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Bundesaufsichtsamt fiir das Kreditwesen, Berlin

December 6, 1999

Abstract

VaR models are related to statistical forecast systems. Within
that framework different forecast tasks including Value-at-Risk and
shortfall are discussed and motivated. A backtesting method based
on the shortfall is developed and applied to VaR forecasts of a real
portfolio. The analysis shows that backtesting based on shortfall is
very sensitive with respect to the underlying assumptions.

1 Forecast tasks and VaR Models

With the implementation of Value-at-Risk (VaR) models a new chapter of
risk management was opened. Their ultimate goal is to quantify the uncer-
tainty about the amount that may be lost or gained on a portfolio over a
given period of time. Most generally, the uncertainty is expressed by a fore-
cast distribution P, for period ¢ + 1 associated with the random variable
L;,1, denoting the portfolio’s profits and losses (P&L).

In practice, the prediction P, is conditioned on an information set at
time ¢t and, typically calculated through a plug-in approach, see Dawid
(1984). 1In this case, P,y is output of a statistical forecast system, here
the VaR model, consisting of a (parametric) family of distributions, denoted
by P = {P, | 0 € O} together with a prediction rule. Assumed that P,
belongs to this parametrized family P the estimates ét are calculated by the
prediction rule on the basis of a forward rolling data history H; of fixed length
n (typically n = 250 trading days) for all ¢, i.e.

Poi(r) = By, (- | He).



One example for P also pursued in this paper is the RiskMetrics (1996) delta
normal framework, i.e., the portfolios considered are assumed to consist of
linear (or linearised) instruments and the common distribution of the under-
lyings’ returns Y € IR?, i.e., the log price changes Y, = logX; .| — logX;, is
a (conditional) multinormal distribution, N4(0,%;), where ¥, (resp. and o?)
denotes a conditional variance, i.e., H; measurable function.

Consider for simplicity a position of ); shares in a single asset (i.e., d =
1) whose market value is z;. The conditional distribution of L;y; for this
position with exposure w; = \; z; is (approximately)

X1 —x
LLepr | He) = LO(Xpr —20) [He) = £<wt7t+; - | %t)
t
~ L(wYiy | He) = N(0,w? o?),
where the approximation refers to

Xiy1 — Ty

InX; 1 — Inzy = + o(Xpy1 — x4)-

Tt
The generalization to a portfolio of (linear) assets is straightforward. Let w,
denote a d—dimensional exposure vector, i.e., wy = (Afzi, - -+, Azd). Hence,
the distribution of the random variable th Y;.11 belongs to the family

P = {N(Oaaf) : Ut2 € [0,00)}, (1)
where 02 = w! Sw;.
The aim of the VaR analysis is to estimate 6 = o; and thereby to establish a
prediction rule. For L;;; we adopt therefore the following framework:

Liyw = o4 Zip (2)
Zia % N(0,1) (3)
0'7:2 = w?tht. (4)

For a given (n x d) data matrix X; = {y;}i—t—n41,..s. of realisations of the
underlying vector of returns with dimension d, two estimators for ¥; will be
considered. The first is a naive estimator, based on a rectangular moving
average (RMA)

|
Y, = T X, (5)
n

This definition of 3, makes sense since the expectation of Y; is assumed zero.
The second, also recommended by Taylor (1986) to forecast volatility, is



built by an exponential weighting scheme (EMA) applied to the data matrix
Xy = { dmg(/\da /\dfla A, 1)1/2yi}i:t—n+1,---,t :

S =(1-N)X'%, (6)

These estimates are plugged-into (4) and (2), yielding two prediction rules
for
PH—I eEP= {N(0,0’f) | 0752 € [0,00)}

By their very nature VaR models contribute to several aspects of risk man-
agement. Hence, a series of parameters of interest - all derived from P, -
arise in natural ways. The particular choice is motivated by specific forecast
tasks, e.g., driven by external (e.g., regulatory issues) or internal require-
ments or needs (e.g., VaR-limits, optimisation issues).

A very important part of risk management is the implementation of a sys-
tematic process for limiting risk. In the light of that task, it is at hand that
forecast intervals defined by the VaR;,

VaR, = Fi() == inf{z | Fu(z) > o},

where F;,; denotes the cdf of P, are substantial.

If the main focus is to evaluate the forecast quality of the prediction rule
associated to a VaR model, transformations of F; should be considered,
see Dawid (1984), Sellier-Moiseiwitsch (1993) and Crnkovic and Drachman
(1996). For a given sequence of prediction-realisation pairs (P, [;) - where
l; denotes a realisation of L; - the prediction rules works fine if the sample
u = {us}t_, = {F;(l;)}r_, looks like an 7id random sample from U[0,1]. A
satisfactory forecast quality is often interpreted as an adequate VaR model.
The focus of this paper is to consider the expected shortfall of L;,;, as the
parameter of interest and to derive backtesting methods related to this pa-
rameter - this will be done in the next section. The expected shortfall - also
called tail VaR - is defined by

E(LH—I ‘ Lt_|_1 > V(J,Rt) = E(LH—I | Lt_|_1 > Za O't) (7)
= Ot E(Lt+1/0t | Lt+1/0t > Za) (8)

where z, is a a-quantile of a standard normal distribution. The motivation
to consider this parameter is threefold. Firstly, McAllister and Mingo (1996)
worked out the advantage of (7) compared to VaR if these parameters are
plugged-into the denominator of a risk performance measures, e.g. a Sharpe-
ratio or a RAROC (risk-adjusted return - that constitutes the numerator -
on capital) numbers which are used to benchmark divisional performance,
see Matten (1996) and CorporateMetrics (1999), - the economic motivation.



Secondly, Artzner et al. (1997) and ? pointed out that (7) can be used as
an approximation for the worst conditional expectation which is a coherent
risk measure, a conceptual consideration. Thirdly, Leadbetter (1995) empha-
sized in the context of environmental regulation the need for incorporating
the height of exceedances violating regulatory thresholds and critized those
methods solely based on counts, neglecting the heights - statistical argu-
ments. The paper is organised as follows. In the next section we present
our approach on backtesting using the expected shortfall risk. In section 3
we apply this methodology to real data and visualise the difference betweeen
RMA and EMA based VaRs. Section 4 presents the conclusions of this work.

2 Backtesting based on the expected short-
fall

As pointed out by Baille and Bollerslev (1992), the accuracy of predictive
distributions is critically dependent upon the knowledge of the correct (con-
ditional) distribution of the innovations Z; in (2). For given past returns
Hi ={Ys, Ye 1, " Ys_n}, 0¢ in (4) can be estimated either by (5) or (6) and
then £(Lyyy | Hy) = N(0,67). Hence,

L(Ly1/6¢ | He) = N(0,1).
This motivates to standardize the observations [; by the predicted STD, &y,

byt
o

and to interpret these as realisations of (2).

L
iy = g N(0,1) (9)

O

For a fixed u we get for Z;,; in (2)

o(u
0= B(Zus | Zis > u) = 1—(7<I>zu) 1o
G =Var(Zy | Zyp1 >u) = 14+u-9—9° (11)

where ¢, ® denotes the density, resp. the cdf of a standard normal distributed
random variable.
For a given series of standardized forecast distributions and realisations,



(Fi41(-/61),1i41/6¢) we consider (9) as parameter of interest. For fixed u,

9 is estimated by

Yoz (2041 > w) (12)
Yimo (241 > u)

where 2,1 denotes the realisations of the variable (2). Inference about the

statistical significance of 9 — 9 will be based on the following asymptotic
relationship:

9=

9=
Nw (=
where N (u) is the (random) number of exceedances over u and ? is plugged-
into (11) yielding an estimate ¢ for ¢. The convergence in (13) follows from
an appropriate version of the CLT for a random number of summands in
conjunction with Slutzky’s Lemma, see Leadbetter (1995) for details. Un-
der sufficient conditions and properly specified null hypothesis it is straight
forward to prove the complete consistency and an asymptotic a—level for a
test based on (13), see Witting and Miiller-Funk (1995), pp. 236.

Though these asymptotic results are straight forward they should be applied
with care. Firstly, because the truncated variables involved have a shape
close to an exponential distribution, hence, 9 will be also skewed for moder-
ate sample sizes, implying that the convergence in (13) will be rather slow.
Secondly, in the light of the skewness, outliers might occur. In such a case,
they will have a strong impact on an inference based on (13) because the
means in the nominator and in the denominator as well are not robust. The
circumstance that the truncated variables’ shape is close to an exponential
distribution motivates classical tests for an exponential distribution as an
alternative to (13).

) = N(0,1) (13)

3 Backtesting in Action

The Data The prediction-realisation (P;, ;) pairs to be analysed are stem-
ming from a real bond portfolio of a German bank that was hold fixed over
the two years 94 and 95,i.e., w; = w. For that particular (quasi) linear port-
folio the assumptions met by (2) - (4) are reasonable and common practice
in the line of RiskMetrics.

The VaR forecasts are based on a history H; of 250 trading days and were
calculated by two prediction rules for a 99%-level of significance. The first
rule applies a RMA, the second is based an EMA with decay factor A = 0.94
as proposed by RiskMetrics to calculate an estimate of 3; different from (5).
Remembering the bond crisis in 1994, it is of particular interest to see how



these different forecast rules perform under that kind of stress. Their com-
parison will also highlight those difficulties to be faced with the expected
shortfall if it would be applied e.g. in a RAROC framework.

Exploratory Statistics The following analysis is based on two distinc-
tivce features in order to judge the difference of the quality of prediction
rules by elementary exploratory means: calibration and resolution, see Mur-
phy and Winkler (1987), Dawid (1984) and Sellier-Moiseiwitsch (1993). The
exploratory tools are timeplots of prediction- realisation pairs (Fig. 1) and
indicator variables (Fig. 4) for the exceedances to analyse the resolution and
Q-Q-plots of the variable

Liyw Ly

VaR,  2.330,

to analyse the calibration (Fig 2, 3). A further motivation to consider variable
(14) instead of (2) is that their realisations greater than one are just the
exceedances of the VaR forcasts. Of course these realisations are of particular
interest. If the predictions are perfect, the Q-Q-plot is a straight line and
the range of the Y-coordinate of the observations should fill out the interval
[—1,1]. Hence, the Q-Q-plot for (14) visualises not only the calibration but
also the height of exceedances. A comparison of Figure 2 with Figure 3
shows clearly that EMA predictions are better calibrated than RMA ones.
The second feature, resolution, refers to the i¢d assumption, see Murphy and
Winkler (1987). Clusters in the timeplots of exceedances, Figure 4,

(14)

(t, I(lp1 > VaR)?

indicate a serial correlation of exceedances. Again EMA outperforms RMA.
(From Figure 1, we conclude that in 94 (95) 9 (4) exceedances were recorded
for the EMA and 13 (3) for the RMA. Evidently, the window-length of 250
days causes an underestimation of risk for RMA if the market moves from
a tranquile regime to a volatile one, and overestimates vice versa. On the
other hand the exponential weighting scheme adapts changes of that kind
much quickier.

The poor forecast performance, especially for the upper tail is evident.
The asymmetry and outliers are caused by the market trend. For a particular
day the VaR forecast is exceeded by almost 400 %. If the model (2) - (4)
would be correct, the variable (14) has a STD of 0.41. The STD calculated
from the data is 0.62. Hence, in terms of volatility the RMA underestimates
risk on the average of about 50%.

The plot for EMA, Figure 3, shows the same characteristics as those in
Figure 2 but the EMA yields a better calibration than RMA. The STD from
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Figure 1: The dots show the observed change of the portfolio values, /;. The
dashed lines show the predicted VaRs based on RMA (99% and 1%). The
solid lines show the same for EMA.

the data yields 0.5. Hence, an underestimation on the average of 25%. This
indicates clearly that EMA gives a better calibration then RMA. Q-Q-plots
for 95 are omitted. The two models give similar results, though even in that
case the EMA is slightly better.

Inference The exploratory analysis has shown notable differences between
the acurracy of RMA and EMA for the year 94. In this paragraph their
statistical significance will be investigated. The inference will be based on

the observations
liva

Ot
and the underlying model (2) - (4). The threshold u is set to the 80%-quantile
of Lyi1/0; yielding 9 = 1.4, by (10). Now, based on (13) an asymptotic



Reliability plot for RMA

Figure 2: Q-Q plot of l,41/VaR, for RMA in 94.




Reliability plot for EMA

Figure 3: Q-Q plot of l,.1/VaR, for EMA in 94.

Time plot for exceedances for RMA Time plot for exceedances for EMA
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Figure 4: Timeplots of the exceedances over VaR of 80% level for RMA (left)
and EMA. The better resolution of EMA is evident.
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significance test for the hypothesis

Hy 0914 (15)

will be used. This setting - especially (2) - seems reasonable for RMA and
the given sample of size n = 250.
As mentioned by Skouras and Dawid (1996) plug-in forecasting systems have
the disadvantage that the uncertainty of the estimator for oy is not incor-
porated in the predictive distribution P, ;. This applies especially to Z;,; if
the EMA is used. In that case a t(n)-distribution is indicated. A reasonable
choice - motivated by generalized degrees of freedom - is

L
Zyr = =L~ 4(20). (16)
O
Though the particular thresholds ux = 0.854 - for the normal distribution -
and u; = 0.86 - for the ¢(20) distribution differ only slightly (0.5 %), the as-
sociated means 1 change about 5 % and the STD ¢ even about 18%. Parallel

to (15) the hypothesis
Hy 02 1.47 (17)

will be tested.
Tables 1 to 4 summarise the empirical results.

Method ¥ =14 ¢=0.46 w significance nobs
EMA ¢=172 ¢{=1.01 2.44 0.75% 61

~

RMA ¢9=194 ¢=1.3 3.42 0.03% 68

Table 1: Hy : 9 < 1.4

Method ¥ =147 ¢ =10.546 w significance nobs
EMA 9=172 <¢=1.01 2.01 2.3% 61
RMA ¢9=194 <¢=1.3 3.04 0.14% 68

Table 2: Hy : 9 < 1.47

Firstly from tables 1 and 2, the observed exceedances over threshold u
indicate again that the EMA is superior than the RMA. For a sample of 260
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prediction-realisation pairs 52 exceedances are to be expected (STD 6.45).
For the EMA 61 (61 - 52 ~ 1.5 STD) exceedances were observed and 68 ( 68
- 52 ~ 2.5 STD) for the RMA.

A comparison of table 1 with 2 shows that random errors strongly influence
the significance of the test. Recalling the impressive outliers in the Q-Q-
plots it is worthwile to exclude these from the data and re-run the test. The
results are given in tables 3 and 4. Again, a serious change in the level

Method ¥ =14 ¢=0.46 w significance nobs
EMA 9=1645 ¢=0.82 231 1% 60
RMA 9=183 <¢=0.93 3.78 0.00% 67

Table 3: Hy : 0 4. largest outlier excluded

Method ¥ =147 ¢ =0.546 M significance nobs
<

=~

EMA 9=1645 <¢=0.82 1.65 5% 60

~

RMA 4¥9=183 <¢=0.93 3.1 0.15% 67

Table 4: Hy : 9 © 47 largest outlier excluded

of significance for the RMA is observed indicating the non robustness of the
test. These results show furthermore that inference about the tails of a dis-
tribution is subtle. In addition the iid assumption - cluster of exceedances
- might also be violated. One possible source for that is the overlap of the
‘H.. Hence, the estimates may correlate. Techniques like moving blocks and
resampling methods see ? and ? are good remedies.

To overcome the problems related to the slow convergence of (13) an ex-
ponential distribution may be fitted to the data and then, again a classical
test will be applied. The following table reports the significance levels based
on a one-sided Kolmogoroff-Smirnov test. Again, the results emphasize the
impact of random errors. The number in brackets refers to that case, where
the largest outlier is deleted.

4 Conclusions

VaR models were introduced as specific statistical forecast systems. The
backtesting procedure was formulated in terms of measuring forecast qual-
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Method o =0.46 o = 0.546
EMA  0.25% 10% (14%)
RMA < 0.1% <0.1%

Table 5: Kolmogoroff-Smirnov Test

ity. The empirical results highlight the better calibration and resolution
of VaR forecasts based on (exponentially weights) EMA compared to (uni-
formly weights) RMA. However, more interesting is the impressive difference
in amount (50%). A surprising result is the strong dependence of inferences
based on expected shortfall from the underlying distribution. Hence, if ex-
pected shortfall will be used in practice in order to calculate performance
measures like RAROC the inferences resp. the estimates should be robusti-
fied.
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