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A laboratory analysis of investment

opportunities under ambiguity

Paul Viefers®

July 26, 2012

Abstract

This paper investigates the impact of uncertainty on an irreversible investment
decisions in the laboratory. Subjects own the option to seize a claim on the future
sum of realizations from an (ambiguous) random walk. I contrast model predicitions
of the Subjective Expected Utility model (SEU, Savage, 1954) with model predictions
made by Multiple-prior Expected Utility models (MEU, Gilboa & Schmeidler, 1989;
Epstein & Schneider, 2003b). Observed investment behavior is at odds with the
SEU prediction and deviates in a direction predicted by MEU models. On average,
subjects in a treatment group, facing an ambiguous random walk, exhibit an ambiguity
premium that presents a mark-up on average reservation profits in a control group.
Hence, subjects shun to expose themselves to an ambiguous payoff process and invest

later than participants facing a risky payoff process.

JEL-Classification: D08, D83
Keywords: Ambiguity Aversion, Multiple Priors, Optimal Stopping, Irreversible Invest-

ment.
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1 Introduction

Timing matters.

Many everyday decisions are sequential timing or Optimal Stopping decisions. For
example, whether to take a job offer or decline it in favor of future offers or whether
to invest your savings into financial markets now or later. On a corporate level, firms
may want to engage R&D of a new technology not before market situations are 'ripe’, or
firms plan to time stock markets to maximize the proceeds from an IPO. In general in
an Optimal Stopping problem, a decison maker faces a sequence of payoffs (7, m,...),
drawn from some distribution. After each realization of the payoff process, the decision
maker has to decide whether to continue sampling or to stop sampling and exercise his
option. The payoff f,(-) from stopping may either be a function of past realizations of the
process {m };_, or future realizations {m,},__ where T may be infinite. Both such timing
problems are Optimal Stopping problems, where in the latter case one often speaks of an
Irreversible Investment problem. Due to the fact that they relate to a great number of
economic decision problems, Optimal Stopping problems are of considerable interest from
both a normative and descriptive viewpoint. This paper takes the descriptive viewpoint
and contrasts observed behavior with normative benchmarks.

The theoretical literature on Optimal Stopping in Economics (McDonald & Siegel,
1986; Chow, Robbins & Siegmund, 1971; Dixit & Pindyck, 1994, are classical references)
employs tools from stochastic control theory (Snell, 1952) to find the optimal strategy for
a decision maker. It turns out that for many classical problems, the optimal strategy is
easily determined by the Principle of Optimality: weigh the value from stopping today
against the value of continuing until tomorrow, given you behave optimally tomorrow.

What is common to all classical approaches to optimal stopping, is the assumption that
there is only one distribution for the payoff process and this distribution is perfectly known
to the decision maker. Going from the level of a stock-listed multinational corporation
to the level of the individual, the latter part of this assumptions seems more and more
problematic.? Tt is well-known since Ellsberg (1961), that in a static choice between
ambiguous and risky lotteries, the distinction between risk and uncertainty (in the sense of
Knight, 1921) is behaviorally important. This finding was replicated in many subsequent
studies (e.g. Halevy, 2007). Based on a thought-provoking paper by Al-Najjar & Weinstein
(2009), however, reasonable doubt has been cast on the normative viability of ambiguity
models. In this context, Dominiak, Diirsch & Lefort (2009), for example, find experimental

evidence for a key point raised by Al-Najjar & Weinstein. They show that in a dynamic

n the spirit of Epstein & Schneider (2003a, 2007), Knightian uncertainty may stem from complexity.
The fincial crisis has highlighted that even companies such as GoldmanSachs find it diffcult to fully
resolve any uncertainty surrounding certain complex securities. Arora, Barak, Brunnermeier & Ge
(2011) provide a rigorous argument that illustrates how limited computational power (a tiny deviation
from full rationality) leads to model uncertainty that cannot be resolved.



Ellsberg experiment, the majority of subjects are not time-consistent. A crucial assumption
underlying most dynamic ambiguity models.

Against this backdrop, it seems expedient to analyze the predictive accuracy of
ambiguity models in various settings. This paper puts the focus on irreversible investment
decisions. Such decisions involve the option to seize an investment opportunity with
time-varying returns at certain cost.

The results from this experiment indicate that there exists an effect of ambiguity
in an Optimal Stopping problem. Subjects in a treatment group, facing an ambiguous
payoff process, invest, on average, later than subjects facing a risky payoff process. Given
the experimental design, the SEU model predicts exactly the opposite: subjects facing
ambiguity should in principle stop no later than subjects facing risk. Intuitively speaking,
the results indicate that subjects shun to expose themselves to an ambiguous payoff process
and therefore ask for a relatively higher reservation profit to invest in it. This is in line
with the predictions made by the MEU model.

The results obtained here confirm results obtained earlier by Asano, Okudaira &
Sasaki (2011) and Della Seta, Gryglewicz & Kort (2012). As noted by Miao & Wang (2011),
however, it is important to distinguish two fundamentally different decision problems.
Those where upon stopping payoffs are expost certain, versus those where upon investment
payoffs are ex post uncertain. While the job search problem falls into the former category,
the Irreversible Investment problem falls into the latter. Even though related experimental
studies acknowledge this fact (e.g. Della Seta et al., 2012), none carries this distinction
into the underlying experimental design. Arguably most investment decisions valid for the
individual private investor, seem to be such that payoffs are ex post uncertain. This is not
merely a semantic issue. In fact, model predictions about the direction of an ambiguity
effect easily reverse. To the author’s best knowledge, this paper is the first to explicitly
design an irreversible investment experiment in a way that payoffs are not ex post certain.

The paper is organized as follows. Section 2 briefly reviews the related literature.
Section 3 motivates the underlying theoretical model by a simple example. Section 4
provides the general model setup and provides the central proposition to be tested. Section
5 describes the experimental setup and implementation in the laboratory. In section 6
I conduct a statistical analysis of the data obtained in the laboratory. Section 7 finally

concludes.

2 Related literature

Based on the Ellsberg paradox, a great number of models have been developed to rationalize
these static choices made by individuals under ambiguity (see inter alia Camerer & Weber,
1992; Mukerji & Tallon, 2004; Gilboa, Postlewaite & Schmeidler, 2008; Etner, Jeleva &



Tallon, 2009; Guidolin & Rinaldi, 2010; Epstein & Schneider, 2010, for extensive reviews).
A notable feature of this theoretical literature is that there are many competing models
of ambiguity, some of which are mutually exclusive and vastly different in certain model
predictions. However, not only have the static Ellsberg choices been rationalized by
ambiguity models of choice, but many such models were subsequently taken to a dynamic
setting (see e.g. Epstein & Schneider, 2010, for a review). There is less evidence on how
and whether ambiguity aversion carries over to dynamic contexts.

Theoretical foundations for optimal stopping theory under ambiguous payoff processes
are mainly due to Epstein & Schneider (2003b); Nishimura & Ozaki (2007); Riedel (2009,
2010).%2 These authors take the Multiple-prior Expected Utility (MEU) model of Gilboa &
Schmeidler (1989) as the basic building block and suitably adapt it to a dynamic context.
Despite the widespread application of optimal stopping models in economic theory, there
are relatively few papers that analyze their descriptive accuracy under risk or ambiguity.
One reason might be that every empirical analysis with field data will be inevitably marred
by many potential confounds. Experiments provide a way to safely control for such.

The largest body of literature on optimal stopping tasks in the laboratory comes
form the field of sequential search. For example, Amnon Rapoport and co-authors in a
series of papers, investigated the individual performance of subjects in an optimal stopping
task under risk experimentally (Rapoport & Tversky, 1966; Kahan, Rapoport & Jones,
1967; Rapoport & Tversky, 1970; Seale & Rapoport, 1997). Similarly, there is a branch
of experimental literature putting a focus on testing job search models in the laboratory,
e.g. Schotter & Braunstein (1981); Cox & Oaxaca (1989, 2000). More recently, Oprea,
Friedman & Anderson (2009) adapt an experimental design replicating the theoretical
environment motivated by Dixit & Pindyck (1994). In their paper, subjects face a risky
random walk and have the option to earn its current value or forego it in favor of future
values. They find that subjects approximate the optimal strategy suprisingly well, but
that they tend to stop prematurely.

A first paper making a step towards checking the effect of uncertainty on decisions in
the laboratory is given by Cox & Oaxaca (2000). In their experiment, however, participants
are endowed with an objective prior over states of the world. Asano et al. (2011) investigate
the descriptive power of the job search model by Nishimura & Ozaki (2004) when subjects
have no prior information about the distribution of states of the world. Asano et al. (2011)
find that observed choices support Nishimura & Ozaki’s model in the sense that subjects
are willing to accept lower wage offers under ambiguity than under risk. Similarly, Della
Seta et al. (2012) analyze the a related situation where subjects do not face a random, but

deterministic payoff process and have the option to earn its current value. This option

2Earlier foundations are to be found in the mathematical literature on coherent risk measures (see e.g.
Artzner, Delbaen, Eber & Heath, 1999; Riedel, 2004; Follmer & Schied, 2004) or robust control theory
in macroeconomics (Hansen & Sargent, 2001).



may cease before execution, however, leaving subjects with zero payoff. The probability
that the investment opportunity expires is ambiguous in their setting. They find that
subjects react to ambiguity by exercising the option earlier relative to a control group, as

predicted by their model.

3 Motivation through a simple example

In this section, I illustrate the behavioral intuition behind the impact of uncertainty and
uncertainty aversion on the decision to invest. Toward that end, I shall take the simple
two-period two-state example from Nishimura & Ozaki (2007).

To make exposition viable, I will make a few simplifying assumptions. First, assume
a risk-neutral decision maker, facing an irrevesible investment opportunity. Second, let the
one-period discount rate o be equal zero. Third, let there be only two periods ¢t = 0, 1 where
any uncertainty has already been resolved in period 0. The decision maker contemplates
whether to invest in period ¢ = 0 in period ¢ = 1 or not at all. In order to seize the
investment opportunity, investment costs I have to be incurred. The immediate period-0
profit from investing is my < I, which is known. The period-1 payoff from the investment
is either 7y, or my, where my > [ > my. State H occurs with probability pg.

Since the planning horizon is finite, we may derive the optimal strategy via backward
induction. In period t = 1, if state H occurs, the decision maker will choose to invest
(mg — I > 0). On the contrary, if state L occurs, the decision maker chooses not to invest
(r, — I < 0). The optimal strategy in period ¢ = 1 is therefore: invest if the state is H,
do not invest otherwise. In period ¢ = 0, the decision maker weighs the expected payoft
from investing in ¢ = 0 against the expected profit from investing in ¢ = 1. She postpones

investment, iff

pua(mg —1I) —[mo — I + (pume + (1 — pu)7rr)] > 0 (3.1)
= (7?0—])+7TL—|—pH(I—7TL)<O. (32)

The first term in the first line is the continuation value of the option to invest. The second
term is the stopping value from the option to invest. By collecting terms, the inequality in
the second line illustrates that the lower the probability for the good state H, the more
likely a decision maker is to postpone investment. Note that this effect is not completely
obvious a priori, since a reduction in pg affects both, the stopping and the continuation
value, in the same direction.

In a more realistic setting, it seems natural to assume that py is not perfectly known
to the decision maker. Suppose the decision maker has two possible candidates (theories)

in mind py € {.3,.7} and no (or very little) objective indication which theory prevails.



Then if she adopts theory 1, investment in ¢t = 0 is less likely than with theory 2. Pessimists
invest later.

One could tell a similar story in terms of uncertainty aversion, however. Note that
investment (or stopping) exposes the decision to uncertainty via the payoff process. Before,
the decision maker is insulated against the source of uncertainty, namely the uncertainty
surrounding the payoff process 7;. An uncertainty averse decision maker, who has the
option not to face an uncertain payoff, shuns exposing herself to this uncertainty, relative
to a person who is ambiguity neutral/seeking. Gilboa & Schmeidler (1989) provide an
axiomatic foundation for such behavior in static choices, Epstein & Schneider (2003b)
derive a recursive utility representation for a dynamic setting (recursive MEU). The
recursive MEU representation stipulates that MEU decision maker have multiple prior
beliefs about the probability law driving {7}, all of which they regard as equally plausible.
They then behave according to the most pessimistic belief about the probability law driving
{m:} they have in mind.?

From an experimental point of view, it is important to design the experiment in a
way that it provides a clear separation between the two behavioral interpretations. More
formally, it is the objective to identify a subject that has multiple prior beliefs from a
subject that has a unique, but pessimistic prior belief. Without any further identification
scheme, the two explanations are behaviorally equivalent.

In order to discriminate between plain pessimism and multiple priors, I use part of
the experimental design applied by Ellsberg (1961). Toward that end, assume a slight
variation of the above setting. There are two possible states of the world S = {R, B} for
which the decision maker has no objective prior at hand, i.e. the probability for either
state is unknown (or at least very vague) a priori. The evolution of {m} is then assumed
to depend on the true state s € S in the following way. If the state is s = R (s = B), then
7 increases from 7y to my whenever a red (black) ball is drawn from an urn with 70 (30)
red balls and 30 (70) black balls. Before the investment decision is to be made, let the
decision maker bet on either R or B. Hence, there are two acts the decision maker may
choose, r or b. Under Savage’s axioms of choice, a SEU decision maker’s preferences >~
are based on beliefs, i.e. there exists a binary ordering =, such that r >, b whenever r is
believed to be a priori more likely than b. According to axiom P4 in Savage (1954), the
decision maker prefers to bet on r rather than b, iff r >, b (see also Epstein & Le Breton,
1993). This can be understood as bounding her prior beliefs above 0.5. Moreover, as was
demonstrated by Weller (1978), a dynamically consistent SEU decision maker must be
Bayesian. Under Bayesian updating, however, beliefs may not cross in the sense that if

prior beliefs ,LL[()i) > ,uéj ), this relation is preserved for the posteriors ,ugi) > ugj ). In the

3What exactly is the worst-case belief may not be completely clear ez ante and depend on the history of
{X:}. In the simple framework used here, it is easy to identify the worst case measure ex ante using
monotonicity and first-order stochastic dominance (see Riedel, 2009, section 4.2).



context of the simple investment decision above, if the decision maker was equipped with
an objective prior on S that puts equal weight on both states, we would expect her to be
at most as likely to invest as in the situation involving uncertainty and subjective priors .
I demonstrate in the appendix, that this conjecture is true and that the effect prevails in
a more general setting.

Under this scenario, it is then straightforward to think about an experimental design
that involves a treatment group (subject to ambiguity) and a control group (subject to
risk). In the first stage of the experiment, subjects are prompted to bet on the state of the
world. In the second stage, they observe the realization of the profit process contingent
on their choice in the first stage. Behavior can then be contrasted across groups and

individuals.

4 The underlying model

This section presents the derivations of model predictions under SEU. Unlike other
experimental studies on optimal stopping tasks, I derive the model predictions explicitly
in discrete time. This seems to be expedient, since time is necessarily discrete in the
laboratory. Moreover, I will relax assumptions made in the simple example and allow in
particular for (i) infinitely many periods, (ii) risk-aversion and of course (iii) non-zero
discount rates. Having derived the optimal strategy, i.e. the optimal stopping time for an
SEU agent, it will become clear how to arrive at a testable hypotheses about a deviation

from SEU. The notation readily generalized from that of the previous section.

4.1 The optimization problem of an SEU agent

Assume time is discrete, t = 0, ..., and let the payoff process {m},-, be a binomial random

walk, i.e.

hmi_y with p(lj)

T = (41)
h='m_, with 1 — pg)
where s € {R, B} denotes the state of the world. Moreover, assume that pgf) =1- pgf).

Note that because upticks and downticks are fully reabsorbing, the state of the process
in any period ¢ is sufficiently described by the tuple (7, x;), where x; is the number of

upticks minus downticks up until period t.



The agent’s objective is to maximize the value function

V(z) = max E,

s=t

> 58—tu(wthws)] (4.2)

with respect to time ¢. The Bellman equation for this problem is given as (see e.g. Dixit &

Pindyck, 1994, chapter 4 for an accessible derivation)
V(zy) = max {Q(z¢) — [,0E [V (z¢s1) | ]} - (4.3)

where

Qzy) =E

> 5 u(mh™) | xt] (4.4)

s=t

E[V(2i1) | 2] = pegreV (e + 1) + (1 = pegye) V(g — 1) . (4.5)

and the p,;1; are the posterior one-period ahead beliefs that the process increases by one

step give some prior belief about the state of the world.

Proap(Te = a2+ 1| ) = play | po)pls) + (1 — (e | po))(1 — piY) (4.6)
A Ho P%) -

=— - A= 4.7

M(«Tt|/~LO> 1+A° 1 — o (1—p%) ( )

where ¢ is the state of world that the agent chose to bet on (let = be the opposite state)
and (4.7) stipulates that the agent learns according to Bayes’ rule. For later use, it is
instructive to note at this point that the speed of learning depends on the difference
between the probability of an uptick across states. To provide a formal argument, let €
denote the deviation of py from 0.5. Then note that in (4.7)

ou 0A 1

>0;

9V 9 X ool (4.8)

because € € [0,0.5). If € = 0.5, then the benefit from learning is infinite, because a single
observation is fully revealing.

Note that, if I know the function V'(-), then I could evaluate the RHS of (4.3) for
every x; and determine the optimal strategy for each x; (i.e. stop if the first element in the
max operator is at least as large as the second element; otherwise continue). This is only
true under risk-neutrality, however. Under risk-aversion, one needs to impose some form
of the instantaneous utility function w(-). I will assume a CRRA form for u(-) throughout
the paper. With this, I am able to exploit the Contraction Mapping Theorem (Stokey,
Lucas & Prescott, 1989) to solve the problem recursively.



As I demonstrate in the appendix, the following proposition holds for the optimal

strategy

Proposition 4.1 (SEU). The optimal strategy of an agent with CRRA utility, objective
Junction (4.2) and beliefs according to (4.7) is

(i) to invest as soon as the process m; exceeds a threshold ©* (cut-off strategy),

i) a monotone function of her prior beliefs g, i.e. 2~ < 0.
( ) p H Opo

The first part of the proposition is not too suprising, since the entire system may
be summarized by the single state variable ;. The second part is less obvious in the
general setting. Note once more, that a reduction in po reduces py4q); for all z;, which has
a negative effect on the continuation and the stopping value in (4.3). The net effect is
then not immediately obvious. Hence, part (ii) confirms the conjecture that the intuition
from the simple example in the previous section carries over to the general framework.

Overall this shows that under SEU and everything else equal, initially more optimistic

agents invest earlier than intially more pessimistic agents.

4.2 The optimization problem of an MEU agent

Assume that MEU agents face the same payoff process {m},~,, which is again a random
walk as in (4.1). Conceptually, there is little difference in the derivations for the MEU
agent versus the SEU agent. First, the MEU agent possesses a set of prior beliefs M
on s. Following Epstein & Schneider (2003b, 2007), this set of prior beliefs is updated
prior-by-prior

Peae = {uee | mo)pf? + (1= plae | )L =p): o € Mo} . (49)

Second, the decision maker evaluates prospects in her objective function wrt to all measures
in P41 and then takes the measure that yields minimal expected utility. How this worst-
case measure looks is easily determined in the given case. Note that the payoff function
u(m;) is a monotone function of the state variable z;. Then because of this monotonicity,

it should also be intuitively clear that the worst-case measure is given by

P = { e io)py + (1= plee | 10) (1= p): o = inf Mo } (4.10)

which is a singleton set. Formally, we may argue in terms of first-order stochastic dominance
to establish that this is indeed the worst-case measure. The worst-case measure is such
that it assigns minimal probability to an uptick in the next period, given any history of

the events x;.



The assumptions underlying the learning process warrant some elaboration. As
highlighted by Al-Najjar & Weinstein (2009), learning and updating of beliefs is a subtle
issue in ambiguity models. In a general dynamic choice problem, MEU maximizer might
suffer from preference reversals upon learning, i.e. they make time-inconsistent choices.
More formally, if the MEU agent has an a priori preference relation > on a set of feasible
acts and f > g, his conditional preferences > maybe such that g = f. Upon revelation
of event E, the decision maker deviates from his initial plan. Epstein & Schneider (2003b)
demonstrate, however, that if prior beliefs have a certain recursive structure (referred to
as rectangularity or stability under pasting), such reversals may not occur. While this is
restrictive in general, the information structure (the structure of the tree of events) in the
investment experiment is such that all priors over the state space S are rectangular (see
Riedel, 2009, appendix D for illustrative example).

The objective function of the MEU agent is then given as

V(z;) = max min E,
t  peEP

i 55tu(7rohzs)] (4.11)

s=t

= m?X EE

s=t

Zéstu(wohms)] . (4.12)
The MEU Bellman equation is then given as
V(zy) = max{Q(z;) — [,0E [V (z41) | ]} - (4.13)

with all expressions defined as before, but all expectations taken wrt P Consequently,
the optimal strategy may be determined just as for the SEU agent, with respect to a

particular measure.

4.3 Central hypothesis

As mentioned at the beginning, it is necessary to distinguish between plain pessimism
induced by uncertainty and uncertainty aversion in form of multiple priors. Hence, let the
experiment have two stages. During the first stage, before observing {m}, the decision
maker has to decide to bet on one state of the world s € {R, B}. If she guesses the true
state correctly, {m;} will have a high uptick probability, if not it will have a low uptick
probability. The idea behind this was illustrated earlier. An SEU agent in the treatment
group has no objective prior about the likelihood that either state occurs. Given the absence
of an objective prior, agents are supposed to form a subjective prior on S. The first-stage
choice should then be dictated by their subjective prior beliefs. If uy = Pr(s = R) > 0.5

choose R, otherwise choose B. Hence, this choice can be thought as imposing a lower



bound on subjective beliefs. A corollary that can be derived from proposition 4.1 (ii), is

that the bound on beliefs translates into a bound on reservation profits 7*.4

Corollary 4.1 (Comparative statics). Given everything else equal, if pi > ué, then
0 < 79 for agents 1,7 (i # j).

This corollary gives the central hypothesis tested below. Given that we would expect
subjective priors for the chosen state in the treatment group to be at least as large, we
expect them to invest no later than subjects in the control group. The word ’later’ here
is understood in terms of the reservation profit 7*. This is illustrated in figure 1. Here,
the optimal strategy for various priors of an agent with relative risk-aversion coefficient
0 = 0.5 is depicted.?

In this context, I want to highlight two points. First, it is important that subjects were
told that the mechanism according to which the state of the world is selected before each
round is stationary. If subjects do not know anything about how the state is determined,
any behavior can be rationalized by SEU. This is because without any knowledge about
the mechanism, the decision maker is not constrained to believe that the pattern is iid
random. Then any (weird) belief is feasible, supporting virtually any action. Second,
the probability for a state was linked to a real-world phenomenon, which subjects might
perceive as something that could, in principle, be determined (with some precision). This
is in contrast to the original Ellsberg experiment (and variants thereof), where there is
truly no way subjects could know or find out about the probability for any composition of

the ambiguous urn.

5 Implementation

This section outlines how I implemented the experimental setup in the laboratory. The
experiment was conducted as a computer-based experiment. The experimental software
was programmed using JScript and Python. Subjects saw two different screens in each of
the 45 rounds that they played. Subjects were told that they have the option, but not the
obligation, to invest in a factory, which, upon investment, produces one unit of a fictitious
product every period until the end of the round.

In the laboratory, the experiment was implemented by a series of two alternating
screens. The first screen prompted subjects to set a color for the coming round. The
screen showed a simple radio button for each color R and B and subjects had to click a

button below to confirm their choice (see fig. 4). Subjects were told that the behavior

4This is a direct consequence of the fact that beliefs that develop according to Bayes’ rule, cannot cross
for a finite set of observations. Thus, initially more optimistic agents remain more optimistic in finite
time.

5Setting # = 0.5 was motivated by findings due to Holt & Laury (2005).

10



of the profits {m;} depends on whether they meet consumers’ taste for the color of the
product. There were two colors available, red (R) and black (B). It was then mentioned
that prior to each round, they would have to set up their machines such that they produce
red or black products, but not both, for the entire round. If the color they chose matched
consumers’ taste, the per-period profits had a 0.57 chance experiencing an uptick. If the
chosen color did not match consumers taste, the probability for an uptick was 1 - 0.57
= 0.43. The choice for the state-wise probability for an uptick versus a downtick was
largely dictated in order to meet a sweet spot between the amount of uncertainty and
informativeness of the realizations. First, the greater the difference between pg—) and py L),
the greater the difference between the respective drifts of the per-period profit processes
For a negligible difference, the impact of uncertainty is supposed to be negligible as well.
Hence, from an experimental point of view, a larger difference seems desirable in order to
identify an effect. Second, for any value of py that differs appreciably from 0.5 (by more
than 0.05), the drift dominates the process visually. The true state of the world is then
easily discovered after only a few observations. Note that learning decreases the amount
of ambiguity over time and in the limit ambiguity disappears (Marinacci, 2002, provides a
formal argument). Hence, only a small difference is pertinent to maintain ambiguity for a
minimum amount of time.

The second screen presented the actual investment screen. Subjects there saw the
realization of a binomial random walk with parameters mentioned above. The realizations
of the payoff process {m;} (measured in ECU) they observed were the (potential) per-period
profits from selling the product. This process was always started at the value of 40 ECU
(mo = 40) and the factory investment cost was fixed at 3,200 ECU. Each second consisted
of two ticks (see fig. b).

In the control group, subjects were informed that the probability for each color to
be the correct one was 0.5.% In the treatment group, instructions were the same as in
the control group, apart from the information concerning the prior probability for either
state of the world. Subjects in the treatment group, were told that the probability for
red to be consumers’ taste was equal to the average relative amount of rainy days per
year in Jakarta (Capital of the Republic of Indonesia) between 1971 and 2000. Unlike in
related experimental papers (Oprea et al., 2009; Della Seta et al., 2012) subjects were not

SNote that this is the most conservative choice in terms of risk aversion. It is easy to demonstrate that
risk aversion has the same effect as pessimism, i.e. higher risk aversion increases 7*. For a given
stepsize h, the posterior variance is only a function of the binomial variance of the increments of {m;}

o’ OCpt+1\t(1 _pt+1|t) (5.1)

This expression has its maximum at 0.5 and decreases symmetrically from there. For any given history
7y, it is closest to 0.5, if ug = 0.5. If now the posterior variance o2 of the process {m;} enters u(-,o?),
this makes it more likely that the agent postpones investment. Hence, it becomes less likely to observe
a mark-up on reservation profits 7* in the treatment group relative to the control group.
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constrained to seize the investment at a value strictly larger than the initial value or the
investment costs. A round ended randomly, with a given and constant probability of 0.7%
(i.e. on average t = 143 ticks).”

The 45 random walks used in the experiment were the same for every subject. Based
on an individual login (printed on the instructions), the set of 45 random walks was
stratified over 45 rounds.® The experiment was designed so that for each subject in the
treatment group, there was one subject in the control group that saw the same sequence
over 45 rounds (contingent on choosing the same color in a given round). This way, a
potential 'round effect’ is supposed to be mitigated. Otherwise subjects might be framed
by particularly short/long realizations of the process in the first few rounds.

The experiment was conducted at the Technical University Berlin (TU) and the
WZB Berlin. The preliminary dataset presented here, was obtained from three laboratory
sessions with randomly selected students from the ORSEE pool of the TU and WZB.?
For each session 22 students from various fields of study participated in 45 rounds of the
experiment for pay. Participants were randomly selected into either the treatment or the
control group (as above: treatment—ambiguity, control=risk). Consequently, each group
currently has 33 subjects with 45 observations each (potentially right censored). The
average duration of the experiment was 74 minutes, and the mean earnings for subjects
was 15.98 Euros (median=14 Euros), where the minimum and the maximum payment

were 5.00 Euros and 39.00 Euros respectively.

6 Experimental results

This section outlines the results obtained from the first three sessions, all currently available
data. The analysis is conducted in view of the central hypothesis derived in section 4.3. It
employs statistical methods from the field of Survival or Duration Analysis to surmount
two key data defections, i.e. the effect of censoring, and unoberved heterogeneity across

subjects.

6.1 The effect of ambiguity

Due to the termination hazard, 37% of the observations in the sample are right censored.
In these cases, the process ceased before a subject decided to seize the investment. Ignoring

this fact introduces a censoring bias into standard estimators, while dropping censored

"A translated version of the instructions is available from the author upon request.

8The login name consists of an initial, "A" or "B", and a two-digit number. The letter prefix indicates
which treatment a subject belongs to, while the two digit number was used as the seed for a pseudo-
random number generator that drew the sequence of series shown. In both groups, subjects were then
numbered in an increasing order.

9See: https://experimente.wzb.eu/
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observations results in a truncated sample and leads to a truncation bias. In order to
oversome this issue, this section makes use of tools from Survival Analysis, which provides

unbiased estimates in the presence of censoring.

Evidence from Kaplan-Meier estimation

Following Oprea et al. (2009); Della Seta et al. (2012), results are first analyzed by group
using a non-parametric Kaplan-Meier (Kaplan & Meier, 1958) estimator. This estimator
focuses on the distribution of the reservation profit. It estimates the survival function,
which corresponds to the probability not to invest at a given value of the profit process. If
N is the number of subjects who did not invest at a value of 7 excluding those for which
the process terminated at that value, and Y, is the number of subjects who invest at a

given value of 7, then the Kaplan-Meier estimator of the Survival Function is defined as

S(m) = WH (1 - %EZ))) . (6.1)

=0

The idea behind the Kaplan-Meier estimate is to provide a standard empirical distribution
function of reservation profits 7*, taking into account that at various instances, subjects
drop out of the set of subjects that still have the opportunity to invest. In the absence
of censoring, (6.1) coincides with the empirical distribution function of 7. On the one
hand, the Kaplan-Meier estimate provides a way to determine the direction of the effect of
ambiguity, but is less suitable for gauging the magnitude of the effect. On the other hand,
this procedure is truly non-parametric, hence quite robust against misspecification (e.g.
see Therneau & Grambsch, 2000, chapter 2 for an in-depth discussion).

Figure 2 shows the estimated survival function by group. As shown, the survival
functions for both groups separate in a direction that contradicts the SEU model prediction.
Instead, subjects in the treatment group tend to react to uncertainty in a way that is
predicted by the MEU model. For a given value of the per-period profit process {m},
subjects in the treatment group have a lower probability to seize the investment. Note
that under the hypothesis that subjects in the treatment group are SEU maximizer, we
would expect the opposite.

One may perform a statistical test for equality of the two cdfs, by means of a log-rank
test (Harrington & Fleming, 1982) with the Nullhypothesis

The associated statistic is x?(1) distributed. The value of the statistic is 45.76, with an
associated p-value which is virtually zero.
The impact of uncertainty may be further quantified, by considering the average

reservation profit within each group. Table 1 displays the estimates for the mean and the
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Mean SE Median 95% int.

Risk group 64.28 1.02 41.2 [41.2, 42.44]
Ambiguity group  72.57 1.1 45.02  [45.02, 46.37|
no. of investments risk group 1017
no. of investments ambiguity group 859

Table 1: Mean and median reservation profit by group (N=2970, upper limit
122.99134).

median reservation profit by group. The estimate for the mean duration suffers from a
bias that stems from the fact that the survival function does not become zero over the
feasible state space. Consequently, the integral has to be cut off at the highest censoring
value. Comparing median and mean estimates, the bias seems to be very pronounced
in the given case. The median, however, may still be estimated consistently from the
data. In terms of the median reservation profit, the magnitude of the difference between
reservation profits is less striking and is roughly equal to a 9.3% increase in the reservation
wage. Considering the 95% confidence intervals around the medians shows, however, that

the difference is significant.

Evidence from mixed proportional hazard models

In an attempt to gauge the size of the effect, regression-based methods provide a more
adequate tool. In the field of survival analysis, there are several models available, which
mainly differ in the amount of parametric rigor they impose on the functional form of the
so-called hazard function A(m). The hazard function and the survival function are related

by the equation

S(r) = exp [— /0 Y dp] | (6.3)

Hence, the hazard function is the instantaneous probability to invest at a given value of .
Proportional hazard models assume that the hazard function for individual ¢ comprises the
baseline hazard function and the risk score. It furthermore assumes that baseline hazard

and risk score are related in a proportional way
A(m) = No() exp [ X; 0] (6.4)

where X is the i-th row of the (n x k)-matrix of covariates and exp [X; /] is the risk score.
In this section, I employ models that treat the baseline hazard A\o(7) non-parametrically
(see Cox, 1972), going by the name Cox proportional hazard models. In such models, the

baseline function Ag(7) is allowed to have any shape. In the present case, X; comprises
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coefficient exp(coeff.) SE z-stat. Pr(>|z|)

treatment -0.44 0.65 0.23 -1.93 0.054

Rand. effect Std. dev. Variance
0.76 0.58

Null model likelihood -14084.86

Integrated partial likelihood -13780.17

LR test for random effects -558.06  p: 0.00

Table 2: Results from mixed effects Cox model (N=2970, no. of investments = 1876).
Efron approximation for ties.

only a dummy variable for being a member of the treatment group. It is well-known,
however, that unobserved heterogeneity among individuals in a study leads to inconsistent
estimates for the treatment fixed effect 5 in (6.4) (e.g. Chamberlain, 1984, 1985; Lancaster,
1985; Aalen, 1988). Because I do not have further controls to include in X;, a great
number of individual characteristics are unobserved which potentially influence decisions.
Consequently, the basic Cox model is extended by incorporating an individual-specific
random effect 6 (often called frailty effect), to absorb the unobserved heterogeneity into

the risk score
Xi(m) = Xo(m) exp [XiB + Z;0] . (6.5)
It is assumed here that random effects are normally distributed
0 ~ N(0,0°1,) . (6.6)

The model (6.5)-(6.6) may be estimated using penalized regression methods (see Hastie &
Tibshirani, 1990; Therneau, 2003).

Results from the Cox model with Gaussian frailties are given in table 2. The results
may be easily interpreted in terms of the relative risk score, which is the probability for a
subject to invest at a given value m, relative to a subject in the control group. Note that

conditional on 6 the relative hazard for a member of group ¢ is given as

Ai=1(m) _ Ao(m) exp [ X1 5]
Aizo(m)  Ao(m) exp [Xof]

= exp (X1 — Xo)B] = exp [A] . (6.7)

Table 2 then reveals that the conditional relative risk score is 0.65, i.e. given the individual
frailty term, ambiguity reduces the probability to invest at a given level by around 35%.
However, the effect is borderline significant (p = 0.054). The results also show that the

variance of the random effect is significantly larger than zero, as confirmed by an LR

15



test.!? The estimated variance of @ is substantial. Deviating one standard deviation from
the mean of 6 (which is zero by assumption), translates into 2.14 times the probability to
invest at a given price. Hence, individual heterogeneity is found to be highly significantly
different from zero. The magnitude of the dummy for being in the treatment group makes
the treatment effect appear quite important as well. Concerning its statistical significance,
however, reveals that it is only marginally significant at a level of 5.4%.

The overall results illustrate the importance to take into consideration the presence

of individual heterogeneity that is due to unobserved factors.

7 Conclusion

This paper considersthe impact of ambiguity or Knightian uncertainty on investment
decisions that are irreversible. Toward that end, the paper presented a theoretical model
based on from which model predictions under expected utility (Dixit & Pindyck, 1994) and
multiple-prior expected utility (Nishimura & Ozaki, 2007; Riedel, 2009) were derived. In a
computer-based laboratory experiment, subjects then had to repeatedly decide whether or
not they want to seize an investment opportunity. Upon investment, they earned the sum
of future values of a stochastic payoff process.

The underlying theoretical model predicts that ambiguity averse decision makers
react to ambiguity by postponing the investment, relative to a situation where there is
risk. The main finding of this paper is that data obtained from an experiment with a
treatment group (subject to ambiguity) and a control group (subject to risk) confirms this
prediction. A non-parametric analysis of observed reservation profits revealed that subjects
in the treatment group have a 9% higher median reservation profit than subjects in the
control group. A regression-based analysis across groups that controls for unobserved
heterogeneity, revealed that subjects in the treatment group are 0.65 times as likely as
subjects from the control group to seize the investment at a given level of the payoff
process.

These results indicate that uncertainty indeed plays a role for an individual’s decision
to pledge a safe payoff in favor of an uncertain payoff. Subjects in the laboratory ask
for a higher reservation profit to forego a safe endowment for an uncertain investment.
Even though, interpreting experimental results outside of the laboratory context moust
be handled with care, one may still think how this is important in every-day life. For
instance, on top of a regular volatility premium due to risk aversion, experimental results

indicate the existence of an ambiguity premium. Consequently, investors may shun taking

10A Cox model without frailties was also estimated. In such a model, the treatment effect was significant
at a 2.5% level and the relative risk score was 0.75. The proportionality assumption (6.4), however,
was strongly rejected, as indicated by the scaled Schoenfeld residuals.



positions as market conditions become more uncertain. While this is often interpreted as
a decrease in risk-appetite, this may also stem from heightened uncertainty without any
increase in fundamental volatility. This result is even more striking because the amount of
ambiguity and complexity in the experiment may be considered as fairly small compared
to real-world situations. Consequently, it seems possible that the estimated effect in this

paper understates potential ambiguity premium in real-world investment decisions.



Appendices

Technical Appendix

This appendix discusses the details of the Value Function Iteration algorithm mentioned

in section 4.1. Start with the Bellman equation (4.3) for the optimization problem
V(zy) = max {Q(xy) — [,0E [V(x441) | 2]} - (7.1)
(7.1) is equivalent to
V(zy) = max w(moh®™, vg) + 0 [pry1eV (ze + 1) + (1 = praae) V(e — 1)) (7.2)

where v; is the binary control variable, v; € {0,1} and 1 =’invest’ and 0 =’postpone’. The
latter form will be more convenient to use below. I seek a function V'(-) that solves (7.1)
for every x;. With such a function, the RHS can be evaluated on the state space and the
set of states for which stopping is optimal (the active set) may be found. Following Stokey
et al. (1989), equation (7.1) may be viewed as a functional equation on the space (V) dy),
i.e. the space of bounded functions equipped with the sup-metric. Since time is supposed
to be infinite, one may view the state space as independent of time (it merely denotes the
current value of the per-period profit process). Moreover, understand the RHS of (7.2) as

an operator, i.e. a mapping ¥ : V — V
V(z) =¥(V(z")) (7.3)

where in the binary case here x’ is either x — 1 or x + 1. Using Blackwell’s sufficient
conditions (see e.g. Ljungqvist & Sargent, 2004, appendix A.1), one may prove that in
fact U, as defined by (7.1) is a contraction with modulus §. First, for every two functions

V and W such that V > W Vz it holds that

U(V) = max u(moh™,v;) + 6 [pt+1\tv($t +1)+(1- pt+1|t)V($t - 1)] (7.4)

(%7

> max u(moh®™, vy) + 9 [pt+1|tW(xt + 1L, ve) + (1 = pegap) Wy — 1,vt+1)] (7.5)

(%3

= U (W) (7.6)
and for any positive constant k

UV + k) = U [u(moh™) + 6 [proap(V (e + 1) + k) + (1 = prya) (V (e = 1) + k)] (7.7)
= U(V) + 6k . (7.8)



Therefore V(-) is shown to be monotone and to be discounting. Then by the contraction

mapping theorem, there exists a unique v* € V', such that
U(v*) =v" . (7.9)
This element v* may be found recursively via

Vg € V (710)
Vir1 = \I/(Uz) (711)

and the sequence {v;} converges uniformly to v*. This recursive algorithm is called Value
Function Iteration.

To be able to employ the algorithm here, we have to determine the stopping value in
equation (7.1) for each tuple (z,2’). This is done here under the assumption of a CRRA

instantaneous utility function u(r) = 7%

V(z,) =E i 55 tu(moh™ h’”S)] (7.12)

=E i 5“(7@/1%)9] (7.13)

= h'E

i 5stu(wth“s1)9] (7.14)
= hGV(:t— 1) . (7.15)
Consequently, the solution V(+) is of the form
V(xy) = 8RO . (7.16)
I may use
V() = u(moh™) + 8 [prs1eV (ze + 1) + (1 = praa) V(e — 1)] (7.17)

as an additional condition to determine the unknown coefficient 5.

B = (moh™)” 46 [prae (BRD7) + (1= pryn) (BA )] (718)
p= 7Tg + 36 [pt+1|t (he) + (1 - pt+l|t) (h_e)} . (7-19)



This implies that

A _
ﬁ = ﬁ ) A= 7Tg ) B=¢ [pt+1|th6 + (1 _pt+1|t>h 0] . (720)
Equations (7.16) and (7.20) then give a closed-form solution for the stopping value at each
point x;.
The algorithm was intitialized with the constant function V'(z) = I = 3,200. Conver-

gence was achieved after several hundred iterations (~800).
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Stopping set for CRRA with 8 =0.5 and various priors.
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Figure 1: Active sets for an agent with various priors. The continuation region is
where the step-function is zero. The stopping region is where the step-function is

equal to one.



Survival function for both groups
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