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Abstract: We propose a new approach to the pricing and hedging of contingent claims
under transaction costs in a general incomplete market in discrete time. Under
the assumptions of a bounded mean-variance tradeoff, substantial risk and a
nondegeneracy condition on the conditional variances of asset returns, we prove
the existence of a locally risk-minimizing strategy inclusive of transaction costs
for every square-integrable contingent claim. Then we show that local risk-
minimization is robust under the inclusion of transaction costs: The preceding
strategy which is locally risk-minimizing inclusive of transaction costs in a model
with bid-ask spreads on the underlying asset is also locally risk-minimizing with-
out transaction costs in a fictitious model which is frictionless and where the
fictitious asset price lies between the bid and ask price processes of the original
model. In particular, our results apply to any nondegenerate model with a finite
state space if the transaction cost parameter is sufficiently small.
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mean-variance tradeoff
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0. Introduction

This paper proposes a new approach to the pricing and hedging of contingent claims in
the presence of transaction costs in a general incomplete market in discrete time. The ex-
isting literature on this topic can be separated into four major strands. Group zero stud-
ies the very basic question of characterizing arbitrage-free models with transaction costs;
see for instance Jouini/Kallal (1995) or Ortu (1996). The first group of those really con-
cerned with pricing and hedging considers self-financing strategies which exactly duplicate
the desired payoff at maturity; examples are the papers by Merton (1989), Shen (1991) or
Boyle/Vorst (1992). Quite apart from the fact that most contingent claims in an incom-
plete market will not permit the construction of such a strategy, it was also pointed out
by Bensaid/Lesne/Pagès/Scheinkman (1992) that it can be less expensive to dominate the
required payoff rather than to match it exactly. This super-replication approach was studied
for instance by Bensaid/Lesne/Pagès/Scheinkman (1992), Edirisinghe/Naik/Uppal (1993)
and Koehl/Pham/Touzi (1996) in discrete time or by Cvitanić/Karatzas (1996) in contin-
uous time; a convergence result in this context has been obtained by Kusuoka (1995). As
shown by Soner/Shreve/Cvitanić (1995), however, prices derived by super-replication are
typically much too high and thus unfeasible in practice. A third major method for pric-
ing options in the presence of transaction costs therefore explicitly introduces preferences,
usually in the form of utility functions, to obtain a valuation formula; proponents of this
approach are for instance Hodges/Neuberger (1989), Davis/Panas/Zariphopoulou (1993) or
Constantinides/Zariphopoulou (1996).

The present paper is also to some degree in the spirit of the third methodology, but there
are some differences. Like Leland (1985), Lott (1993), Henrotte (1993), Ahn/Dayal/Grannan/
Swindle (1995) or Kabanov/Safarian (1997), we do not insist on the use of self-financing
strategies. Besides exact replication of the desired payoff at maturity, our optimality crite-
rion for strategies is local risk-minimization, a local quadratic criterion first introduced by
Schweizer (1988). For frictionless models without transaction costs, this approach has been
studied and used by several authors. In the case of transaction cost models, it has been applied
by Mercurio/Vorst (1997), but under rather restrictive assumptions and without completely
rigorous proofs. Our first main result is the existence of a locally risk-minimizing strategy for
every square-integrable contingent claim under certain technical but intuitive assumptions
on the price process of our basic asset. The second main result is a very appealing economic
interpretation of this strategy in terms of a model without transaction costs.

A quadratic risk-minimization approach can of course be criticized from a financial
viewpoint since it gives equal weight to upside and downside risks. On the other hand,
it has several properties which make its use rather appealing for practical purposes. One
major advantage is its mathematical tractability which even leads to computable formu-
lae in simple cases. On the theoretical side, it provides one possible way of selecting a
pricing measure by specifying an optimality criterion; see the financial introduction of Del-
baen/Monat/Schachermayer/Schweizer/Stricker (1997) for a discussion of this. On the prac-
tical side, it seems to produce hedging strategies whose initial costs are substantially lower
than those of superreplicating strategies and whose replicating errors are relatively small; this
is for instance illustrated by the numerical results of Mercurio/Vorst (1997).

The paper is structured as follows. Section 1 introduces our model, defines locally risk-
minimizing strategies and characterizes them in a way amenable to subsequent analysis.
Section 2 defines two properties of an asset price process or more precisely its increments:
boundedness of the mean-variance tradeoff process which was already introduced in Schweizer
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(1995) or (implicitly) in Schweizer (1988), and the condition of substantial risk which we
believe is new. A number of technical results then lays the ground for section 3 where
we first prove in Theorem 6 the existence of a locally risk-minimizing strategy inclusive of
transaction costs under the assumptions of a bounded mean-variance tradeoff, substantial
risk and a nondegeneracy condition on the conditional variances of asset returns. This is a
general result which requires only square-integrability of the contingent claim to be hedged; no
convexity or concavity is required. Theorem 7 then gives a striking economic interpretation of
this strategy. In fact, we show that there exists a fictitious asset price process (depending on
the contingent claim under consideration) which lies between the bid and ask price processes
for our basic asset and which has the following property: if we hedge our contingent claim by
a locally risk-minimizing strategy without transaction costs in this fictitious model, we obtain
exactly the locally risk-minimizing strategy inclusive of transaction costs in the original model
with bid-ask spreads. This means that the criterion of local risk-minimization has a rather
remarkable robustness property under the inclusion of transaction costs. Section 4 discusses
special cases and examples; we show in particular that our results apply to any nondegenerate
model with a finite state space if the transaction cost parameter is small enough. Finally,
the appendix contains a technical result on the minimization of a conditional variance which
is used in the proof of Theorem 6 in section 3.

1. Formulation of the problem

This preliminary section has two purposes. We first introduce some terminology to formulate
the basic problem that we study in this paper. Then we provide two auxiliary results which
will help us later on to solve our optimization problem.

Let (Ω,F , P ) be a probability space with a filtration IF = (Fk)k=0,1,...,T for some fixed
time horizon T ∈ IN . The stochastic process X = (Xk)k=0,1,...,T describes the discounted
price of some risky asset, here called stock , and so we assume that X is adapted to IF and
nonnegative. There is also a riskless asset (called bond) whose discounted price is 1 at all
times.

Remark. By considering discounted prices, we leave aside all problems related to the choice
of a numeraire. These questions typically arise in the context of foreign exchange markets
and would lead to additional modelling problems, including possibly transaction costs on the
numeraire itself. This would certainly be an important extension of our approach, but is
beyond the scope of the present paper.

Definition. For any stochastic process Y = (Yk)k=0,1,...,T , we denote by Θ(Y ) the space
of all predictable processes ϑ = (ϑk)k=1,...,T+1 such that ϑk∆Yk ∈ L2(P ) for k = 1, . . . , T ,
where ∆Yk := Yk − Yk−1. Recall that ϑ is predictable if and only if ϑk is Fk−1-measurable
for k = 1, . . . , T + 1.

Definition. A (trading) strategy ϕ is a pair of processes ϑ, η such that

ϑ ∈ Θ(X),(1.1)
η = (ηk)k=0,1,...,T is adapted

and
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Vk(ϕ) := ϑk+1Xk + ηk ∈ L2(P ) for k = 0, 1, . . . , T .(1.2)

The adapted process V (ϕ) is then called the value process of ϕ.

To motivate the subsequent definition of the cost process of a strategy under transaction
costs, it is helpful to first provide an interpretation of a strategy and to explain how it is
implemented in our model. At each date k, one can choose the number ϑk+1 of shares of stock
and the number ηk of bonds that one will hold until the following date k+1. Predictability of
ϑ is imposed to obtain a simple correspondence to a formulation in continuous time. Clearly,
Vk(ϕ) is then the theoretical or book value of the portfolio (ϑk+1, ηk) with which one leaves
date k after trading. While the present notation conforms with the one in Schäl (1994) or
Mercurio/Vorst (1997), it is different from the one used in Schweizer (1988, 1995), and we
shall comment on this later on.

We view V (ϕ) as a theoretical value because it is based on X which itself is only a
theoretical stock price. Stock transactions do not take place at this value; due to the presence
of proportional transaction costs, they will involve a proportional bid-ask spread. More
precisely, fix some transaction cost parameter λ ∈ [0, 1) and let (1 − λ)Xk and (1 + λ)Xk

denote the bid and ask prices, respectively, for one share of stock at date k. Using the strategy
ϕ dictates at a given date k to buy or sell (depending on the signs) ηk − ηk−1 bonds and
ϑk+1 − ϑk shares of stock. The total outlay at date k due to this transaction is therefore

ηk − ηk−1 + (ϑk+1 − ϑk)Xk(1 + λ sign(ϑk+1 − ϑk)
)

= Vk(ϕ) − Vk−1(ϕ) − ϑk(Xk −Xk−1) + λXk|ϑk+1 − ϑk|,

and summing over all dates up to k yields the cumulative costs of the strategy ϕ. We denote
here and in the following by sign the sign function with the convention

sign(0) = 0.

Definition. The cost process of a strategy ϕ = (ϑ, η) is

(1.3) Ck(ϕ) := Vk(ϕ) −
k∑

j=1

ϑj∆Xj + λ

k∑
j=1

Xj |∆ϑj+1| for k = 0, 1, . . . , T .

Remarks. 1) More generally, we could model bid and ask prices by (1−λk)Xk and (1+µk)Xk

for some predictable processes λ and µ with values in [0, 1) and [0,∞), respectively. But to
simplify the notation, we have chosen a fixed and symmetric bid-ask spread.

2) Our next definition tacitly assumes that the cost process of any strategy is square-
integrable. If Ω is finite or if there are no transaction costs so that λ = 0, this is clearly
satisfied due to (1.1) and (1.2); in general, it will be a consequence of the technical assumptions
imposed on X in section 2.

Definition. The risk process of a strategy ϕ is

Rk(ϕ) := E
[(
CT (ϕ) − Ck(ϕ)

)2
∣∣∣Fk

]
for k = 0, 1, . . . , T .
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Definition. A contingent claim is a pair (ϑ̄T+1, η̄T ) of FT -measurable random variables
satisfying

ϑ̄T+1XT ∈ L2(P )(1.4)
and

H := ϑ̄T+1XT + η̄T ∈ L2(P ).(1.5)

Intuitively, a contingent claim models a financial contract like for instance a call option.
The quantities ϑ̄T+1 and η̄T describe the number of shares and bonds, respectively, that we
need to have at the terminal date T in order to fulfil our obligations; H in (1.5) is then the
(theoretical) value of this portfolio. In agreement with most of the existing literature, we
assume for simplicity that there are no transaction costs for the liquidation of a position at
date T so that the sign of ϑ̄T+1 is irrelevant for the computation of the value H. Explicit
examples for contingent claims as well as various possible modes of settlement for an option
will be discussed in section 4.

Our goal in the following is to find for a given contingent claim a strategy which minimizes
the risk in a local sense. To understand the idea underlying the subsequent definition, note
that by (1.3), the cost difference CT (ϕ) − Ck(ϕ) and hence the risk Rk(ϕ) depends on the
strategy ϕ via the variables ηk, ηk+1, . . . , ηT and ϑk+1, ϑk+2, . . . , ϑT+1. But the only decision
we have to take at date k is the choice of ηk and ϑk+1, and so we shall minimize Rk(ϕ) only
with respect to ϑk+1 and ηk, leaving all other parameters fixed.

Definition. Let ϕ = (ϑ, η) be a strategy and k ∈ {0, 1, . . . , T − 1}. A local perturbation of
ϕ at date k is a strategy ϕ′ = (ϑ′, η′) with

ϑ′
j = ϑj for j �= k + 1

and
η′j = ηj for j �= k.

ϕ is called locally risk-minimizing (inclusive of transaction costs) if we have

Rk(ϕ) ≤ Rk(ϕ′) P -a.s.

for any date k ∈ {0, 1, . . . , T − 1} and any local perturbation ϕ′ of ϕ at date k.

The basic problem we study in this paper is then the following:

Given a contingent claim (ϑ̄T+1, η̄T ), find a locally risk-minimizing strategy
ϕ = (ϑ, η) with ϑT+1 = ϑ̄T+1 and ηT = η̄T .

Remarks. 1) Note that date T is excluded in the definition of local risk-minimization.
Any local perturbation ϕ′ of ϕ must therefore satisfy the same terminal conditions as ϕ, i.e.,
ϑ′
T+1 = ϑT+1 and η′T = ηT , and so the preceding optimization problem makes sense as a

formulation of hedging under transaction costs.
2) Since our definitions of a contingent claim and of the value process V (ϕ) are different

from the ones in Schweizer (1988), it is not completely evident that the preceding notion of
local risk-minimization reduces to the one in Schweizer (1988) for λ = 0. But we shall see in
subsection 4.1 that this is indeed the case.
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Lemma 1. If ϕ is locally risk-minimizing, then C(ϕ) is a martingale and therefore

(1.6) Rk(ϕ) = E [Rk+1(ϕ)|Fk] + Var[∆Ck+1(ϕ)|Fk] P -a.s. for k = 0, 1, . . . , T − 1.

Proof. (1.6) is an immediate consequence of the martingale property of C(ϕ) which in turn
follows from a fairly standard argument. In fact, fix a date k ∈ {0, 1, . . . , T − 1} and define
a pair ϕ′ = (ϑ′, η′) by setting ϑ′ := ϑ, η′j := ηj for j �= k and

η′k := E[CT (ϕ) − Ck(ϕ)|Fk] + ηk.

Then η′ is clearly adapted, and

(1.7) Vk(ϕ′) = Vk(ϕ) + E[CT (ϕ) − Ck(ϕ)|Fk]

shows that ϕ′ satisfies (1.2) and therefore is a strategy, hence a local perturbation of ϕ at
date k. (Recall our tacit assumption that C(ϕ) is square-integrable; see Lemma 3 below.)
Due to (1.7) and the definition of ϕ′, we have

CT (ϕ′) − Ck(ϕ′) = CT (ϕ) − Ck(ϕ) − E[CT (ϕ) − Ck(ϕ)|Fk],

hence

Rk(ϕ′) = Var[CT (ϕ) − Ck(ϕ)|Fk] ≤ E
[(
CT (ϕ) − Ck(ϕ)

)2
∣∣∣Fk

]
= Rk(ϕ).

But because ϕ is locally risk-minimizing, we must have equality P -a.s. and therefore
E[CT (ϕ) − Ck(ϕ)|Fk] = 0 P -a.s.

q.e.d.

Since Rk+1(ϕ) does not depend on ϑk+1 and ηk, Lemma 1 and (1.6) suggest to look for
a locally risk-minimizing strategy by recursively minimizing Var[∆Ck+1(ϕ)|Fk] with respect
to ϑk+1 and then determining ηk from the martingale property of C(ϕ). The next result tells
us that this approach does indeed work.

Proposition 2. A strategy ϕ = (ϑ, η) is locally risk-minimizing if and only if it has the
following two properties:

1) C(ϕ) is a martingale.
2) For each k ∈ {0, 1, . . . , T − 1}, ϑk+1 minimizes

Var
[
Vk+1(ϕ) − ϑ′

k+1∆Xk+1 + λXk+1|ϑk+2 − ϑ′
k+1|

∣∣Fk

]
over all Fk-measurable random variables ϑ′

k+1 such that ϑ′
k+1∆Xk+1 ∈ L2(P ) and

ϑ′
k+1Xk+1 ∈ L2(P ).

Proof. By Lemma 1, C(ϕ) is a martingale if ϕ is locally risk-minimizing. If C(ϕ) is a
martingale, then (1.6) and the definition of C(ϕ) imply that

(1.8) Rk(ϕ) = E[Rk+1(ϕ)|Fk] + Var
[
Vk+1(ϕ) − ϑk+1∆Xk+1 + λXk+1|ϑk+2 − ϑk+1|

∣∣Fk

]
5



   

by omitting Fk-measurable terms from the conditional variance. Finally, ϑk+1∆Xk+1 ∈
L2(P ) by (1.1), and the square-integrability of ϑk+1Xk+1 will be a consequence of the tech-
nical assumptions imposed on X in section 2; see Lemma 3 below.

Now fix k ∈ {0, 1, . . . , T − 1} and let ϕ′ be a local perturbation of ϕ at date k. Then

CT (ϕ′) − Ck+1(ϕ′) = CT (ϕ) − Ck+1(ϕ)

by the definition of the cost process, and since we may always assume that C(ϕ) is a martin-
gale, we obtain

(1.9) Rk(ϕ′) = E[Rk+1(ϕ)|Fk] + E
[(

∆Ck+1(ϕ′)
)2

∣∣∣Fk

]
by first conditioning on Fk+1.

Suppose now first that 1) and 2) hold. Since ϕ′ is a local perturbation of ϕ at date k,
we have

(1.10) Vk+1(ϕ′) = Vk+1(ϕ) and ϑ′
k+2 = ϑk+2

and therefore

∆Ck+1(ϕ′) = Vk+1(ϕ) − Vk(ϕ′) − ϑ′
k+1∆Xk+1 + λXk+1|ϑk+2 − ϑ′

k+1|.

Using (1.9), we obtain

Rk(ϕ′) ≥ E[Rk+1(ϕ)|Fk] + Var[∆Ck+1(ϕ′)|Fk]
≥ E[Rk+1(ϕ)|Fk] + Var[∆Ck+1(ϕ)|Fk]
= Rk(ϕ),

where the second inequality uses 2), (1.8) and the irrelevance of Fk-measurable terms in the
conditional variance, and the last equality comes from (1.6). This shows that ϕ is locally
risk-minimizing.

Conversely, suppose that ϕ is locally risk-minimizing so that 1) holds by Lemma 1.
Comparing (1.6) and (1.9) then shows that

E
[(

∆Ck+1(ϕ′)
)2

∣∣∣Fk

]
≥ Var[∆Ck+1(ϕ)|Fk]

for any Fk-measurable choice of ϑ′
k+1 and η′k. In particular, we can fix ϑ′

k+1 and choose η′k
in such a way that E[∆Ck+1(ϕ′)|Fk] = 0. Combining this with the preceding inequality and
using the definition of ∆Ck+1(ϕ′) and (1.10), we then obtain 2).

q.e.d.

According to the previous result, we can construct a locally risk-minimizing strategy
by first recursively solving the optimization problem in part 2) of Proposition 2 backward
through time and by then using the martingale property of C(ϕ) to determine η. We shall use
exactly this approach to prove the existence of a locally risk-minimizing strategy in section
3.
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2. Conditions on X and technical results

This section collects a number of auxiliary results on integrability properties of strategies that
we shall use in the next section to establish the existence of a locally risk-minimizing strategy.
The processes Xγ introduced below will play an important role in that construction. Let us
signal at this point that for a non-degenerate finite tree model, the results of this section
will hold trivially; this is explained more carefully in subsection 4.2. Apart from the next
definition and relation (2.3), this section can therefore be skipped by those readers who are
only interested in the case of a finite probability space.

Throughout this section, we shall assume that X is a square-integrable process so that
Xk ∈ L2(P ) for k = 0, 1, . . . , T .

Definition. We denote by Γ the class of all adapted processes γ = (γk)k=0,1,...,T with values
in [−1,+1]. For γ ∈ Γ, the process Xγ is defined by

Xγ
k := Xk(1 + λγk) for k = 0, 1, . . . , T .

If ϕ = (ϑ, η) is a strategy, the process V γ(ϕ) is defined by

(2.1) V γ
k (ϕ) := ϑk+1X

γ
k + ηk for k = 0, 1, . . . , T .

Since λ ∈ [0, 1), it is clear that each process Xγ is again nonnegative, adapted and square-
integrable. The significance of the processes Xγ is explained by a result of Jouini/Kallal
(1995). They show that the pair of processes X−1 = (1 − λ)X and X+1 = (1 + λ)X
defines an arbitrage-free system of bid and ask prices if and only if there exist a process
γ ∈ Γ and a probability measure Q equivalent to P such that Xγ is a Q-martingale; see also
Koehl/Pham/Touzi (1996). Intuitively, such a Q can be interpreted as a price system which
is compatible with bid and ask prices given by X−1 and X+1, respectively. Xγ is then a kind
of re-valuation of the stock, and V γ(ϕ) is of course the value process of the strategy ϕ if one
works in units of Xγ instead of X.

Our main goal in this section is to show that under suitable conditions on X and λ, we
have Θ(Xγ) = Θ(X) for all γ ∈ Γ. Roughly speaking, this means that the same strategies
can be used for all reasonable choices of units.

Definition. We say that X has substantial risk if there is a constant c < ∞ such that

(2.2)
X2

k−1

E
[
∆X2

k

∣∣Fk−1

] ≤ c P -a.s. for k = 1, . . . , T .

The smallest constant c satisfying (2.2) will be denoted by cSR.

The condition of substantial risk essentially provides a lower bound on the conditional
variances of the increments of X, but it also has a very intuitive interpretation. If we define
the return process � of X as usual by

Xk = Xk−1(1 + �k) for k = 1, . . . , T ,
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then (2.2) can equivalently be written as

E
[
�2
k

∣∣Fk−1

]
≥ 1

c
> 0 P -a.s. for k = 1, . . . , T .

In particular, this means that X has substantial risk if and only if we have some lower bound
on the returns of X. A simple example is the case where each �k is independent of Fk−1

(“independent returns”, if IF is generated by X) and not identically 0. Condition (2.2) is
also satisfied in every non-degenerate finite tree model; this is discussed in more detail in
subsection 4.2.

Lemma 3. Assume that X has substantial risk. Then:
1) Θ(Xγ) ⊇ Θ(X) for every γ ∈ Γ.
2) V γ

k (ϕ) ∈ L2(P ) for k = 0, 1, . . . , T , for every γ ∈ Γ and for every strategy ϕ.
3) ϑk+1Xk ∈ L2(P ) for k = 0, 1, . . . , T and for every ϑ ∈ Θ(X).
4) Ck(ϕ) ∈ L2(P ) for k = 0, 1, . . . , T and for every strategy ϕ.

Proof. By the definition of Xγ , we have

ϑk∆Xγ
k = ϑk∆Xk + λγkϑk∆Xk + λϑkXk−1∆γk,

and since γ is bounded, 1) will follow from 3). By the definition of V γ(ϕ),

V γ
k (ϕ) = Vk(ϕ) + λγkϑk+1Xk,

and so (1.2) shows that 2) will also follow from 3). The definition of C(ϕ) implies the useful
relation

∆Ck(ϕ) = ∆Vk(ϕ) − ϑk∆Xk + λXk|∆ϑk+1|(2.3)
= ϑk+1Xk

(
1 + λ sign(∆ϑk+1)

)
+ ηk − ϑkXk

(
1 + λ sign(∆ϑk+1)

)
− ηk−1

= ϑk+1X
γ
k + ηk − ϑkX

γ
k − ηk−1

= ∆V γ
k (ϕ) − ϑk∆Xγ

k ,

if we define the process γ by γk := sign(∆ϑk+1) for k = 0, 1, . . . , T . Note that γ ∈ Γ because
ϑ is predictable; (2.3) and (1.2) therefore show that 4) follows from 2) and 1), and so it only
remains to prove 3). But this is easy:

E
[
(ϑk+1Xk)2

]
= E

[
(ϑk+1∆Xk+1)2

X2
k

E
[
∆X2

k+1

∣∣Fk

]]
≤ cSRE

[
(ϑk+1∆Xk+1)2

]
< ∞

since ϑ ∈ Θ(X) and X has substantial risk.
q.e.d.

Remark. In particular, the assertions 3) and 4) in Lemma 3 clear up two points of integra-
bility that were left open in section 1; see Lemma 1 and Proposition 2.

In order to obtain the reverse inclusion Θ(Xγ) ⊆ Θ(X), we first study the mean-variance
tradeoff process of Xγ .
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Definition. For γ ∈ Γ, the mean-variance tradeoff process of Xγ is

K̂γ
� :=

�∑
j=1

(
E[∆Xγ

j

∣∣Fj−1]
)2

Var
[
∆Xγ

j

∣∣Fj−1

] for � = 0, 1, . . . , T .

If K̂γ is P -a.s. bounded by a constant, we denote by cMVT(γ) the smallest constant c < ∞
such that

(2.4) ∆K̂γ
� =

(
E

[
∆Xγ

�

∣∣F�−1

])2

Var
[
∆Xγ

�

∣∣F�−1

] ≤ c P -a.s. for � = 1, . . . , T .

One frequently made assumption on X is that X should have a bounded mean-variance
tradeoff process; see for instance Schäl (1994) or Schweizer (1995). The following result
provides a sufficient condition to ensure that Xγ then also has a bounded mean-variance
tradeoff.

Proposition 4. Assume that X has a bounded mean-variance tradeoff and substantial risk.
Fix γ ∈ Γ and assume that there is a constant c > 0 such that

(2.5) Var
[
∆Xγ

k

∣∣Fk−1

]
≥ cVar[∆Xk|Fk−1] P -a.s. for k = 1, . . . , T .

Then Xγ has a bounded mean-variance tradeoff, and Θ(Xγ) = Θ(X).

Proof. We first show that (2.5) implies that Xγ has a bounded mean-variance tradeoff.
According to (2.4), this will be true if(

E
[
∆Xγ

k

∣∣Fk−1

])2 ≤ const. Var[∆Xk|Fk−1] P -a.s. for k = 1, . . . , T .

But since

∆Xγ
k = ∆Xk + λγkXk − λγk−1Xk−1 = ∆Xk + λγk∆Xk + λXk−1∆γk,

we even have

E
[
(∆Xγ

k )2
∣∣Fk−1

]
≤ 2(1 + λ)2E

[
∆X2

k

∣∣Fk−1

]
+ 8λ2X2

k−1

≤ const.E
[
∆X2

k

∣∣Fk−1

]
≤ const.

(
1 + cMVT(0)

)
Var[∆Xk|Fk−1],

where we use first that γ ∈ Γ is bounded by 1, then (2.2) and finally (2.4) with γ ≡ 0.
Since the inclusion Θ(X) ⊆ Θ(Xγ) was already established in Lemma 3, it only re-

mains to show that Θ(Xγ) ⊆ Θ(X). To that end, let Xγ = Xγ
0 + Mγ + Aγ be the Doob

decomposition of Xγ so that

ϑk∆Xγ
k = ϑk∆Mγ

k + ϑk∆Aγ
k = ϑk∆Mγ

k + ϑkE
[
∆Xγ

k

∣∣Fk−1

]
and

Var
[
∆Xγ

k

∣∣Fk−1

]
= E

[
(∆Mγ

k )2
∣∣Fk−1

]
.
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Since Xγ has a bounded mean-variance tradeoff, (2.4) shows that ϑ ∈ Θ(Xγ) if and only if
ϑk∆Mγ

k ∈ L2(P ) for k = 1, . . . , T for which we shortly write ϑ ∈ L2(Mγ). The same holds
of course for X = X0. Now if ϑ is predictable and (2.5) holds, then

E
[
(ϑk∆Mk)2

∣∣Fk−1

]
= ϑ2

kVar[∆Xk|Fk−1] ≤
1
c
ϑ2
kVar

[
∆Xγ

k

∣∣Fk−1

]
=

1
c
E

[
(ϑk∆Mγ

k )2
∣∣Fk−1

]
implies that L2(Mγ) ⊆ L2(M), hence Θ(Xγ) ⊆ Θ(X) since both mean-variance tradeoffs are
bounded, and this completes the proof.

q.e.d.

Proposition 4 is quite satisfactory if one knows enough about γ to establish the estimate
(2.5). But since we shall usually not be in such a position, we next show how to impose
conditions on X and λ which ensure that (2.5) holds uniformly over all γ ∈ Γ.

Proposition 5. If there is a constant δ < 1 such that

(2.6) 2λ

√
E

[
X2

k

∣∣Fk−1

]
Var[∆Xk|Fk−1]

≤ δ P -a.s. for k = 1, . . . , T ,

then (2.5) holds simultaneously for all γ ∈ Γ, with c = 1 − δ. In particular, (2.6) holds if X
has a bounded mean-variance tradeoff and substantial risk and if λ satisfies

(2.7) 4λ2
(
1 + 2cMVT(0) + 2cSR

(
1 + cMVT(0)

))
< 1.

Proof. Since Xγ
k = Xk(1 + λγk), omitting Fk−1-measurable terms from the conditional

variance yields

Var
[
∆Xγ

k

∣∣Fk−1

]
= Var[∆Xk + λγkXk|Fk−1]

≥ Var[∆Xk|Fk−1] − 2λ
√

Var[∆Xk|Fk−1]Var[γkXk|Fk−1]

by the Cauchy-Schwarz inequality. Since γ is bounded by 1, (2.6) implies that

Var[γkXk|Fk−1] ≤ E
[
γ2
kX

2
k

∣∣Fk−1

]
≤ δ2

4λ2
Var[∆Xk|Fk−1],

hence (2.5) with c = 1 − δ. To obtain (2.6) from (2.7), write

E
[
X2

k

∣∣Fk−1

]
= Var[∆Xk|Fk−1] + (Xk−1 + E[∆Xk|Fk−1])2

and use the estimates
X2

k−1 ≤ cSRE
[
∆X2

k

∣∣Fk−1

]
from (2.2) and

E
[
∆X2

k

∣∣Fk−1

]
≤ Var[∆Xk|Fk−1]

(
1 + cMVT(0)

)
from (2.4).

q.e.d.

Condition (2.6) should be viewed as a quantitative formulation of the assumption that
transaction costs have to be sufficiently small for our subsequent results to hold. This kind of
condition is well known from the existing literature on transaction cost problems in discrete
time, and we shall comment below on its relation to other work in this area.
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3. Existence and structure of an optimal strategy

This section proves the existence of a locally risk-minimizing strategy under transaction costs
and describes its structure in more detail. The basic idea to derive an optimal strategy is
quite simple: we just solve for each k the conditional variance minimization problem in part
2) of Proposition 2 to obtain the optimal ϑ-component. The existence of a predictable process
ϑ which minimizes the relevant conditional variance almost surely at each step is rather easily
established from a general result proved in the appendix. But since this only gives existence
by means of a measurable choice, it is not clear if the resulting ϑ is sufficiently integrable, i.e.,
if it lies in the space Θ(X). We therefore provide at the same time a representation of the
optimal ϑ which allows us to prove the required integrability. If Ω is finite, integrability is of
course no problem, but the expression for ϑ will still be of interest in view of the interpretation
it will provide later on. Moreover, there are very natural situations where Ω is not finite;
one example is the process obtained by discretizing the Black-Scholes model in time as in
subsection 4.5.

Throughout this section, we assume that X is a square-integrable process.

Theorem 6. Assume that X has a bounded mean-variance tradeoff, substantial risk and
satisfies (2.6) as well as

Var[∆Xk|Fk−1] > 0 P -a.s. for k = 1, . . . , T .

Then for any contingent claim (ϑ̄T+1, η̄T ), there exists a locally risk-minimizing strategy
ϕ∗ = (ϑ∗, η∗) with ϑ∗

T+1 = ϑ̄T+1 and η∗T = η̄T . Its first component ϑ∗ can be described as
follows: There exists a process δ∗ ∈ Γ such that if we define ν ∈ Γ by setting ν0 := 0 and

(3.1) νk := sign(ϑ∗
k+1 − ϑ∗

k) + δ∗kI{ϑ∗
k+1=ϑ∗

k} for k = 1, . . . , T ,

then we have

(3.2) ϑ∗
k =

Cov
(
∆V ν

k (ϕ∗),∆Xν
k

∣∣Fk−1

)
Var

[
∆Xν

k

∣∣Fk−1

] P -a.s. for k = 1, . . . , T .

Proof. This is essentially just a backward induction argument relying on the existence
results from the appendix and the technical results from section 2; the main difficulty is to
write it down as concisely as possible. We shall prove by backward induction the existence
of a predictable process ϑ∗ with ϑ∗

T+1 = ϑ̄T+1 and satisfying assertions a), b) below for
k = 0, 1, . . . , T and c), d), e) for k = 1, . . . , T :

a) ϑ∗
k+1Xk ∈ L2(P ).

b) W ∗
k := H −

T∑
j=k+1

ϑ∗
j∆Xj + λ

T∑
j=k+1

Xj |∆ϑ∗
j+1| ∈ L2(P ).

c) There exists an Fk−1-measurable random variable δ∗k with values in [−1,+1] such
that if we define νk by (3.1), then we have

(3.3) ϑ∗
k =

Cov
(
E[W ∗

k |Fk] + λνkXkϑ
∗
k+1, Xk(1 + λνk)

∣∣Fk−1

)
Var[Xk(1 + λνk)|Fk−1]

P -a.s.
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d) ϑ∗
k∆Xk ∈ L2(P ).

e) ϑ∗
k minimizes

Var
[
E[W ∗

k |Fk] − ϑk∆Xk + λXk|ϑ∗
k+1 − ϑk|

∣∣Fk−1

]
over all Fk−1-measurable random variables ϑk satisfying ϑk∆Xk ∈ L2(P ) and
ϑkXk ∈ L2(P ).

Once all this is established, we define η∗ by

η∗k := E[W ∗
k |Fk] − ϑ∗

k+1Xk for k = 0, 1, . . . , T .

Then η∗ is clearly adapted and ϑ∗
k+1Xk+η∗k ∈ L2(P ) by b) so that thanks to d), ϕ∗ = (ϑ∗, η∗)

will be a strategy satisfying ϑ∗
T+1 = ϑ̄T+1 and η∗T = η̄T . By the definitions of η∗ and W ∗

k ,
Vk(ϕ∗) = E[W ∗

k |Fk] for all k and C(ϕ∗) is a martingale. Hence we conclude from e) and
Proposition 2 that ϕ∗ is locally risk-minimizing. Moreover, the definition of η∗ implies that

E[W ∗
k |Fk] + λνkXkϑ

∗
k+1 = V ν

k (ϕ∗),

and so (3.2) is just a restatement of (3.3).
To complete the proof, it thus remains to establish a) – e). If we define ϑ∗

T+1 := ϑ̄T+1, it
is clear from (1.4) and (1.5) that a) and b) hold for k = T . We shall show that the validity of
a) and b) for any k implies the existence of an Fk−1-measurable random variable ϑ∗

k satisfying
c) – e) for k, and that this in turn implies the validity of a) and b) for k − 1.

So assume that a) and b) hold for k. Set

sign(x) := sign(x) + I{x=0} :=
{+1 for x ≥ 0
−1 for x < 0

,(3.4)

sign(x) := sign(x) − I{x=0} :=
{

+1 for x > 0
−1 for x ≤ 0

,

and define the functions

fk(c, ω) := Var
[
E[W ∗

k |Fk] − cXk + λXk|ϑ∗
k+1 − c|

∣∣Fk−1

]
(ω)

and

gk(c, α, ω) := Cov
(
E[W ∗

k |Fk] + λXkϑ
∗
k+1S

(α,c)
k , Xk

(
1 + λS

(α,c)
k

) ∣∣∣Fk−1

)
(ω)

− cVar
[
Xk

(
1 + λS

(α,c)
k

) ∣∣∣Fk−1

]
(ω)

with
S

(α,c)
k := α sign(ϑ∗

k+1 − c) + (1 − α) sign(ϑ∗
k+1 − c),

where the conditional variances and covariances are all computed with respect to a regular
conditional distribution of (E[W ∗

k |Fk], Xk, ϑ
∗
k+1) given Fk−1. From Propositions A2 and A3

in the appendix, we then obtain the existence of an Fk−1-measurable random variable ϑ∗
k

and an Fk−1-measurable random variable α∗
k with values in [0, 1] such that

(3.5) fk
(
ϑ∗
k(ω), ω

)
≤ fk(c, ω) P -a.s. for all c
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and

(3.6) gk
(
ϑ∗
k(ω), α∗

k(ω), ω
)

= 0 P -a.s.

If we define δ∗k := 2α∗
k − 1, then we get

S
(α∗

k,ϑ
∗
k)

k = sign(ϑ∗
k+1 − ϑ∗

k) + δ∗kI{ϑ∗
k+1=ϑ∗

k} = νk

and therefore (3.3) by rewriting (3.6) so that c) holds for k. Note that the ratio in (3.3) is
well-defined thanks to a), b) for k and the boundedness of νk.

Next we prove that d) holds for k. Let γ be any process in Γ with γk = νk and define

W γ
k := E[W ∗

k |Fk] + λνkXkϑ
∗
k+1.

By a) and b) for k, W γ
k ∈ L2(P ), and so (3.3) can be rewritten as

ϑ∗
k =

Cov
(
W γ

k ,∆Xγ
k

∣∣Fk−1

)
Var

[
∆Xγ

k

∣∣Fk−1

]
since Fk−1-measurable terms do not matter for the conditional variance and covariance. The
Cauchy-Schwarz inequality and Proposition 5 then imply that

E
[
(ϑ∗

k∆Xk)2
]
≤ E

[
Var

[
W γ

k

∣∣Fk−1

]
Var

[
∆Xγ

k

∣∣Fk−1

]E [
∆X2

k

∣∣Fk−1

]]

≤ 1
c
E

[
E

[
(W γ

k )2
∣∣Fk−1

] E
[
∆X2

k

∣∣Fk−1

]
Var[∆Xk|Fk−1]

]

≤ 1
c

(
1 + cMVT(0)

)
E

[
(W γ

k )2
]
< ∞

so that d) holds for k. Since X has substantial risk, we conclude as in the proof of Lemma 3
that ϑ∗

kXk−1 ∈ L2(P ) which establishes a) for k − 1. At the same time, we obtain ϑ∗
kXk =

ϑ∗
k∆Xk + ϑ∗

kXk−1 ∈ L2(P ) as required in e).
The validity of e) for k is now almost immediate. In fact, if ϑk is Fk−1-measurable and

satisfies ϑk∆Xk ∈ L2(P ) and ϑkXk ∈ L2(P ), then we have

Var
[
E[W ∗

k |Fk] − ϑk∆Xk + λXk|ϑ∗
k+1 − ϑk|

∣∣Fk−1

]
(ω) = fk

(
ϑk(ω), ω

)
P -a.s.

and so e) for k follows from (3.5). Finally,

W ∗
k−1 = W ∗

k − ϑ∗
k∆Xk + λXk|ϑ∗

k+1 − ϑ∗
k| ∈ L2(P )

due to b) for k, d) for k, a) for k and the square-integrability of ϑ∗
kXk. Thus b) holds for

k − 1, and this completes the induction.
q.e.d.

From an economic point of view, the next result is now the central contribution of this
paper. It provides a striking interpretation of the strategy ϕ∗ which can be viewed as a
robustness result for the approach of local risk-minimization. To formulate this, let us first
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point out that we could or should have been more precise in our terminology by calling
the strategy ϕ∗ in Theorem 6 “locally risk-minimizing for the price process X inclusive of
transaction costs”. In the same way, we can talk of a strategy which is “locally risk-minimizing
for a price process Z without transaction costs” if we replace X by Z and set λ = 0 in all
the definitions in section 1.

Theorem 7. Assume the conditions of Theorem 6. The strategy ϕ∗ which is locally risk-
minimizing for the price process X inclusive of transaction costs is then also the strategy
which is locally risk-minimizing for the price process Xν without transaction costs, where ν
is given by (3.1).

Proof. Let ϕ = (ϑ, η) be locally risk-minimizing for the price process Xν without transaction
costs and denote by Ṽk(ϕ) := ϑk+1X

ν
k + ηk and

C̃k(ϕ) := Ṽk(ϕ) −
k∑

j=1

ϑj∆Xν
j

the corresponding value and cost processes, when the price process is Xν . Since Xν has a
bounded mean-variance tradeoff by Proposition 5, the results of Schweizer (1988) then imply
that C̃(ϕ) is a martingale and that

ϑk =
Cov

(
∆Ṽk(ϕ),∆Xν

k

∣∣∣Fk−1

)
Var

[
∆Xν

k

∣∣Fk−1

] P -a.s. for k = 1, . . . , T .

(Actually, this is not quite true as it stands: since the value process is defined differently in
Schweizer (1988), we also have to show that the resulting locally risk-minimizing strategy is
the same as with the present definition of Ṽ (ϕ). This will be done in subsection 4.1.) By
the definition of V ν(ϕ) in (2.1), we have Ṽ (ϕ) = V ν(ϕ), and so (3.2) shows that ϑ and ϑ∗

coincide. Moreover, C̃(ϕ) = C(ϕ) by (2.3), and since ϕ is mean-self-financing according to
Lemma I.7 of Schweizer (1988), C̃(ϕ) = C(ϕ) is a martingale. By Lemma 1, so is C(ϕ∗), and
since both have the same terminal value

H −
T∑

j=1

ϑj∆Xν
j = H −

T∑
j=1

ϑ∗
j∆Xν

j ,

C(ϕ) and C(ϕ∗) must coincide, hence also η and η∗.
q.e.d.

Theorem 7 shows that the criterion of local risk-minimization possesses a remarkable kind
of robustness property under the addition of transaction costs. In fact, it tells us that we
can construct a strategy which is locally risk-minimizing for X inclusive of transaction costs
by first re-valuing the stock at a suitable price Xν within the bid-ask range and then simply
minimizing the risk locally for transaction cost free prices set at Xν . This stability property
of local risk-minimization complements results of Prigent (1995) and Runggaldier/Schweizer
(1995) on stability under convergence and can thus be viewed as yet another argument in
favour of this approach to the hedging of contingent claims.
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Remark. To put things into perspective, we should perhaps add here that Theorem 7 is
primarily a theoretical structural result. To effect the transformation from X to Xν , we have
to know ν which is given by (3.1). But this raises two difficulties: to compute ν, we have to
know the optimal strategy ϑ∗, and we also have to find δ∗ which is in general only given by
an existence result. We shall see below that — as in most transaction cost problems — it
seems very difficult to obtain more explicit expressions for the optimal strategy ϕ∗.

Thanks to the identification in Theorem 7, we can also say more about the value process
of the optimal strategy ϕ∗. To do this, we first recall the notion of the minimal signed
martingale measure P̂ γ for Xγ , where γ ∈ Γ. Define the process Ẑγ by

Ẑγ
k :=

k∏
j=1

(
1 −

E
[
∆Xγ

j

∣∣Fj−1

]
Var

[
∆Xγ

j

∣∣Fj−1

] (
∆Xγ

j − E
[
∆Xγ

j

∣∣Fj−1

]))

=
k∏

j=1

(
1 −

∆Aγ
j

E
[
(∆Mγ

j )2
∣∣Fj−1

]∆Mγ
j

)
,

where Xγ = Xγ
0 + Mγ + Aγ is the Doob decomposition of Xγ . If Xγ has a bounded mean-

variance tradeoff, it is not hard to check that Ẑγ is a square-integrable P -martingale starting
at 1 and that ẐγXγ is also a P -martingale; see for instance Schweizer (1995). We are therefore
justified in calling the signed measure P̂ γ defined by

dP̂ γ

dP
:= Ẑγ

T

a signed martingale measure for Xγ , and we can define conditional expectations under P̂ γ

via the Bayes rule by

Êγ [U�|Fk] :=
1

Ẑγ
k

E
[
U�Ẑ

γ
�

∣∣∣Fk

]
for any F�-measurable random variable U� ∈ L2(P ).

Corollary 8. Assume the conditions of Theorem 6 and let ϕ∗ be locally risk-minimizing
inclusive of transaction costs for the contingent claim (ϑ̄T+1, η̄T ). Then we have

(3.7) V ν
k (ϕ∗) = Êν

[
ϑ̄T+1X

ν
T + η̄T

∣∣Fk

]
P -a.s. for k = 0, 1, . . . , T ,

where ν is given by (3.1).

Proof. Thanks to Theorem 7, this is well known from the results of Schweizer (1988, 1995)
on local risk-minimization without transaction costs, but for completeness we give a proof
based on Theorem 6. Since V ν

T (ϕ∗) = ϑ̄T+1X
ν
T + η̄T , it is enough to show that V ν(ϕ∗) is a

P̂ ν-martingale or more precisely that ẐνV ν(ϕ∗) is a P -martingale. Since ϕ∗ is locally risk-
minimizing inclusive of transaction costs, we know from Lemma 1 and (2.3) that the cost
process

C(ϕ∗) = V ν(ϕ∗) −
∑

ϑ∗
j∆Xν

j
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is a P -martingale, and so plugging in (3.2) yields

0 = Var
[
∆Xν

k

∣∣Fk−1

]
E

[
∆V ν

k (ϕ∗) − ϑ∗
k∆Xν

k

∣∣Fk−1

]
= E

[
Var

[
∆Xν

k

∣∣Fk−1

]
∆V ν

k (ϕ∗)
∣∣∣Fk−1

]
− Cov

(
∆V ν

k (ϕ∗),∆Xν
k

∣∣Fk−1

)
E

[
∆Xν

k

∣∣Fk−1

]
= E

[
∆V ν

k (ϕ∗)
(
Var

[
∆Xν

k

∣∣Fk−1

]
− E

[
∆Xν

k

∣∣Fk−1

] (
∆Xν

k − E
[
∆Xν

k

∣∣Fk−1

]) )∣∣∣Fk−1

]
= Var

[
∆Xν

k

∣∣Fk−1

]
E

[
∆V ν

k (ϕ∗)
Ẑν
k

Ẑν
k−1

∣∣∣∣∣Fk−1

]

which proves the assertion.
q.e.d.

Like Theorem 7, Corollary 8 has a very appealing economic interpretation. It tells us
that the value process of a locally risk-minimizing strategy under transaction costs is the
conditional expectation of the terminal payoff to be hedged under a certain (signed) measure
P̂ ν . This P̂ ν has the property that it turns into a martingale one particular process (namely
Xν) which lies between the bid and ask price processes for our stock. In the terminology
of Jouini/Kallal (1995), we have therefore identified P̂ ν as that (generalized) price system
consistent with transaction costs which corresponds to the criterion of local risk-minimization
inclusive of transaction costs. We say “generalized” since P̂ ν is typically not equivalent to
P , but only a signed measure.

4. Special cases and examples

4.1. The case of no transaction costs

Consider first the case where λ = 0 so that there are no transaction costs. We show in this
subsection that we then recover from Theorem 6 the results obtained in Schweizer (1988).
This is not immediately evident since we use here slightly different definitions. Recall that
in Schweizer (1988), the value and cost processes of a strategy ϕ = (ϑ, η) were defined as

Ṽk(ϕ) := ϑkXk + ηk for k = 0, 1, . . . , T

with ϑ0 := 0 and

C̃k(ϕ) := Ṽk(ϕ) −
k∑

j=1

ϑj∆Xj for k = 0, 1, . . . , T ,

and a contingent claim was simply an FT -measurable random variable H ∈ L2(P ). Under the
assumption that X has a bounded mean-variance tradeoff, a locally risk-minimizing strategy
ϕ̃ for H was then characterized by the properties that ṼT (ϕ̃) = H P -a.s., C̃(ϕ̃) is a martingale
and

(4.1) ϑ̃k =
Cov

(
∆Ṽk(ϕ̃),∆Xk

∣∣∣Fk−1

)
Var[∆Xk|Fk−1]

P -a.s. for k = 1, . . . , T .
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Let us now show that for λ = 0, the strategy ϕ∗ in Theorem 6 gives the same solution
as the preceding ϕ̃. More precisely, we do not have ϕ∗ = ϕ̃, but we claim that ϑ∗ = ϑ̃ and
V (ϕ∗) = Ṽ (ϕ̃), provided of course that H is given by H = ϑ̄T+1XT + η̄T . In fact, it is obvious
that

VT (ϕ∗) = H = ṼT (ϕ̃) P -a.s.

and therefore

ϑ∗
T =

Cov (H,∆XT |FT−1)
Var[∆XT |FT−1]

= ϑ̃T P -a.s.

by (3.2) and (4.1), since Xν = X for λ = 0. If we already know that Vk+1(ϕ∗) = Ṽk+1(ϕ̃)
and ϑ∗

k+1 = ϑ̃k+1, the martingale property of C(ϕ∗) and C̃(ϕ̃) gives

E[∆Vk+1(ϕ∗)|Fk] = ϑ∗
k+1E[∆Xk+1|Fk] = E[∆Ṽk+1(ϕ̃)|Fk]

and therefore Vk(ϕ∗) = Ṽk(ϕ̃) P -a.s. This implies in turn that ϑ∗
k = ϑ̃k again by (3.2) and

(4.1), and so the assertion follows by backward induction.
Note that due to the differing definitions of V (ϕ) and Ṽ (ϕ), we cannot have η∗ = η̃ in

general. But for practical purposes, ϕ∗ and ϕ̃ can clearly be viewed as equivalent. We remark
that the preceding argument clears up a point that was left open in the proof of Theorem 7.

4.2. The case where Ω is finite

For a finite probability space Ω, the problem of finding a locally risk-minimizing strategy
inclusive of transaction costs has also been studied by Mercurio/Vorst (1997). They also
assert the existence of an optimal strategy, but their proof does not seem to be completely
rigorous. Moreover, they do not obtain any expression for the optimal strategy.

So let Ω be finite and X strictly positive. Our main point in this subsection is that in
any non-degenerate finite event tree model, all the assumptions of Theorem 6 are satisfied
as soon as the transaction cost parameter λ is sufficiently small. A finite event tree model
is defined by the properties that F0 = {∅,Ω}, IF is generated by X and Ω is finite with
P [{ω}] > 0 for all ω ∈ Ω. This implies that X0 is deterministic and that the returns

�k(ω) :=
Xk(ω)

Xk−1(ω)
− 1

can only take a finite number of values for each ω at each date k. The date-price pairs(
k,Xk(ω)

)
can then be viewed as the nodes of a tree with root (0, X0) which completely

describes IF and X; this explains the terminology. A finite event tree model is called non-
degenerate if each return variable �k takes at least two distinct values. In the tree notation,
this means that each node has at least two branches leaving from it, while in mathematical
terms, it simply says that Var[∆Xk|Fk−1](ω) > 0 for all k and ω. Since Ω is finite, it is clear
that X has then substantial risk and a bounded mean-variance tradeoff.

Lemma 9. Let

�min := max
k,ω

max
{
Y

∣∣Y is Fk−1-measurable and Y ≤ �k
}

and

�max := min
k,ω

min
{
Y

∣∣Y is Fk−1-measurable and Y ≥ �k
}
.
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If λ satisfies

(4.2)
1 + λ

1 − λ
<

1 + �max

1 + �min
,

then (2.5) holds uniformly for all γ ∈ Γ.

Proof. Because Ω is finite, it is enough to show that Var
[
∆Xγ

k

∣∣Fk−1

]
(ω) is bounded below

uniformly in γ ∈ Γ for each k and each ω. Since

Var
[
∆Xγ

k

∣∣Fk−1

]
= Var [∆Xk + λγkXk|Fk−1] = X2

k−1Var [�k + λγk(1 + �k)|Fk−1]

and X is strictly positive, it is sufficient to obtain a lower bound for

Var [�k + λγk(1 + �k)|Fk−1] (ω)

which is uniform in γ. If we define

�k−1 := max
{
Y

∣∣Y is Fk−1-measurable and Y ≤ �k
}
,

uk−1 := min
{
Y

∣∣Y is Fk−1-measurable and Y ≥ �k
}
,

then clearly the complement of (�k−1, uk−1) will be hit by �k with positive conditional prob-
ability given Fk−1. By the definition of Γ, each γk has values in [−1,+1]; for each γ ∈ Γ, the
conditional probability given Fk−1 that

Z
(γ)
k := �k + λγk(1 + �k) = �k(1 + λγk) + λγk

hits the complement of the Fk−1-measurable interval

Ik−1 :=
(
�k−1(1 + λ) + λ, uk−1(1 − λ) − λ

)
is therefore also positive. If Ik−1(ω) is non-empty, Var

[
Z

(γ)
k

∣∣∣Fk−1

]
(ω) must then be > 0,

and the lower bound will be uniform in γ since Ik−1 does not involve γ. But a sufficient
condition for Ik−1(ω) �= ∅ for all k and all ω is obviously(

max
k,ω

�k−1(ω)
)

(1 + λ) + λ <

(
min
k,ω

uk−1(ω)
)

(1 − λ) − λ,

and so (4.2) implies the desired assertion.
q.e.d.

By rewriting (4.2) as

λ <
�max − �min

�max + �min + 2
,

we thus conclude that for sufficiently small transaction costs, we can always find a locally
risk-minimizing strategy if we have a non-degenerate finite event tree model. For a binomial
model where each �k takes values in {u, d} only, (4.2) reduces to the condition

(4.3)
1 + λ

1 − λ
<

1 + u

1 + d
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which also appears in Boyle/Vorst (1992) and Koehl/Pham/Touzi (1996); see the discussion
in the next subsection.

4.3. Attainable claims

In this subsection, we briefly discuss those claims which can be perfectly hedged including
transaction costs. For a more detailed study, we refer to Koehl/Pham/Touzi (1996).

Definition. A contingent claim (ϑ̄T+1, η̄T ) is called attainable if there exists a strategy
ϕ = (ϑ, η) with ϑT+1 = ϑ̄T+1, ηT = η̄T and such that the cost process C(ϕ) is almost surely
constant over time. As usual, ϕ is then called self-financing (inclusive of transaction costs).

Clearly, a contingent claim is attainable if and only if it can be hedged by a locally risk-
minimizing strategy whose risk process is identically zero with probability one. In particular,
this implies that the terminal value H = ϑ̄T+1XT + η̄T can be written as

H = H0 +
T∑

j=1

ϑH
j ∆Xj − λ

T∑
j=1

Xj

∣∣∆ϑH
j+1

∣∣ P -a.s.

for some ϑH ∈ Θ(X); the optimal strategy is then ϕ∗ = ϕ = (ϑH , η∗), and its value process
is given by

Vk(ϕ∗) = H0 +
k∑

j=1

ϑH
j ∆Xj − λ

k∑
j=1

Xj

∣∣∆ϑH
j+1

∣∣ P -a.s. for k = 0, 1, . . . , T .

The problem of finding a self-financing strategy including transaction costs was first
studied by Boyle/Vorst (1992) in a binomial model, where the returns �k are i.i.d. with
values in {u, d}. They showed by elementary calculations that European call and put options
are attainable, that their values at time 0 are given by an expectation quite analogous to (3.7),
and that the attaining self-financing strategies are unique. Their results were subsequently
extended to arbitrary attainable claims in general (not necessarily finite) discrete-time models
by Koehl/Pham/Touzi (1996) who showed in particular that a similar condition as (4.2) is
sufficient for the uniqueness of the self-financing strategy. Moreover, Koehl/Pham/Touzi
(1996) also proved that the price of H at date 0 is given by H0 and that it can be written
as an expectation under a suitable measure QH as in (3.7). Other related work in binomial
models was done by Merton (1989), Shen (1991) and Shirakawa/Konno (1995), among others.
However, all these papers did not use local risk-minimization.

4.4. Settlement modes and uniqueness issues

A natural question in our problem is the uniqueness of the optimal strategy. We have not
been able to obtain a general result so far, but we can give at least some partial answers. Since
uniqueness is closely related to the way that options are settled, we first briefly discuss the
latter issue in the special case where the contingent claim under consideration is a European
call option on X with maturity T and strike price K. For this contract, there are at least
three different ways to specify the terminal condition (ϑ̄T+1, η̄T ). Settlement with delivery
means that upon exercise, the option writer has to hand over physically one share of stock
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in exchange for K units of cash so that

ϑ̄T+1 = I{(1+λ)XT>K},

η̄T = −KI{(1+λ)XT>K}.

With cash settlement , the option writer has to pay out in cash the value of the option at date
T . In this case, we have

ϑ̄T+1 = 0,

η̄T =
(
(1 + λ)XT −K

)+ =
(
(1 + λ)XT −K

)
I{(1+λ)XT>K}.

Finally, settlement up to the seller means that the option writer can give the option holder
any portfolio (ϑ̄T+1, η̄T ) of his own choice as long as its value H = ϑ̄T+1XT + η̄T is equal to
the option’s value

(
(1 + λ)XT −K

)+.
For contingent claims which are attainable in the sense of the preceding subsection, the

results of Koehl/Pham/Touzi (1996) show that an analogue of (4.2) always implies uniqueness
of the corresponding optimal strategy. Provided that call options are attainable, this would
guarantee uniqueness for both cash settlement and settlement with delivery. On the other
hand, it is not surprising that there will never be uniqueness for the case of settlement up to
the seller if transaction costs are different from 0. To see this, take K = 0 and consider first
the simple buy-and-hold strategy ϕ given by

ϑk = 1 + λ for k = 1, . . . , T + 1,
ηk = 0 for k = 0, 1, . . . , T .

This strategy is clearly self-financing, hence locally risk-minimizing, and it has a terminal
value of (1 + λ)XT . Its initial cost is (1 + λ)X0 if we neglect as usual transaction costs at
date 0. An alternative strategy ϕ′ is given by

ϑ′
k =

{
1+λ
1−λ for k = 1, . . . , T
0 for k = T + 1 ,

η′k =
{

0 for k = 0, . . . , T − 1
(1 + λ)XT for k = T .

Clearly, this strategy also leads to a final value of (1 + λ)XT . Its only transaction is at date
T where it generates a cost increment of

∆CT (ϕ′) = ∆VT (ϕ′) − ϑ′
T∆XT + λXT |∆ϑ′

T+1|

= (1 + λ)XT − 1 + λ

1 − λ
XT−1 −

1 + λ

1 − λ
∆XT + λXT

1 + λ

1 − λ

= 0.

Hence ϕ′ is also self-financing and therefore locally risk-minimizing. Its initial cost is 1+λ
1−λX0,

and it is obviously different from the first strategy. Since ϕ′ is unambiguously more expensive,
it is of course clear that one will discard it in favour of the buy-and-hold strategy ϕ. But our
main point here is that the criterion of local risk-minimization alone may be insufficient to
make such a distinction.
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4.5. Explicit calculations in an example

It is a familar feature of all models involving transaction costs that explicit expressions
for option values or hedging strategies are rather difficult to obtain. Not surprisingly, this
also happens in our present approach. To illustrate how far one can go, we consider in
this subsection a model with i.i.d. returns where IF is generated by X and the returns �k
are i.i.d. random variables in L2(P ). This implies that Xk = Xk−1(1 + �k), where each
�k is independent of Fk−1 and distributed like some fixed random variable �. To have X
nonnegative and not constant, we assume that � ≥ −1 P -a.s. and that Var[�] > 0. The
mean-variance tradeoff process of X is then given by

∆K̂� =
(E[∆X�|F�−1])

2

Var[∆X�|F�−1]
=

(E[�])2

Var[�]
for � = 1, . . . , T ;

it is clearly bounded, and

cMVT(0) =
(E[�])2

Var[�]
.

Moreover,
X2

k−1

E
[
∆X2

k

∣∣Fk−1

] =
1

E[�2]
for k = 1, . . . , T ,

and so we see that X has also substantial risk and

cSR =
1

E[�2]
.

Finally, condition (2.6) takes the form

λ ≤ δ

2

√
Var[∆Xk|Fk−1]
E

[
X2

k

∣∣Fk−1

] =
δ

2

√
Var[�]

E [(1 + �)2]

for some δ < 1.

Example. Suppose that 1 + �k is lognormally distributed with parameters bh and σ2h, i.e.,

(4.4) 1 + �k = exp
(
bh + σ

√
hZk

)
for i.i.d. standard normal random variables Zk. This corresponds to a discretization of the
well-known Black-Scholes model of geometric Brownian motion,

St = S0 exp (bt + σWt)
or

dSt

St
=

(
b +

1
2
σ2

)
dt + σ dWt,

with a discretization step size of h: we simply take Xk = Skh. If S has growth rate µ and
the instantaneous interest rate is r in continuous time, b is given by b = µ− r− 1

2σ
2. For this

example, we obtain

cMVT(0) =

(
e(b+

1
2σ

2)h − 1
)2

e(2b+σ2)h
(
eσ2h − 1

) =

(
b + 1

2σ
2
)2

σ2
h + O(h2)
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and
1

cSR
= e(2b+2σ2)h − 2e(b+

1
2σ

2)h + 1 = σ2h + O(h2).

As h tends to 0, a uniform bound on cMVT(0) corresponds to the boundedness of the squared
market price of risk (

b + 1
2σ

2
)2

σ2
=

(
µ− r

σ

)2

.

This is a familiar condition from other work on more general continuous-time models with
random coefficients µ, r, σ. On the other hand, cSR explodes as h tends to 0 which seems to
bode ill for a continuous-time version of the present approach. However, a moment’s thought
reveals that things are not as bad as they may appear. In fact, the condition of substantial
risk imposes a lower bound on the returns in the form

E
[
�2
k

∣∣Fk−1

]
≥ 1

cSR
,

and the natural continuous-time analogue of this assumption is that the time derivative of the
quadratic variation of the return process should be uniformly bounded below. In a diffusion
model of the Black-Scholes type, this is simply the familiar condition that the volatility matrix
should be uniformly elliptic.

Finally, let us look at the condition (2.6) of small transaction costs which states that

2λ

√
E

[
X2

k

∣∣Fk−1

]
Var[∆Xk|Fk−1]

= 2λ

√
e(2b+2σ2)h

e(2b+σ2)h
(
eσ2h − 1

)
should be of the order O(1). Squaring out and comparing with (2.6) shows that this requires

λ ≤ δ
σ

2

√
h + O(h)

for some δ < 1 so that the transaction cost parameter λ should be of the order
√
h. This is in

perfect agreement with all known asymptotic results on option pricing under transaction costs;
see for instance Henrotte (1993), Lott (1993), Kusuoka (1995), Kabanov/Safarian (1997) or
Ahn/Dayal/Grannan/Swindle (1995). This ends the example.

Remark. As pointed out by the referee, typical market conditions (λ = .05% and σ = 15%)
lead to a minimum step size of the order of one hour which is perfectly reasonable. For less
liquid markets, however, (2.6) may be a genuine restriction.

We now return to our general model with i.i.d. returns and consider the contingent claim

ϑ̄T+1 = 0 , η̄T = |XT |β

for some β > 0. (Although X is nonnegative, we write absolute values to avoid confusion
with the processes Xγ for γ ∈ Γ.) Proposition 2 tells us that to compute ϑ∗

T , we have to
minimize

Var
[
VT (ϕ∗) − ϑT∆XT + λXT |ϑ∗

T+1 − ϑT |
∣∣FT−1

]
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with respect to ϑT . Since the function c �→ c − λ|c| is a bijection for 0 ≤ λ < 1 and since
VT (ϕ∗) = |XT |β and ϑ∗

T+1 = ϑ̄T+1 = 0, we obtain

ϑ∗
T − λ|ϑ∗

T | =
Cov

(
VT (ϕ∗), XT

∣∣FT−1

)
Var[XT |FT−1]

= |XT−1|β−1 Cov
(
(1 + �)β , �

)
Var[�]

≥ 0,

because Cov(Y β , Y ) ≥ 0 for β > 0. This implies that

(4.5) ϑ∗
T =

1
1 − λ

|XT−1|β−1 Cov
(
(1 + �)β , �

)
Var[�]

= b|XT−1|β−1

with

b :=
1

1 − λ

Cov
(
(1 + �)β , �

)
Var[�]

≥ 0.

From the martingale property of C(ϕ∗), the optimal value at date T − 1 is then given by

VT−1(ϕ∗) = E
[
VT (ϕ∗) − ϑ∗

T∆XT + λXT |∆ϑ∗
T+1|

∣∣FT−1

]
(4.6)

= E
[
|XT |β − b|XT−1|β−1XT−1�T + λXT−1(1 + �T )b|XT−1|β−1

∣∣FT−1

]
= |XT−1|βE

[
(1 + �)β − b� + λb(1 + �)

]
= c|XT−1|β

with
c := E

[
(1 + �)β

]
+ b

(
λ− (1 − λ)E[�]

)
.

Let us now assume that � has a continuous distribution. The same then holds for

ϑ∗
T = b

T−1∏
j=1

(1 + �j)β−1, and so

(4.7) I{ϑ∗
T

=ϑT−1} = 0 P -a.s. for every FT−2-measurable random variable ϑT−1.

By Proposition 2, the optimal ϑ∗
T−1 minimizes

Var
[
VT−1(ϕ∗) − ϑT−1∆XT−1 + λXT−1|ϑ∗

T − ϑT−1|
∣∣FT−2

]
with respect to ϑT−1 and satisfies

(4.8) ϑ∗
T−1 =

Cov
(
VT−1(ϕ∗) + λXT−1ϑ

∗
T sign(∆ϑ∗

T ), XT−1

(
1 + λ sign(∆ϑ∗

T )
)∣∣∣FT−2

)
Var

[
XT−1

(
1 + λ sign(∆ϑ∗

T )
)∣∣FT−2

]
according to Theorem 6 and (4.7). Plugging in (4.5) and (4.6) for ϑ∗

T and VT−1(ϕ∗) therefore
shows that ϑ∗

T−1 is a solution of the implicit equation

ϑ∗
T−1 = F

(
ϑ∗
T−1, |XT−2|β−1

)
,

where the function F is defined by

(4.9) F (t, z) := z
Cov

(
(1 + �)β

(
c + λbf(t, z, �)

)
, (1 + �)

(
1 + λf(t, z, �)

))
Var

[
(1 + �)

(
1 + λf(t, z, �)

)]
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with

(4.10) f(t, z, �) := sign
(
bz(1 + �)β−1 − t

)
.

It would now be very pleasant to have ϑ∗
T and ϑ∗

T−1 of opposite signs because this would
force the signs in (4.8) and (4.10) to always equal 1. Since ϑ∗

T ≥ 0 P -a.s., let us suppose for
a moment that ϑ∗

T−1 ≤ 0 P -a.s. This implies that

ϑ∗
T−1 =

Cov
(
c|XT−1|β + λb|XT−1|β , XT−1(1 + λ)

∣∣FT−2

)
Var

[
XT−1(1 + λ)

∣∣FT−2

]
= |XT−2|β−1 c + λb

1 + λ

Cov
(
(1 + �)β , 1 + �

)
Var[1 + �]

,

and so we see that we then must have

c + λb ≤ 0.

However,
c + λb = E

[
(1 + �)β

]
+ 2λb− b(1 − λ)E[�]

will not always be nonpositive; a simple counter-example is the case where E[�] = 0 which
is here equivalent to saying that X is a martingale. In general, the sign of ϑ∗

T − ϑ∗
T−1 will

therefore be random, and this unfortunately makes the analysis of F and its fixed point very
complicated.

Example (continued). Consider again the case where 1+�k is lognormally distributed
with parameters bh and σ2h as in (4.4). Then we can compute the function F in (4.9) more
explicitly since it reduces to various combinations of expressions of the form

E
[
(1 + �)αI{bz(1+
)β−1−t>0}

]
=: h>(α, t, z).

and
E

[
(1 + �)αI{bz(1+
)β−1−t<0}

]
=: h<(α, t, z).

An elementary calculation with the lognormal distribution yields

h>(α, t, z) =

⎧⎪⎪⎨⎪⎪⎩
ebα+ 1

2α
2σ2

Φ
(

b+ασ2− 1
β−1 log t

bz

σ

)
for β > 1

ebα+ 1
2α

2σ2
Φ

(
1

β−1 log t
bz−b−ασ2

σ

)
for β < 1

and
h<(α, t, z) = 1 − h>(α, t, z),

where Φ is as usual the distribution function of the standard normal distribution. Thus we
can express F (t, z) in explicit form with the help of the functions h>(α, t, z) and h<(α, t, z)
for suitable values of α. However, the result is still fairly complicated and does not provide
much help for the determination of ϑ∗

T−1. It seems at present that the only way to find an
optimal strategy is to compute the fixed point of F numerically and to proceed from there.
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Appendix: An abstract conditional optimization problem

This appendix contains a general technical result which is used in the proof of our main
result in section 3. Let (Ω,F , P ) be a probability space and G ⊆ F a sub-σ-algebra of F . Let
U, Y, Z be F-measurable real-valued random variables satisfying U ∈ L2(P ), Z ∈ L2(P ) and
Y Z ∈ L2(P ), and let λ ∈ [0, 1) be a fixed real number. We consider the conditional variance

f(c, ω) := Var
[
U − cZ + λZ|Y − c|

∣∣G]
(ω)

and want to show that it is minimized almost surely at some c∗(ω) which is G-measurable and
can be described more explicitly with the help of the first order conditions for optimality. Since
U, Y, Z are real random variables, there exists a regular conditional distribution for (U, Y, Z)
given G. In the sequel, all conditional expectations, variances and covariances given G which
involve U , Y and Z will be computed with respect to this regular conditional distribution.

Lemma A1. For P -almost every ω, c �→ f(c, ω) is a continuous function with left- and
right-hand derivatives f ′

−(c, ω) and f ′
+(c, ω) given by

f ′
−(c, ω) = −2Cov

(
U − cZ + λZ|Y − c|, Z

(
1 + λ sign(Y − c)

)∣∣∣G)
(ω)

and

f ′
+(c, ω) = −2Cov

(
U − cZ + λZ|Y − c|, Z

(
1 + λ sign(Y − c)

)∣∣∣G)
(ω),

respectively, where sign and sign are defined by (3.4).

Proof. The continuity of f in c is obvious, and by symmetry, it is enough to prove the
formula for f ′

+. From the definition of f , we obtain

f(c + h, ω) − f(c, ω)
h

= Cov
(
−Z + λZ

|Y − c− h| − |Y − c|
h

, 2U − 2cZ − hZ + λZ(|Y − c− h| + |Y − c|)
∣∣∣∣G)

(ω)

for any h > 0. Since

lim
h↘0

|Y − c− h| − |Y − c|
h

= − sign(Y − c) P -a.s.

and ∣∣|Y − c− h| − |Y − c|
∣∣ ≤ h,

the dominated convergence theorem yields

f ′
+(c, ω) = lim

h↘0

f(c + h, ω) − f(c, ω)
h

= Cov
(
−Z − λZ sign(Y − c), 2U − 2cZ + 2λZ|Y − c|

∣∣G)
(ω)

which proves the assertion.
q.e.d.
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The next result establishes the existence of a G-measurable minimizer c∗.

Proposition A2. Assume that Var[Z|G] > 0 P -a.s. Then there exists a G-measurable
random variable c∗ such that for P -almost every ω,

f
(
c∗(ω), ω

)
≤ f(c, ω) for all c ∈ IR.

Proof. We first show that

(A.1) lim
|c|→∞

f(c, ω) = +∞ P -a.s.

In fact, writing |Y − c| = (Y − c) sign(Y − c) yields

f(c, ω) = c2Var[Z + λZ sign(Y − c)|G](ω)

− 2cCov
(
Z

(
1 + λ sign(Y − c)

)
, U + λY Z sign(Y − c)

∣∣∣G)
(ω)

+ Var[U + λY Z sign(Y − c)|G](ω)

=: c2h1(c, ω) − 2c h2(c, ω) + h3(c, ω).

For fixed ω, h2(c, ω) and h3(c, ω) are both bounded as functions of c due to the integrability
assumptions on U, Y, Z. Moreover,

lim
c→±∞

h1(c, ω) = lim
c→±∞

Var
[
Z

(
1 + λ sign(Y − c)

)∣∣G]
(ω)

= Var[Z(1 ∓ λ)|G](ω)

= (1 ∓ λ)2Var[Z|G](ω) > 0 P -a.s.

by dominated convergence, and this implies (A.1). Due to the continuity of f(c, ω) in c, we
conclude that for P -almost all ω, c �→ f(c, ω) admits a minimum. In order to construct a
G-measurable minimizer, let Dn := {j2−n|j ∈ ZZ} be the set of dyadic rationals of order n
and define

cn(ω) := inf
{
c ∈ Dn

∣∣f(c, ω) ≤ f(c′, ω) for all c′ ∈ Dn

}
.

Since ω �→ f(c, ω) is G-measurable for fixed c, the random variable cn is clearly G-measurable.
(A.1) implies that

(
cn(ω)

)
n∈IN

is bounded in n for P -almost every ω, and from the continuity
of f(c, ω) in c, we conclude that c∗ := lim inf

n→∞
cn has all the desired properties.

q.e.d.

In order to describe c∗ with the help of the first order conditions for optimality, we now
introduce the function g on IR× [0, 1] × Ω defined by

g(c, α, ω) := Cov
(
U + λY ZSα,c, Z(1 + λSα,c)

∣∣G)
(ω) − cVar[Z(1 + λSα,c)

∣∣G](ω)

with
Sα,c := α sign(Y − c) + (1 − α) sign(Y − c).

Observe that
f ′
+(c, ω) = −2g(c, 0, ω)
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and
f ′
−(c, ω) = −2g(c, 1, ω)

by Lemma A1.

Proposition A3. Assume that Var[Z|G] > 0 P -a.s. and let c∗ be given as in Proposition
A2. Then there exists a G-measurable random variable α∗ with values in [0, 1] such that

g
(
c∗(ω), α∗(ω), ω

)
= 0 for P -almost every ω.

Proof. Since c∗(ω) minimizes c �→ f(c, ω) for P -almost every ω, we have

f ′
−

(
c∗(ω), ω

)
≤ 0 ≤ f ′

+

(
c∗(ω), ω

)
P -a.s.,

hence
g
(
c∗(ω), 0, ω

)
≤ 0 ≤ g

(
c∗(ω), 1, ω

)
P -a.s.

But ω �→ g
(
c∗(ω), α, ω

)
is G-measurable for every fixed α and α �→ g

(
c∗(ω), α, ω

)
is P -

a.s. continuous, and so the existence of α∗ follows from the subsequent lemma.
q.e.d.

Lemma A4. Let G be a real-valued function on [0, 1] × Ω satisfying

(A.2) ω �→ G(α, ω) is G-measurable for all α ∈ [0, 1]

and

For P -almost every ω ∈ Ω, α �→ G(α, ω) is continuous and satisfies(A.3)
G(0, ω)G(1, ω) ≤ 0.

Then there exists a G-measurable random variable α∗ with values in [0, 1] such that

G
(
α∗(ω), ω

)
= 0 for P -almost all ω.

Proof. (A.3) implies that for P -almost every ω, α �→ G(α, ω) has a zero in [0, 1] so that

min
α∈[0,1]

|G(α, ω)| = 0 P -a.s.

Thanks to (A.2), the existence of a G-measurable minimizer can thus be proved by virtually
the same argument as in the proof of Proposition A2.

q.e.d.
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