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Generating Random Optimising Choices

Abstract
This paper provides an effi  cient way to generate a set of random choices on a set 
of budgets which satisfy the Generalised Axiom of Revealed Preferences (GARP), 
that is, they are consistent with utility maximisation. The choices are drawn from an 
approximate uniform distribution on the admissible region on each budget which 
ensures consistency with GARP, based on a Markovian Monte Carlo algorithm due to 
Smith (1984). This procedure can be used to extend Bronars‘ (1987) method as it can 
be used to approximate the power of tests for conditions for which GARP is a necessary 
but not suffi  cient condition (e.g., homotheticity, separability, risk aversion, etc.). For 
example, it allows to approximate the probability that a set of random choices which 
happens to satisfy GARP is also consistent with homotheticity. The approach can also be 
applied to production analysis and nonparametric tests of cost minimisation.
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1 introduction

Afriat’s (1967) Theorem shows that for a set of consumption choices from competitive budgets there exists a
continuous, monotonic, and concave utility function if and only if the choices satisfy cyclic consistency.
Varian (1982) introduced a the Generalised Axiom of Revealed Preference (Garp) which is easy to test and
equivalent to cyclic consistency.

It is important to know how meaningful the test for utility maximisation is. Therefore, it is helpful to
know the probability that random choices violate Garp. This probability can be interpreted as the power
of the test for utility maximisation against the alternative hypothesis of random choices. Bronars (1987)
suggested a Monte Carlo approach to approximate the power: Generate many sets of random choices and
tests all of them for Garp. The percentage of sets which violators is the approximate power.

Suppose that the researcher is not only interested in testing Garp but also in testing additional assump-
tion for which Garp is a necessary but not sufficient condition. Such assumptions include homotheticity
and different forms of separability (cf. Varian 1983), risk aversion (cf. Heufer 2011), and others. If for example
a researcher is interesting in testing a set of observations for consistency with homotheticity, using Varian’s
(1983)Homothetic Axiom of Revealed Preference (Harp), then to approximate the power she can use a variant
of Bronars’ Power by testing random choices for consistency with Harp. But Garp is a necessary condition
for Harp, and Bronars’ Power for the Garp test might already be close to unity. That means that very
few random choice sets satisfy Garp, and therefore cannot satisfy Harp. It would be useful to know the
conditional probability that a set of random choices violates Harp given that it satisfies Garp.

A simple way to approximate this conditional probability is to use a rejection technique: Draw a set of
random choices and reject it if it does not satisfies Garp. However, Bronars’ power can be quite literally
100%, that is, even out of thousands of sets of random choices no set satisfies Garp. This is the case in the
fifty budget experiments conducted by Fisman et al. (2007) and Choi et al. (2007).

The contribution of this paper is to introduce a Monte Carlo approach to generate sets of random
choices which satisfy Garp, using a Markovian method introduced by Smith (1984). He showed that a
symmetric mixing algorithm, which generates a Markov chain on a bounded region, will generate a sequence
of points asymptotically uniformly distributed within the region. This algorithm is used to generate sets
of random choices on budgets which are uniformly distributed such that the sets satisfy Garp. These
Garp-consistent random sets can then be tested for consistency with other conditions such as Harp. The
algorithms presented here can also be applied to nonparametric approaches to production analysis (cf.
Varian 1984).

Garp has been tested in numerous experimental papers, such as Sippel 1997, Mattei 2000, Harbaugh
and Krause (2000), Harbaugh et al. (2001), Andreoni and Miller (2002), Chen et al. (2006) Fisman et al.
(2007), and Choi et al. (2007). For papers who test for Garp, computing Bronars’ Power has become a
standard. Some authors (Sippel 1996, Heufer 2012a) have pointed out that if one allows real consumers to
deviate from perfect utility maximisation and computes efficiency indices such as Afriat’s Efficiency Index
(Aei), then the power of the test can be reduced substantially. Heufer (2012a), in particular, provides a
procedure to compute the loss of power depending on the Aei and suggests a method to determine the
optimal tradeoff between power and the number of consumers accepted as close enough to Garp. The
approach presented here could be extended by first generating sets of Garp-consistent choices and then
computing efficiency indices for the additional condition.

Section 2 introduces the notation and basic concepts used in the paper. Section 3 introduces the
algorithms which lead to the suggested method. Section 4 concludes.
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2 preliminaries

2.1 General Definitions and Concepts

A set of observed consumption choices consists of a set of chosen bundles of commodities and the prices
and incomes at which these bundles were chosen. Let RL

+ be the commodity space, where L ≥ 2 denotes the
number of different commodities.1 The price space is RL

++. Consumers choose bundles x i = (x i1 , . . . , x iL)
′ ∈

R
L
+ when facing a price vector pi = (pi1 , . . . , piℓ) ∈ R

L
++; a budget is then defined by Bi = B(pi) = {x ∈ RL

+ ∶
pix i ≤ 1}. That is, prices are normalised such that expenditure always equals 1; we will therefore also identify
budgets with their characteristic price vector. The entire set of N observations on a consumer is denoted as
Ω = {(x i , pi)}Ni=1.2 Let B̄i = B̄(pi) = {x ∈ RL

+ ∶ pix i = 1}.
An observation x i is directly revealed preferred to x, written x i R0 x, if pix i ≥ pix; it is revealed preferred

to x if x i R x, where R is the transitive closure of R0; it is strictly directly revealed preferred to x, written
x i P0 x, if pix i > pix. A budget B(p) is directly revealed preferred to a budget B(pi), written pR0

B p
i if

px i ≤ 1, where x i is the observed choice on B(pi); it is revealed preferred to B(pi) if pRB pi , where RB
is the transitive closure of R0

B; it is strictly directly revealed preferred to B(pi) if pP0
B p

i if px i < 1; is is
strictly revealed preferred to B(pi), written pPB pi if there exist observed budgets B(p j) and B(pk) such
that pRB p j, p j PB pk , and pk RB pi .

A utility function u ∶ RL
+ → R rationalises Ω if u(x i) ≥ u(x) whenever x i R x. We say that Ω satisfies

the Generalised Axiom of Revealed Preference (Garp) if x i R x j implies [not x j P0 x i]. It can then be shown
(Afriat 1967, Diewert 1973, Varian 1982) that there exists a continuous, monotonic, and concave utility
function that rationalises Ω if and only if Ω satisfies Garp.

2.2 Supporting Bundles and Forcasting Choices

Following Varian (1982), we define the set of bundles which support a price vector p0 not previously observed
as

S(p0∣{(x i , pi)}Ni=1) = {x0 ∈ RL
+ ∶ {(x i , pi)}Ni=0 satisfies Garp and p0x0 = 1}. (1)

That is, S(p0∣Ω) is the set of all bundles which can be chosen on B(p0) without violating Garp when
combined with the previous observations. Any utility maximising consumer for whom we have observed Ω
will choose a bundle in S(p0) when facing the new budget B(p0). See Figure 1 for an illustration. The set
S(p0) is described by a linear system, as Fact 1 shows.

Fact 1 (Varian 1982) A bundle x0 is in S(p0∣Ω) if and only if it satisfies the conditions
(1) p0x0 = 1,
(2) pix i ≤ pix0 for all pi such that p0 RB pi ,
(3) pix i < pix0 for all pi such that p0 PB pi .

We also need an open subset T(p0∣Ω) of S(p0∣Ω), defined as the set of all x0 ∈ RL
++ such that

(1) x0 ∈ S(p0∣Ω),
1The following notation is used: For all x , y ∈ RL we write x ≥ y for xi ≥ yi for all i, x > y for xi ≥ yi and x ≠ y for all i, and

x ≫ y for xi > yi for all i. We denote RL
+ = {x ∈ RL ∶ x ≥ 0} and R

L
++ = {x ∈ RL ∶ x ≫ 0}.

2Strictly speaking, we observe budgets as a pair (qi ,wi) ∈ RL
++ ×R++ and then set pi = qi/wi . The implicit assumption here

is that demand is homogeneous.
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(2) pix i < pix0 for all pi such that p0 RB pi and p0 ≠ pi .
We need the set T for technical reasons explained in the next section. It is straightforward to show that the
set T(p0∣Ω) is the relative interior of S(p0∣Ω); that is, the interior of S(p0∣Ω) within the subspace defined
by the budget hyperplane B̄(p0).

x1

x2 B(p1)

B(p2)

B(p0)

S(p0)
x 1

x2

Figure 1: The set S(p0).

2.3 Power against Random Behaviour

Depending on the set of budgets, the probability that a set of random choices violates Garp can differ
substantially. It is rarely feasible to compute the exact probability, which is why Bronars (1987) suggested a
Monte Carlo approach to determine the power the test has against random behaviour. The approximate
power (Bronars’ Power) of the test is the percentage of random choice sets which violated Garp. Bronars’ first
algorithm, which we will focus on here, follows Becker’s (1962) example by inducing a uniform distribution
on the budget hyperplane.

3 algorithms

3.1 Preliminary Algorithms

Algorithm 1, the simplex point picking algorithm, returns a random point uniformly distributed on the unit
simplex (see for example Tempo et al. 2005, p. 245).

Algorithm 1
Input: An integer L ≥ 2.
Output: A random point X uniformly distributed on the L − 1 unit simplex.

1. Generate L independent random variables Y = (Y1, . . . ,YL) from the Gamma distribution with param-
eters α = β = 1.

2. Set X = Y/(∑L
i=1 Yi) and return X.

The simplex point picking algorithm can then be used to generate a random choice on a budget from a
uniform distribution. Algorithm 2 does this for each budget in a set of N budgets; it can be used to compute
Bronars’ power.

6



Algorithm 2
Input: A set of N normalised price vectors {pi}Ni=1.
Output: A set of random choices on each B(pi) uniformly distributed on B̄(pi).

1. Set k = 1.
2. Generate a point X on the L − 1 simplex using Algorithm 1. Set xk = (X1/pk1 , . . . , XL/pkL). Set k = k + 1.
3. If k = N, stop and return {x i}Ni=1. Otherwise, go to Step 2.

For any set {pi}Ni=1, we can execute Algorithm 2 many times and test all the generated choice sets for
Garp. Bronars’ power is then the percentage of choice sets which do not satisfy Garp.

Let D = {d ∈ RL ∶ ∥d∥ = 1} be the unit sphere. Selection a random element d ∈ D from a uniform
distribution on D is equivalent to selecting a random direction in R

L. Algorithm 3, the random direction
algorithm, generates such a random direction (see for example Knuth 1998 [1969], p. 135).

Algorithm 3
Input: An integer L ≥ 2.
Output: A random point d ∈ D uniformly distributed on D.

1. Generate L independent normally distributed random variables, δ = (δ1, . . . , δL).
2. Set d = δ/ ∥δ∥ and return d.

Algorithm 4, the mixing algorithm, can be found in Smith (1984).

Algorithm 4
Input: An integer M ≥ 1 and a set Θ ⊆ RL with L ≥ 2.
Output: A Markov chain of points Y(0), . . . ,Y(M) in Θ.

1. Set k = 0. Choose an initial point Y(0) ∈ Θ.
2. Generate a random direction d ∈ RL using Algorithm 3.
3. Set L = Θ ∩ {x ∈ RL ∶ x = Y(k) + λd}, where λ ∈ R.
4. Generate a random point Y(k+1) uniformly distributed on L.
5. If k = M, stop and return Y(0), . . . ,Y(M). Otherwise, set k = k + 1 and go to Step 2.

Algorithm 4 generates a Markov chain of points in Θ. Smith (1984) showed that under certain conditions
the generated points approach a uniform distribution over the region for any starting point Y(0). In
particular, the assumptions are satisfied if Θ is an open and bounded subset of RL with L ≥ 2 and Θ is itself
L-dimensional (i.e., the affine hull of Θ is of dimension L). See Figure 2 for an illustration.

3.2 The Two-Dimensional Case

The method based on the mixing algorithm only works for commodity spaces with L ≥ 3, as in the two-
dimensional case the set S(p0) is only a line segment (i.e., one-dimensional; see Figure 1). As many induced
budget experiments only consider two goods, the two-dimensional case is quite relevant, which is why we
treat it separately here. Algorithm 5 generates a set of choices, {x i}Ni=1, on a set of budgets with price vectors
{pi}Ni=1, such that {(x i , pi)}Ni=1 satisfies Garp.
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Θ

direction d

initial point Y(0)

Y(1)

(a) The first step of Algorithm 4.
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(b) Markov chain generated by Algo-
rithm 4.

Figure 2: An illustration of the first step of Algorithm 4 and the first twenty points generated by it.

Algorithm 5
Input: A set of N ≥ 2 normalised price vectors {pi}Ni=1 with pi ∈ R2

++ for i = 1, . . . ,N.
Output: A set of choices {x i}Ni=1 drawn from a uniform distribution on {B̄(pi)}Ni=1 such that {(x i , pi)}Ni=1

satisfies Garp.
1. Set k = 1. Generate the first choice xk on B(pk) using Algorithm 2.
2. Set

x̃min = argminx0∈S(pk+1 ∣{(x i ,pi)}ki=1)
x02

x̃max = argmaxx0∈S(pk+1 ∣{(x i ,pi)}ki=1)x
0
2

ϕ = (x̃max
1 , x̃min

2 )

p̃ = ([x̃min − ϕ1]−1, [x̃max − ϕ2]−1)

3. Set k = k+1. Generate a point X on the L−1 simplex using Algorithm 1. Set xk = (X1/p̃1, . . . , XL/p̃L)+ϕ.
4. If k = N, stop and return {x i}Ni=1. Otherwise, go to Step 2.

We omit the proof that Algorithm 5 generates a set of Garp-consistent observations, as it is rather
straightforward. Step 2 computes ϕ, which is used as a new “origin”; then p̃ describes a new budget which if
translated by ϕ equals S(pk+1∣{(x i , pi)}ki=1). Step 3 generates a random choice on p̃ and then translates it to
obtain a choice on S(pk+1∣{(x i , pi)}ki=1). Most importantly, the algorithm does not simply compute a set
of Garp-consistent choices, but does so by drawing random choices from a uniform distribution over the
admissible region given by the set of supporting bundles, conditional on the previously generated choices.
Algorithm 5 can be executed many times, using random permutations of the budgets such that each budget
is equally likely to be the kth one. This will provide many sets of random choices which satisfy Garp and
can then be tested for additional assumptions.
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3.3 The Higher-Dimensional Case

We cannot directly use Algorithm 4 as the set S(p0∣Ω) for the commodity space RL
+ is a subset of the budget

hyperplane B̄(p0) and thus only of dimension L − 1. Therefore we suggest to use Algorithm 6, which is
explained below.

Algorithm 6
Input: An integer M ≥ 1 and set of N ≥ 2 normalised price vectors {pi}Ni=1 with pi ∈ RL

++ with L ≥ 3 for
i = 1, . . . ,N.

Output: A set of choices {x i}Ni=1 drawn from a uniform distribution on {B̄(pi)}Ni=1 such that {(x i , pi)}Ni=1
satisfies Garp.

1. Set k = 1. Generate the first choice xk on B(pk) using Algorithm 2.
2. Set k = k + 1. Set T = T(pk ∣{(x i , pi)}k−1i=1 ).
3. Set ℓ = 0. Choose an initial point Y(ℓ) ∈ T.
4. Set ℓ = ℓ + 1. Generate a random direction d ∈ RL using Algorithm 3. Set

T ′ = {x ∈ RL
++ ∶ x j = Y

(ℓ)
j + λd j for j = 1, . . . , L − 1 and (x1, . . . , xL) ∈ B̄(pk)},

where λ ∈ R. Set L = T ∩T ′.
5. Generate a random point Y(ℓ) uniformly distributed on L.
6. If ℓ = M, set xk = Y(ℓ) and go to Step 7. Otherwise, go to Step 4.
7. If k = N, stop and return {x i}Ni=1. Otherwise go to Step 2.

The first three steps are straightforward. Note that we use the set T instead of S. The set S is closed
(within the budget hyperplane), whereas T is open; thus, using T assures that Smith’s (1984) conditions
are satisfied. This is not a strong limitation except for the choice of the initial point, as the probability of
drawing a point on the boundary is zero.

The first time Step 4 is reached, it computes a line T in the budget hyperplane B̄(p2) through the initial
point Y{(0)} using a random direction in R

L−1. Given λ and d and the fact that T ′ ⊂ B̄(p2), the value of xL
is unique. Step 5 then generates a point uniformly distributed on the intersection of the line T ′ with the
admissible set T such that the generated points can be used as choices which satisfy Garp. Algorithm 6
therefore generates a Markov chain in the L − 1 dimensional subspace defined by the budget hyperplanes.

Generating a random point on L in Step 5 is particularly easy because S and T are convex sets; this
follows from Fact 1. Thus, we can simply compute the minimal and maximal λ such that L ≠ ∅ and then
draw λ from a uniform distribution on that interval.

Again, we omit the full proof that the set generated by the algorithm satisfiesGarp, as it is straightforward.
See Figure 3 for an illustration. Note that the points generated with M = 15 already appear to be uniformly
distributed on T ; there is little difference to the distribution of points generated with M = 40.

4 conclusion

This paper provides an efficient procedure to generate random choices from a uniform distribution which
satisfy Garp. An immediately useful application of the procedure is an extension of Bronars’ (1987) method
to approximate the power of a nonparametric test with Monte Carlo methods for conditions for which
Garp is a necessary but not sufficient condition. It can be used to approximate the conditional probability
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x1

x2

x3

(a) Budget hyperplane B̄(p1)
and choice x 1.

x1

x2

x3

(b) Budget hyperplane B̄(p2)
and choice x2.

x1

x2

x3

(c) Budget hyperplane B̄(p3)
and choice x3.

x1

x2

x3

(d) Budget hyperlane B̄(p4).

x1

x2

x3

(e) The set S(p4 ∣{(x i , pi)}3i=1
and its relative interior.

(f) 800 points with
M = 2.

(g) 800 points with
M = 15.

(h) 800 points with
M = 40.

Figure 3: The first three budgets and the choices are shown in (a) - (c). (d) shows the fourth budget. (e) shows the admissible
region on the fourth budget given the three previous choices. (f) - (h) show 800 points generated using parts of Algorithm 6, with
different M.

that a set of random choices satisfies a condition other than utility maximisation, given that it also satisfies
Garp. A possible generalisation is to generate sets of Garp-consistent choices and compute efficiency indices
for the additional condition, such as homothetic efficiency (c.f. Heufer 2012b) or stochastic-dominance
efficiency (c.f. Heufer 2011). The approach can be further extended by generating choice sets which satisfy
other conditions, such as Harp, and then to approximate the conditional probability that it also satisfies
another condition, such as separability. Finally, the procedure can also be applied to testing assumptions
on cost functions (see, e.g., Varian 1984) when we observe input and output data instead of consumption
choices.
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