trends
if I��� variables are included� whereas the deterministic term �t � �� � ��t in �	���
enforces a linear trend term� The fact that in �	��� a clear partitioning of the process
in a deterministic and a stochastic component is available is sometimes advantageous
in theoretical derivations� Also� in practice� it may be possible to subtract the deter�
ministic term �rst and then focus the analysis on the stochastic part which usually
contains the behavioral relations� Therefore this part is often of foremost interest in
econometric analyses� Of course� a VECM�p� representation equivalent to �	��� also
exists �see �������

Clearly� the models considered so far are in reduced form because all right�hand
side variables are predetermined or deterministic and no instantaneous relations are
modeled� Sometimes it is of interest to model also the instantaneous relations� In
that case it may be useful to consider a structural form model�

A�yt � �� � ��t�A�yt�� � � � ��Apyt�p � ut� �	���

or a corresponding VECM�

���yt � �� � ��t��yt�� � ���yt�� � � � �� �p���yt�p�� � ut� �	���

Of course� restrictions have to be imposed to identify the parameters of these models�

� Estimation

Because estimation of some of the special case models is computationally particularly
easy these cases will be considered in more detail in the following� We begin with the
levels VAR representation �	��� under the condition that no restrictions are imposed�
Then estimation of the VECM �	��� is treated and �nally reduced form models with
parameter restrictions are discussed�

��� Estimation of an Unrestricted VAR

Given a sample of size T � y�� � � � � yT � and p presample values� y�p��� � � � � y�� it is well�
known that the K equations of the VAR model �	��� may be estimated separately by
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least squares �LS� without loosing e�ciency relative to generalized LS �GLS�� The LS
estimator of A � �A� � � � � � Ap� is

 A � �  A� � � � � �  Ap� �

TX
t��

ytY
t�p�

t��

�
TX
t��

Y t�p
t�� Y

t�p�

t��

���

� �����

Under standard assumptions�  A is consistent and asymptotically normally distributed
�see� e�g�� L�utkepohl ��������

p
Tvec�  A�A�

d� N���� �A�

or� written in an alternative way�

vec�  A�
a� N�vec�A��� �A�T �� ���	�

Here vec denotes the column stacking operator which stacks the columns of a matrix

in a column vector� Moreover�
d� and

a� signify convergence in distribution� The
covariance matrix of the asymptotic distribution is

� �A � plim

�
T��

TX
t��

Y t�p
t�� Y

t�p�

t��

���

��u

so that the result in ���	� may be written in the somewhat imprecise but intuitive
way as

vec�  A� � N

��vec�A��

�
TX
t��

Y t�p
t�� Y

t�p�

t��

���

� �u

�A � �����

Although these results also hold for cointegrated systems it is important to note
that in this case the covariance matrix � �A is singular whereas it is nonsingular in
the usual I��� case �see Park � Phillips ������ ������ Sims� Stock � Watson �������
L�utkepohl ������ Chapter ����� Consequently� some estimated coe�cients or linear
combinations of coe�cients converge with a faster rate than T ��� if there are inte�
grated or cointegrated variables� Therefore� in this case the usual t�� ��� and F �tests
used for inference regarding the VAR parameters� may not be valid as shown� e�g�� by
Toda � Phillips ������� This result is a generalization of the famous unit root case of
a univariate �rst order autoregressive process� yt � �yt�� � ut� It is well�known that
the LS estimator  � of � has a nonstandard limiting distribution if � � � and� hence� yt
is I���� From the unit root literature �e�g�� Fuller ������� Dickey � Fuller �������� the
quantity

p
T � �� �� is known to converge to zero in probability� that is� the limiting

distribution has zero variance and is degenerate� whereas T � �� �� has a nondegener�
ate nonnormal limiting distribution� Despite these results there are also many cases�
where t�� ��� and F �tests can be applied in the usual manner in VAR models with
I��� variables� Dolado � L�utkepohl ������ and Toda � Yamamoto ������ show that
if a null hypothesis is considered which does not restrict elements of each of the Ai

�i � �� � � � � p� the usual Wald tests have their standard asymptotic properties� For ex�
ample� t�ratios have their usual asymptotic standard normal distribution if the VAR
order p is greater than one�
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If the process yt is normally distributed �Gaussian� and stationary� then the LS
estimator in ����� is identical to the maximum likelihood �ML� estimator conditional
on the presample values� Moreover� deterministic terms such as polynomial trends
may be included in the model� In this case the asymptotic properties of the VAR
coe�cients remain essentially the same as in the case without deterministic terms
�Sims� Stock � Watson ��������

In order to work with the asymptotic results an estimator of the covariance matrix
�u is needed� The usual estimators may be used for that purpose� that is�

 �u �
�

T �Kp

TX
t��

 ut u
�
t or e�u �

�

T

TX
t��

 ut u
�
t �����

are possible candidates� Here the  ut � yt�  AY t�p
t�� �t � �� � � � � T � are the LS residuals�

Both estimators in ����� are consistent and asymptotically normally distributed under
general assumptions� Furthermore� they are asymptotically independent of  A �see
L�utkepohl ������ and L�utkepohl � Saikkonen �����a��� These properties ensure that
the estimators can be used in the usual way in setting up test statistics� for example�

��� Estimation of a VECM

If the cointegrating rank of yt is known and one wishes to impose the corresponding
restrictions� it is convenient to work with the VECM form �	���� Following Johansen
������ ������ we denote the residuals from a regression of �yt and yt�� on �Y t�p��

t��

by R�t and R�t� respectively� and de�ne

Sij � T��
TX
t��

RitR
�
jt� i� j � �� ��

The parameter estimators under the restriction rk��� � r are then obtained by solving
the eigenvalue problem

det�	S�� � S��S
��
�� S��� � �� �����

Let the ordered eigenvalues be 	� 	 � � � 	 	K with corresponding eigenvectors V �
�v�� � � � � vK � satisfying 	iS��vi � S��S

��
�� S��vi �i � �� � � � �K� and normalized such

that V �S��V � IK � Then � and � may be estimated as

 � � �v�� � � � � vr� and  � � S��  ��  �
�S��  ��

���

respectively� that is�  � may be viewed as LS estimator from the model

R�t � � ��R�t � !ut�

An estimator of � is  � �  �  �� and� using �yt �  �yt�� � ��Y t�p��
t�� � !ut� � � ��� �

� � � � �p��� may be estimated as

 � � � �� � � � � �  �p��� �
�

TX
t��

��yt �  �yt����Y
t�p���

t��

��
TX
t��

�Y t�p��
t�� �Y t�p���

t��

���

�
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Under Gaussian assumptions these estimators are ML estimators conditional on the
presample values �Johansen ��������

In this approach the parameter estimator  � is made unique by normalizing the
eigenvectors from the eigenvalue problem ����� and  � is adjusted accordingly� How�
ever� these are not econometric identi�cation restrictions� Without such restrictions
only the product ��� � � can be estimated consistently� For consistent estimation of
the matrices � and �� identifying restrictions have to be imposed� For example� in a
speci�c model it may be reasonable to assume that the �rst part of � is an identity
matrix� so that �� � �Ir � �

�
��� where �� is a ��K � r� � r� matrix� For r � �� this re�

striction amounts to normalizing the coe�cient of the �rst variable� This identifying
restriction has attracted some attention in the cointegration literature� If uniqueness
restrictions are imposed it can be shown that T �  � � �� and

p
T � � � �� converge in

distribution �Johansen �������� In other words� the estimator of � converges with the
fast rate T � It is therefore sometimes called superconsistent whereas the estimator of
� converges with the usual rate

p
T �

The estimators of � and � are consistent and asymptotically normal under general

assumptions and converge at the usual
p
T rate�

p
Tvec� � � ��

d� N������� andp
Tvec� � � ��

d� N�������� The asymptotic distribution of  � is nonsingular and�
hence� standard inference may be used for �� In contrast� the �K� �K�� covariance
matrix ��� has rank Kr� It is singular if r 
 K� This result is obtained because �
involves the cointegrating relations which are estimated superconsistently�

Interestingly� if an estimator of the levels parameters A is computed via the esti�
mates of � and � and thereby satis�es the cointegration restriction� that estimator has
the same asymptotic distribution as in ���	� where no restrictions have been imposed
in estimating A� Moreover� computing the covariance matrix estimators in ����� from
the residuals of the VECM estimation results in the same asymptotic properties as for
the levels VAR form� Important results on estimating models with integrated vari�
ables are due to Phillips and his co�workers �e�g�� Phillips � Durlauf ������� Phillips
������ ������ Phillips � Hansen ������� Phillips � Loretan �������� Extensions of
the foregoing results to the case where the true DGP is an in�nite order VAR process
are considered by Saikkonen ����	� and Saikkonen � L�utkepohl �������

��� Estimation of Restricted Models

In practice it is often desirable to place restrictions on the parameters to reduce the
dimensionality of the parameter space� For instance� it is quite common that dierent
lags of the dierenced variables appear in the individual equations� In other words�
there may be zero restrictions on the short�run parameters �� Moreover� some of
the cointegrating relations may be con�ned to speci�c equations by imposing zero
constraints on the loading matrix �� E�cient estimation of a model with parameter
restrictions is more complicated than in the restricted case because LS is no longer
identical to GLS in general� A possible estimation procedure is to estimate � in a �rst
stage� for example� using the reduced form which ignores the restrictions on the short�
run parameters� Let the estimator be  �� Because the estimators of the cointegrating
parameters converge at a better rate than the estimators of the short�run parameters
the former may be treated as �xed in a second stage of the estimation procedure� In
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other words� a systems estimation procedure may be applied to

�yt � � ��yt�� � ��Y t�p��
t�� � !ut� �����

If only exclusion restrictions are imposed on the parameter matrices in this form�
standard GLS or similar methods may be applied� They result in estimators of the
short�run parameters with the usual asymptotic properties�

� Statistical Tools for Specifying VAR Models

��� Testing for Model Reduction

Because unrestricted VAR models usually involve a substantial number of parameters
which in turn results in rather imprecise estimators� it is desirable to impose restric�
tions in order to improve the estimation precision� Statistical tests are commonly
used for detecting possible restrictions� As mentioned previously� t�ratios and F �tests
retain their usual asymptotic properties if they are applied to the short�run param�
eters in a VECM whereas problems may arise in the levels VAR representation� A
particular set of restrictions where such problems occur is discussed in more detail in
Section ��	� In case of doubt it may be preferable to work on the VECM form�

In practice� one often starts from a model with some prespeci�ed maximum lag
length pmax and applies tests sequentially� eliminating one or more variables or lags of
variables in each step until a relatively parsimonious representation with signi�cant
parameter estimates has been found� For instance� in a VECM one may �rst test
the null hypothesis H� � �pmax�� � �� If H� cannot be rejected� the lag length is
reduced by one and H� � �pmax�� � � may be tested� This procedure is repeated until
the null hypothesis is rejected� Similarly� single coe�cients in individual equations
may be tested� Before such a procedure can be used� a decision on the maximum
lag order to start with has to be made� Occasionally this quantity is chosen using
some theoretical or institutional argument� For example� one may want to include
lags of at least one year so that four lags are included initially for quarterly data and
twelve lags for a monthly model� In some respect an inappropriate choice of pmax

may not have severe consequences because starting with too small a pmax this may
be discovered later when the �nal model is subjected to a series of speci�cation tests
�see Section ����� On the other hand� overspecifying pmax may be problematic due to
its impact on the overall error probability of a sequential procedure� If a very large
order pmax is used� a long sequence of tests may be necessary before all insigni�cant
lags are eliminated� The number of tests has an impact on the overall Type I error of
the testing sequence� Hence� the choice of pmax will have an impact on the probability
of choosing an overspeci�ed model with redundant variables�

Of course� it is also possible that the actual DGP does not have a �nite order
VAR representation� Ng � Perron ������ consider some consequences for choosing
the lag order by sequential testing procedures in univariate models in this context�
Alternatively� model selection procedures may be used for choosing the lag length or
for determining exclusion restrictions� They will be discussed next�
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��� Model Selection Criteria

Because the cointegrating rank r is usually unknown when the choice of p is made�
it is useful to focus on the levels VAR form �	��� at this stage� A number of model
selection criteria are available that can be used for choosing p� They proceed by �tting
VAR�m� models with orders m � �� � � � � pmax and choose an estimator of the order p
which minimizes some criterion� Many of the criteria in current use have the general
form

Cr�m� � log det�e�u�m�� � cT��m�� �����

where det��� denotes the determinant� log is the natural logarithm�

e�u�m� � T��
TX
t��

 ut u
�
t

is the residual covariance matrix estimator for a model of order m� cT is a sequence
indexed by the sample size� and ��m� is a penalty function which penalizes large
numbers of parameters in a model� For instance� ��m� may represent the number of
parameters which have to be estimated in a VAR�m� model� The term log det�!�u�m��
measures the �t of a model with order m� Since there is no correction for degrees of
freedom in the covariance matrix estimator and the same sample size T is used for all
orders the log determinant decreases �or at least does not increase� when m increases�
The estimator  p of p is chosen so as to balance the two terms in the sum on the right
hand side of ������

Examples of popular criteria in empirical work are Akaike
s ������ ����� AIC
which is obtained by de�ning ��m� � mK� and cT � 	�T � the HQ criterion of Hannan
� Quinn ������ and Quinn ������ which uses ��m� � mK� and cT � 	 log logT�T �
and the SC with ��m� � mK� and cT � logT�T � which was proposed by Schwarz
������ and Rissanen ������� The AIC asymptotically overestimates the order with
positive probability whereas the last two criteria estimate the order consistently under
quite general conditions� if the actual DGP has a �nite VAR order and the maximum
order pmax is at least as large as the true order� These results not only hold for
stationary processes but also for nonstationary integrated and cointegrated processes
�Paulsen �������� Denoting the orders selected by the three criteria by  p�AIC��  p�HQ�
and  p�SC�� respectively� it can be shown that  p�SC� �  p�HQ� �  p�AIC� for T 	 ��
�see L�utkepohl ������ Chapters � and �����

Appropriately modi�ed versions of the criteria may also be used for imposing other
exclusion restrictions� In addition to specifying the model order and zero restrictions
for the short�run parameters� the cointegrating rank also has to be determined� Pos�
sible tests are discussed next�

��� Tests for the Cointegrating Rank

The cointegrating rank r of a system of variables yt is usually investigated by a
sequential testing procedure based on likelihood ratio �LR� type tests� Because for
a given cointegrating rank r� Gaussian ML estimates for the VECM are easy to
compute� as shown in Section ��	� LR test statistics are also easily available� The
following hypotheses are typically tested sequentially�

H��r�� � rk��� � r� versus H��r�� � rk��� � r�� r� � �� � � � �K � �� ���	�
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Table �� Model forms underlying LR type tests�
Assumptions for
deterministic terms Model Reference

�� � �� � � 	yt � �yt�� � �	Y t�p��

t��
� ut Johansen 
���� �����

�� arbitrary 	yt � �� ��yt�� � �	Y t�p��

t��
� ut Johansen 
���� �����

�� � � 	yt � ��� � ��

h
�

yt��

i
� �	Y t�p��

t��
� ut Johansen � Juselius 
�����

	yt � �
yt�� � ��� � �	Y t�p��

t��
� ut Saikkonen � Luukkonen 
�����

�� arbitrary 	yt � �� ��yt�� � �	Y t�p��

t��
� ut Johansen 
�����

�� �� �� ���� � � 	yt � �� � �
yt�� � ��� Saikkonen � L�utkepohl 
�����

�
P

p��

j��
�j
	yt�j � ��� � ut

��� �� arbitrary 	yt � � � ��� � ��

h
t� �
yt��

i
� �	Y t�p��

t��
� ut Johansen 
���� ���� �����

	yt � �� � ��t ��yt�� � �	Y t�p��

t��
� ut Perron � Campbell 
�����

	yt � �� � �
yt�� � �� � ��
t� ��� Saikkonen � L�utkepohl 
�����

�
P

p��

j��
�j
	yt�j � ��� � ut L�utkepohl � Saikkonen 
�����

The testing sequence terminates if the null hypothesis cannot be rejected for the
�rst time� If the �rst null hypothesis� H����� cannot be rejected� a VAR process in
�rst dierences is considered� In contrast� if all the null hypotheses can be rejected
including H��K � ��� the process is assumed to be I��� in levels�

Although� under Gaussian assumptions� LR tests can be used here it turns out
that the limiting null distribution of the LR statistics are nonstandard� They depend
on the dierence K � r� and on deterministic trend terms included in the DGP�
Therefore LR type tests have been derived under dierent assumptions regarding the
deterministic term� The limiting null distributions do not depend on the short�run
dynamics so that critical values for LR type tests can be tabulated for dierent values
of K � r� under alternative assumptions for the deterministic terms�

For the present purposes the model �	���� with clear separation of deterministic
and stochastic terms turns out to be convenient� Therefore we consider the model

yt � �� � ��t� xt �����

with

�xt � �xt������xt��� � � ���p���xt�p���ut � �xt�����Xt�p��
t�� �ut� �����

Using this stochastic part� it is easy to see that the process yt has a VECM represen�
tation

�yt � �� � ��t��yt�� � ��Y t�p��
t�� � ut

� � � ��� � ��

�
t� �
yt��

�
� ��Y t�p��

t�� � ut

� � ���y�t�� � ��Y t�p��
t�� � ut�

�����

where �� and �� are as de�ned below �	���� � � �� � ��� �
� � ��� � �� and y�t�� �

�t � � � y�t���
�� Depending on the assumptions for �� and ��� dierent tests can be

obtained in this framework� An overview is given in Table �� A brief discussion of
the dierent cases follows�
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Case �� �� � �� � �

Although the case� where yt � xt and hence there is no deterministic term at all is of
limited importance for applied work because a zero mean term can rarely be assumed�
it is still useful to consider it �rst because it is particularly easy to derive LR tests for
the rank of � under this assumption� The LR statistic can be obtained by estimating
the VECM

�yt � �yt�� � ��Y t�p��
t�� � ut �����

under H��r�� with rk��� � r� and under H��r�� with rk��� � K as discussed in
Section ��	 to get the likelihood maximum of the restricted and unrestricted mod�
els� respectively� It turns out that for a sample y�� � � � � yT and presample values
y�p��� � � � � y� the LR test statistic reduces to

LR�r�� � �T
KX

j�r���

log��� 	j�� �����

where 	r���� � � � � 	K are the eigenvalues obtained from solving ����� �Johansen ������
������� As mentioned earlier� the limiting distribution under the null hypothesis is
nonstandard and depends on the dierence K � r�� Critical values may be found in
Johansen ������ Table ������ Although it is convenient here to assume a Gaussian
process yt� the asymptotic distribution of the test statistic LR�r�� may be derived
under more general assumptions for the process distribution� For the other cases listed
in Table � the test statistics can be computed analogously by suitable modi�cations
of the quantities in ������ These cases will be discussed brie�y in the following�

Case �� �� arbitrary� �� � �

In this case� where the mean term is allowed to be nonzero whereas a deterministic
linear trend term is excluded by assumption� there are three variants of LR type
tests that have been considered in the literature plus a number of asymptotically
equivalent modi�cations� As can be seen from Table �� the three statistics may be
computed easily by using the reduced rank �RR� regression technique described in
Section ��	� The �rst test is obtained by dropping the ��t term in ����� and estimating
the intercept term in the VECM in unrestricted form and� hence� the estimated
model may generate linear trends because a VAR model with integrated variables
can in principle generate a linear trend if there is an intercept term� The second test
enforces the restriction that there is no linear deterministic trend in computing the
test statistic by absorbing the intercept into the cointegrating relations� Finally� in
the third test the mean term �� is estimated in a �rst stage and is subtracted from
yt� Then a RR regression is applied to ����� with xt replaced by !xt � yt �  �� to
determine the test statistic� A suitable estimator  �� is proposed by Saikkonen �
Luukkonen ������� These authors also show that the asymptotic distribution of the
resulting test statistic under the null hypothesis is the same as that of the LR test for
the case �� � �� � �� It is demonstrated in Saikkonen � L�utkepohl ������ that the
latter test can have considerably more local power than the other two LR tests that
have been proposed for the present case with unrestricted mean term� Thus� based
on local power the Saikkonen�Luukkonen variant of the LR test is the �rst choice if
�� � ��
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Case �� �� arbitrary� �� �� �� ���� � �

In this case it is assumed that at least one of the variables has a deterministic linear
trend so that �� �� �� whereas the constraint ���� � � ensures that the cointegrating
relations do not have a linear trend� It may be worth emphasizing� however� that
for the �K � r� matrix � to satisfy ���� � �� the assumption �� �� � implies that
r 
 K� Hence� if a trend is known to be present then it should also be allowed for
under the alternative and consequently even under the alternative the rank must be
smaller than K under the present assumptions� As a consequence� only tests of null
hypotheses rk��� � r� 
 K � � make sense in this case� Intuitively� this result is
plausible because a linear trend is assumed in at least one of the variables ��� �� ��
whereas a stable model �rk��� � K� with an intercept cannot generate a linear trend�

From Table � it can be seen that both test statistics which have been proposed
for the presently considered case can be obtained from a RR regression� The �rst test
uses the same intercept model as the �rst test for the previous case where �� � � was
assumed� In the present situation the asymptotic properties are dierent� however �see
Johansen �������� The second test for the presently considered situation was proposed
by Saikkonen � L�utkepohl ������� In this case the mean and trend parameters are
estimated in a �rst step by a feasible GLS procedure� the trend is subtracted from yt
to yield  xt � yt �  �� �  ��t� The test statistic is then computed via a RR regression
applied to ����� with xt replaced by  xt and using ��� � �� Note that � xt � �yt�  ���
The null distributions are tabulated in the references given in Table �� Again it turns
out that trend adjusting �rst and then performing the test may result in considerable
gains in local power �Saikkonen � L�utkepohl ��������

Case �� Arbitrary mean and trend parameters

If �� and �� are unconstrained parameter vectors� both the variables and the coin�
tegrating relations may have a deterministic linear trend� In Table � three dierent
LR type tests are listed that have been proposed for this situation� Again� all test
statistics can be obtained conveniently via RR regression techniques� In the setup of
the �rst model the linearity of the trend term is enforced� The second model includes
the trend term in unrestricted form� As mentioned earlier� in principle such a model
can generate quadratic trends� Because such trends are excluded here by our assump�
tions� the �i� i � �� �� must obey appropriate restrictions� These restrictions are not
imposed in the RR regression underlying the Perron�Campbell test statistic� The
last test in Table � is again based on prior trend adjustment and application of RR
regression techniques to the trend adjusted data� The trend parameters may again be
estimated by a GLS procedure� Critical values for all these tests may be found in the
references given in Table �� In a simulation comparison of the local power properties�
L�utkepohl � Saikkonen ������ found that none of the three tests is uniformly best�

Remarks on related issues

A comprehensive survey of the properties of LR and other tests for the cointegrating
rank is given by Hubrich� L�utkepohl � Saikkonen ������� We refer the interested
reader to that article for further details� Small sample properties are also considered
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in that article� In the following a few speci�c remarks on some related issues will be
added�

Instead of the pair of hypotheses in ���	� one may alternatively test H��r�� �
rk��� � r� versus H�

� �r�� � rk��� � r� � �� LR tests for this pair of hypotheses are
known as maximum eigenvalue tests� They were also pioneered by Johansen ������
������ The test statistics are of the form

LRmax�r�� � �T log��� 	r����

and can be applied for all the dierent cases listed in Table �� They also have non�
standard limiting distributions� Critical values can be found in the literature cited in
the foregoing�

For univariate processes �K � �� testing H� � r � � against H� � r � � means
testing that the process is I��� �r � �� against the alternative of stationarity �r � ���
All the tests can be generalized to this situation except those for the case ���� � �
because the latter tests are meaningful only for alternatives r � K � � which is
obviously not a possible alternative for K � �� LR tests corresponding to the other
cases were proposed by Dickey � Fuller ������ and Fuller ������� They are known as
augmented Dickey�Fuller �ADF� tests and are closely related to the tests considered
here�

As mentioned earlier� the limiting distributions of the test statistics are not only
valid for normally distributed �Gaussian� processes but also under more general distri�
butional assumptions even if the LR statistics computed under Gaussian assumptions
are used� In that situation these tests are� of course� pseudo LR tests� Saikkonen
� Luukkonen ������ show that some of the tests �based on �nite order VAR pro�
cesses� remain asymptotically valid even if the true DGP has an in�nite VAR order�
This result is of interest because in practice tests for unit roots and cointegration are
usually applied to the univariate series or subsystems �rst to determine the order of
integration for the individual variables or the cointegrating properties of a subset of
variables� If the full system of variables is driven by a �nite order VAR process� then
the generating process of the individual variables may be of in�nite order autoregres�
sive type �see L�utkepohl ������ Sec� ������ Consequently� for the sake of consistency
it is reassuring to know that the tests remain valid for this case� This situation is an�
alyzed in more detail by L�utkepohl � Saikkonen �����b�� In particular� these authors
consider the impact of lag length selection in this context�

Instead of the sequential testing procedures presented in the foregoing� L�utkepohl
� Poskitt ������ among others consider the possibility of determining the cointegrat�
ing rank by model selection criteria�

��� Model Validation

Once a model has been set up� its adequacy is usually checked with a range of tests
and other statistical procedures� Many of these tools for model validation are based
on estimation residuals� Some procedures are applied to the residuals of individ�
ual equations whereas others are based on the full residual vectors� For example�
plots of the residual series may be visually inspected and their autocorrelations may
be checked� Moreover� autocorrelations of squared residuals may be analyzed for
possible autoregressive conditional heteroscedasticity �ARCH�� In addition to visual
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inspection� formal statistical tests for remaining residual autocorrelation or ARCH
are also applied routinely� For instance� LM �Lagrange Multiplier� or Portmanteau
statistics may be used for that purpose� Furthermore� Lomnicki�Jarque�Bera tests for
nonnormality may be applied to the residuals �see� e�g�� L�utkepohl ������� Doornik
� Hendry ��������

Procedures for checking the stability and possible nonlinearity of a model are
also available� They are used� e�g�� for detecting potential structural shifts during
the sample period and range from prediction tests to assessing recursive residuals or
CUSUM type tests as well as recursive tests for cointegration �see� e�g�� Granger �
Ter�asvirta ������� L�utkepohl ������� Doornik � Hendry ������� Kr�amer� Ploberger
� Alt ������� Hansen � Johansen �������� If rival models for the same economic
relations are available� encompassing tests may be applied to compare them �Hendry
�������� For a more detailed discussion of model checking see also Doornik � Hendry
�������

If model defects such as residual autocorrelation or ARCH eects are detected
at the validation stage� model improvements are usually considered� For instance�
adding further variables or lags of variables to the model or some of its equations may
be considered� Moreover� including nonlinear terms or changing the functional form
may result in improvements� It is also possible to modify the sampling period or to
get other data�

� Uses of Vector Autoregressive Models

Once an adequate model for the DGP of a system of variables is available it may be
used for forecasting and economic analysis� For the latter purpose causality investiga�
tions� impulse response analysis and forecast error variance decompositions have been
used� In the following� forecasting VAR processes will be discussed �rst� Then the
concept of Granger�causality will be introduced and impulse response analysis and
forecast error variance decompositions are considered�

��� Forecasting VAR Processes

Neglecting deterministic terms and exogenous variables� the levels VAR form �	���
is particularly easy to use in forecasting the variables yt� If the ut are generated by
an independent rather than just uncorrelated white noise process� then the optimal�
minimum mean squared error �MSE� ��step forecast in period T is the conditional
expectation�

yT��jT � E�yT��jyT � yT��� � � �� � A�yT � � � ��ApyT���p� �����

Forecasts for larger horizons may be obtained recursively for h � �� 	� � � � � as

yT�hjT � A�yT�h��jT � � � ��ApyT�h�pjT � ���	�

where yT�jjT � yT�j for j � �� The corresponding forecast errors are

yT�h � yT�hjT � uT�h �"�uT�h�� � � � ��"h��uT��� �����
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where it is easy to see by successive substitution that

"s �

sX
j��

"s�jAj � s � �� 	� � � � � �����

with "� � IK and Aj � � for j � p �see L�utkepohl ������ Sec� ������� Hence� ut
is the ��step forecast error in period t � � and the forecasts are unbiased� that is�
the forecast errors have expectation �� As mentioned earlier� these are the minimum
MSE forecasts� The corresponding MSE matrices are

�y�h� � Ef�yT�h � yT�hjT ��yT�h � yT�hjT �
�g �

h��X
j��

"j�u"
�
j � �����

For any other h�step forecast with MSE matrix ��
y�h�� say� the dierence �

�
y�h���y�h�

is a positive semide�nite matrix�
The forecast MSEs for integrated processes are generally unbounded as the horizon

h increases� Consequently� the forecast uncertainty increases without bounds for
forecasts of the distant future� In contrast� for an I��� variable the forecast MSE
is bounded by the unconditional variance of the variable� This result implies that
forecasts of cointegration relations have bounded MSEs even for horizons approaching
in�nity�

The corresponding forecast intervals re�ect these properties� If yt is Gaussian and�
thus� ut � iid N����u�� the forecast errors are also multivariate normally distributed�
Using this result gives forecast intervals of the form

�yk�T�hjT � c�����k�h�� yk�T�hjT � c�����k�h��� �����

where c����� is the ��� �
� ���� percentage point of the standard normal distribution�

yk�T�hjT denotes the kth component of yT�hjT and k�h� denotes the standard de�
viation of the h�step forecast error for the kth component of yt� that is� k�h� is the
square root of the kth diagonal element of �y�h�� If k�h� is unbounded for h�
�
the same is obviously true for the interval length in ������

In practice� processes with estimated parameters are usually used for forecasting�
To investigate the implications for the forecast precision� we denote the h�step forecast
based on estimated parameters by  yT�hjT � that is�

 yT�hjT �  A� yT�h��jT � � � ��  Ap yT�h�pjT � h � �� 	� � � � � �����

where� of course�  yT�jjT � yT�j for j � �� The corresponding forecast error is

yT�h �  yT�hjT � �yT�h � yT�hjT � � �yT�hjT �  yT�hjT �

�

h��X
j��

"juT�h�j � �yT�hjT �  yT�hjT ��

If T marks the end of the sample period used for estimation and is at the same time the
forecast origin� then the �rst term on the right�hand side of the foregoing expression
consists of future residuals only whereas the second term involves present and past
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variables only� Hence� assuming that ut is independent white noise� the two terms are
independent� Moreover� under standard assumptions� the dierence yT�hjT �  yT�hjT
is small in probability as T gets large� Consequently� the forecast error covariance
matrix is

��y�h� � Ef�yT�h �  yT�hjT ��yT�h �  yT�hjT �
�g

� �y�h� � o����

Here o��� denotes a term which approaches zero as the sample size tends to in�nity�
Thus� for large samples the estimation uncertainty may be ignored in evaluating the
forecast precision and setting up forecast intervals� On the other hand� in small sam�
ples the forecast precision will depend to some extent on the quality of the parameter
estimators� Hence� if precise forecasts are desired� it is a good strategy to look for
precise parameter estimators�

��� Granger�Causality

����� The Concept

Granger ������ has introduced a concept of causality which has received considerable
attention in the econometrics literature� He de�nes a time series variable y�t to be
causal for another variable y�t if the information in the former helps improving the
predictions of the latter� Denoting by y��t�hj�t

the optimal h�step predictor of y�t
at origin t based on the set of all the relevant information in the universe #t� y�t is
noncausal for y�t if and only if

y��t�hj�t
� y��t�hj�tnfy��sjs�tg� h � �� 	� � � � � �����

Here #t n A denotes the set containing all elements of #t which are not in the set
A� Hence� y�t is Granger�causal for y�t if the equality in ����� is violated for at least
one h� In order to deduce a useful concept from these general ideas� the information
set #t and the DGP of the variables involved have to be speci�ed more precisely� If
#t � f�y��s� y��s��js � tg and �y�t� y�t�

� is generated by the bivariate VAR�p� process��
y�t
y�t

�
�

pX
i��

�
����i ����i
����i ����i

� �
y��t�i
y��t�i

�
� ut� �����

then ����� is equivalent to

����i � �� i � �� 	� � � � � p� ������

�e�g�� L�utkepohl ������ Sec� 	�������
Of course� Granger�causality can also be investigated in the framework of the

VECM� Writing that model for the presently considered bivariate case as�
�y�t
�y�t

�
� ���

�
y��t��
y��t��

�
�

p��X
i��

�
����i ����i
����i ����i

� �
�y��t�i
�y��t�i

�
� ut�

������ is replaced by the restrictions

����i � �� i � �� � � � � p� ��
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and� in addition� the element in the lower left hand corner of ��� is also zero� In
a bivariate situation the cointegrating rank r can only be �� � or 	� the case r � �
being the only one which may involve genuine cointegration� In that case� � and �
are �	� �� vectors so that

��� �

�
��
��

�
���� ��� �

�
���� ����
���� ����

�
�

Hence� in this case� ���� � � needs to be checked in addition to ����i � � �i �
�� � � � � p� �� �see also Mosconi � Giannini ����	� for further discussion��

Because economic systems usually consist of more than two relevant variables� it is
desirable to extend the concept of Granger�causality to higher dimensional processes
and larger information sets #t� Dierent possible extensions have been considered in
the literature �see� e�g�� L�utkepohl ������� Dufour � Renault �������� One possible
generalization is based on partitioning yt into two subvectors so that yt � �y��t� y

�
�t�

��
Then the de�nition in ����� may be used for the two subvectors y�t� y�t rather than two
individual variables� If #t � fysjs � tg and yt is a VAR�p� process as in ������ where
the �kn�i are matrices of appropriate dimensions� the restrictions for noncausality are
the same as in the bivariate case so that y�t is Granger�noncausal for y�t if ����i � �
for i � �� � � � � p �e�g�� L�utkepohl ������ Sec� 	�������

If interest centers on a causal relation between two variables within a higher di�
mensional system this approach may not be satisfactory because a set of variables
being causal for another set of variables does not necessarily imply that each member
of the former set is causal for each member of the latter set� To illustrate the related
problems consider the three�dimensional VAR process

yt �

�� y�t
y�t
y�t

	
 �

pX
i��

�� ����i ����i ����i
����i ����i ����i
����i ����i ����i

	
�� y��t�i
y��t�i
y��t�i

	
� ut� ������

Within this system the restrictions ����i � � �i � �� � � � � p� are not equivalent to
the equality of the forecasts in ������ The restrictions imply that y�t does not help
improving the ��step ahead forecasts of y�t� that is� y��t��j�t

� y��t��j�tnfy��sjs�tg�
The information in past y�t may still help improving the forecasts of y�t more than one
period ahead �L�utkepohl �������� Intuitively this result is obtained because there may
be indirect causal links� e�g�� y�t may have an impact on y�t which in turn may aect
y�t� For higher dimensional processes the de�nition based on ����� with #t containing
all variables of the system results in more complicated nonlinear restrictions for the
VAR coe�cients� Details are given in Dufour � Renault �������

����� Testing for Granger�Causality

As mentioned earlier� the usual tests for restrictions on the coe�cients of VAR pro�
cesses may have nonstandard asymptotic properties if the process contains integrated
or cointegrated variables� In particular� Toda � Phillips ������ show that Wald tests
for Granger�causality result in test statistics with nonstandard limiting distributions
depending on the cointegration properties of the system and possibly on nuisance
parameters� Dolado � L�utkepohl ������ and Toda � Yamamoto ������ point out
a simple way to overcome the problems with these tests in the present context� As
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mentioned in Section ���� the nonstandard asymptotic properties of the Wald tests
for the coe�cients of cointegrated VAR processes are due to the singularity of the
asymptotic distribution of the LS estimators� Dolado � L�utkepohl ������ show that
whenever the elements in at least one of the complete coe�cient matrices Ai are
not restricted at all under the null hypothesis� the Wald statistic has its usual limit�
ing ���distribution� Thus� if elements from all Ai �i � �� � � � � p� are involved in the
restrictions as in ������� simply adding an extra �redundant� lag in estimating the
parameters of the process� ensures standard asymptotics for the Wald test� Clearly�
if the true DGP is a VAR�p� process� then a VAR�p � �� with Ap�� � � is also an
appropriate model and the test may be performed on the Ai �i � �� � � � � p� only�

For this procedure to work it is neither necessary to know the cointegration prop�
erties of the system nor the order of integration of the variables assuming that they
are at most I���� Hence� if there is uncertainty with respect to the cointegration
properties of the variables an extra lag may simply be added and the test may be
performed on the lag augmented model to be on the safe side� Unfortunately� due to
the redundant parameters the procedure is not fully e�cient�

Notice that the procedure remains valid if an intercept or other deterministic terms
are included in the VAR model� as a consequence of results due to Park � Phillips
������ and Sims� Stock � Watson ������� A generalization of these ideas to Wald
tests for nonlinear restrictions representing� for instance� other causality de�nitions� is
discussed by L�utkepohl � Burda ������� Furthermore� L�utkepohl � Poskitt �����a�
and Saikkonen � L�utkepohl ������ consider testing for Granger�causality in in�nite
order VAR processes�

��� Impulse Responses

Tracing out the eects of an impulse in one of the variables is another way of analyzing
causal links between the variables of a system� If the process yt is I���� it has a Wold
moving average �MA� representation

yt � "�ut �"�ut�� �"�ut�� � � � � � ����	�

where "� � IK and the "s are obtained as in ������ The �i� j�th elements of the
matrices "s� s � �� 	� � � � � trace out the expected response of yi�t�s to a unit change in
yjt holding constant all past values of yt� Since the change in yjt given fyt��� yt��� � � �g
is given by the error term ujt� the elements of "s represent the impulse responses of
the components of yt with respect to the ut innovations� These impulse responses are
sometimes called forecast error impulse responses because the ut are the ��step ahead
forecast errors� If yt is I���� "s � � as s � 
� Hence� the marginal eect of an
impulse is transitory and vanishes over time�

Although a Wold representation for the levels does not exist for I��� processes it
can be shown that the impulse response matrices can be computed in the same way
as in ����	� �L�utkepohl ������ Chapter ���� L�utkepohl � Reimers ����	��� However�
in this case the "j will not converge to zero as j �
 and� consequently� some shocks
have permanent eects� If yt is I��� then �yt is I��� and has a Wold representation�
say

�yt � $�ut �$�ut�� � $�ut�� � � � � � ������
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where $� � IK and $j � "j � "j�� �j � �� 	� � � ��� Again� the coe�cients of this
representation may be interpreted as impulse responses� Notice that "s �

Ps
j�� $j �

s � �� 	� � � �� and� hence� the "s may be regarded as accumulated impulse responses
of the representation in �rst dierences�

It has been criticized that forecast error impulse responses may not re�ect the
actual reactions of the variables because the underlying shocks are not likely to occur
in isolation if �u is not diagonal and� thus� the components of ut are instantaneously
correlated� Therefore� in many applications the VAR innovations have been orthogo�
nalized using a Cholesky decomposition of the covariance matrix �u� Denoting by P
a lower triangular matrix with positive diagonal elements such that �u � PP �� the
orthogonalized shocks are given by �t � P��ut� De�ning %i � "iP �i � �� �� 	� � � ��
we get from ����	��

yt � %��t �%��t�� � � � � � ������

if yt is I���� Since %� � P is lower triangular� an � shock in the �rst variable
may have an instantaneous eect on all the variables� whereas a shock in the second
variable cannot have an instantaneous impact on y�t but only on the other variables
of the system and so on� In other words� if orthogonalized impulse responses are
considered the ordering of the variables is of importance for the results� Notice that
many matrices P exist which satisfy PP � � �u� Therefore� this approach is to some
extent arbitrary� Even if P is chosen by a lower triangular Choleski decomposition� a
dierent ordering of the variables in the vector yt may produce dierent responses so
that the eects of a shock may depend on the way the variables are arranged in the
vector yt� In view of this di�culty� Sims ������ recommends to check various dierent
triangular orthogonalizations and determine the robustness of the results with respect
to the ordering of the variables� He also recommends using a priori hypotheses about
the structure if possible� The resulting models are known as structural VARs� More
generally these models are of the form �	��� or �	��� where the residuals may be
represented as ut � R�t and �t is a �K��� vector of structural shocks with covariance
matrix E��t�

�
t� � ��� The latter covariance matrix is commonly assumed to be

diagonal so that the structural shocks are instantaneously uncorrelated�
Dierent types of identifying restrictions have been considered in the past �see� e�g��

Watson ������ and L�utkepohl � Breitung ������ for discussions�� The aforementioned
triangular system is a special case of such a class of structural models with �� �
IK and P � R� Identifying restrictions are required to obtain a unique structural
representation� In the early literature� linear restrictions on �� or R were used to
identify the system �e�g�� Pagan �������� Later Blanchard � Quah ������� King�
Plosser� Stock � Watson ������ and others introduced nonlinear restrictions� for
instance� by imposing that certain shocks are transitory and others have permanent
eects� It can be shown that for a cointegrated system with cointegrating rank r�
there exist r shocks with transitory and n � r shocks with permanent eects �e�g��
Engle � Granger ��������

Nonlinear procedures have to be used for imposing this kind of nonlinear restric�
tions in the estimation� For instance� generalized method of moments �GMM� esti�

mation may be used �see Watson �������� Generally� if an estimator  �� say� of the
VAR or VECM coe�cients summarized in the vector � is available� estimators of the
impulse responses may be obtained as  �ij�h � �ij�h� ��� If  � has an asymptotic normal

distribution� then the same is true for the  �ij�h� Assuming that the limiting distri�
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bution of the estimated �ij�h is regular with nonzero variances this asymptotic result
may be used for setting up con�dence intervals for the impulse responses� In practice�
bootstrap methods are often used for this purpose because these methods occasionally
lead to more reliable small sample inference than asymptotic theory� Furthermore�
using the bootstrap for setting up con�dence intervals� the precise expressions for the
variances are not needed and� hence� deriving complicated analytical expressions ex�
plicitly can be avoided� Unfortunately� the asymptotic distributions of the estimated
�ij�h may be singular� The bootstrap does not necessarily overcome this problem� In
other words� in these cases bootstrap con�dence intervals may not have the desired
coverage� Benkwitz� L�utkepohl � Neumann ������ discuss this problem in detail�

��� Forecast Error Variance Decomposition

Forecast error variance decompositions are also popular tools for interpreting VAR
models� Expressing the h�step forecast error given in ����� in terms of the orthogo�
nalized impulse responses �t � ���t� � � � � �Kt�

� � P��ut from ������ gives

yT�h � yT�hjT � %��T�h �%��T�h�� � � � � �%h���T���

The kth element of this vector is

yk�T�h � yk�T�hjT �

h��X
n��

��k��n���T�h�n � � � �� �kK�n�K�T�h�n��

where �ij�n is the �i� j�th element of %n� Using that the �kt are contemporaneously
and serially uncorrelated and have unit variance by construction� it follows that the
corresponding forecast error variance is

�k�h� �

h��X
n��

���
k��n � � � �� ��

kK�n� �

KX
j��

���
kj�� � � � �� ��

kj�h����

The term ���
kj��� � � ����

kj�h��� is interpreted as the contribution of variable j to the
h�step forecast error variance of variable k� This interpretation is meaningful if the
�it can be viewed as shocks in variable i� Dividing the above terms by �k�h� gives the
percentage contribution of variable j to the h�step forecast error variance of variable
k�

�kj�h� � ���
kj�� � � � �� ��

kj�h����
�
k�h��

These quantities� computed from estimated parameters� are often reported for various
forecast horizons� Because the forecast error variance components are based on the
orthogonal impulse responses� they are subject to the same critique as the orthogo�
nalized impulse responses� In other words� they may depend on the ordering of the
variables�

� Conclusions and Extensions

VAR processes have become standard tools for macroeconometric analyses since the
publication of Sims
 ������ critique of classical econometric modeling� In the foregoing
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a brief introduction to these models is given� Moreover� their estimation� speci�cation
and analysis is discussed with special emphasis on cointegrated systems� Causality
tests� impulse responses and forecast error variance decompositions are presented
as possible tools for VAR analyses� A number of software packages support VAR
analyses� Examples are PcFiml �see Doornik � Hendry ������� and EVIEWS� There
are also packages programmed in GAUSS which simplify a VAR analysis �see� e�g��
Haase et al� ����	���

In practice� generalizations of pure VAR models are often used� For instance�
to obtain a more parsimonious parameterization allowing for MA terms as well and�
hence� considering the class of vector autoregressive moving average processes may be
helpful �see Hannan � Deistler ������� L�utkepohl � Poskitt �����b��� Extensions of
these models to cointegrated systems are discussed by L�utkepohl � Claessen �������
Bartel � L�utkepohl ������ and Poskitt � L�utkepohl ������� In a number of studies
some of the variables are exogenous with respect to the parameters of interest and
are therefore not modeled explicitly� Therefore VAR models are often extended to
include exogenous variables �e�g�� Hendry �������� Especially for �nancial time series
the conditional second moments are sometimes of foremost interest� Multivariate
ARCH type models that can be used for this purpose are� for instance� discussed by
Engle � Kroner ������� Generally� nonlinearities of unknown functional form may
be treated nonparametrically� semiparametrically or seminonparametrically� A large
body of literature has developed around these issues� References may be found in
H�ardle� L�utkepohl � Chen �������
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