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We allow a contest organizer to bias a contest in a discriminatory way, that is, she can 
favor specifi c contestants through the choice of contest success functions in order to 
maximize total equilibrium eff ort (resp. revenue). The scope for revenue enhancement 
through biasing is analyzed and compared for the two predominant contest regimes; 
i.e. all-pay auctions and lottery contests. Our main result reveals that an appropriately 
biased all-pay auction revenue-dominates the optimally biased lottery contest for all 
levels of heterogeneity among contestants. Moreover, such a biased all-pay auction will 
never make use of the celebrated exclusion principle advanced by Baye et al. (1993).
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1 Introduction

The all-pay auction and the lottery contest game are the most frequently used setups to model

strategic competition among agents that exert non-refundable effort to influence their respective

chances to win a fixed prize. Both types of models have been extensively used in applied analy-

sis, for instance, in the areas of R&D competition, lobbying, sports, rent-seeking, procurement,

etc., see Konrad (2009) [11] for a survey. One of the reasons for the popularity might be the an-

alytical tractability, especially if employed under the assumptions that the rules that govern the

competition are anonymous and that agents are homogeneous. Recently, there is a growing inter-

est in relaxing these limiting assumptions: The heterogeneity of contestants comes into the focus

of analysis and, as a consequence, also the question of how the contest organizer should exploit

heterogeneity among contestants by treating different contestants differently. Recent examples

that follow this approach are Siegel (2010, 2011), [12, 13], Kirkegaard (2010), [10], Epstein et

al. (2011), [5], Szech (2011), [15], and Franke et al. (2011), [7].

Due to the prominence of the rent-seeking interpretation in this literature an important aspect

in the strategic analysis is the relation between aggregate equilibrium efforts of the agents (i.e.,

the revenue of the auction or contest) and the underlying institutional rules and characteristics that

govern the specific form of the contest. In Baye et al. (1993), [2], for instance, an analysis of the

all-pay auctions with heterogeneous players established the so called exclusion principle, which

implies that a revenue-maximizing contest organizer might optimally exclude strong agents from

the competition ex-ante. This result is in contrast to the symmetric lottery case considered in

Fang (2002), [6], where it is shown that exclusion of strong players is never optimal for the

contest organizer. Moreover, the direct comparison between these two contest regimes reveals

that neither revenue-dominates the other a priori. The intuition for this result can be attributed

to the trade-off between competitive pressure and entry which is differently resolved in the two

regimes. Competitive pressure in an all-pay auction is primarily generated by the institution

itself. Its highly discriminative, all-pay deterministic winner-takes-it-all nature endogenously

restricts entry in equilibrium to (generically) just two contestants. However, competition between

those two is so intense, that in (mixed strategy) equilibrium only one has a positive payoff in

expectation (while both have a positive probability of winning). In contrast, a lottery contest with

its characteristic probabilistic contest rule is much less discriminative as an institution because it

does not require to be the highest bidder in order to win. This characteristic is highly conducive

for attracting entry; i.e., competitive pressure in a lottery contest is primarily generated by the

interaction of many active contestants in equilibrium. Fang (2002), [6] shows that from a revenue

maximizing contest designer’s point of view it depends on degree and nature of heterogeneity of
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contestants whether it is better to ignite competitive pressure ex ante (through the choice of a very

discriminative contest success function like the all-pay auction), which is reduced endogenously

ex post due to a minimal amount of entry, or to opt for weaker competitive pressure ex ante

(by choosing a less discriminative contest success function like the lottery contest) which is

endogenously reinforced ex post due to entry of more contestants.

Importantly, both of these models are based on the assumption that the contest organizer

is neutral with respect to the contestants; that is, she chooses among contest regimes, which

treat contestants anonymously. This is certainly not the case in many real world contests (just

think of the contest rules for a job opening of a professorship), where the contest organizer has

control over some variables, which bias the contest systematically (and legally) in favor of certain

contestants (see also Epstein et al. (2011), [5], for a detailed discussion of this type of bias in

public procurement in Israel). This gives the contest organizer additional power to promote her

interests, in particular in the presence of heterogeneous contestants. This situation is analyzed

for the case of two contestants in Epstein et al. (2011), [5], where the contest organizer can

specify individual weights for each of two contestants. Setting individual weights reflects her

potential for discriminating between the two contestants which has consequences for the revenue

comparison between all-pay auction and lottery contest: The optimally biased all-pay auction

revenue-dominates any biased lottery contest, independently of heterogeneity between the two

contestants. However, the restriction to the two-player case is particularly severe for at least two

reasons: Firstly, it ignores the basic trade-off with regard to competitive pressure as described

above. The ”minimal entry” feature of the all-pay auction is eliminated, likewise the scope of

the lottery contests for increased competitive pressure through additional entry. Secondly, the

solution theory of the biased lottery contest with only two contestants is a degenerate case of the

general n-player solution, see Franke et al. (2011), [7]. More precisely, the optimal weight for a

contestant in the two-player case only depends on his own characteristics, whereas with three or

more players any optimal individual bias weight depends on the characteristics of all contestants.

The objective of this paper is to determine a revenue (or total effort) maximizing contest

organizer’s choice of contest, when she is faced with n heterogeneous contestants. Her choice

set consists of a set of (potentially biased) contest success function, which contains lotteries

and all-pay auctions. We can partly rely on Franke et al. (2011), [7], who analyze the optimal

choice of the contest organizer, if the choice set is restricted to (biased) lotteries. Her optimal

choice from the set of (biased) all-pay auctions and the corresponding revenue (more precisely:

a lower bound) is analyzed in this paper. Moreover, a comparison of maximal revenue in the

two regimes is provided. Our main result (Theorem 4.3) states that revenue dominance of an
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appropriately biased all-pay auction over the optimally biased lottery holds for any given set of

heterogeneous contestants. This result is far from trivial, but has a clear intuition: The ability

of the contest organizer to discriminate between contestants in the all-pay auction is used to

make the exclusion principle obsolete. Under the appropriate bias it will always be the two

strongest contestants who choose to be active, and they are made to compete with each other in

the strongest possible way, i.e., in a playing field that is completely leveled due to the bias. No

strong player is excluded a priori by the organizer. As expected, the discriminatory power of

the contest organizer in the lottery contest is used to encourage further entry: In any optimally

biased lottery contest at least the three strongest contestants are active. However, the playing field

among active contestants is not completely leveled in the optimally biased lottery contest because

balancing the playing field negatively affects incentives for strong contestants. Moreover, the

optimal bias is specified such that not all contestants might be induced to become active. This

incompatibility of high entry and high competitive pressure due to a leveled field given entry

in the lottery contest contributes to its inferiority with respect to the appropriately biased all-

pay auction. Our theoretical results therefore provide a new explanation for the often observed

phenomenon that only two strong contestants endogenously decide to participate in contests

although the potential field of contestants is substantially larger (see the introduction of Fullerton

and McAfee (1999), [8], for some real world examples of this phenomenon in research contests).

Our revenue dominance theorem demonstrates that the reason for this observation might not be

the irrational manipulation of the contest design from the side of the contest organizer (or outright

illegal collusion with specific contestants) but instead her motivation to maximize total efforts.

The paper is organized as follows. Section 2 contains the model, Section 3 considers the

biased all-pay auction. In Section 4 we explain the optimally biased lottery contest as derived in

Franke et al. (2011), [7], and compare it to the result from Section 3. Section 5 concludes.

2 The Model

There are n agents N = {1, . . . , n}, that participate either in a contest or in an all-pay auc-

tion which implies that they can influence the probability to win a non-divisible prize by ex-

erting non-refundable effort. They are heterogeneous with respect to their valuation of the

prize; that is, agent i ∈ N values the prize at vi ∈ (0,∞) and chooses a strategy (exerts ef-

fort) xi ∈ [0,∞) to influence the probability Pri(xi, x−i) : [0,∞)n → [0, 1] of winning the prize,

where
∑

i∈N Pri(xi, x−i) = 1 and (x1, . . . , xn) = (xi, x−i) for all i = 1, . . . , n. Hence, the payoff
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function of agent i is:

πi(xi, x−i) = Pri(xi, x−i)vi − xi for all i ∈ N.

The formal rule of a contest, which maps an individual’s effort into his winning probability

as a function of the other contestants’ efforts is called a contest success function (CSF). We are

going to consider deterministic and probabilistic CSFs; we refer to the former as all-pay auctions

and to the latter as lotteries. Technically speaking, lotteries are logit CSFs with linear component

functions.

We will assume without loss of generality that agents are ordered with respect to their valua-

tions: v1 ≥ v2 ≥ . . . ≥ vn. The contest organizer has the power to bias the contest outcome with

respect to specific agents, see Epstein et al. (2011) [5] for a detailed motivation based on the

case of public procurement. This implies that the contest organizer can specify a vector of agent

specific weights α = {α1, . . . , αn} ∈ (0,∞)n that affect the impact of the agents’ effort on the win

probability as specified below. In line with Fang (2002), [6], and Epstein et al. (2011), [5], we

consider two different classes of contest success functions that govern the probability to win the

prize for player i:

• The biased all-pay auction (BAA) framework:

PrBAA
i (xi, x−i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if αixi > α jx j for all j � i,
1

k+1
, if αixi = α jx j for k agents j � i and αixi > αlxl for all other agents l � i,

0, if αixi < α jx j for some j � i.

• The biased lottery contest game (BLC) framework:

PrBLC
i (xi, x−i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αi xi∑n

j=1 α j x j
, if

∑n
j=1 α jx j � 0,

0, if
∑n

j=1 α jx j = 0.

We are going to evaluate the two regimes with respect to the maximal total (expected) revenue

X∗,c that they induce in equilibrium: X∗,c =
∑

j∈N E[x∗,cj ] with c ∈ {BAA, BLC}, where x∗,c is the

(potentially mixed) Nash equilibrium strategy under the respective optimal bias and E[x∗,cj ] is

the corresponding expected equilibrium effort of agent j. Alternatively, we can formulate the

following three stage game, where the objective of the contest organizer is to maximize total

revenue:

1. Stage: The contest organizer chooses the competitive regime BAA or BLC.
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2. Stage: The contest organizer specifies the optimal bias α; i.e., chooses the best CSF.

3. Stage: The agents choose the payoff maximizing strategies.

Note that the previous contributions by Baye et al. (1993), [2], who introduced the exclusion

principle, and Fang (2002), [6], who compared the standard (unbiased) all-pay auction and lottery

contest, can be viewed as restricting the contest organizer’s choice of αi to 0 or 1 for all i =

1, . . . , n. The former means ‘exclusion’, the latter ‘participation’, i.e. ‘becoming a finalist’ in the

language of these authors.

We will derive the subgame-perfect Nash-equilibrium by backward induction; we partially

rely on results from [7] and [5].

The characterization and existence proof of the Nash equilibrium in the third stage given a

fixed bias α is standard: For asymmetric lottery contest games the methods presented in Stein

(2002), [14], as well as Cornes and Hartley (2005), [4], can be used, for the biased all-pay auction

a similar argument as in Baye et al. (1993), [2], can be applied. Hence, we directly concentrate

on the second stage. In the following section we derive a lower bound for total revenue in

the all-pay auction framework under the condition that the bias is specified appropriately. For

the lottery contest we rely on the results in Franke et al. (2011), [7], where a closed form

expression for total revenue under the optimal bias is provided. Note, that the respective bias α∗

for the all-pay auction and the lottery contest framework is not unique (but revenue equivalent

within the specific framework) which has to be expected because all contest success functions

are homogeneous of degree zero in both frameworks.

3 Revenue Maximization in the All-Pay Auction

The scope of discrimination and the corresponding (lower bound) on total revenue in the all-pay

auction is derived as follows. In the next lemma, we are going to show that the biased all-pay

auction is strategically equivalent to a standard all-pay auction with transformed valuations. This

allows us to use the results from this literature, e.g. Baye et al. (1993 and 1996), [2], [1], and

Hillman and Riley (1989), [9]. We derive the maximal revenue and the corresponding bias in

closed form if the resulting equilibrium is unique. However, there are also degenerate cases

where multiple equilibria exist that are not revenue equivalent. As the contest organizer can

induce each possible equilibrium by specifying the appropriate bias, the derived closed form

expression for total revenue in the case with a unique equilibrium must be a lower bound for

total revenue in all other cases which is sufficient for the comparison with the lottery contest
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framework in Section 4.

Before we are going to present the equivalence result in the next lemma we introduce the

following notation. Denote by yi = αixi and ṽi = αivi for all i ∈ N. In line with Baye et al.

(1993), [2], the expected effort from agent i’s (potentially mixed) strategy yi is denoted by E[yi]

and her expected probability to win by Pi = E[PrBAA
i (yi, y−i)].

Lemma 3.1 The BAA framework is equivalent to a standard unbiased all-pay auction based on

transformed valuations ṽ = {ṽ1, . . . , ṽn}, where total (expected) equilibrium revenue is equal to:

X̃AA =

n∑
i=1

1

αi
E[y∗i ] (1)

with y∗ being a solution of the unbiased all-pay auction.

Proof. We consider the following transformation of variables: yi = αixi for all i ∈ N. Then the

contest success function can be formulated as:

PrBAA
i (yi, y−i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if yi > y j for all j � i,
1

k+1
, if yi = y j for k agents j � i and yi > yl for all other agents l � i,

0, if yi < y j for some j � i,

while the payoff function of agent i can be expressed as:

πi(yi, y−i) = PrBAA
i (yi, y−i)vi − yi

αi
for all i ∈ N.

Multiplying the payoff function of agent i ∈ N by the constant factor αi > 0 does not affect the

equilibrium of the transformed game. Let π̃i = αiπi for all i ∈ N. The transformed game is then

equivalent to a standard all-pay auction with payoff-function:

π̃i(yi, y−i) = PrBAA
i (yi, y−i)ṽi − yi for all i ∈ N,

where total revenue is calculated as: X̃AA =
∑n

i=1
1
αi

E[y∗i ] because E[x∗i ] = 1
αi

E[y∗i ] for all i ∈ N.

�

Note, that the bias weights (α1, . . . , αn), which transform original valuations (v1, . . . , vN) with

v1 ≥ . . . ≥ vn into transformed valuations (ṽ1, . . . , ṽn) = (α1v1, . . . , αnvn), need not preserve the

order of the original valuations. Thus, it might be necessary to permute the contestants in order
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to reobtain ordered valuations. As the permutation depends on the respective bias, the contest

organizer can induce each possible ordering of contestants and each possible constellation of

transformed valuations by specifying the appropriate bias. However, we know from Baye et al.

(1993 and 1996), [2], [1], and Hillman and Riley (1989), [9], that a unique equilibrium only

exists for constellations that satisfy ṽ1 ≥ ṽ2 > ṽ3 ≥ . . . ≥ ṽn. For constellations with ṽ2 = ṽ3

there exist multiple equilibria that might not generate the same total equilibrium effort. Luckily,

in our analysis only the special case ṽ1 = ṽ2 > ṽ3 ≥ . . . ≥ ṽn appears, which is known to have

a unique and symmetric Nash equilibrium. We will use this to prove the next theorem, which is

the main result of this section and provides a lower bound for the total equilibrium revenue under

an optimal bias.

Theorem 3.2 Let v1 ≥ v2 ≥ v3 ≥ . . . ≥ vn; then specifying an optimal bias α∗ = (α∗
1
, . . . , α∗n) in

the BAA framework yields a total equilibrium revenue that satisfies

X∗,BAA ≥ v1 + v2

2
. (2)

Proof. To prove this result, it suffices to provide one bias α, which yields a corresponding

equilibrium revenue X̃AA = v1+v2

2
. For this reason we consider the special bias α ∈ (0,∞)n, where

α1 =
1
v1

, α2 =
1
v2

and αi =
1

2v3
for all i > 2. The corresponding transformed valuations are then

ṽ1 = ṽ2 = 1 and ṽi ≤ 1
2
< 1 for all i > 2. Note that this special bias preserves the ordering of the

contestants, i.e. we still have

ṽ1 = ṽ2 > ṽ3 ≥ . . . ≥ ṽn.

It is known that the equivalent unbiased all-pay auction from Lemma 3.1 has a unique and sym-

metric Nash equilibrium y∗, where

E[y∗1] = E[y∗2] = ṽ1

2
= 1

2

and E[y∗i ] = 0 for all i > 2, see for example Theorem 1 in Baye et al. (1996) [1]. This yields an

equilibrium revenue of

X̃AA =
1

α1

E[y∗1] +
1

α2

E[y∗2] =
v1 + v2

2

and thus concludes the proof. �

The special bias α in the previous proof is specified in such a way that the playing field

among the two contestants with highest valuations is completely balanced; i.e. ṽ1 = α1v1 =
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α2v2 = ṽ2, and the remaining contestants are inactive. This levelled contest leads to payoff 0

for both contestants, cf. again Theorem 1 in Baye et al. (1996) [1]. Compare this solution to

the solution of the unbiased case (i.e. α1 = α2 = 1): It is well-known that in equilibrium of the

all-pay auction the (expected) payoff to contestant 1 is v1 − v2 ≥ 0, while the payoff to contestant

2 is 0 ; the contest organizer can expect E[y1] + E[y2] = v2

2
+

v2
2

2v1
(see e.g. Konrad (2009), [11],

p. 26). Hence, the contestants, namely contestant 1, lose the entire rent of (v1 − v2), while the

contest organizer by biasing the contest in the prescribed way generates additional revenue of
v1+v2

2
− ( v2

2
+

v2
2

2v1
) =

(v1+v2)

2v1
(v1 − v2). Since v1+v2

2v1
≤ 1 the loss in contestants’ payoff is larger than the

gain in revenue for the organizer who applies this bias. Moreover, the closer v1 and v2, the more

efficiently can the organizer capture additional revenue: The rate r, at which winner’s payoff in

the unbiased case can be converted into additional revenue to the organizer in the biased case, is

given by r = v1+v2

2v1
; e.g. if v2 =

1
2
v1 then r = 3

4
, whereas if v2 =

3
4

then r = 7
8
; in any case r > 1

2
.

We strongly conjecture that the lower bound given in Theorem 3.2 is tight; i.e., it is also an

upper bound. This is not difficult to show under the assumption that the optimal bias α∗ yields

transformed valuations with the property that ṽ1 ≥ ṽ2 > ṽ3 ≥ . . . ≥ ṽn. In this case the equi-

librium in the standard all-pay auction with these transformed valuations is unique. However,

if transformed valuations would be such that ṽ2 = ṽ3 several equilibria, which need not be rev-

enue equivalent, can arise. It appears, that a demonstration that neither of these equilibria can

yield higher revenue than v1+v2

2
requires explicit use of equilibrium strategies, whereas the ele-

gant method provided in Baye et al. (1993) is applicable to all equilibria independently of the

supporting equilibrium strategies.

4 Lotteries Versus All-Pay Auctions

The optimal bias for the asymmetric lottery contest has been derived in Franke et al. (2011), [7],

under the condition that heterogeneity affects marginal costs to exert effort. However, a simple

transformation leads to the framework as presented here, see [7], p. 6 f. We repeat the result in

its transformed version in the following proposition to maintain a consistent notation.

Proposition 4.1 There exists an optimal bias αBLC in the BLC framework that is not unique.

However, any optimal bias αBLC leads to:

X∗,BLC =
1

4

⎡⎢⎢⎢⎢⎢⎢⎣
∑
j∈K∗

v j − (k∗ − 2)2

∑
j∈K∗ 1

v j

⎤⎥⎥⎥⎥⎥⎥⎦ , where (3)
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K∗ =

⎧⎪⎪⎨⎪⎪⎩i ∈ N
∣∣∣∣ k∗ − 2

vi
<
∑
j∈K∗

1

v j

⎫⎪⎪⎬⎪⎪⎭ . (4)

It is shown in [7] that K∗, the set of active contestants, is well-defined and unique and can

equivalently be written as

K∗ =

⎧⎪⎪⎨⎪⎪⎩i ∈ N
∣∣∣∣ i − 2

vi
<

i∑
j=1

1

v j

⎫⎪⎪⎬⎪⎪⎭ .

Based on Theorem 3.2 and Proposition 4.1 we are now almost in a position to solve the

first stage by comparing the total revenue under the two regimes; that is, comparing the lower

bound of equilibrium revenue in optimally biased all-pay auction in eq. (2) with total revenue

in the optimally biased lottery contest in eq. (3). But before we can state the main result of our

paper, we need one more auxiliary result. In the following lemma, we consider biased lottery

contests, where the agents’ valuations are distributed according to V = {v1, . . . , vn}, and denote

by X∗,BLC(V) the revenue of the lottery contest as defined in eq. (3) and by K(V) the set of active

agents under the optimal bias according to eq. (4). The lemma basically says that maximal

possible revenue X∗,BLC(V) increases with the valuations V = {v1, . . . , vn}.

Lemma 4.2 The function X∗,BLC(V) is continuously differentiable on (0,∞)n and the partial

derivatives are given by

∂X∗,BLC(V)

∂vi
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if i � K∗(V),

1
4

⎡⎢⎢⎢⎢⎢⎣1 − (k(V)−2)2

(∑
j∈K(V)

1
v j

)2 1

v2
i

⎤⎥⎥⎥⎥⎥⎦ , if i ∈ K∗(V).

In particular, for all i ∈ N it holds that ∂X
∗,BLC(V)

∂vi
≥ 0, i.e. X∗,BLC(V) is monotonically increasing

in vi.

Proof. Recall that X∗,BLC(V) gives the maximal total effort of all active contestants in equilibrium

after the contest organizer has chosen the optimal bias α∗ given valuations V = (v1, . . . , vn).

Hence, α∗ = α∗(V); in the same vein, K∗ = K∗(V) denotes the set of active contestants in

the optimally biased contest given V = (v1, . . . , vn). Denote by k∗(V) the cardinality of K∗(V),

k∗(V) = |K∗(V)|.
We now define the index set

L∗(V) =

⎧⎪⎪⎨⎪⎪⎩i ∈ N
∣∣∣∣ k∗(V) − 2

vi
=
∑

j∈K∗(V)

1

v j

⎫⎪⎪⎬⎪⎪⎭
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and set l∗(V) = |L∗(V)|. L∗(V) contains those indices - if any - which belong to contestants

who are indifferent between becoming active (with a bid of 0) and staying inactive (recall the

definition of K∗(V) from eq. (4)).

So let V = (v1, . . . , vn) be given and consider any ε-neighborhood of V , Uε(V), for ε > 0

sufficiently small. It is then true that for any V ′ ∈ Uε(V)

K∗(V) ⊆ K∗(V ′) ⊆ K∗(V) ∪ L∗(V)

holds; i.e. for all valuations V ′ sufficiently close to V the set of active contestants in the optimally

biased lottery contest for V ′ consists of all contestants active in the optimally biased lottery

contest for V plus - possibly - contestants from L∗(V), who have become active in V ′. Intuitively,

since the participation condition in eq. (4) for a contestant i is given by an inequality, an active

contestant in V , who satisfies the inequality, must stay active for sufficiently small changes in V

as those cannot lead to a violation of the inequality. For the same reason, inactive contestants,

who even violate the condition in L∗(V), must stay inactive for sufficiently small changes in V.

Formally, this is proven in [7], Theorem 3.2.

So let M ⊆ L∗(V) and m = |M|. An alternative representation of X∗,BLC(V) then reads:

X∗,BLC(V) =
1

4

⎡⎢⎢⎢⎢⎢⎢⎣
∑

j∈K∗(V)

v j − (k∗(V) − 2)2

∑
j∈K∗(V)

1
v j

⎤⎥⎥⎥⎥⎥⎥⎦

=
1

4

⎡⎢⎢⎢⎢⎢⎢⎣
∑

j∈K∗(V)

v j +
m(k∗(V) − 2)∑

j∈K∗(V)
1
v j

− (k∗(V) + m − 2)(k∗(V) − 2)∑
j∈K∗(V)

1
v j

⎤⎥⎥⎥⎥⎥⎥⎦

=
1

4

⎡⎢⎢⎢⎢⎢⎢⎣
∑

j∈K∗(V)

v j +
∑
j∈M

vj − (k∗(V) + m − 2)2

∑
j∈K∗(V)

1
v j
+ m

k∗(V)−2

∑
j∈K∗(V)

1
v j

⎤⎥⎥⎥⎥⎥⎥⎦

=
1

4

⎡⎢⎢⎢⎢⎢⎢⎣
∑

j∈K∗(V)∪M

vj − (k∗(V) + m − 2)2

∑
j∈K∗(V)∪M

1
v j

⎤⎥⎥⎥⎥⎥⎥⎦ .

The second equality results from a trivial split of the last term, the third and fourth equalities

result from using the definition of L∗(V) (and hence M).

From the last expression of X∗,BLC(V) we immediately see that X∗,BLC(V) must be continuous

at V: Any sequence V j → V can be decomposed into - at most 2l∗(V) - subsequences, such that

each of these subsequences satisfies K(V j) = K∗(V) ∪ M for all elements V j of this subsequence

with a fixed subset M ⊆ L∗(V). Consequently X∗,BLC(V j) converges to X∗,BLC(V).
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In order to show continuous differentiability of X∗,BLC(V) it suffices to show partial differ-

entiability with respect to all vi, i = 1, . . . , n, and continuity of all the partial derivatives. For

all i � K∗(V) ∪ L∗(V) we obviously have ∂
∂vi

X∗,BLC(V) = 0 since X∗,BLC(V) does not depend

on vi in a whole neighborhood. So let i ∈ K∗(V) ∪ L∗(V) and consider an arbitrary sequence

v j
i → vi. If we define V j = (v1, . . . , vi−1, v

j
i , vi+1, . . . , vn), then obviously V j → V . Again, consider

any subsequence of V j such that K(V j) = K∗(V) ∪ M for a fixed M ⊆ L∗(V) and consequently∣∣∣K(V j)
∣∣∣ = k∗(V) + m for all j in this subsequence. We then have on this subsequence:

lim
j→∞

X∗,BLC(V) − X∗,BLC(V j)

vi − v j
i

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, for i ∈ L∗(V) \ M,

1
4

⎡⎢⎢⎢⎢⎢⎣1 − (k∗(V)+m−2)2

(∑
l∈K∗(V)∪M

1
vl

)2 1

v2
i

⎤⎥⎥⎥⎥⎥⎦ , for i ∈ K∗(V) ∪ M

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, for i ∈ L∗(V) \ M,

1
4

⎡⎢⎢⎢⎢⎢⎣1 − (k∗(V)−2)2

(∑
l∈K∗(V)

1
vl

)2 1

v2
i

⎤⎥⎥⎥⎥⎥⎦ , for i ∈ K∗(V) ∪ M

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 for i ∈ L∗(V) = M ∪ L∗(V) \ M

1
4

⎡⎢⎢⎢⎢⎢⎣1 − (k∗(V)−2)2

(∑
l∈K∗(V)

1
vl

)2 1

v2
i

⎤⎥⎥⎥⎥⎥⎦ for i ∈ K∗(V)

Here we have again made use of the definition of L∗(V), which contains M.

Obviously, the above limit exists and is independent of the sequence V j, or the respective

subsequences. Hence, X∗,BLC(V) is partially differentiable with respect to all vi, i = 1, . . . , n.

Continuity of the partial derivatives ∂
∂vi

X∗,BLC(V) derived above can now be shown in the same

way as we have shown continuity of X∗,BLC(V). The nonnegativity of the partial derivatives is

again a direct consequence of the definition of the set K∗(V). �

Now we can finally state the main result of this section. We shall prove that for any V =

(v1, . . . , vn) the optimal BLC regime yields less total effort than v1+v2

2
, which was shown to be

always achievable through an appropriately biased all-pay auction in Theorem 3.2.

Theorem 4.3 The optimal BAA regime induces higher total effort in equilibrium than the opti-

mal BLC regime.

Proof. We prove the theorem by first considering a special case, where the theorem can be

verified by a simple calculation, and then reducing all other cases to the first one.

First we consider the case where all agents – possibly except the first one – have the same

valuation, that is v1 ≥ v2 = v3 = . . . = vn. If we determine the set K∗ of active agents in regime
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BLC based on eq. (4), the condition simplifies to k∗−2
v2
< 1

v1
+ k∗−1

v2
. This inequality holds if

0 < 1
v1
+ 1

v2
, which is satisfied independently of i. Hence, in this case all agents will be active

in the regime BLC and, applying Theorem 3.2, the crucial inequality X∗,BAA > X∗,BLC is thus

satisfied if
v1 + v2

2
>

1

4

⎡⎢⎢⎢⎢⎢⎣v1 + (n − 1)v2 − (n − 2)2

1
v1
+ n−1

v2

⎤⎥⎥⎥⎥⎥⎦ .

After some algebra this inequality can be simplified to:

(n − 1)v2
1 + 2v1v2 > (n − 3)v2

2

The first expression on the left hand side is larger than the expression on the right hand side

which implies that the inequality holds.

Now consider arbitrary valuations v1 ≥ v2 ≥ v3 ≥ . . . ≥ vn and denote the corresponding

optimal revenues by X∗,BAA and X∗,BLC. To prove the assertion in this case, we construct auxiliary

distributions of valuations by first substituting v3 with v′
3
= v2 and then compare the resulting

revenue X∗,BLC
V3

with X∗,BLC. Then we continue this procedure with j = 4, . . . , n.

1. Consider the auxiliary distribution V3 with v1 ≥ v2 = v′
3
≥ v4 ≥ . . . ≥ vn. By Lemma 4.2

we know that X∗,BLC
V3

≥ X∗,BLC as revenue can only increase.

2. Consider the auxiliary distribution V4 with v1 ≥ v2 = v′
3
= v′

4
≥ v5 ≥ . . . ≥ vn. By Lemma

4.2 and step 1 we know that X∗,BLC
V4

≥ X∗,BLC
V3

≥ X∗,BLC.

(n-2). Consider the last step; i.e., the distribution Vn, where v1 ≥ v2 = v′
3
= . . . = v′n. By Lemma

4.2 and the previous steps we know that X∗,BLC
Vn

≥ X∗,BLC
Vn−1

≥ . . . ≥ X∗,BLC
V3

≥ X∗,BLC. Note

that Vn coincides with a distribution considered at the beginning of the proof. Hence, our

previous considerations and Theorem 3.2 can be applied to derive the following chain of

inequalities:

X∗,BAA ≥ v1 + v2

2
> X∗,BLC

Vn
≥ X∗,BLC,

which completes the proof of this theorem.

�
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5 Concluding Remarks

We have shown that in the presence of heterogeneous contestants an appropriately biased all-

pay auction always revenue-dominates the optimally biased lottery contest. This is in contrast

to the comparison of the unbiased versions of these contest models, if there are more than two

contestants. The (unbiased) all-pay auction might yield less revenue (total effort), if in particular

the exclusion principle applies; i.e., heterogeneity is such that it is revenue-enhancing to exclude

the strongest player from participation. The two active but weaker contestants then may expend

less effort than all the active players in the lottery contest. In contrast, we show that if the contest

organizer has the ability to bias the contest, the exclusion principle of the all-pay auction becomes

obsolete. No player is excluded. The contest organizer can always bias the all-pay auction in

such a way that the two strongest players will be active and, moreover, compete on equal terms

(the strongest player is therefore not excluded but sufficiently weakened in her effectiveness).

All other players choose to be inactive. In short, the two strongest contestants are exposed on

equal terms to the extreme discriminative all-pay auction. Reducing the discriminativeness of

the contest by using a lottery CSF will attract more entry into the contest; i.e., more contestants

(at least three) will be active in equilibrium. But having more active contestants in the less

discriminative contest does not pay off for the contest organizer: The increase in competitiveness

due to a higher number of competitors cannot offset the loss of competitiveness due to a ’softer’

contest. Economic policy instruments aimed at facilitating entry do not work for contests, if

revenue maximization is the goal of the contest organizer because participation effects are not

strong enough to outweigh incentive effects.
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