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Abstract. Given the growing dissatisfaction with exclusion and long-run
restrictions in structural vector autoregressive analysis, sign restrictions are
becoming increasingly popular. So far there are no techniques for validating
the shocks identified via such restrictions. Although in an ideal setting the
sign restrictions specify shocks of interest, sign restrictions may be invali-
dated by measurement errors, data adjustments or omitted variables. We
model changes in the volatility of the shocks via a Markov switching (MS)
mechanism and use this devise to give the data a chance to object to sign
restrictions. The approach is illustrated by considering a small model for the
market of crude oil.
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1 Introduction

Identifying the shocks of interest is a major problem in structural vector
autoregressive (SVAR) analysis. Often just-identifying restrictions are im-
posed, for example on the instantaneous effects of the shocks as in Sims
(1980) and Amisano and Giannini (1997) or on the long-run effects as in
Blanchard and Quah (1989) and King, Plosser, Stock and Watson (1991)
(see Lütkepohl (2005) for a textbook exposition). Typically the restrictions
imposed thereby are just-identifying and, hence, cannot be checked against
the data by statistical tests. There is some dissatisfaction with these types of
equality restrictions because there is often no agreement on them. Reasons
may be that different underlying economic models imply alternative sets of
restrictions or that they may not imply sufficiently precise restrictions to
uniquely identify all shocks of interest.

Therefore identification by inequality or sign restrictions for the effects
of shocks on certain variables is proposed by a number of authors (see, e.g.,
Faust (1998), Canova and De Nicoló (2002), Uhlig (2005)). In the latter
article shocks are identified by specifying the sign of their effect on certain
variables on impact and possibly in some of the following periods. All shocks
that are in line with the sign restrictions are considered admissible. Since
it appears to be easier to agree on such softer restrictions, this approach is
seen as an attractive alternative to identification via more classical exclusion
restrictions and consequently it has been applied by a number of researchers
(e.g., Mountford and Uhlig (2009), Lippi and Nobili (2011), Peersman and
Straub (2009), Canova and Pappa (2007)).

In some literature, dynamic stochastic general equilibrium (DSGE) mod-
els are used to check the signs of responses to shocks of interest and the
corresponding sign restrictions are used to characterize the shocks and are
then imposed on a SVAR model for the identification of the shocks (see
Canova (2002), Dedola and Neri (2007), Pappa (2009)). DSGE models are
highly stylized models of an economy and as such not necessarily a good
description of the data. Therefore it makes sense to assume that they cannot
give a precise picture of the reactions to shocks in actual economic systems
but may be able to suggest at least a direction of the responses of the vari-
ables to shocks. Using these directions or signs of the responses in a VAR
model which is specified so as to fit the data well, is hoped to provide a better
understanding of the effects of shocks in practice.

Unfortunately, using sign restrictions for identifying structural shocks has
some drawbacks as well. First of all, they typically do not identify the shocks
uniquely but allow for a range of admissible shocks that are all in line with
the sign restrictions. Therefore the range of possible responses may also be
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large and, hence, sign restrictions may deliver only a rather diffuse picture
of the reactions of variables to a shock of interest. Second, identification
via sign restrictions does not provide a possibility to check the validity of the
restrictions because only those shocks are considered that satisfy the prespec-
ified sign restrictions. Thus, any analysis based upon them is conditional on
the sign restrictions being correct. In other words, the data have no pos-
sibility to speak up against the restrictions. This criticism has been raised
against conventional just-identifying restrictions as well, of course, but it is
no less valid in the context of sign restrictions. One may argue that the prob-
lem is less severe in the context of sign restrictions because they are much
weaker restrictions than equality restrictions. Even if the sign restrictions are
derived from generally accepted economic models, there is a potential gap
between the empirical and the theoretical models that may invalidate the
sign restrictions in the empirical model. Reasons may be that the variables
used in the empirical model do not correspond exactly to those considered in
the theoretical model, for instance, due to measurement errors, trend and/or
seasonal adjustment or using data with an observation frequency that does
not correspond to that of the theoretical model. In addition, the economic
model describes the relations within a set of variables and may explicitly
abstract from other effects that may, however, be important in practice. For
example, the theoretical model may be one for a closed economy whereas
foreign effects may not be negligible in the actual system and the available
data. In other words, there may be an omitted variables problem that could
affect the empirical model.

In this study a proposal is made as to how to let the data speak about
the validity of identifying restrictions in general and sign restrictions in par-
ticular. The idea is to use changes in volatility to support the identification
of shocks. In SVAR analysis identification via heteroskedasticity is proposed
and used by Rigobon (2003), Rigobon and Sack (2003), Lanne and Lütkepohl
(2008) among others. These authors essentially assume that there are exoge-
nously generated changes in the volatility of the shocks and partition the
sample period accordingly. Then they base the identification of the shocks
on the assumption that the effects of shocks are the same regardless of the
volatility regime in which they occur. In other words, they assume that the
impulse responses are invariant throughout the sample period whereas the
volatility of the shocks may change. Thereby additional, statistical identi-
fying restrictions become available, which can be used to check restrictions
that are just-identifying in the conventional approach. We will use the ap-
proach proposed by Lanne, Lütkepohl and Maciejowska (2010) and model the
changes in volatility endogenously by means of a Markov regime switching
(MS) mechanism. A related proposal, based on different models for condi-
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tional heteroskedasticity, is used by Normandin and Phaneuf (2004), Bouakez
and Normandin (2010) and others for identifying shocks.

In the present study it will be shown how changes in volatility can provide
additional identifying information that can be used for checking the validity
of sign restrictions. Of course, this approach requires that there are changes
in volatility during the sample period and cannot be used if volatility is time-
invariant. If volatility varies sufficiently this device can generate a full set
of unique shocks that are in line with the data. These shocks may not have
an economic interpretation. If none satisfy the sign restrictions it means
that there is no shock that is acceptable to the data and satisfies the sign
restrictions at the same time. For example, if there are sign restrictions char-
acterizing a shock as a technology shock and none of the shocks acceptable
to the data satisfies those restrictions, one may conclude that a technology
shock cannot be isolated in the system under consideration. Using the shocks
identified by changes in volatility may result in unique shocks and not in a
range of feasible shocks and, hence, it may also provide more precise impulse
responses. In any case, the additional identification information obtained
from heteroskedasticity or conditional heteroskedasticity can be helpful for
checking the validity of the sign restrictions in the empirical model. Con-
sequently, the two drawbacks of sign restrictions mentioned earlier, that is,
lack of precise impulse responses and the inability to reject the restrictions,
can be addressed if there are changes in volatility.

One may argue that the typical approach for sign restricted SVARs uses
Bayesian methods for estimation that are based on independently, identically
distributed (i.i.d.) residuals. Hence, changes in volatility are excluded and
our model framework does not nest the typical model assumed under sign
restrictions. Although such arguments are valid, it may be worth noting that
sign restrictions can be used in conjunction with classical estimation methods
(see Moon and Schorfheide (2009) and Moon, Schorfheide, Granziera and
Lee (2009) for a discussion of the frequentist approach to inference in such
models). In that framework they can be justified under assumptions more
general than i.i.d. for the errors. Moreover, even though Bayesian methods
require stringent assumptions regarding the error distribution of the VAR
model, in applied work they will typically be approximately satisfied at best.
Our approach also provides a statistical check of some of these assumptions.

In this study we use a classical approach for inference. In other words, we
use likelihood based methods to avoid any distortions by imposing priors on
the parameters although Bayesian methods are more common in conjunction
with sign restrictions. However, our main arguments do not depend on the
method for estimation. They could be equally well placed in a Bayesian
framework.
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To illustrate the approach, a study by Kilian and Murphy (2011) will
be reconsidered. These authors analyze a system with the following three
variables:

• ∆prodt - percent change in global crude oil production,

• qt - log detrended index of real economic activity,

• pt - log of real price of oil.

They specify an oil supply shock, an aggregate demand shock and an oil-
market specific demand shock purely by sign restrictions. They point out that
sign restrictions are not enough to get a precise picture of the effects of such
shocks and they propose to add further information to pin down the effects
more precisely. The example is particularly suitable for our purposes because
changes in volatility of oil production and the price of oil are diagnosed in the
related literature (see Baumeister and Peersman (2010)). In our framework
these volatility changes can be used to address the question whether the
system is suitable for isolating the three shocks of interest and also to obtain
more information which can help to narrow down the effects of the shocks.

The study is organized as follows. The model setup and some technical
details of our inference procedures are given in Section 2. The empirical
study illustrating the method for checking the sign restrictions is presented
in Section 3 and conclusions are provided in Section 4.

2 The Model Setup and Inference

The reduced form of our model is a K-dimensional VAR(p),

Yt = ν + A1Yt−1 + · · ·+ ApYt−p + Ut, (1)

where ν is a constant term, the Ajs (j = 1, . . . , p) are (K × K) coefficient
matrices and Ut is a zero-mean error term.

In a conventional SVAR model the structural shocks are obtained from the
reduced form residuals by a linear transformation, εt = B−1Ut or Bεt = Ut,
where B is such that εt has identity covariance matrix, that is, εt ∼ (0, IK),
and the reduced form residual covariance matrix is decomposed as E(UtU

′
t) =

ΣU = BB′.
Following Lanne et al. (2010), in our setup the distribution of the reduced

form error term Ut is assumed to depend on a discrete Markov process st
(t = 0,±1,±2, . . . ) with states 1, . . . ,M and transition probabilities

pij = Pr(st = j|st−1 = i), i, j = 1, . . . ,M.

4



The conditional distribution of Ut given st is assumed to be normal,

Ut|st ∼ N (0,Σst). (2)

Our model allows for Markov switching in the residual covariances only and
not in other parameters of the model. Although there are finitely many states
only and in practice the number of different states will be small, the model
can capture smooth transitions from one state to another because a particular
state does not necessarily come up with probability one but the system may
be in between states, that is, in a given period the actual volatility may be
described by a mixture of different states, each state being weighted by a
certain probability. Thus, in this sense our model is similar to a multivariate
GARCH or stochastic volatility model and can capture similar changes in
volatility. We do not allow other parameters than the residual covariance to
be state-dependent. Thereby we impose more regularity on our models than
in the MS-SVAR models considered by Rubio-Ramirez, Waggoner and Zha
(2005), Sims and Zha (2006) and Sims, Waggoner and Zha (2008) or in SVAR
models with time-varying coefficients (see, e.g., Cogley and Sargent (2005),
Primiceri (2005), Baumeister and Peersman (2010)). In the latter paper, a
system similar to our example system analyzed in Section 3 is considered in
the framework of a time-varying coefficient SVAR model. We will return to
their results in the empirical section.

In the following we will use the abbreviation MS(M)-VAR(p) model for a
VAR model with p lags and M Markov states. We emphasize that we use this
notation for simplicity although all VAR coefficients apart from the residual
covariances are state-invariant. This fact is not reflected in our notation. For
example, Krolzig (1997) uses the notation MSH-VAR for our model type.

The fact that the covariances Σst can vary across states is used in our
framework for identifying structural shocks that are consistent with the sta-
tistical properties of the data. For example, if there are just two states
(M = 2), then there exists a decomposition Σ1 = BB′ and Σ2 = BΛ2B

′,
where Λ2 = diag(λ21, . . . , λ2K) is a diagonal matrix with positive diagonal
elements. If the λ2is are all distinct, this decomposition is unique apart from
changes in the sign and permutations of the columns of B and corresponding
changes in the ordering of the λ2is (Lanne et al. (2010)). Thus, for a given
ordering of the λ2k, if the structural shocks are orthogonal, have the same
instantaneous effects across states and are normalized such that they have
unit conditional variance in the first state, then they are uniquely determined
by the transformation εt = B−1Ut. Thus, any additional restrictions from
economics become over-identifying and can be checked against the data. For
instance, exclusion restrictions can be checked with formal statistical tests.
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Moreover, if a set of sign restrictions is postulated for the system to be
suitable for the desired analysis, the impulse responses corresponding to the
shocks identified via the MS structure must satisfy the prespecified sign re-
strictions that characterize the economic shocks of interest. Alternatively,
if the shocks do not satisfy the sign restrictions, these restrictions are not
compatible with the statistical properties of the data. The reasons could be
those mentioned in the introduction, that is, omitted variables, measurement
errors, aggregation problems or distortions due to data transformations. If,
however, the impulse responses satisfy the sign restrictions, labels may be
attached to the shocks accordingly.

It may be worth emphasizing that the requirement of having distinct λ2is
is crucial for exact identification of all shocks. The λ2is can be interpreted as
variances in State 2 relative to those in State 1. Thus, distinct λ2is imply that
the volatility changes are not homogenous across all variables. Moreover,
one of the λ2is may, of course, be 1, that is, one of the shocks may have
the same variance in both states, as long as there is enough heterogeneity
in the volatility of the other shocks. Moreover, even if some of the λ2is are
identical, it may still be possible to identify those shocks with distinct relative
variances in State 2. Of course, in that situation it may not be possible
to arrive at clear conclusions regarding the validity of the sign restrictions.
An important advantage of our approach is that the crucial identification
restrictions (distinct λ2is) can be checked with statistical tests rather than
having to assume it.

If there are more than two volatility states, the corresponding covariance
matrix decomposition

Σ1 = BB′, Σi = BΛiB
′, i = 2, . . . ,M, (3)

with diagonal Λi matrices is restrictive. Lanne et al. (2010) discuss a likeli-
hood ratio (LR) test for these restrictions. Denoting the diagonal elements
of Λj by λj1, . . . , λjK , uniqueness of B up to sign and permutation of the
shocks is ensured when there are more than two states if for any subscripts
k, l ∈ {1, . . . , K}, k 6= l, there is a j ∈ {2, . . . ,M} such that λjk 6= λjl
(Lanne et al. (2010, Proposition 1)). Although this condition for exact (lo-
cal) identification is apparently more complicated than in the 2-state case, it
is potentially also more likely to be satisfied if there are more than two states
and, hence, more heterogeneity in the volatility. Also in this case all shocks
may be identified even if one of them has homogenous volatility across all
states. Again, the identification condition can be checked by statistical tests.
If it is satisfied, the resulting shocks are unique and need to satisfy any valid
sign restrictions. In turn, any restrictions that the shocks do not satisfy, are
not compatible with the data.

6



Our identification techniques are the same as those used in the litera-
ture on identification via heteroskedasticity (see, in particular, Lanne and
Lütkepohl (2008)). While in that literature heteroskedasticity is used, we
consider conditional heteroskedasticity. In our approach changes in volatility
are determined endogenously from the data. In principle, the periods asso-
ciated with a particular volatility state can be spread irregularly throughout
the sample. Thus, the volatility states are more flexible than in the standard
approach based on heteroskedasticity.

Since we assume normality of the residuals conditional on the states,
the likelihood function can be set up and the model can be estimated by
maximum likelihood (ML). The likelihood function is given in Lanne et al.
(2010) and a detailed discussion of the related estimation problems can be
found in Herwartz and Lütkepohl (2011). They also present the details of
an EM algorithm for optimizing the likelihood and point out that there are
many local maxima. In fact, the numerical problems are challenging, in
particular when a large number of different Markov states are allowed for.
The procedure is a quasi ML procedure if the normality assumption in (2)
does not hold. The normality assumption is not essential for the asymptotic
properties of the estimates but is just used for setting up the likelihood
function.

Herwartz and Lütkepohl (2011) discuss a fixed design wild bootstrap
procedure for constructing confidence intervals for impulse responses in the
presently considered model class. They propose to construct bootstrap sam-
ples conditional on the ML estimates so that for our model setup they are
constructed as

Y ∗t = ν̂ + Â1Yt−1 + · · ·+ ÂpYt−p + U∗t , (4)

where U∗t = ηtÛt and ηt is a random variable with values 1 and −1, each with
probability 0.5. Thereby potential heteroskedasticity and the pattern of con-
temporaneous dependence of the data is preserved. We bootstrap parameter
estimates θ∗ of θ = vec[ν,A1, . . . , Ap] and B∗ of B, conditionally on the ini-
tially estimated transition probabilities and Λm, m = 2, . . . ,M , to alleviate
the computational burden as in Herwartz and Lütkepohl (2011). Notice that
computing the bootstrap impulse responses still requires nonlinear optimiza-
tion of the log-likelihood and, hence, is computationally demanding. We use
the ML estimates as starting values in the bootstrap replications. In our
empirical analysis we consider 68% standard percentile confidence intervals
based on 1000 replications. The confidence level is in line with much of the
related literature.
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3 Empirical Analysis

3.1 Previous identification restrictions

Kilian and Murphy (2011) are primarily interested in the effects of demand
and supply shocks in the crude oil market on the real price of oil. They
argue that the exclusion restrictions used by Kilian (2009) for identifying the
shocks could be questioned. In the latter article Kilian identifies the shocks
by assuming that oil-market specific demand shocks (εoil−d

t ) do not have an
instantaneous effect on oil production and real activity and aggregate demand
shocks (εaggr−d

t ) have no immediate impact on oil production. In other words,
B is lower-triangular such that U∆prod

t

U q
t

Up
t

 =

 b11 0 0
b21 b22 0
b31 b32 b33

 εoil−s
t

εaggr−d
t

εoil−d
t

 . (5)

Kilian and Murphy (2011) point out that a zero short-run oil supply elasticity
of aggregate demand may not be realistic and the same is true for the short-
run effect of an oil-market specific demand shock on real activity. Therefore
Kilian and Murphy (2011) propose the use of sign restrictions that do not
fix these effects at zero. More precisely, they impose the sign restrictions
given in Table 1 for the impact effects. They also point out that these
restrictions do not identify the shocks uniquely but result in a rather large
set of admissible shocks and correspondingly imprecise impulse responses.
They narrow down the range of admissible shocks by imposing bounds on
the oil supply elasticity. In our approach we can get additional information
from the data, as demonstrated in the following.

Table 1: Sign Restrictions for Impact Responses from Kilian and Murphy (2009)

oil supply shock aggregate demand shock oil-market specific demand shock
oil production − + +
real activity − + −
oil price + + +

Concerns regarding the exclusion restrictions imposed by Kilian (2009)
are also expressed by Baumeister and Peersman (2010) who consider a similar
system of variables. They use sign restrictions in the framework of a time-
varying coefficient VAR model that allows for time-varying coefficients in
addition to heteroskedasticity in the residuals. They find that during our
sample period there was a rise in oil price volatility while at the same time
the volatility of oil production has declined. Hence, it seems plausible to
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use our approach and utilize the changes in the volatility of the shocks for
identification.

3.2 The data and the VAR model

We use monthly data from 1973m2 - 2006m12, as in Kilian (2009). An
updated dataset is used by Kilian and Murphy (2011). These authors use a
VAR(24) model. However, model selection criteria favor smaller VAR orders.
We base our analysis on a VAR(3) model that is selected by the more gener-
ous AIC. Notice that we have to use a nonlinear optimization algorithm for
maximizing the likelihood function. Such algorithms run into problems for
heavily parameterized models. Admittedly, standard residual tests indicate
some remaining autocorrelation in the residuals of the VAR(3) model. The
same is true for the VAR(24) model, however, and we have checked that qual-
itatively similar impulse responses result from both models in a conventional
analysis.

In Figure 1 the residuals of both the VAR(24) and the VAR(3) models
are plotted. While the two sets of residuals naturally look a bit differently,
they both show that the residuals of oil production are much more volatile
in the first part of the sample while the oil price residuals are substantially
more volatile in the later sample period from the middle of the 1980s onwards.
The figure hence confirms the observation made by Baumeister and Peersman
(2010).

3.3 The number of MS states

In Table 2 some statistics are presented for a range of different models. In
particular, models with different numbers of states and restrictions on the
impact effects matrix B are compared. Considering only unrestricted VAR(3)
models, the MS(3)-VAR(3) is favored by SC while AIC prefers a 4-state
model. It is worth pointing out that models with MS are much preferred to
the VAR(3) model without allowance for changes in volatility. Of course, this
result is not surprising given the residual graphs in Figure 1. For the MS(3)
models the SC and AIC values are further reduced by imposing the restriction
of a state-invariant impact effects matrix B and lower-triangularity of this
matrix. The SC value also declines when these restrictions are imposed and
only MS(4) models are compared while the same is not true for AIC which is
minimized for the least restricted model. Thus, based on the model selection
criteria models with state invariant and recursive impact effects have some
support although they are not favored generally.
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In deciding on the number of MS states it may be worth looking at the
smoothed state probabilities for the sample period. They are shown in Figure
2 where a state-invariant B matrix is imposed for the MS(3) and MS(4)
models. The corresponding state covariance matrices are given in Table 3.
Looking at the state probabilities of the MS(2)-VAR(3) model first, it can
be seen that the first part of the sample is mainly associated with State 2
while State 1 dominates the second part of the sample. In Table 3 it can be
seen that the volatility of oil production is relatively high in State 2 whereas
the volatility of the oil price is much higher in State 1 than in State 2.
This “puzzle” is further investigated by Baumeister and Peersman (2010), as
mentioned earlier. For the purposes of our study the important point is that
volatility changes occur during the sample period.

Looking at the smoothed probabilities of the MS(3) model in Figure 2 it
becomes clear that the first two states are similar to those of the MS(2) model
while the third state captures apparently some special periods. From Table
3 it becomes clear that the third state is characterized by very high volatility
both in oil production and the real price of oil. Thus, it captures special states
of particularly high volatility in the crude oil market. Many of the State 3
periods can be associated with specific events which were important for the
crude oil market as listed in Barsky and Kilian (2004). For instance, there
are peaks associated with the October War and oil embargo from October
1973 through early 1974, the Iranian Revolution between October 1978 and
February 1979, the outbreak of the Iran-Iraq war in September 1980, the
invasion of Kuwait in August 1990, and the important OPEC meeting in
March 1999. Thus, the three-state model is not only favored by SC but also
makes good sense when looking at the developments in the crude oil market.

The situation is somewhat different for the four-state model. The first
and second states are associated with similar periods as in the MS(3) model,
as seen in Figure 2 and also the associated covariance matrices in Table
3 are similar. Thus, the first state is again associated with periods of low
volatility in oil production while the second state captures periods with higher
volatility in the price of oil. In the third and fourth states the volatility of
oil production is again very high while the volatility of the price of oil is very
large in State 3 only. Unfortunately, State 3 is only associated with relatively
few periods. Hence, the model is difficult to estimate and the estimates are
unreliable. Overall, from a statistical point of view as well as considerations
of events in the crude oil market, the model is more problematic than a MS(3)
model and, hence, we favor the MS(3)-VAR(3) model in the following.

In Figure 3 the standardized residuals of the MS(3)-VAR(3) model are
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presented. They are determined as

Σ̂
−1/2
t|t−1ût,

where ût = yt − ν̂ − Â1yt−1 − · · · − Âpyt−p and

Σ̂t|t−1 =
M∑

m=1

P̂r(st = m|Yt−1)Σ̂m.

Here Σ̂t|t−1 denotes the estimated residual covariance matrix conditional on
information up to time t − 1, that is, conditional on Yt−1 = (Yt−1, . . . , Y1).
Clearly, the volatility of the standardized residuals in Figure 3 is more regular
than in Figure 1. In other words, the MS structure captures the changes in
volatility well. Hence, we will focus the analysis on the MS(3)-VAR(3) model
in the following, which is also plausible from a subject matter point of view.

3.4 Statistical analysis of MS(3)-VAR(3) model

Because we are interested in using the MS structure for identification pur-
poses, a main question of interest is whether a state-invariant initial effects
matrix B is compatible with the data and whether the associated relative
variances are sufficiently different to obtain a statistical identification of the
shocks. In Table 2 we already see that both AIC and SC support a state-
invariant B matrix for the MS(3) model. In Table 4 the likelihood ratio
test from Lanne et al. (2010) for the null hypothesis of a state-invariant B
is presented. Its p-value is 0.63 and hence exceeds conventional significance
levels substantially. Thus, the LR test also supports a state-invariant initial
effects matrix.

The estimated λijs of the MS(3)-VAR(3) model with state-invariant B
are shown in Table 5 together with estimated standard errors. The standard
errors indicate that estimation precision is quite reasonable and, hence, we
can hope for sufficient heterogeneity to get identification. Statistical tests
of the relevant hypotheses are presented in Table 6. Recall that B is lo-
cally identified (identified apart from changes in sign and permutation of its
columns) if for each pair of subscripts (i, j) there is a Λm matrix for which
the corresponding diagonal elements are different, that is, λmi 6= λmj for
some m ∈ {2, . . . ,M}. For our three-dimensional system we thus have to
check three pairs of subscripts. The corresponding Wald and LR test results
are shown in Table 6. The Wald tests are attractive in the present context
because they are very easy to compute from the estimates of the model with
state-invariant B. On the other hand, they are known to be unreliable for
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highly nonlinear null hypotheses. Two of the three null hypotheses are clearly
rejected by the Wald tests at a 5% significance level while the third one is
rejected at a 10% level.

We also computed computationally more demanding LR tests. They
require an additional likelihood optimization under the null hypothesis, which
is a challenging task for the presently considered model class with the risk of
ending up in some local optimum. Note that the LR tests are computed for
models where the diagonal elements of Λ2 are sorted in increasing order. The
LR test values result in very small p-values and strongly support identification
of B. Thus, we conclude that the data are in line with identified shocks.
These shocks are the only ones in our framework that are time-invariant
with the same impact effects across states. Note that time-invariant shocks
and impulse responses are also assumed by Kilian (2009) and Kilian and
Murphy (2011), but not by Baumeister and Peersman (2010), who allow for
time-varying coefficients. We emphasize that our identifying restrictions so
far are based on data driven procedures and the data are not objecting to
them in the framework of the MS(3)-VAR(3) model.

Of course, our identification is a statistical one and there is still a question
whether it is consistent with economically meaningful shocks, in particular
with the shocks considered by Kilian (2009) and Kilian and Murphy (2011).
The question whether our statistically identified shocks are in line with the
sign identified shocks considered by Kilian and Murphy (2011) will be con-
sidered when we look at impulse responses in the next subsection. In the
present context we can, however, perform a statistical test of the exclusion
restrictions used by Kilian (2009), which are given in Equation (5). Hav-
ing identifying information for the shocks from other sources, allows us to
apply simple LR tests because Kilian’s recursive identification scheme be-
comes over-identifying in the context of our model, as explained in Section
2. The AIC and SC values for models with state-invariant, lower-triangular
B matrix in Table 2 and the corresponding LR tests for a MS(3)-VAR(3)
model presented in Table 4 all support a lower-triangular B. In particular,
the LR tests in Table 4 have very large p-values and, hence, do not reject
lower-triangularity of B. This holds for both a test against an unrestricted
MS(3) model and one against a MS(3) model with state-invariant B.

Further support for a lower-triangular B is presented in Table 5, where
the estimated λijs of the model with a lower-triangular B matrix are given.
They are very close to those of the corresponding model with unrestricted
B. Note that the columns of B can no longer be permuted when the matrix
is triangular. Thus, the ordering of the λijs is the one corresponding to
the lower-triangular B matrix. It results in λ2js in decreasing order and,
hence, we order the λ2js for the model with unrestricted, state-invariant B
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accordingly. Apparently, from a statistical point of view, the assumption of
a lower-triangular initial effects matrix is not restrictive. In the next section
it will be explored whether the sign restrictions used in the related literature
are also in line with our statistically identified shocks. An impulse response
analysis will be performed for that purpose.

3.5 Impulse response analysis

Given that we have identified shocks, we can also compute impulse responses
from our MS(3)-VAR(3) model with state-invariant initial effects matrix B.
These are displayed in Figure 4 together with 68% bootstrap confidence
intervals. The scaling of the impulse responses is determined by B, which,
in turn, is scaled such that the residuals in State 1 have identity covariance
matrix. This is to some extent arbitrary because the numbering of the states
is arbitrary. The scaling is also quite different from that used by Kilian. We
emphasize that our normalization of the shocks in the first state affects only
the scaling but not the shape and the sign of the impulse responses.

A priori we do not know which economically interpretable shocks are
represented by the statistically identified shocks. However, the fact that our
ordering of the shocks is in line with a lower-triangular, recursive identifica-
tion scheme indicates that they may be labeled as in (5), that is, the first
shock may be viewed as an oil supply shock, the second as an aggregate
demand shock and the third as an oil-market specific demand shock. With
this labeling in mind, they can be seen to be in line with the sign restric-
tions given in Table 1. Only the oil-market specific demand shock could be
viewed as potentially problematic because its initial effect on output tends
to be positive. Zero is really at the lower end of the 68% confidence interval.
Because the confidence level could be regarded as pretty low, our analysis
provides little basis for questioning the sign restrictions. Using a slightly
larger confidence level would result in intervals with negative values for the
initial response of output. In other words, the data do not object to the
sign restrictions, that is, the system as set up here and the data used are
consistent with the sign restrictions adopted by Kilian and Murphy (2011).

Notice that the impulse responses of oil production are cumulated re-
sponses of ∆prodt. They fall outside the respective 68% bootstrap confidence
bands. That feature is also observed in other studies and is not uncommon
in the SVAR literature. It may be due to the skewness and biasedness of the
distribution of the impulse response estimates.

The fact that our method does not exclude any of the restrictions imposed
in the previous studies may be seen as a weakness indicating lack of power
of our procedure. In defense of our method we note that the restrictions in
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Table 1 are indeed not very tight. In the literature using sign restrictions it
is not common to restrict only the impact effects. Assuming that the sign
restrictions hold for some quarters after the shock has occurred would be
a more common set of restrictions in the related literature. If we consider
such restrictions for illustrative purposes, it turns out that our shocks do
not satisfy them. For example, if we stick with the 68% confidence inter-
vals around the impulse responses and consider this as the possible range
of impulse responses supported by the data, there is no shock that raises
oil production, reduces real activity and increases the prize of oil for four
quarters after hitting the system. Thus, in our framework the data do not
support the existence of an oil-market specific demand shock satisfying such
more stringent conditions. This result illustrates that our procedure does
have some discriminatory power. The restrictions used by Kilian and Mur-
phy (2011) are apparently very weak and, hence, difficult to reject by the
data, although more stringent restrictions can be rejected. Of course, im-
posing weak restrictions and still being able to draw conclusions from the
analysis is an advantage of the Kilian-Murphy study and our analysis gives
further support to their results.

Kilian and Murphy (2011) show that if only the sign restrictions from Ta-
ble 1 are used, some elasticities become unreasonably large. Therefore they
search for other types of information that can be used to obtain more rea-
sonable responses. As mentioned earlier, they impose also restrictions on the
oil supply elasticity. In the context of our approach we can use the statistical
identification restrictions and obtain the impulse responses with 68% confi-
dence intervals in Figure 4. In some cases they are also not very precise but
can be restricted further by imposing statistically valid restrictions such as
lower-triangularity of B. The corresponding impulse responses are depicted
in Figure 5. Overall they are not much more precise than those from the
unrestricted model in Figure 4, apart from the impact effects of aggregate
demand and oil-specific demand shocks that are now restricted to zero.

One may of course argue that the main gains in precision relative to
the impulse responses shown in Kilian and Murphy (2011) and Kilian (2009)
come from the smaller VAR lag order. Recall that these authors use lag order
p = 24 while we use p = 3. Indeed our smaller order results in smoother im-
pulse responses. They are qualitatively similar to those from Kilian (2009),
however. To show this, we present the impulse responses of a conventional,
recursively identified VAR(24) in Figure 6 and the corresponding quantities
from a VAR(3) in Figure 7. The confidence intervals shown in these figures
are obtained from a standard percentile procedure. The ones in Figure 6 look
very similar to the corresponding ones in Figure 3 of Kilian (2009). Notice
that Kilian reports one- and two-standard error bounds that are naturally
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symmetric around the impulse responses while we use (potentially asymmet-
ric) 68% bounds for ease of comparison with our previous results.

The overall conclusion from our study is that using the statistical informa-
tion more fully allows for more precise inference on the effects of structural
shocks in a SVAR analysis. It provides additional identifying information
that can complement the information from economic theory and allows to
check restrictions that cannot be checked against the data in a conventional
analysis with exclusion or sign restrictions. It also has the advantage of pro-
viding information on the overall compatibility of the model and the data
used with the theoretical considerations of economists. In other words, it
can provide information on the compatibility of the data despite potential
deviations from an ideal model world due to omitted variables, measurement
errors or other data problems.

4 Conclusions

We argue that restrictions derived from some economic model may not be
valid in a corresponding empirical model. Reasons may be that the eco-
nomic model is a simplification of reality that explicitly ignores important
effects in the real economy. For example, there may be an omitted variables
problem if only those variables are included in the empirical model that are
described in the theoretical model. Moreover, the empirical variables may not
correspond precisely to the variables underlying the economic model due to
measurement errors, data adjustments such as trend or seasonal adjustments
or because the theoretical variables are not measurable. In a conventional
SVAR analysis one would still impose the restrictions suggested by economic
reasoning. If the restrictions just-identify the shocks it may go unnoticed
that the empirical model does not reflect the actual relationships between
the variables involved. Similarly, if only sign restrictions are used to identify
the shocks, in a conventional analysis the data have no basis to speak up
against the model. Therefore there are proposals to use statistical properties
such as heteroskedasticity to complement economic restrictions and check
restrictions that are just-identifying in a conventional SVAR framework. In
this study we propose to use similar devices for checking sign restrictions.

More precisely, we propose to model changes in the volatility of the shocks
by a MS mechanism and we show how this device can be used to check sign
restrictions in addition to exclusion restrictions on the impact and long-
run effects of the shocks. If the volatility structure is rich enough it may
provide identified shocks which should correspond to the economic shocks
if the empirical model is in line with the economic model. In this case, the
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statistically identified shocks have to satisfy, for example, the sign restrictions
or other restrictions derived from economic considerations.

For illustrative purposes we use a small, three-dimensional model of the
market for crude oil consisting of the change in oil production, the price
of oil and an index of economic activity. For this model, oil supply and
demand shocks as well as an aggregate demand shock, are specified with
sign restrictions for the corresponding impulse responses, on the one hand,
and changes in the volatility of the residuals are observed on the other. The
changes in volatility are used to obtain identified shocks. It turns out that
these shocks satisfy a previously used weak set of sign restrictions but not
a slightly stricter set of such restrictions. Our analysis allows us not only
to check previously used sign restrictions but it also enables us to impose
further exclusion restrictions that may help obtain more precisely estimated
impulse responses. More generally, the study demonstrates how identifying
restrictions in general and sign restrictions in particular can be checked in
our framework.
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Table 2: Comparison of MS-VAR(3) Models for Yt = (∆prodt, qt, pt)
′

Model logLT AIC SC
VAR(3) without MS -4271.47 8614.94 8758.99
MS(2), unrestricted -4106.82 8301.64 8477.71
MS(2), B lower-triangular -4108.85 8299.70 8463.76
MS(3), unrestricted -4048.84 8205.68 8421.76
MS(3), state-invariant B -4049.70 8201.40 8405.47
MS(3), state-invariant, lower-triangular B -4050.13 8196.27 8388.34
MS(4), unrestricted -4013.32 8158.64 8422.73
MS(4), state-invariant B -4030.42 8180.85 8420.93
MS(4), state-invariant, lower-triangular B -4038.40 8190.81 8418.89

Note: LT – likelihood function, AIC = −2 logLT + 2×no of free parameters, SC

= −2 logLT + log T×no of free parameters.

Table 3: Estimated State Covariance Matrices of MS(m)-VAR(3) Models
with State-Invariant B, m = 2, 3, 4, for Yt = (∆prodt, qt, pt)

′

m = 2 m = 3 m = 4

Σ1

 155.59
2.02 12.38
−9.43 2.36 58.29

  99.38
0.96 10.51
−0.86 1.09 42.84

  90.92
1.33 9.89
−0.98 0.49 40.27



Σ2

 912.86
18.49 35.38
−0.56 0.56 2.94

  533.95
9.39 33.86
5.07 0.64 2.45

  368.56
6.42 23.89
−0.60 1.06 1.52



Σ3

 2499.03
65.38 37.42
16.46 5.31 190.49

  947.64
17.89 39.83
−5.97 2.03 222.26



Σ4

 2365.54
47.36 57.70
−3.55 2.49 9.59


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Table 4: LR Tests of Restrictions for MS(3)-VAR(3) Models for Yt =
(∆prodt, qt, pt)

′

H0 H1 LR df p-value
state-invariant B unrestricted MS(3)-VAR(3) 1.72 3 0.63
state-invariant, lower-triangular B state-invariant B 0.86 3 0.84
state-invariant, lower-triangular B unrestricted MS(3)-VAR(3) 2.58 6 0.86

Note: LR = 2(logLT − logLr
T ), where Lr

T denotes the maximum likelihood under H0 and

LT denotes the maximum likelihood for the model under H1.

Table 5: Estimates of Structural Parameters of MS(3)-VAR(3) Models for
Yt = (∆prodt, qt, pt)

′ with State-invariant B

unrestricted B lower-triangular B
parameter estimate std.dev. estimate std.dev.
λ21 5.384 0.933 5.429 0.944
λ22 3.210 0.485 3.220 0.489
λ23 0.056 0.009 0.057 0.009
λ31 25.235 6.938 25.097 7.107
λ32 3.387 1.242 3.481 1.258
λ33 4.441 1.018 4.382 1.011

Note: Standard errors are obtained from the inverse of the outer product of numerical

first order derivatives.

Table 6: Tests for Equality of λijs for MS(3)-VAR(3) Model with State-
invariant B
H0 Wald statistic p-value LR statistic p-value
λ21 = λ22, λ31 = λ32 7.99 0.02 20.39 3.7× 10−5

λ21 = λ23, λ31 = λ33 7.87 0.02 21.04 2.7× 10−5

λ22 = λ23, λ32 = λ33 5.16 0.07 27.15 1.3× 10−6
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(a) Residuals of VAR(24) model
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(b) Residuals of VAR(3) model

Figure 1: Residuals of VAR(24) and VAR(3) models.
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(c) Smoothed state probabilities for MS(4)-VAR(3)

Figure 2: Smoothed state probabilities of unrestricted MS(m)-VAR(3) mod-
els for m = 2, 3, 4.
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Figure 3: Standardized residuals of MS(3)-VAR(3) model with state-
invariant B.
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Figure 4: Impulse responses with 68% confidence bounds of the MS(3)-
VAR(3) model with state-invariant B.
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Figure 5: Impulse responses with 68% confidence bounds of the MS(3)-
VAR(3) model with state-invariant, lower-triangular B.
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Figure 6: Impulse responses with 68% confidence bounds of a recursively
identified VAR(24) model.

0 5 10 15 20

−20

−10

0

P
ro

d

Oil supply shock

0 5 10 15 20
−10

−5

0

5
Aggregate demand shock

0 5 10 15 20
−5

0

5
Oil−market specific demand shock

0 5 10 15 20

−2

−1

0

q

0 5 10 15 20
0

2

4

6

0 5 10 15 20
−2

0

2

0 5 10 15 20
−2

0

2

p

0 5 10 15 20
0

2

4

6

0 5 10 15 20
0

5

10

Figure 7: Impulse responses with 68% confidence bounds of a recursively
identified VAR(3) model.
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