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This paper explores differences in the frequency with which students from different schools 
reach high levels of math achievement. Data from the American Mathematics Competitions is 
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to be very far from evenly distributed. There are strong demographic predictors of high 
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1 Introduction

There has been a great deal of recent interest in educational productivity. Understanding

differences across schools may provide insights into improvements that educational reforms

could bring. Where most of this literature focuses on differences in average achievement

levels, we explore heterogeneity in the rates with which different schools produce high-

achieving math students. We note that there are large differences related to student de-

mographics and estimate the distribution of unobserved school effects after controlling for

some of these. We find substantial heterogeneity among schools with similar demographics.

This includes a thick upper tail of schools that produce many more high-achievers than

would be expected given their demographics.

Roughly one can think of the “high achieving” math students we study as students who

would score 800 on the math portion of the SAT reasoning test.1 Several motivations can

be given for studying the rate at which schools produce such students. First, high-achieving

students make important contributions to scientific and technical fields, to human-capital

intensive industries, etc.2 Second, contrary to the impression one might get from the

popular press, the poor performance of U.S. math education is not limited to leaving some

students behind: international comparisons find that the U.S. trails most OECD nations

in the production of high-achieving math students (but not high-achieving students in

reading).3 Third, policies may have very different effects on high-achieving and average

students.4

The primary data source for our study is the Mathematical Association of America’s

AMC 12 contest. The “contest” consists of a 25-question multiple choice test on precalculus

topics which is given annually to over 100,000 U.S. students at about 3,000 high schools.
1800 is the highest possible score on the math SAT and is achieved by approximately 1 percent of

SAT-takers.
2See Hoxby (2002) for a quick discussion of educational productivity as a source of U.S. comparative

advantage. Krueger and Lindahl (2001) and Hanuschek and Woessmann (2008) provide surveys of the em-
pirical literature on education and growth. Some notable examples of high-achieving high school students
with a large economic impact are Microsoft’s Bill Gates, who coauthored a computer science paper as a Har-
vard freshman, Google’s Sergey Brin, who finished in the top 55 on the 1992 Putnam Exam, and Facebook’s
Mark Zuckerberg, who finished 13th on the Algebra test at the 2001 Harvard-MIT Math Tournament.

3Hanushek, Peterson and Woessmann (2011) note that “most of the world’s industrialized nations” have
a higher percentage of students reaching advanced levels on the 2006 PISA (Programme for International
Student Assessment) test than does the U.S. On the 2009 PISA math test just 1.9% of U.S. students achieved
“Level 6” scores, whereas the OECD average was 3.1% and Singapore had 15.6% of its students at this level.
PISA’s reading tests indicate that the U.S. is good at producing students with very high verbal achievement:
the U.S.’s perentage of “Level 6” reading students is well above the OECD average (1.5% vs. 0.8%).

4See Neal and Schanzenbach (2010) and Dee and Jacob (2009) for recent empirical studies of such
differences.
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The test is explicitly designed to distinguish among students at very high achievement

levels.5 Our primary measures of high achievement will be the number of students in each

school achieving AMC 12 scores above various cutoffs. We match AMC schools to schools

surveyed by the National Center for Education Statistics (NCES) and to census data to

obtain other covariates and conduct most of our analyses on the set of public, coed, non-

magnet, non-charter U.S. high schools that administer the AMC 12 and could be matched

to NCES data. Section 2 discusses the data in more detail.

The most basic question we address is whether there are substantial differences across

schools in the production of high-achieving math students (after one controls for demo-

graphic differences). Going back to Coleman (1966), many papers have emphasized that

differences in school-mean test scores are relatively “small” and much of the differences

that do exist can be explained by demographic differences in the student populations.6 In

contrast, the literature on teacher value added tends to emphasize that there is substantial

heterogeneity across teachers within a school.7

Our most basic finding is that there is a great deal of variation in the number of

high-achieving math students produced by schools with similar demographics. We present

several pieces of related evidence in Section 3. We begin with a simple informal comparison

of high-achieving and matched comparison ZIP codes. Most of the section is then devoted

to negative binomial regressions examining how the number of students with high AMC 12

scores is related to demographics and school characteristics. Demographics are found to be

very strong predictors of high math achievement. But substantial heterogeneity remains

after controlling for several variables. One noteworthy demographic finding is the income-

achievement relationship: income is positively correlated with high achievement in the full

national sample, but once we restrict to the relatively high quality schools which offer the

AMC tests, there are fewer high-achieving math students in more affluent areas.

Just as the literature on heterogeneity in teacher quality has produced interesting graphs

of the distribution of teacher value added, another objective of our paper is to provide

estimates of the underlying distribution of unobserved heterogeneity across schools.8. For

example, we estimate how many schools produce high-achieving students at less than one-
5See Ellison and Swanson (2010) for some evidence that the test is able to make meaningful distinctions.
6See Kane and Staiger (2002) for a discussion of differences across schools. Rothstein (2005) reports

that four demographic variables reflecting racial composition and parental education and a control for
participation rates account for 80% of the variation in school-average SAT scores.

7See, for example, McCaffrey et al. (2004), Aaronson, Barrow, and Sander (2007), Rivkin, Hanushek,
and Kain (2005), Kane and Staiger (2008), and Chetty et al. (2011).

8See Gordon, Kane,and Staiger (2006) for plots of the estimated distribution of teacher qualities obtained
by “shrinking” estimated teacher fixed effects to take out purely random variation.
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half of the expected rate, how many produce such students at more than twice the expected

rate, and so on. Counts of high-achieving students are inherently small, so there will

unavoidably be a great deal of randomness in the assessment of any individual school using

a single year’s data. Section 4 describes the methodology that we use to take out this

random variation and thereby back out estimates of the underlying heterogeneity. The

method involves a series expansion similar to that of Gurmu, Rilstone, and Stern (1999),

but relying on a different characterization of the likelihoods. Appendix I contains more

detail on the estimation along with Monte Carlo estimates illustrating the performance of

the estimator.

Section 5 presents estimates of the distribution of unobserved heterogeneity across

schools. Our main qualitative findings are that many schools produce high-achieving stu-

dents at much less than the average rate and that there is a strikingly thick tail of extremely

successful schools. For example, we estimate that about 38% of schools produce high-scoring

students at less than one-half of the average rate for schools with similar characteristics, and

that 2% of schools produce high-scoring students at more than five times the average rate.

We also provide estimates of the heterogeneity of school effects relevant to subpopulations,

including the likelihood of producing high-achieving female students. Here, the estimates

suggest that many schools are extremely unlikely to produce high-achieving girls.

Part of the outcome heterogeneity described in Section 5 is due to the self-selection of

high-ability students into certain public schools. Section 6 examines another data source

that may provide some insight on this effect: it examines differences in the rates at which

different schools produce students with extremely high SAT scores. We find that the esti-

mated distribution of unobserved heterogeneity derived from this measure of high achieve-

ment does not have the thick tail we see in the estimates derived from AMC data. If

self-selection of high-ability students is equally or more important in the production of stu-

dents with very high SAT scores, this would suggest that self-selection is not responsible

for the thick upper tail in the AMC data.

Our work is related to a number of literatures. One is the literature on quality differences

across schools affecting average achievement. This includes papers examining how inputs

affect achievement (Coleman (1966), Hanushek (1986), Card and Krueger (1992), etc.) and

papers that focus on differences in productivity related to competition (Hoxby (2000)),

vouchers (Hoxby (2000, 2002)) and charter schools (Angrist et al. (2002), Dobbie and

Fryer (2009), Hoxby et al. (2009)). Many of these papers control for selection effects and

estimate causal effects relevant to school reform debates.
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There are also a number of papers that discuss high-achieving students. Hanushek,

Peterson, and Woessmann (2011) note that PISA data indicate that the U.S. trails most

OECD countries in the fraction of students reaching high levels of math achievement.

Using a concordance between PISA and NAEP scores, they note that while there are large

differences across U.S. states, even the best performing U.S. states (and high-performing

demographic groups) have a lower percentage of high achievers than do many countries. A

number of papers have noted that proficiency-based reforms create an incentive for schools

to focus on students near the cutoff and that resource diversion could harm high-achieving

(and very low-achieving) students and examine such effects empirically.9 Bui, Craig, and

Imberman (2011), Abdulkadiroglu, Angrist, and Pathak (2011), and Dobbie and Fryer

(2011) examine the effects of gifted programs and magnet schools on (marginal) high ability

students using regression discontinuity designs. Andreescu et al. (2008), focuses on a much

higher percentile (roughly the 99.9999th), and has a message related to ours in noting that

the highest achieving students are a highly nonrepresentative sample of the U.S. population

ethnically and in the schools they attend.

The methodological part of our paper contributes to the econometric literature on count

data models. This literature contains many alternatives to the Poisson model that can bet-

ter fit datasets in which conditional means and variances are not equal. For example, the

classic negative binomial model does this by allowing for gamma-distributed unobserved

heterogeneity.10 Two approaches to semiparametric estimation have been developed for

applications where (as in our case) the distribution of underlying heterogeneity is an object

of interest.11 Brännäs and Rosenqvist (1994) develop an estimator along the lines of Simar

(1976) and Heckman and Singer (1984) which involves modeling the distribution of unob-

served heterogeneity as a finite number of mass points. Gurmu, Rilstone and Stern (1999)

develop a series estimator which involves representing the unobserved heterogeneity as the

product of a gamma-distributed density and function which is flexibly represented via an

orthogonal polynomial expansion. Our primary motivation for not simply adopting one of

these estimators is that previous Monte Carlo studies have suggested that they may not
9See Krieg (2008), Neal and Schanzenbach (2010), Dee and Jacob (2009). These papers assess perfor-

mance using state proficiency tests and/or the NAEP and focus on students at the 90th percentile as their
high-achieving population.

10Several other models allow for unobserved heterogeneity of other forms, and there are also approaches
that focus directly on flexibly estimating discrete distributions without an underlying Poisson model. See
Cameron and Trivedi (1998), Guo and Trivedi (2002), and Winkelmann (2008) for overviews.

11There are also semiparametric estimators in other branches of the count-data literature, e.g. Cameron
and Johansson (1997).
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work well in our application.12 Our approach is similar to that of Gurmu et al. (1999) in

that we also specify the distribution of underlying heterogeneity as a product of a gamma-

like density and a flexible orthogonal polynomial term using Laguerre polynomials. The

main difference is that we exploit other properties of the Laguerre polynomials to derive

a different expression for the probability of each outcome.13 Our expression does not in-

volve the moment generating function and Monte Carlo estimates indicate that it can work

reasonably well even with a fat-tailed distribution.

2 Data

The primary subject of our analysis is a database of scores on the Mathematical Associ-

ation of America’s AMC 12 contest from 2007.14 The AMC 12 is a 25-question, multiple

choice test that is explicitly designed to identify and distinguish among students at very

high performance levels. It is taken by a self-selected sample of mostly high-achieving

students, but the average score among U.S. students is just 66.3 of 150.15 We will focus

primarily on very high-achieving students who scored above 100 on the exam. As discussed

in Ellison and Swanson (2009), scoring 100 on the AMC 12 can be thought of as compa-

rably difficult to scoring 800 on the math SAT. The primary advantage of the AMC 12 is

that it is more reliable in this range and can also draw consistent distinctions at higher

percentiles. Approximately 5% of U.S. participants scored in excess of 100 on the AMC

12 (which places them approximately in the 99th percentile of the SAT-taking population)

and approximately 0.5% scored in excess of 120.

Our raw data are at the individual level, but only minimal information about each

student is available – age, grade, gender, home ZIP – so we will mostly aggregate the
12Heckman and Singer (1984) report that their method is better at estimating structural parameters than

at estimating distributions of heterogeneity; and Gurmu et al. (1999) find that they do not estimate the
distribution of heterogeneity well when the underlying distribution is log-normal (which may be relevant to
our application because our data suggest fat tails). Their estimator does appear to provide reliable estimates
of the systematic relationships for a broad range of distributions. Their Monte Carlo result on the difficulty
in recovering a log-normal density using their estimator is not unexpected: their estimator can be seen as
flexibly estimating the moment generating function of the distribution of heterogeneity. The log-normal
distribution is sufficiently fat-tailed so that the moment generating function does not exist.

13Our approach also has several weaknesses relative to that of Gurmu et al. (1999). Most notably, their
approach can be applied to any conditional mean function whereas ours works only for conditional mean
functions of the form E(y|X) = eXβ . Their expansion is also guaranteed to produce a valid estimated
density whereas our estimated densities can take on negative values.

14The AMC 12 is open to all students in grades 12 and below. Approximately 88% of the participants
are in 11th or 12th grade.

15Students receive 6 points for each correct answer and 1.5 points for each answer left blank so scores
range from 0 to 150.
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data to the level of the high school (or home ZIP code) and treat schools as the unit of

observation.16 The primary school level variables we analyze are counts of the number of

students in the school scoring at least 100 or 120.

We combine the AMC data with demographic information on participants’ schools and

areas of residence. ZIP code level demographics were taken from the U.S. Census. School

level variables are constructed by matching to the National Center for Education Statistics

(NCES) database for 2005-2006. The NCES collected private school data from schools

that responded to the Private School Universe Survey (PSS). Data on public schools are

from the NCES Common Core of Data, which is collected annually from state education

agencies. School name, city, and state data were linked to the AMC data using the CEEB

code search program provided on the College Board’s website. CEEB codes for schools

participating in the AMC 12 were then matched to NCES data by school name, city, and

state. Of the 3,730 schools with numerical CEEB codes in the AMC data, 3,105 were

matched to schools in the NCES data.17 Among the variables we will use in our analyis

are the number of students enrolled in each school, the percent of students belonging to

various racial and ethnic groups, the percent of students qualifying for free lunch and the

school’s Title I status. We also use information from the NCES to restrict the sample to

public, co-ed, non-magnet, non-charter U.S. high schools in most analyses.

3 Differences Across Schools: Magnitudes and Sources of
Heterogeneity

We begin this section by noting a basic fact: there is tremendous variation in the number

of high-achieving students who are coming out of different schools and home ZIP codes.

We then examine the relationship between the number of high-scoring students in a school

and observable demographic characteristics, noting both that there are a number of strong

patterns and that there is a great deal of residual heterogeneity among seemingly similar

schools.
16The AMC 12 contest is offered twice each year. The exams are different and students are allowed to

take both, which about 2% of the participating students do. We matched such records as well as we could
and included only scores from the later test date for dual takers.

17311 of the remaining 625 schools do not appear in the NCES data because they are not in the U.S., and
a further 158 could not be matched because they did not have official CEEB identifiers and were thus not
linked to school data of any kind. It was not possible to match the remaining 156 schools by the identifiers
reported by the College Board or NCES. Some of the remaining schools with valid CEEB codes may not
appear in the NCES survey data because private schools are not required to fill out the PSS.
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3.1 A first look at differences across ZIP codes

A simple way to illustrate the heterogeneity in student outcomes in the AMC data is to

look at counts of the number of students residing in each ZIP code who scored least 100 on

the AMC 12. There are about 32,000 residential ZIP codes in the U.S. and about 5,000 U.S.

students scored over 100 on the 2007 AMC 12. If all students were equally likely to score

100 on the AMC 12, then (taking into account that some ZIP codes are more populous than

others) we’d expect about 12 percent of ZIP codes to have at least one AMC high scorer:

about 10% would have one high scorer, another 2 percent would have two high scorers and

less than one percent of ZIP codes would have more. Extreme concentrations would be

very rare: there is less than a 0.0001 chance that even a single ZIP code would have ten or

more high scorers. Reality looks very different from this. Only 6% have any high scorers.

And 58 ZIP codes have ten or more.

The raw differences noted in the previous paragraph reflect various factors: socioeco-

nomic differences in the student populations; differences in school quality; and differences

in whether interested students take the AMC 12.18 Table 1 presents some additional data

on the most successful ZIP codes. One of our main findings will be that there’s a thick

upper tail of extremely successful schools. The first ten rows of Table 1 illustrate this by

listing the ten ZIP codes in which the highest number of AMC 12 high scorers reside. Each

of these ZIP codes had at least twenty students scoring at least 100 on the AMC 12, which

means they are more than 20 standard deviations above average. Although they are more

populous than average, they are still all at least 4 standard deviations above average in the

number of high scorers per capita.

The table also reports a few demographics. In addition to being more populous than

the average ZIP code, the highest-achieving ZIP codes tend to have above-average incomes,

many highly educated adults, and large Asian-American populations. The second-most

successful ZIP code (Exeter, NH) is the location of an elite boarding school, but most others

are just parts of some major metropolitan area in which most students attend a highly-

regarded public school. Our regression analyses will focus on standard public schools.

The bottom half of Table 1 illustrates both that demographics have predictive power

and another finding: a great deal of variation remains even when we compare areas/schools

with similar demographics. In these rows we present some data on a comparison set of

ZIP codes which are similar to those in the top half of the table. For each ZIP code in the
18Although the vast majority of students take the AMC 12 in their own high school, interested students

may also be able to take the test at a nearby college or at a number of other locations.
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top half we chose the ZIP code sharing the same first two digits which had the smallest

weighted sum-of-absolute differences in the listed characteristics other than population.19

The substantial number of high AMC scorers in the comparison ZIP codes suggests that

there are strong demographic predictors of high AMC scores: the comparison ZIP codes

average of 3.3 high scorers whereas the average across all ZIPs nationwide is just 0.2. But

the comparison ZIP codes are still quite far behind the ZIP codes in the top half of the

table: an illustration of our observation that there is a lot of unexplained heterogeneity in

the upper tail.

3.2 Demographic patterns in high math achievement

In this section we aggregate our data to the level of the school or ZIP code and look

at the relationship between the number of high-achieving students and school/ZIP code

demographics.

The first column of Table 2 presents coefficient estimates (with t-statistics in parenthe-

ses) from a simple negative binomial regression with the number of students in the school

scoring at least 100 on the AMC 12 as the dependent variable. A number of the strong

effects match one’s intuition. Parental education is very important: a one percentage point

increase in the fraction of adults in the ZIP code with bachelors’ and graduate degrees

increases the expected number of AMC high-scorers by 3.1 and 5.9 percent, respectively.

The school’s ethnic makeup also matters in that a one percentage point increase in the

Asian-American population of a school increases the expected number of AMC high scorers

by over two percent. (Percent white is omitted from the regression.) There are also fewer

high scorers in schools with more students qualifying for the free lunch program.

An effect that may not match intuition is the income effect: after controlling for the

ethnic makeup of the school and parental education we find that there are fewer high

scorers in higher-income areas. It should be kept in mind that the negative income effect is

occurring after we restrict to schools offering the AMC and include the fraction of students

qualifying for free lunch as a covariate. One thought on why this might occur, other than

from a selection effect, is that social norms or the college application process may lead

students in wealthier schools to spend more time on other activities, such as athletic and

arts programs, debate teams, model UN, etc., rather than developing their math skills to a

very high level.

The second column of the table looks at students reaching an even higher achievement
19The weights are taken from a regression model predicting the number of high scorers.
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ZIP # AMC12 # per Med. % %
City Code Over 100 10K pop. Pop. Income Grad. Asian

ZIP Codes with the Largest Number of AMC 12 High Scorers
San Jose, CA 95129 43 11.4 37,674 79,489 24.8 41.3
Exeter, NH 03833 28 14.6 19,129 51,858 16.3 1.0
Sugar Land, TX 77479 27 4.8 55,682 96,118 21.3 22.9
Saratoga, CA 95070 27 8.8 30,590 138,206 33.3 28.3
Fremont, CA 94539 25 5.3 46,997 101,977 26.5 49.5
Naperville, IL 60540 25 5.9 42,100 87,514 26.4 8.7
Naperville, IL 60565 21 5.2 40,503 97,807 22.9 9.7
Gaithersburg, MD 20878 21 3.8 55,186 84,330 29.6 18.7
Bayside, NY 11364 20 5.8 34,575 54,031 15.1 32.9
McLean, VA 22101 20 7.0 28,550 125,105 45.0 10.9

Matched Comparison ZIP Codes
Santa Clara, CA 95054 0 0.0 12,860 85,124 18.1 46.1
Spofford, NH 03462 0 0.0 1,729 50,885 16.3 0.0
Missouri City, TX 77459 5 1.5 32,774 84,901 17.9 14.0
San Jose, CA 95120 5 1.3 37,175 120,117 26.2 22.9
Fremont, CA 94555 2 0.6 33,811 84,442 18.6 53.8
Northbrook, IL 60062 5 1.2 40,175 89,164 26.7 10.4
Hinsdale, IL 60521 3 0.8 37,489 91,727 25.2 7.7
Rockville, MD 20850 5 1.5 33,277 74,655 31.1 17.3
Glen Oaks, NY 11004 1 0.7 14,760 55,156 14.7 29.7
Vienna, VA 22182 7 3.1 22,758 120,075 36.4 13.0
All U.S. ZIPs Mean 0.2 0.1 8,901 39,394 6.3 1.4

(Std. Dev.) (0.9) (0.9) (13,105) (16,427) (6.6) (4.1)
Notes and sources: Characteristics of the ten ZIP codes with the highest number of AMC 12 high scorers
and ten comparison ZIP codes. AMC 12 high scorers are students scoring more than 100 on the AMC 12.
Each comparison ZIP code identified based on having minimum weighted sum-of-absolute differences in
listed characteristics other than population among other ZIP codes with same two-digit ZIP code prefix
as top-ten ZIP code. Data from 2000 United States census.

Table 1: ZIP codes with the most AMC 12 high scorers and comparison ZIP codes
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High SAT
Variable AMC 12 High Scorers Scorers
log(Num. of Students) 1.01 1.32 1.05 1.17 1.18

(13.33) (6.20) (12.22) (11.51) (10.78)
Adult frac. BA 3.14 5.36 4.78 3.18 3.66 3.72

(4.71) (3.46) (10.62) (4.72) (4.69) (4.48)
Adult frac. Grad 5.94 7.27 6.97 6.29 6.53 6.61

(11.13) (6.67) (17.46) (12.41) (11.82) (11.60)
log(ZIP median income) -0.94 -1.36 0.73 -0.90 -1.17 -1.17

(6.88) (4.39) (8.29) (6.72) (7.75) (7.74)
ZIP frac. urban 0.52 0.43 0.32 0.55 0.31 0.31

(2.48) (0.68) (2.42) (2.34) (1.26) (1.17)
School/ZIP frac. Asian 2.08 2.44 3.70 2.00 1.19 1.15

(7.48) (4.17) (12.61) (7.51) (3.91) (3.80)
School/ZIP frac. Black -0.05 0.15 -1.10 -0.39 0.09 0.06

(0.15) (0.17) (5.31) (1.08) (0.21) (0.13)
School/ZIP frac. Hisp. -0.38 -1.81 -1.59 -0.77 -1.57 -1.73

(1.16) (1.81) (7.12) (2.04) (3.11) (3.18)
School frac. female 0.01 2.92 0.30 2.28 2.66

(0.00) (0.83) (0.20) (1.41) (1.56)
Title 1 school -0.04 0.12 -0.11 -0.12 -0.14

(0.48) (0.56) (1.15) (1.08) (1.15)
School free lunch frac. -2.39 -2.92 -2.22 -2.75 -2.71

(5.46) (2.30) (4.62) (4.59) (4.37)
log(Population) 1.10

(30.37)
log(Award ratio) 0.83 0.84

(15.21) (14.44)
Constant 1.15 -0.92 -22.16 0.32 6.47 6.32

(0.70) (0.23) (22.34) (0.96) (3.53) (3.38)
Threshold 100 120 100 100
Unit of obs. School School ZIP School School School
Pseudo R2 0.1492 0.1627 0.3463 – 0.1985 –
Est. Method NB NB NB semi-P NB semi-P
α̂ 1.02 2.77 1.42 – 0.48 –
(Std. Error) (0.07) (0.48) (0.07) – (0.08) –
# of obs. 2,165 2,165 31,889 2,165 2,165 2,165
# of high scorers 3,000 315 4,929 3,000 1,044 1,044
Notes and sources: Results of negative binomial regression and semi-parametric model es-
timation. Outcomes are counts of high achievers (students scoring more than 100 on the
AMC 12, students scoring more than 120 on the AMC 12, and students achieving PSP
candidate status on the SAT) in each school or ZIP code. School demographics are from the
NCES Common Core of Data for 2005-6; ZIP code demographics are from the 2000 U.S.
census. Award ratio is the ratio of the number of PSP candidates to the number of public
and private high school graduates in each state.

Table 2: High Math Achievers vs. School Characteristics
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threshold: scoring 120 on the AMC 12. (They can be thought of as above the 99.9th

percentile among college-bound students).20 Given that most students who would score

120 on the AMC are probably taking the test, the results here should be less affected by

differences in how widely administered the AMC is at each school. The effects noted in the

previous paragraph remain present and generally increase in magnitude, suggesting that

the earlier results were not due to this type of selection.

Our school-level estimates reflect a highly nonrepresentative sample of the U.S. popu-

lation: we only include schools offering the AMC and these are disproportionately high-

achieving schools located in relatively wealthy areas. To give a sense of where AMC high

scorers are coming from relative to the whole U.S. population, the third column of Table

2 goes back to the ZIP code as the unit of observation and presents estimates from a neg-

ative binomial regression with the number of resident students scoring at least 100 on the

AMC 12 as the dependent variable.21 Coefficients here should be thought of as reflecting

both differences in math achievement and differences in access to the AMC. The effects

of greater education in the adult population become larger in these results, as we might

expect given that the availability of the AMC may be correlated with parental education.

The coefficient on income becomes positive and highly significant. A couple of factors may

be responsible for the change. One is that access to the AMC may be increasing in income.

Another is that there may be a nonmonotonic relationship between income and investments

in reaching high levels of math achievement: it may increase through much of the income

distribution (all of which is relevant for this regression) and then turn down at the very top

(which is more relevant once we restrict to AMC-offering schools).

3.3 Magnitudes of unobserved heterogeneity

The negative binomial regression model also provides a simple estimator of the degree of

unobserved heterogeneity that remains across schools after controlling for a given set of

variables. We present some such estimates here.

Recall that the negative binomial regression model assumes that Yi is a Poisson random

variable with mean eXiβui, where ui is an independent mean one gamma-distributed random

variable reflecting underlying heterogeneity not captured by the observed Xi. The negative

binomial model estimates both the coefficients β on the X’s and an extra parameter α

which is the variance of the ui. Estimates of this parameter from each of the negative
20Given our restriction to public, non-magnet, non-charter, coeducational schools, there are 315 students

in our sample at this threshold.
21Here, the ethnic composition variables are for the student’s home ZIP code rather than the school.
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binomial models discussed in the previous section are presented in Table 2.

To provide more of a feel for the magnitude of the unobserved heterogeneity relative

to the heterogeneity captured by our demographic controls Table 3 reports the estimated

standard deviation of u (the square root of α̂) from negative binomial regressions of the

number of high-scoring AMC students in a school/ZIP code on different sets of controls.

The first row presents results with almost no controls: the number of high scorers in a

ZIP code is the dependent variable and the only control is the ZIP code’s population. The

standard deviation of u is 2.59 for the count of students scoring over 100, and 3.92 for the

count of students scoring over 120, indicating substantial unobserved heterogeneity in the

number of high scorers beyond what can be explained by population variation alone. The

estimated SD(u) is much greater for the higher score threshold, indicating that unobserved

factors are more important at higher performance levels. The second row illustrates the

effect of introducing the same demographic controls used in the ZIP code regressions dis-

played in Table 2. Introducing controls reduces the unobserved heterogeneity by more than

half for each score threshold. The unobserved heterogeneity remains large in a practical

sense and remains highly statistically significant.22 One might imagine that the unobserved

heterogeneity is entirely due to differences between areas that offer the AMC and areas that

do not. To examine this hypothesis, the third row restricts the sample to ZIP codes that

had at least one student take the AMC 12; this restriction reduces the estimated SD(u)

only slightly. The final two rows use schools as the unit of observation and restrict attention

to public, non-magnet, non-charter, coeducational U.S. high schools in which the AMC 12

was offered. These estimates are in the same range as those observed for the ZIP-level

analyses and exhibit similar patterns in that the measure of dispersion is higher for the

higher thresholds and lower once we introduce controls. Even the numbers in the bottom

row, however, are again very large in a practical sense. For example, the standard deviation

of the unobserved heterogeneity would be 1 if 50% of all schools gave students no chance of

achieving a high score on the AMC 12 and the other half gave twice the average chance, and

it would be two if 80% of schools gave students zero chance of reaching high-achievement

levels and 20% gave students five times the average chance. For the true values to be 1.01

or 1.66 there must be many schools which give students very little chance of reaching high

achievement levels and other schools that give a much better than average chance.

An overall impression from these data is that there are several factors that are very

strong predictors of whether a school/ZIP code will have many high-achieving math stu-
22χ2 tests of the null that SD(u) = 0 are rejected at the 0.001 level in each case.
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dents, but that there are also substantial differences across seemingly similar schools.

AMC 12 > 100 AMC 12 ≥ 120
Student Est. Student Est.
Groups Sample Controls SD(u) Groups Sample Controls SD(u)

ZIP Codes All Pop. Only 2.59 ZIP Codes All Pop. Only 3.92
ZIP Codes All Yes 1.19 ZIP Codes All Yes 1.65
ZIP Codes AMC Taking Yes 1.12 ZIP Codes AMC Taking Yes 1.61

Schools Public Enrollment 1.46 Schools Public Enrollment 2.75
Schools Public Yes 1.01 Schools Public Yes 1.66

Notes and sources: Estimated standard deviation of performance heterogeneity from negative binomial regres-
sions with and without demographic controls. School demographics are from the NCES Common Core of Data
for 2005-6; ZIP code demographics are from the 2000 U.S. census.

Table 3: Magnitude of unexplained variation u

4 Methodology for Estimating the Distribution of Unob-
served Heterogeneity

In this section we describe how we estimate the distribution of unobserved heterogeneity

across schools and provide some simulation results.

4.1 Estimation method

Suppose the count variable yi is distributed Poisson (λi), where λi = eziβui, zi is a vector

of observable characteristics, and ui is an unobserved characteristic with a multiplicative

effect on the Poisson rate. Assume that the ui are i.i.d. random variables independent of

the zi with continuous density f on (0,∞) and E(ui) = 1. We wish to estimate both the

coefficients β on the observable characteristics and the distribution f of the unobserved

effects.

Our approach is similar to that of Gurmu et al. (1999) in that we use a series expansion

and exploit known properties of the orthogonal polynomials involved to facilitate maximum

likelihood estimation. Given any function f and any constant α we can write f(x) =

xαe−xg(x). If g(x) is well behaved in the sense that
∫∞
x=0 x

αe−x|g(x)|2dx < ∞, then g(x)

can be represented as a convergent sum

g(x) =
∞∑
j=0

gjL
(α)
j (x)
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where L(α)
j (x) is the jth generalized Laguerre polynomial, L(α)

j (x) ≡
∑j

i=0(−1)i
(
j+α
j−i
)
xi

i! .23

Expressing the distribution in this way makes it possible to evaluate the likelihood of each

outcome without integrating over the unobserved parameter ui.

Proposition 1 Consider the model described above. Then,

Pr{yi = k|zi} = ekziβ

(eziβ+1)k+α+1

[∑k
`=0

Γ(`+α+1)
`! e−`ziβ (−1)`

(
k+α
k−`
)(∑∞

j=` gj

(
eziβ

eziβ+1

)j (
j+α
j−`
))]

.

The derivation of the formula exploits several properties of the Laguerre polynomials. De-

tails are given in the Appendix.

Given the formula above it is natural to estimate the model by maximum likelihood: we

simply treat β, α, and the gj as parameters to be estimated as in a series estimation.24 For

the estimated f (u) to be a valid density, the estimated parameters α, g0, g1, . . . , gN must

be such that

•
∫∞

0 uαe−u
∑N

j=0 gjL
(α)
j (u) du = 1; and

• uαe−u
∑N

j=0 gjL
(α)
j (u) ≥ 0 for all u ∈ (0,∞).

The first of these conditions holds if and only if g0 = 1/Γ(α+1). We impose this restriction

in all of our estimations. The second constraint is not as easy to express as a parameter

restriction. We will not impose it as a constraint, but do add a penalty function (described

in the Appendix) to the likelihood when the density is not everywhere positive, which in

practice has the effect of making the estimated densities at most slightly negative.25

The function f(x) can in theory be estimated consistently by allowing the number of

terms N to grow at an appropriate rate or by choosing it in other other ways like cross-

validation. In practice, the number of Laguerre coefficients that can be estimated may be
23The coefficients gj are given by

gj =

∫ ∞
0

L
(α)
j (x)(
j+α
j

) g(x)
xαe−x

Γ(α+ 1)
dx.

24Finite sums gN (x) ≡
∑N
j=0 gjL

(α)
j (x) will approximate the true distribution as N → ∞. Defining

‖g − gN‖ ≡
∫∞
x=0

(g(x)− gN (x))2 xαe−x

Γ(α+1)
dx we have ‖g − gN‖ ≤

∑∞
j=N+1

(
j+α
j

)
g2
j .

25Our specification of the model also includes the scaling assumption that E(ui|z) = 1. This is necessary
for identification when the set of explanatory variables z contains a constant and the distribution of u is to
be estimated semiparametrically. This condition can also be easily imposed as a parameter restriction: it
is satisfied if and only if g1 = α/Γ(α+ 2). When only a finite number N of terms are included in the series
expansion, however, imposing this constraint is not necessary for identification, and the restriction is not
imposed in the estimates reported in this paper. Instead, we estimate the model without the restriction and
just renormalize the estimated distributions of u to have mean 1 by dividing by their expectations when
graphing them.
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quite limited unless the dataset is very large. It is for this reason that we wrote the density

in the form f(x) = xαe−x
∑N

j=0 gjL
(α)
j (x) rather than just as

∑N
j=0 gjL

(α)
j (x). When N = 0

the α parameter gives the model the ability to fit a range of plausible densities with just

a single estimated parameter: the renormalized distribution with parameter α has mean 1

and variance 1/(α+1). This allows the model produce an exponential distribution (α = 0),

unimodal distributions concentrated around one (the distribution is unimodal with mode
α
α+1 if α > 0), and distributions with more weight on extreme u’s than the exponential

(α ∈ (−1, 0)).26

4.2 Simulation results

Our primary motivation for estimating the model as described above instead of directly

following previous approaches is that simulations have suggested that previous approaches

may not work well in practice when the distribution of unobserved heterogeneity is fat

tailed.27 To assess how our method might work in practice and how many terms N one

might want to include in the series expansion we also conducted simulation experiments

described in the Appendix using exponential, log-normal, and uniform distributions for

the unobserved heterogeneity. A very rough summary is that our approach seems to work

reasonably well in the exponential and log-normal cases. Estimating the upper tail is easier

than estimating the density at low values of u: it is inherently very difficult to distinguish

whether a school is producing 0.1 or 0.01 high-achieving students per year. The simulations

also suggest that including N = 4 terms in the series expansion may a good choice for

balancing flexibility vs. overfitting given the number of observations in our dataset and the

magnitudes of the counts. In our empirical analyses, we will generally present estimates

that use N = 4 terms in the series expansion.

5 Distributions of Unobserved Heterogeneity Across Schools

We noted in section 3 that there are substantial performance differences across schools with

similar demographics. In this section, we explore the distribution of unobserved heterogene-

ity in more detail. The estimates will quantify our earlier informal remarks that there is

a thick upper tail of schools that are much more successful than the average school, and

provides a number of other insights.
26The pure Poisson model with no unobserved heterogeneity is obtained as a special case as α→∞.
27See Gurmu et al. (1999) p. 141.

15



5.1 Differences across seemingly similar schools

We begin by estimating a model of the production of AMC 12 high-scorers similar to the

benchmark negative binomial regressions of Section 3, but employing the methodology

described in Section 4. Specifically, we estimate the model using the number of students in

each school scoring at least 100 on the 2007 AMC 12 as the dependent variable and use the

same demographics as in Table 2 as control variables. Again, the sample is the set of coed

public, non-magnet, non-charter schools offering the AMC 12 that we were able to match

to the NCES data.

Our primary interest in this section will be on the distribution of unobserved school

effects. The top panel of Figure 1 graphs the probability density function from which the

unobserved school effects ui are estimated to be drawn. The x-axis corresponds to different

possible values of the unobserved effect, e.g. a value of u = 1 corresponds to a school that

produces AMC 12 high scorers at exactly the mean rate, a value of u = 0.5 corresponds to

a school that produces high-scorers at half of this rate, etc. The curve is like a histogram

giving the relative frequency of the values of u in the population of schools. The substantial

differences between schools with similar demographics are clearly visible in the figure: it

looks nothing like a distribution that is highly concentrated around u = 1. Instead, it is

a spread-out distribution that is skewed to the right. There are a large number of schools

that produce AMC 12 high scorers at well below the average rate. For example, about

38% of schools are estimated to produce high scorers at less than one-half of the average

rate. At the other extreme, there is a tail of highly successful schools. For example, about

9% of schools are estimated to produce high scorers at more than double the average rate.

The dashed lines in the figure are 95% confidence bands for the estimated density.28 They

indicate that the estimates are quite precise throughout most of the range, and then become

much less precise in the lower tail.

While the density function looks roughly like an exponential in the range that is graphed,

there is a notable departure in the right tail – the upper tail of the estimated distribution is

much thicker than that of an exponential distribution (or normal distribution). The bottom

panel of Figure 1 illustrates this by graphing in bold the CDF of the estimated distribution

for u’s ranging from 3 to 10. The estimates indicate that there are a substantial number

of schools which produce high-achieving math students at five to ten times the average

rate for a school with their demographics. The dashed lines again give a 95% confidence
28The confidence bands in this figure were generated using the parametric bootstrap procedure described in

the Appendix. We also generated confidence bands using the nonparametric bootstrap procedure described
there. They are quite similar (though slightly wider).
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Distribution of School Effects: Students Scoring 100+ on the AMC 12
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Figure 1: Estimated distribution of school effects: AMC 12 high scorers
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interval. They indicate that the thick tail is a statistically significant phenomenon.

Our semiparametric estimation procedure also yields estimated coefficients on the de-

mographic variables, which are presented in the fourth column of Table 2. The estimates

are very similar to the estimates from the negative binomial regression as shown in the first

column of the same table. The main implication to take away is that our earlier negative

binomial regression results appear to be robust to modeling the unobserved heterogeneity

more flexibly.

5.2 Female students

Given the underrepresentation of female students among high math achievers it seems

natural to explore differences in how often schools produce high-achieving female students.

In this section, we present estimates similar to those in the previous section, but focusing on

how often schools produce high-achieving girls. Our main observation is that unobserved

school quality appears to be even more important for girls than it is for boys: there is an

upper tail of schools that produce high-scoring girls at more than ten times the average

rate.

One way to quantify the increased importance of unobserved school effects for girls is to

estimate a negative binomial regression similar to those used in Section 3 using the number

of high-scoring female students per school as the dependent variable. The estimate α̂ from

such a regression (available on request) is 1.88 (s.e. 0.26) whereas it was 1.02 (s.e. 0.07)

when we examined high-scoring students of either gender.

Figure 2 presents graphs of the estimated distribution of the unobserved differences u

across schools estimated using data on the number of female students scoring at least 100

on the AMC 12. The top panel shows the PDF for u’s in [0, 3] and the bottom panel shows

the estimated CDF for the upper tail of schools. Again, the bold lines are the estimated

PDFs and CDFs of the school effects relevant to girls and the thinner dashed lines are 95%

pointwise confidence bands.

The estimated distribution is qualitatively similar to what we reported in our earlier

analysis of how often schools produced high-scoring male or female students in a couple

respects. First, there are a large number of schools where girls are relatively unlikely to

reach high levels of math achievement. For example, about 28% of schools are estimated

to produce high-scoring girls at less than one-fourth of the average rate. Second, there is a

small but very thick upper tail of schools where girls are many times more likely to succeed

than are girls in an average school with comparable demographics.
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In Ellison and Swanson (2010) we noted that there is a large gender gap among high-

achieving students in the AMC data: there is roughly a 4:1 male-female ratio among student

scoring at least 100 on the AMC 12; and the average number of girls per school reaching this

level is just 0.26. Hence, the estimate that there are a substantial number of schools that

produce high-scoring girls at less than one-fourth of the average rate is very discouraging:

it implies that these schools produce high-scoring girls at a rate of well less than one

per decade. But the presence of the right tail is encouraging. The 99th percentile school is

estimated to produce high-scoring girls at more than ten times the rate of the average school

with comparable demographics. This result implies that there are a number of schools that

produce high-scoring girls at a rate that surpasses the rate at which the average school

produces high-scoring boys.

The estimated distributions suggest that there are more schools in the lower and ex-

treme upper tails for girls. But the imprecision of the estimates makes it difficult to make

statistically significant statements about where exactly in the distribution the extra vari-

ance is coming from. A number of potential explanations could be given for why there

might be more schools in the lower tail when we examine high-achieving girls. For exam-

ple, the dispersion of school effects would be larger for girls if there is variation in how

encouraging/discouraging schools are toward girls independent of a general school-quality

effect. Another plausible story might be that girls are relatively disadvantaged when a

school’s “honors” math classes are not taught at a very high level (perhaps because girls

are less liable to complain or take supplementary online classes).

5.3 School effects at higher achievement levels

The AMC data also make it possible to study the distribution of students at even higher

math achievement levels. Here, we present an estimated PDF of school effects estimated

using the number of students scoring at least 120 on the AMC 12. We have two motivations.

First, it seems natural to take advantage of a relatively rare opportunity to examine where

99.9+th percentile students are coming from. Second, looking at such a high percentile will

help to purge the results of one selection effect. It is unlikely that much of the differences

across schools could be due to differences in the degree to which schools encourage their

high-achieving students to take the AMC 12 because it is unlikely that students would

reach such a high level of mastery if they were not planning to participate in contests like

the AMC. Recall that the negative binomial regressions presented in Table 2 indicated that

there was more unobserved heterogeneity across schools when we examined students scoring
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Distribution of School Effects: Female Students Scoring 100+ on the AMC 12
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Figure 2: Distribution of school effects: female AMC 12 high scorers
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at least 120 on the AMC 12.

The top panel of Figure 3 presents the estimated PDF for u’s between 0 and 3, and

the bottom panel shows the upper tail of the CDF. Again the estimates are in bold with

95% pointwise confidence bands around them. The estimated distribution of school effects

once again has a very thick upper tail. This supports the hypothesis that the upper tail

heterogeneity is not just an artifact of selection into taking the AMC test. Comparing the

estimated density to that estimated earlier from data on students scoring at least 100, we

find two main differences: more schools are now estimated to be very far below average;

and more schools are now estimated to produce high-scoring students at three to five times

the average rate. Again, however, it is difficult to make statistically significant pointwise

comparisons. Certainly, however, the combination of the low mean number of students

scoring 120 and the large mass in the lower tail means that there are a large number of

schools in which it is extremely unlikely that students will reach the very high levels of

math achievement considered here.

5.4 Heterogeneity in the full U.S.: ZIP code breakdowns

In this section we reestimate our model using ZIP codes rather than schools as the unit of

observation. In this way, we are able to provide estimates of the unexplained heterogeneity

in high math achievement throughout the country (whereas previous estimates compare

schools to other schools offering the AMC 12 test).

The estimated heterogeneities in this section will reflect both differences in the number

of high-achieving students in a ZIP code and differences in AMC participation rates among

such students. The participation rate differences should be smaller for students at very

high percentiles of achievement. Accordingly, we focus in this section on students scoring

at least 120 on the AMC 12.

Figure 4 presents estimated distributions of ZIP code effects obtained by estimating the

model using a count of the number of students scoring at at least 120 as the dependent

variables and using ZIP code characteristics as control variables.29 The top panel gives the

PDF for values of u between 0 and 3 and the bottom panel gives a magnified view of the

upper tail of the CDF. The distribution is similar to many others we’ve seen. There is a

very thick left tail of ZIP codes in which students are estimated to have a much lower than
29The ZIP code characteristics are those in Table 2: log of population, percent of population with a

bachelor’s degree, percent of population with a graduate degree, percent urban, percent of population which
is Asian, black, Hispanic, and female, and log of median income. The model is estimated on the full sample
of 31,889 residential ZIP codes for which characteristics data were available in the Census.
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Distribution of School Effects: Students Scoring 120+ on the AMC 12
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Figure 3: Distribution of school effects at a very high achievement level: students scoring
120+ on the AMC 12
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average chance of scoring 120 on the AMC 12 (38% of ZIP codes are estimated to produce

such students at less than one-quarter of the average rate.) There is also a very thick upper

tail of ZIP codes where many more students reach this threshold.

We conclude that these features of our earlier estimates seem to be robust to moving

to a full national sample. Of course, part of the reason for this is due to the nature of the

data and estimation. Many ZIP codes that feed into schools that do not offer the AMC

contests would be expected to have few high scorers given their demographics. This limits

the information they provide to the estimation.

Distribution of School Effects: Students Scoring 120+ on the AMC 12
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Figure 4: Distribution of ZIP code effects: students scoring 120+ on the AMC 12
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6 High Scoring Students on the SAT

In this section we examine how likely different schools are to produce students with very

high SAT scores. The primary motivation for this is that differences in the rate at which

different schools produce students with high AMC scores will reflect both differences in

educational programs and the self-selection of high-ability students into particular schools.

Such selection effects should have similar effects on SAT performance. But one would expect

that SAT performance will be less affected by differences in schools’ educational programs:

we presume that most schools that offer the AMC tests offer math and English courses that

provide good coverage of SAT material. Hence, comparing estimates obtained from AMC

and SAT data may provide insights on selection versus educational effects.

6.1 Data

Our source of data on students with high SAT scores are the announced lists of students who

were named “candidates” for the U.S. Presidential Scholars Program (PSP). Being named

as a PSP candidate can be roughly thought of as indicating that a student was among

the twenty highest scoring male high school seniors or the twenty highest-scoring female

high school seniors in their home state on the SAT Math + Critical Reading combined

score.30 Each top twenty is extended in the case of ties. In California, many more than

40 students score a perfect 1600 on the SAT, so being a PSP candidate is an indicator

for having a perfect SAT score. Scores at or near 1600 are required in several other large

states, but the cutoff is much lower in small and low-performing states. We obtained the

full list of 2,752 PSP candidates for 2007 from the U.S. Department of Education website.

PSP schools were linked to NCES data based on school name and student location.31 To

make results comparable we will carry out our school-level analyses on the subset of schools

that participated in the 2007 AMC contests. This subsample includes 1,593 of the PSP

candidates.32

6.2 Demographic patterns

The regression in the fifth column of Table 2 is another school-level regression run on our

sample of nonmagnet, noncharter, coeducational public schools that offer the AMC ex-
30Students can also qualify via a high ACT score.
31We were able to match the schools attended by 2,520 of the 2,752 PSP candidates to the NCES data.
32The fact that at least 58% of PSP candidates attend schools that offer the AMC contests provides another

datapoint suggesting that the majority of the high-achieving math students in the country probably attend
schools offering the AMC.
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ams using the number of 2007 PSP candidates at the school as the dependent variable.33

The most important observation for our purposes is that the estimated α parameter from

the negative binomial regression (0.48) is substantially smaller than the corresponding pa-

rameter (1.02) from the AMC 12 analysis. This indicates that there is less unobserved

heterogeneity in the rates at which schools produce PSP candidates.

The demographic findings are in many ways similar to those concerning high AMC

scorers: parental education matters a lot; median income remains negatively related to

high achievement; and there are fewer high-achieving students in schools with more students

qualifying for the free lunch program. The ethnic-group effects differ somewhat between the

AMC- and PSP-based regressions. The strength of the Asian American effect is smaller in

the PSP regression; and we now find fewer high-achieving students in schools with a larger

Hispanic population. These differences may reflect that we have switched to a measure that

also includes English test scores and requires less knowledge of math.

6.3 Distributions of unobserved heterogeneity across schools

Figure 5 presents an estimated distribution of school effects from PSP candidate counts

comparable to our earlier estimates based on high AMC scorers.34 Again, the top panel

shows an estimated PDF for u’s between 0 and 3 and the bottom panel provides a magnified

view of the CDF for high values of u. The dashed lines are 95% confidence bands.

The most noteworthy finding is that the thick upper tail we found in the AMC data is

not present in the PSP data. The estimated CDF reaches 0.995 at a point where the CDF

estimated from the AMC data is just 0.97. Unless the selection into schools of students with

high math ability differs from selection of students who score well on the SAT, this suggests

that the thick upper tail in the AMC data is probably not due primarily to unobserved

differences in student ability. Instead, our leading conjecture for what causes the thick

upper tail is that there are very few schools, even among the very high quality schools that

produce PSP candidates, that teach math at the level will result in many students doing

well on the AMC 12.

The estimated density in the top panel also shows fewer schools with very low values

of u – a feature that is very different from the point estimates from regressions examining
33Our PSP regressions use an additional control variable: AwardRatio is the ratio of the number of PSP

candidates from the state to the number of public and private high school graduates in each state. This is
intended to control for dramatic differences in how hard it is to be a PSP candidate in different states. For
example, Wyoming, which has a population of 550,000, had 43 PSP candidates in 2010, whereas Michigan,
with a population of about 10 million, had just 47.

34Coefficient estimates for the demographic variables are presented in the last column of the Table 2.
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students scoring 120+ on the AMC 12. But the confidence bands are fairly wide at the

lower end of the density.

PDF of School Effects: Students Achieving PSP Candidate Status on the SAT
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Figure 5: Distributions of school effects: Presidential Scholar Candidates

7 Conclusion

In this paper we have used data on the Mathematical Association of America’s AMC 12

exam to provide a look at high-achieving math students in U.S. high schools. Our most

basic observation is that they are very far from being evenly distributed across the U.S.
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There are very strong demographic predictors of high achievement as one might expect:

areas where there are many highly educated parents and schools with many Asian-American

students are much more likely to produce high-achieving students. Other patterns, however,

are not necessarily what one would have expected. In the full sample of ZIP codes there

are more high-scorers in high income areas. But once we restrict to the sample of schools

offering the AMC, the median income in a community is negatively correlated with the

likelihood that students will reach high levels of math achievement (and similarly negatively

correlated with the number of students with very high SAT scores).

In multiple branches of the education literature there are results that have been roughly

interpreted as implying that there is only limited variation across schools in value-added

apart (perhaps) from variation that is systematically related to socioeconomic factors. Our

results suggest that things look very different when one examines how likely schools are

to produce very high-achieving students rather than on how schools’ effects on average

test scores. Our results suggest that there is a lot of variation among seemingly similar

schools. The most notable feature of this variation is a thick uppper tail of schools in which

students are many times more likely to reach high achievement levels than are students

in the typical school with similar demographics. This thick upper tail is present in all of

our analyses of students with high AMC scores, but is not present when we look at where

students with high SAT scores are coming from. This contrast suggests that that the thick

tail is not because of the self-selection of high-ability students into a particular subset of

schools. We suggest that a potential explanation is that almost all schools see it as their

responsibility to provide English and math courses that cover material necessary to do well

on the SATs, whereas there is much less uniformity in whether schools encourage gifted

students to develop more advanced problem solving skills and reach the higher level of

mastery of high school mathematics needed to do well on the AMC.

Relative to the literature on the gender gap in mathematics, our comparison of school

effects relevant to girls suggests that schools are perhaps even more important for girls: we

estimate that the 99th percentile high school in our sample is producting high-scoring girls

at more than ten times the rate of an average school with comparable demographics. We

also note that there are many low-performing schools that will only very rarely have girls

reach the AMC performance levels we have studied.

As we noted in the introduction, there are many ways in which one would like to do more

than we can do with our data. It would be valuable to provide more evidence to separate

out how much of the concentration of high-achieving students that we observe is due to
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differences in school value added vs. differences in the selection of high-ability students

into different public schools, to correlate differences in school policies with differences in

outcomes, and to identify causal effects.

Our results suggest that the high-achieving math students we see today in U.S. high

schools may be just a small fraction of the number of students who have the potential to

reach such levels. This should probably not be surprising – the U.S. is far behind many

other countries in the fraction of students who achieve very high scores on internationally

administered tests. Our finding that there appears to be a lot of variation across schools

with similar demographics could be seen as hopeful: the number of high-achieving students

would increase substantially if low-achieving schools could be brought up to average; and

upper-tail schools might have programs that could be emulated to produce even larger

improvements.
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Appendix

In this appendix we provide additional details on the estimation and simulation results
assessing the performance of the estimator.

A.1 Estimation Methodology

For any fixed N our model of unobserved heterogeneity implies

Prob{yi = k|z̃i} =
∫ ∞

0
e−(ez̃iβui)

(
ez̃iβui

)k
k!

uαi e
−ui

 N∑
j=0

gjL
(α)
j (ui)

 dui.

The estimated density will integrate to one if and only if g0 = 1/Γ(1 +α). We therefore set
g0 equal to this value and estimate β, α, and g1, . . . , gN . The expression in Proposition 1 was
used to compute the likelihood. The orthogonal polynomial term in the density estimation
will take on negative and positive values for some parameter values (and in practice the
integral defining the likelihood will sometimes be larger if the “density” is made negative in
some places to allow it to be larger in others). In our estimation we have therefore chosen to
add a penalty function of log

(∫∞
0 max(f̂(x), 0)dx

)
to the likelihood function for parameter

values that do not generate valid densities.35 The objective function is not globally concave,
so we ran our estimation routines from a large number of starting values for the gi.

We now give a derivation of the formula in Proposition 1. Let the density f(x) be
represented as f (x) = xαe−x

∑∞
j=0 gjL

(α)
j (x).36. The distribution of yi is then described

35The motivation for the form of the penalty is that, given a weighting function f̂(x) that is not everywhere
nonnegative, one can define a nonnegative measure by setting f̃(x) = max(f̂(x), 0)/

∫∞
0

max(f̂(x), 0)dx. The
likelihood minus the penalty function is a lower bound to the likelihood that would be obtained from the
nonnegative density f̃(x). One could impose nonnegativity as a numerical constraint in the estimation, but
in practice we found that our optimization routine did not work well with this constraint and often ended
with likelihoods much lower than those that would result from modifying “densities” that took on slightly
negative values in the manner described above.

36The formula for the cdf can be derived as

F (x) =

∫ x

0

(
tαe−t

∞∑
j=0

(
gj

j∑
l=0

(−1)l
(
j + α
j − l

)
tl

l!

))
dt

=

∞∑
j=0

gj j∑
l=0

(−1)l

(
j + α
j − l

)
l!

(∫ x

0

tα+le−tdt

)

=
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j=0

gj j∑
l=0

(−1)l

(
j + α
j − l

)
l!

γ (α+ l + 1, x)

 ,

where γ (.) is the lower incomplete gamma function.
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by

Prob{yi = k|z̃i} =
∫ ∞

0
e−(ez̃iβui)

(
ez̃iβui

)k
k!

uαi e
−ui

 ∞∑
j=0

gjL
(α)
j (ui)

 dui

Prob{yi = k|z̃i} =
∫ ∞

0
e−(ez̃iβ+1)ui

(
ez̃iβui

)k
k!

uαi

 ∞∑
j=0

gjL
(α)
j (ui)

 dui.

Let zi =
(
ez̃iβ + 1

)
ui, so dzi =

(
ez̃iβ + 1

)
dui. Then

Pr{yi = k|z̃i} =
∫ ∞

0
e−zi

zki
k!

[
ez̃iβ

ez̃iβ + 1

]k 1
(ez̃iβ + 1)α

zαi

 ∞∑
j=0

gjL
(α)
j

(
zi

ez̃iβ + 1

) dzi
ez̃iβ + 1

=
ekz̃iβ

(ez̃iβ + 1)k+α+1

∫ ∞
0

e−zi
zki
k!
zαi

 ∞∑
j=0

gjL
(α)
j

(
zi

ez̃iβ + 1

) dzi.

To evaluate, first note that we have the monomial formula for Laguerre polynomials

uki
k!

=
k∑
l=0

(−1)l
(
k + α
k − l

)
L

(α)
l (ui)

and the series expansion

L
(α)
j

(
ui

1 + γ

)
=

1
(1 + γ)j

j∑
l=0

γj−l
(
j + α
j − l

)
L

(α)
l (ui) .

The former implies that

zki
k!

=
k∑
l=0

(−1)l
(
k + α
k − l

)
L

(α)
l (zi)

and the latter implies that

L
(α)
j

(
zi

ez̃iβ + 1

)
=

1

(ez̃iβ + 1)j

j∑
l=0

e(j−l)z̃iβ
(
j + α
j − l

)
L

(α)
l (zi) .

We can then substitute these formulas into the formula for yi:

Pr{yi = k|z̃i} =
ekz̃iβ

(ez̃iβ + 1)k+α+1

∫ ∞
0

zαi e
−zi

(
k∑
l=0

(−1)l
(
k + α
k − l

)
L

(α)
l (zi)

)
 ∞∑
j=0

gj
1

(ez̃iβ + 1)j

j∑
l=0

e(j−l)z̃iβ
(
j + α
j − l

)
L

(α)
l (zi)

 dzi.

30



Laguerre polynomials are orthogonal with∫ ∞
0

zαi e
−ziLn (zi)Lm (zi) dzi =

{
0 if m 6= n
Γ(n+α+1)

n! if m = n

so that the formula for yi simplifies to

Pr{yi = k|z̃i} = ekz̃iβ

(ez̃iβ+1)k+α+1

∑k
l=0(−1)l

 k + α
k − l

Γ(l+α+1)
l!

∑∞
j=l gj

1

(ez̃iβ+1)j
e(j−l)z̃iβ

 j + α
j − l


= ekz̃iβ

(ez̃iβ+1)k+α+1

∑k
l=0

Γ(l+α+1)
l!

e−lz̃iβ(−1)l

 k + α
k − l

∑∞
j=l gj

(
ez̃iβ

ez̃iβ+1

)j j + α
j − l


This completes the proof.

Note that for an unrestricted parameter vector we would have∫ ∞
0

xαe−x
∞∑
j=0

gjL
(α)
j (x) dx = g0Γ(α+ 1).

Accordingly we set g0 so that this value is equal to one. To identify the parameters in the
full semiparametric model we also need to impose the normalization that E(u|z) = 1. This
can also be imposed by additionally restricting the parameter g1 to be equal to α/Γ(α+ 2).
For finite N , however, it is not necessary to impose this for identification and in practice we
do not impose the constraint and simply renormalize the estimated distribution by dividing
by its expectation after the estimation stage.

A.2 Simulation Results

In this section we present some Monte Carlo estimates to illustrate how well the proce-
dure described above works in some circumstances that may be roughly similar to the data
in our application.

The simulations implemented our estimation procedure on datasets created by drawing
each zi from a uniform distribution with support [0, i]; drawing each ui from the desired
error distribution; forming λi = eziβui, where β = [−4.27, 1, 1, 1, 0.1, 0.1, 0.2]; and drawing
yi from a Poisson distribution with rate parameter λi. Each simulated variable included
2, 500 observations. The distributions of the simulated covariates and the values for β were
chosen so that the mean and variance of the simulated eziβ would roughly match the mean
and variance of the fitted values in a Poisson or negative binomial regression of the count of
AMC 12 high-scorers on school- and school ZIP-level covariates. The ui were chosen from
one of three distributions depending on the simulation: an exponential distribution with
mean and standard deviation 1; a lognormal distribution with mean 1 and variance 1

3 ; and
a uniform distribution on [0, 2]. The motivation for these choices was to demonstrate the
performance of our procedure for a diverse set of underlying distributions: the exponential
distribution is within the class of models being estimated even if N = 0; the lognormal
distribution cannot be fit perfectly with a finite N and has a thicker upper tail; and the
uniform distribution is a more challenging distribution to reproduce with a series expansion.

The estimated coefficients β̂ on the observed characteristics are fairly precise and show
almost no bias. Table 4 presents some summary statistics on the estimates for simulations
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withN = 8 Laguerre polynomials.37 The first column lists the true values for the coefficients
on each simulated covariate. The next three columns list the mean and standard deviation
(in parentheses) of the estimates across the 1000 simulated datasets for each simulated
distribution. There are no notable differences across heterogeneity distributions in the
consistency or precision of estimated β̂’s.

True Mean and SD of estimated coefficients
Variable Coeffs. Exponential u Lognormal u Uniform u

Constant -4.270 -4.2690 -4.2651 -4.2777
(0.1536) (0.1571) (0.1109)

z1 1.000 0.9971 0.9977 0.9984
(0.1055) (0.0593) (0.0760)

z2 1.000 1.0010 1.0010 1.0026
(0.0537) (0.0424) (0.0401)

z3 1.000 0.9995 0.9991 1.0019
(0.0371) (0.0377) (0.0269)

z4 0.100 0.0994 0.0993 0.0998
(0.0271) (0.0154) (0.0190)

z5 0.100 0.0997 0.0996 0.1011
(0.0216) (0.0127) (0.0151)

z6 0.200 0.1996 0.1994 0.2003
(0.0184) (0.0125) (0.0132)

Notes: True and estimated coefficients from semi-parametric
model estimation using simulated data, varying the distribution
of underlying heterogeneity. Results displayed for exponential(1)
distribution, lognormal(1, 1

3) distribution, and uniform[0, 2] dis-
tribution with 2,500 simulated observations. Mean estimates
across 1,000 simulated datasets shown; standard deviations in
parentheses.

Table 4: Estimated coefficients on observed characteristics in simulations

Table 5 provides some statistics on how well the model was able to estimate the distri-
bution of unobserved heterogeneity. The rows correspond to the distribution from which
the u’s were drawn. The columns correspond to the number N of Laguerre polynomials
used in the estimations. The metric used to measure performance is integrated squared
error (ISE) – if the estimated density function from simulation run i is f̂i(x), where the
true data generation process has unobserved heterogeneity from distribution f(x), the ISE
of that estimated density is

∫∞
0 (f̂i(x) − f(x))2dx. The values in Table 5 are median ISE

across 1,000 simulation runs.
The exponential model fits fairly well for all N . As one would expect, the N = 0 fit is

best: the true model is in the N = 0 class and estimating additional unnecessary parameters
just increases the scope for overfitting. The fit worsens gradually as N increases, but never
becomes terrible; at N = 8, the worst fit, the median ISE is 0.024. To get a feel for the

37Summary statistics for estimates of β̂ using N = 0, 2, 4, 6 are similar.
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Median ISE for various models
True distribution of u N = 0 N = 2 N = 4 N = 6 N = 8
Exponential 0.0010 0.0045 0.0140 0.0201 0.0243
Lognormal 0.0133 0.0115 0.0191 0.0148 0.0167
Uniform [0, 2] 0.1055 0.1449 0.0833 0.0795 0.1009
Notes: Median integrated squared error of estimated distributions
from semi-parametric model estimation using simulated data,
varying the distribution of underlying heterogeneity. Results dis-
played for exponential(1) distribution, lognormal(1, 1

3) distribu-
tion, and uniform[0, 2] distribution with 2,500 simulated observa-
tions. Median ISE across 1,000 simulated datasets shown, varying
the number of Laguerre polynomials.

Table 5: Goodness of fit of estimated distributions of unobserved heterogeneity in simula-
tions: median MISE for various models and true distributions

magnitudes, the MISE would be 0.02 if the density of an exponential distribution were over-
or under- estimated by 10% at every value of u.

The lognormal distribution does not fit as well when N = 0, as one would expect: there
is no α that gives an ISE of less than 0.0107. Larger N make it theoretically possible to fit
the distribution much better (the best fit distributions have ISE 0.00756, 0.00210, 0.00014,
and 0.00002 for N = 2, 4, 6, and 8), but again there is the offsetting effect that there is
more scope for overfitting. The tradeoff between the two effects results in fairly similar fits
across the range of N . The median ISE is smallest for the N = 2 model.

The fits to the uniform distribution are much worse. Here, there is no parameter
combination that produces a very good fit when N is small, and overfitting becomes a
concern when N is large.38 The best fit is obtained for N = 6, where the median ISE is
45% lower than the median ISE for the worst fit of N = 2.

Figure 6 provides a graphical illustration of the performance of our method. In each of
the three panels we present the true distribution in bold and three estimated distributions
corresponding to the simulations (using N = 4) that were at the 25th percentile, the 50th

percentile, and the 75th percentile in the MISE measure of goodness of fit. In the exponential
and log-normal cases the estimated distributions seem to fit reasonably well for values of
around the mean (u = 1) and to fit quite well for higher values of u. The estimated
distributions are farther from the truth at low values of u. This should be expected – once
we are considering a population of schools in which all schools will in practice have zero or
one high-scoring student per year, a single year’s data will not allow one to say whether all
schools are identical or whether there is heterogeneity.

Also as expected, our method performs somewhat poorly for the uniform distribution
with its bounded support. However, we are encouraged to note that, even for this difficult
case, the method captures some important features of the distribution. The steep slope of
the estimates at 0 and 2, and the double-peaked shape of the distributions in the range
[0, 2], allow the estimated functions to bound much of the estimated density in the correct

38The minimum possible ISE’s are 0.0877, 0.0456, 0.0397, 0.0273, 0.0269 for N = 0, 2, 4, 6, 8.
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support region.

A.3 Bootstrap Procedure

We obtained standard errors for our semiparametric estimates and confidence bands
for the distribution of unobserved heterogeneity using both parametric and nonparametric
bootstrapping procedures. In each iteration j of the bootstrap, we generate a simulated
dataset {ỹij , z̃ij}2,051

i=1 , then estimate the parameters α̃j , g̃j1, ..., g̃jN , β̃j using the semipara-
metric estimation procedure described in Section 4. Standard errors are calculated as the
standard deviation of each estimated parameter across 1, 000 simulations. For example, the
standard error of α̂ is calculated as

SE(α̂) =

√∑1000
j=1 (α̃j − α̂)2

1000
.

Another functional of interest is a 95% confidence band on the estimated density and
CDF of unobserved heterogeneity. For each u ∈ (0,∞) and for each simulation j of the
bootstrap, we calculate the density f̃j and CDF F̃j as those generated by the parameter
vector α̃j , g̃j1, ..., g̃jN , β̃j . Denote as f̃p(u) the pth percentile of f̃(u) across 1,000 simulations;

then the 95% confidence band for f̂ (u) is
(
f̃2.5(u), f̃97.5(u)

)
. The confidence band for F̂ is

calculated similarly. Confidence bands for u ∈ (0, 3) and u ∈ (3, 10) are shown in Section
5 for the production of AMC high-scorers and in Section 6 for the production of SAT
high-scorers.

In each simulation of the parametric bootstrap, we use the parameter estimates obtained
using our semiparametric procedure to generate simulated outcomes. First, we draw a
random sample z̃j of size 2,051 (with replacement) from the set of covariates z listed in
Table 2. We also draw a random sample ũj of size 2,051 from the CDF F̂ , which we
estimated using the procedure in Section 4 on the true dataset. For each i = 1, ..., 2, 051,
we then generate λji = ez̃jiβ̂ũji and draw ỹPji from a Poisson distribution with rate parameter
λji. Finally, we estimate α̃Pj , g̃

P
j1, ..., g̃

P
jN , β̃

P
j on the simulated dataset (ỹPj , z̃j).

The nonparametric bootstrap proceeds similarly, except that we use the empirical dis-
tribution of y rather than the estimated theoretical distribution of y. That is, for each
simulation, we draw a random sample (ỹNPj , z̃j) of size 2, 051 (with replacement) from the
set of outcomes y and covariates z, then estimate α̃NPj , g̃NPj1 , ..., g̃NPjN , β̃NPj on the simulated
dataset (ỹNPj , z̃j). As in the semiparametric estimation on our full sample, the results of
each bootstrap estimation may depend on the starting values chosen; in our results, we
present those estimates for which the likelihood is highest after trying numerous starting
values.39 We begin each bootstrap by running a trial bootstrap of 20 simulations for sev-
eral candidate starting values: those resulting in the highest likelihood in the full sample
estimation and the center of each range of starting values for which the resulting likelihood

39In practice, we used β starting values from either a Poisson or negative binomial regression, along with
one of two potential sets of starting values for our parameters α, g1, ..., gN . The first set of parameters
we tried was the best-fit parameters of the candidate distributions described in Appendix A.2, so that
the optimization would be allowed to converge to a number of differently-shaped distributions. We also
tried setting each gi = 0 and varying α between -0.9 and 2. The latter approach often yielded the highest
likelihood.
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Figure 6: Actual vs. Estimated Distributions: 25th, 50th, and 75th percentile fits in simu-
lations 35



is close to that of the best starting values. We then use the values that provide the highest
average log-likelihood in the trial bootstrap as the starting values in the full bootstrap.

If our model is specified correctly, then the parametric bootstrap is more efficient; if
the model is misspecified, then the nonparametric bootstrap will be more appropriate. See
Efron and Tibshirani (1993) for a discussion. In our application, neither procedure provides
smaller or larger standard errors or confidence bands across all parameters or outcomes,
but parametric standard errors are often slightly smaller and parametric bands are often
slightly narrower and smoother. In the body of the paper, we present the results of the
parametric bootstrap, but our interpretation of the results is unaffected by the choice of
bootstrap procedure.
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