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1 Introduction

This paper uses inflation expectations as an observable in the estimation of a DSGE

model, along with a standard set of macro variables. We know very little on the

extent to which DSGE models can accurately describe the behavior of observed

inflation expectations.1 The goal of the paper is therefore to provide evidence on

the extent to which inflation expectations generated by standard DSGE models with

nominal and real rigidities along the lines of Christiano et al. (2005), Smets and

Wouters (2003), and Smets and Wouters (2007), which are currently used for policy

analysis at several central banks, are in line with what observed in the data. We

believe this to be an interesting question given that much of the effects of monetary

policy in these models works through expectations.

We consider three variants of this prototypical DSGE model, all widely used

in the literature, and we estimate them over the post-Volcker disinflation period

(1984 - 2008). These variants differ in terms of the behavior of, and the agents’

information on, the central banks’ inflation target, allegedly a key determinant of

inflation expectations. In the first variant the inflation target is fixed (as in, among

others, Del Negro and Schorfheide (2009)) while in the second it is time-varying, but

fully known to the public (as in Smets and Wouters (2003)).2 We also consider a

third variant where agents need to infer the time-varying target from the behavior of

interest rates, as in Erceg and Levin (2003). Including this model in the analysis is a

natural step, both because it is a realistic alternative to the model where agents have

full information about the target (over our sample Fed officials never announced an

explicit inflation target), and because Erceg and Levin (2003) argue that this type

1Recent literature has used survey measures of inflation expectations in the limited information

estimation of New Keynesian Phillips curves (e.g. Roberts (1997), Adam and Padula (2002), and

Nunes (2009)). None of this papers however studies the extent to which New Keynesian models

can explain the dynamics of inflation expectations.
2Models where the inflation target is time-varying are ubiquitous in the estimated DSGE liter-

ature (e.g., Smets and Wouters (2003), Cogley and Sbordone (2008), and Justiniano et al. (2008)),

and are also popular in macro-finance (e.g., Kozicki and Tinsley (2001), Gurkaynak et al. (2005),

Rudebusch and Swanson (2008) and Dewachter (2008)).
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of asymmetric information is a key feature for explaining the behavior of inflation

expectations. We will refer to these three variants as the Fixed-π∗, Perfect and

Imperfect Information models, respectively.

We find that a standard set of macro variables over the post-Volcker disinfla-

tion period is unable to discriminate between the Perfect and Imperfect Information

models. The data slightly disfavors the Fixed-π∗ version, but the evidence is not

overwhelming. We also find that when we estimate the models on the dataset exclud-

ing inflation expectations and then generate a fictitious time series for expectations,

for all three models the correlation between actual and model generated expecta-

tions is fairly small in levels (the median is around .25, with bands that generally

include zero) and close to zero in first differences. Our baseline measure of observed

inflation expectations consists of the four quarters ahead expectations for the GDP

deflator obtained from the Survey of Professional Forecasters, which is the same

measure used by Erceg and Levin (2003). We check for the robustness of the results

using different sources of expectations and different inflation measures.

Including observed inflation expectations provides strong evidence as to which

of the three models fits the data best: the Perfect Information one.3 We show

that the relative failure of the Imperfect Information model to fit observed inflation

expectations is due to the fact that this model imposes much more stringent cross-

equation restrictions than the Perfect Information model. Evidence based on the

DSGE-VAR methodology (Del Negro and Schorfheide (2004)) confirms the above

results: Whenever inflation expectations are not included the degree of misspeci-

fication (as measured by the difference in marginal likelihoods between the DSGE

model and the best-fitting DSGE-VAR) is about the same across models. When

this variables is included, however, the degree of misspecification for the Imperfect

Information model is substantially larger than for the Perfect Information one. The

DSGE-VAR evidence also suggests that even the Perfect Information model may

3Observed expectations are rarely formally used in the existing literature, even when comparing

models that differ in the way agents form expectations. For instance, Milani (2007) compares the

fit of rational expectations and learning models.
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not properly capture the dynamics of observed inflation expectations: As we loosen

the cross-equation restrictions the DSGE-VARs’ ability to fit inflation expectations

improves.

We compare the forecasting accuracy of the different models in a pseudo out-

of-sample forecasting exercise. We find that the out-of-sample exercise confirms

the results of Bayesian model comparison: for the dataset without expectations the

Perfect and Imperfect Information models have roughly the same one period ahead

forecast accuracy, while for the dataset with expectations the Perfect Information

model outperforms the Imperfect Information one at that horizon. Also consistently

with the model comparison findings, we show that forecasts of observed inflation ex-

pectations themselves are more accurate for the Perfect than for the Imperfect In-

formation model. In addition we find that the four quarters ahead inflation forecasts

from the Perfect Information model obtained without using observed expectations

as an observable are comparable, if not marginally better, than those from the

SPF. Nonetheless, adding inflation expectations to the set of observables improves

the forecasting accuracy for several (but not all) variables, including inflation, real

GDP growth, and interest rates, especially at longer horizons. Interestingly, this is

true even for the Imperfect Information model, in spite of its documented inability

to capture movements in inflation expectations.

We choose not to include the Great Disinflation period (1981 − 1985) in our

baseline sample because of issues of structural instability: Since the early 80s the

policy rule, and possibly the US economy in general, has likely changed in dimensions

other than just the inflation target. Nonetheless, for completeness but also for

comparison with Erceg and Levin (2003) who focus on this period, we also discuss

the results including the the Great Disinflation. We find that the results for the

entire sample (1980 − 2008) are in line with those obtained for the 1984 − 2008

sample. Results from the Great Disinflation period only provide some weak evidence

in support of the Imperfect Information model, in partial agreement with Erceg and

Levin (2003).

We draw a number of conclusions from our results. First, Christiano et al.
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(2005)/ Smets and Wouters (2003) -type DSGE models need time-variation in the

inflation target in order to capture the evolution of expectations during the post-

Volcker period to a much greater extent than they need it to fit other variables,

including inflation. Second, the model where agents have imperfect information

on the value of the target produces a much worse fit of inflation expectations as

the model where they are fully informed. This result is somewhat surprising, as

this specification was conceived precisely to explain the dynamic of inflation expec-

tations, but can be quite intuitively explained on the ground that it imposes more

stringent cross-equation restriction than the variant where agents have perfect infor-

mation. These cross-equation restrictions turn out to be at odds with the data. The

finding are very robust across several different specification choices, and samples.

Third, from the perspective of the econometrician inflation expectations appear

to contain information that is not present in the other series. Forecasters likely

have a richer information set than the econometrician using a standard set of macro

variables, and including measured expectations among the observables is a way to

exploit such information set.4 This information can be exploited for both forecasting

– as shown in the pseudo out-of-sample exercise – and estimating latent variables.

Indeed, the result that inflation expectations generated by all the models are quite

different from the actual data can be interpreted as evidence that inflation expec-

tations bring information about latent states – such as the inflation target – which

was previously unavailable to the econometrician.5 This piece of evidence can also

be interpreted as showing that this models are not well suited to fit the behavior of

inflation expectations, however. The results from the DSGE-VAR approach confirm

that this is certainly the case for the Imperfect Information model, but also to a

lesser extent for the Perfect Information.

4Following the FAVAR methodology (Bernanke et al. (2005)) there are some attempts to combine

factor and DSGE models with the goal of incorporating as much of the available data as possible

(Boivin and Giannoni (2006), Giannone et al. (2008)). We take a different route and incorporate

this information by adding agent’s expectations to the list of observables.
5Kiley (2008) uses measures of inflation expectations, combined with an estimated monetary

policy rule, to infer public beliefs about the central bank’s inflation objectives.
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While there are good reasons for including measured inflation expectations

among the set of observables in the estimation of DSGE models (ability to discrim-

inate across models, information content), there are also several issues associated

with this choice: data revisions, timing, choice of the expectation measures. We

show that the results are robust to different choices of measurement and timing as-

sumptions, but do not directly address perhaps the most difficult issue, that of data

revisions. Like recent work by Canova and Gambetti (2007), we use expectations

together with revised data in our estimation, although in a robustness exercise we

try to correct for the impact of revisions.

This paper focuses on a set of rational expectation models. Yet, several papers

have documented that inflation expectations as measured by surveys like Michigan,

Livingston and SPF fail to be consistent with rational expectations in terms of un-

biasedness and serially uncorrelated forecast errors – e.g., Lloyd (1999) and Roberts

(1997).6 Why embark at all in our investigation given such evidence? Our answer

is that the prominence of this class of rational expectation models both in policy

making and academia, and the importance of expectation formation within these

models, makes the issues addressed in this paper interesting regardless. In fact, one

can see our paper as a more structural take on questions similar to those addressed

in the previous literature: To what extent rational expectation models adequately

explain the behavior of observed expectations, and which one comes closest? In any

case, in a robustness exercise we consider deviations between model-implied and

observed expectations, either using classical measurement error, or allowing for a

mapping between the states of the economy and observed expectations that differs

from that implied by the models.

Related to the issue of irrationality of expectations, there are several other mech-

anism of expectation formations, notably learning, that we do not consider here. In

light of our findings, it is interesting to ask whether learning models provide a

better description of observed inflation expectations than rational expectation mod-

els. In fact, very recent papers by Ormeño (2009) and Milani (2010) have tackled

6Some papers provide evidence in the opposite direction, however (see Rich (1989)).
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this question. Both papers use survey measures of expectations to estimate a New

Keynesian model with adaptive learning. In particular, Milani (2010) introduces

exogenous shocks to expectations that are propagated to the economy through the

learning mechanism, and shows that such shocks play an important role in explaining

macroeconomic fluctuations. Ormeño (2009) shows that adaptive learning plays an

important role in explaining the behavior of US inflation and inflation expectations.

In Ormeño (2009) the model fit relies on the assumption that inflation expectations

are formed using a small forecasting model that is not consistent with the rational

expectations equilibrium. Because learning occurs using a misspecified model, the

dynamics under learning and rational expectations are markedly different.

We conclude the section with a brief literature review of models where agents

have imperfect information on the Central Bank’s inflation target. The aforemen-

tioned study by Erceg and Levin (2003) shows that a calibrated DSGE model with

asymmetric information produces a reasonable account of the Volcker disinflation

and its output costs. Several other papers introduce imperfect information about the

central bank’s inflation target in a calibrated monetary DSGE model (Andolfatto et

al. (2008), Keen (2009), and Melecky et al. (2008) among others), but do not discuss

the model’s ability to explain observed measures of inflation expectation. Perhaps

closer to our paper, Schorfheide (2005) estimates a New Keynesian DSGE model

with imperfect information using US data from 1960 to 1997. The paper finds that

while the model with full information provides a better fit over the whole sample,

the model with imperfect information performs better for the Volcker disinflation

period. While measures of inflation expectations are not included as observables in

his dataset, he compares the time series of inflation expectations generated by the

two models and finds that the two models imply inflation expectations – one-year

and ten-years average – that are roughly similar over the sample. Finally, Aruoba

and Schorfheide (2009) study the distortionary properties of inflation and the op-

timal long-run inflation rate using an estimated DSGE model with a time-varying

inflation target. Their dataset includes measures of long-run inflation expectations

but they do not focus on the model’s ability to explain inflation expectations.
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The next section describes the model, with particular emphasis on the differ-

ence between perfect and imperfect information. Section 3 discusses the econometric

framework for evaluating how a model estimated to fit a baseline set of time series

fares in fitting an additional time series – here, inflation expectations. This is a

straightforward application of Bayesian updating, which is routinely done in the

DSGE estimation literature in the time series dimension, to the cross-sectional di-

mension. Section 4 describes the data and discusses issues related to the inclusion

of measured expectations in the set of observables. Section 5 discusses our findings.

2 Model

The economy is described by a medium-scale New Keynesian model with price and

wage rigidities, capital accumulation, investment adjustment costs, variable capital

utilization, and habit formation. The model is based on work of Smets and Wouters

(2003), Smets and Wouters (2007), and Christiano et al. (2005). The specific version

is taken from Del Negro et al. (2007), except for the monetary policy rule, which

we describe in detail. For brevity we only present the log-linearized equilibrium

conditions and refer the reader to the above referenced papers for the derivation of

these conditions from assumptions on preferences and technologies. All variables

that appear subsequently are expressed as log-deviations from this steady state.

Monetary Policy: Perfect versus Imperfect Information. The central

bank follows a standard feedback rule:

Rt = ρRRt−1 + (1− ρR) (ψ1(πt − π∗t ) + ψ2ẏt) + σrεR,t, (1)

where Rt and πt represent the interest rate and inflation, respectively, and ẏt cap-

tures some measure of economic activity in log-deviations from its steady state (in

the baseline specification ẏt coincides with the growth rate of output), and εR,t is an

i.i.d. shock. The inflation target π∗t , defined in log-deviations from its non-stochastic

steady state π∗, evolves according to

π∗t = ρπ∗π
∗
t−1 + σπ∗επ∗,t, (2)



8

where 0 < ρπ∗ < 1 and επ∗,t is an i.i.d. shock. We follow Erceg and Levin (2003),

Smets and Wouters (2003) and Justiniano et al. (2008), among the others, and

model π∗t as following a stationary process, although our prior for ρπ∗ will force this

process to be highly persistent. The choice of a stationary process for π∗t is also

motivated by the fact that in our sample long-term inflation expectations (10 year

ahead) have moved very little in the last ten years. We view this as evidence against

the random walk assumption for our post-84 sample.7

Under perfect information, agents observe π∗t . Under imperfect information they

need to infer the inflation target from the observed interest rate behavior (see Erceg

and Levin (2003)). Call π̃t the residual in the feedback rule, defined as

π̃t = (ρrRt−1 + (1− ρr)(ψ1πt + ψ2ŷt)−Rt)/(1− ρr)ψ1. (3)

Agents solve a signal extraction problem using

π̃t = π∗t + σT εR,t (4)

as the measurement equation (where σT = σr
(1−ρR)ψ1

) and (2) as the transition equa-

tion. The law of motion of π∗t+1|t is obtained using the steady state Kalman filter

π∗t+1|t = ρπ∗π
∗
t|t−1 + ρπ∗K

(
π̃t − π∗t|t−1

)
, (5)

whereK =
V (

σπ∗
σT

,ρπ∗ )

1+V (
σπ∗
σT

,ρπ∗ )
is the steady state Kalman gain coefficient and σ2

TV (σπ∗σT , ρπ
∗)

is the steady state uncertainty regarding the inflation target. V solves:

V = ρ2
π∗

[
V − V (V + 1)−1 V

]
+ (

σπ∗

σT
)2.

We also consider the alternative law of motion for inflation target π∗t proposed

in Gurkaynak et al. (2005):8

π∗t = ρπ∗π
∗
t−1 + χπt−1 + σπ∗επ∗,t. (6)

7In contrast, Cogley and Sbordone (2008) and Aruoba and Schorfheide (2009) model π∗t as a

random walk. These papers include the entire 1970s in their sample period.
8Ireland (2007) also consider a law of motion for the inflation target which is is affected by

economic fundamentals.
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As above agents know the policy rule and the evolution of the unobserved inflation

target. The forecast of the unobserved inflation target π∗t+1|t (5) now becomes

π∗t+1|t = ρπ∗π
∗
t|t−1 + ρπ∗K

(
π̃t − π∗t|t−1

)
+ χπt (7)

where K is defined as before.

Finally, as an additional robustness checks we consider the case where π∗t enters

the intercept of the feedback rule, which therefore becomes:

Rt = ρRRt−1 + (1− ρR) (π∗t + ψ1(πt − π∗t ) + ψ2ẏt) + σrεR,t. (8)

Firms. The economy is populated by a continuum of firms that combine capital

and labor to produce differentiated intermediate goods. These firms have access to

the same Cobb-Douglas production function with capital elasticity α and total factor

productivity Zt. Total factor productivity is assumed to be non-stationary, and its

growth rate zt = ln(Zt/Zt−1) follows the autoregressive process

zt = (1− ρz)γ + ρzzt−1 + σzεz,t. (9)

Output, consumption, investment, capital, and the real wage can be detrended by

Zt. In terms of the detrended variables the model has a well-defined steady state.

The intermediate goods producers hire labor and rent capital in competitive

markets and face identical real wages, wt, and rental rates for capital, rkt . Cost

minimization implies that all firms produce with the same capital-labor ratio

kt − Lt = wt − rkt (10)

and have marginal costs

mct = (1− α)wt + αrkt . (11)

The intermediate goods producers sell their output to perfectly competitive final

good producers, which aggregate the inputs according to a CES function. Profit

maximization of the final good producers implies the following demand curve

yt(j)− yt = −
(

1 +
1

λfe
λ̃f,t

)
(pt(j)− pt). (12)
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Here yt(j)− yt and pt(j)− pt are quantity and price for good j relative to quantity

and price of the final good. The price pt of the final good is determined from a zero-

profit condition for the final good producers. We assume that the price elasticity of

the intermediate goods is time-varying. Since this price elasticity affects the mark-

up that intermediate goods producers can charge over marginal costs, we refer to

λ̃f,t as mark-up shock. Following Calvo (1983), we assume that in every period a

fraction of the intermediate goods producers ζp is unable to re-optimize their prices.

A fraction ιp of these firms adjust their prices mechanically according to lagged

inflation, while the remaining fraction 1− ιp adjusts to steady state inflation π∗. All

other firms choose prices to maximize the expected discounted sum of future profits,

which leads to the Phillips curve:

πt =
β

1 + ιpβ
IEt[πt+1] +

ιp
1 + ιpβ

πt−1 +
(1− ζpβ)(1− ζp)
ζp(1 + ιpβ)

mct +
1

ζp
λf,t, (13)

where πt is inflation and β is the discount rate. Our assumption on the behavior

of firms that are unable to re-optimize their prices implies the absence of price

dispersion in the steady state. As a consequence, we obtain a log-linearized aggregate

production function of the form

yt = (1− α)Lt + αkt. (14)

Equations (11), (10), and (14) imply that the labor share lsht equals marginal costs

in terms of log-deviations: lsht = mct.

Households. There is a continuum of households with identical preferences,

which are separable in consumption, leisure, and real money balances. Households’

preferences display (internal) habit formation in consumption, that is, period t util-

ity is a function of ln(Ct−hCt−1), where Ct is the level of consumption. Households

supply monopolistically differentiated labor services. These services are aggregated

according to a CES function that leads to a demand elasticity 1 + 1/λw (see Equa-

tion (12)). The composite labor services are then supplied to the intermediate goods

producers at real wage wt. To introduce nominal wage rigidity, we assume that in

each period a fraction ζw of households is unable to re-optimize their wages. A

fraction ιw of these households adjust their t − 1 nominal wage by πt−1e
γ , where
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γ represents the average growth rate of the economy, while the remaining fraction

1 − ιp adjusts to steady state wage growth π∗eγ . All other households re-optimize

their wages. First-order conditions imply that

w̃t = ζwβIEt

[
w̃t+1 + ∆wt+1 + πt+1 + zt+1 − ιwπt

]
+

1− ζwβ
1 + νl(1 + λw)/λw

(
νlLt − wt − ξt +

1

1− ζwβ
φt

)
, (15)

where w̃t is the optimal real wage relative to the real wage for aggregate labor

services, wt, and νl would be the inverse Frisch labor supply elasticity in a model

without wage rigidity (ζw = 0) and differentiated labor. Moreover, ξt denotes the

marginal utility of consumption defined below and φt is a preference shock that

affects the intratemporal substitution between consumption and leisure. The real

wage paid by intermediate goods producers evolves according to

wt = wt−1 − πt − zt + ιwπt−1 +
1− ζw
ζw

w̃t. (16)

Households are able to insure the idiosyncratic wage adjustment shocks with

state contingent claims. As a consequence they all share the same marginal utility

of consumption ξt, which is given by the expression:

(eγ − hβ)(eγ − h)ξt = −(e2γ + βh2)ct + βheγIEt[ct+1 + zt+1] + heγ(ct−1 − zt), (17)

where ct is consumption. In addition to state-contingent claims households accu-

mulate three types of assets: one-period nominal bonds that yield the return Rt,

capital k̄t, and real money balances.9

The first order condition with respect to bond holdings delivers the standard

Euler equation:

ξt = IEt[ξt+1] +Rt − IEt[πt+1]− IEt[zt+1]. (18)

Capital accumulates according to the law of motion

k̄t = (2− eγ − δ)
[
k̄t−1 − zt

]
+ (eγ + δ − 1)

[
it + S′′e2γ(1 + β)µt

]
, (19)

9Since preferences for real money balances are assumed to be additively separable and monetary

policy is conducted through a nominal interest rate feedback rule, money is block exogenous and

we will not use the households’ money demand equation in our empirical analysis.
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where it is investment, δ is the depreciation rate of capital, and µt is a stochastic

disturbance to the price of installed capital relative to consumption. Investment

in our model is subject to adjustment costs, and S′′ denotes the second derivative

of the investment adjustment cost function at steady state. Optimal investment

satisfies the first-order condition:

it =
1

1 + β

[
it−1 − zt

]
+

β

1 + β
IEt[it+1] +

1

(1 + β)S′′e2γ
(ξkt − ξt) + µt, (20)

where ξkt is the value of installed capital and evolves according to:

ξkt −ξt = βe−γ(1−δ)IEt
[
ξkt+1−ξt+1

]
+IEt

[
(1−(1−δ)βe−γ)rkt+1−(Rt−πt+1)

]
. (21)

Capital utilization ut is variable and rkt in the previous equation represents the rental

rate of effective capital

kt = ut + k̄t−1 − zt. (22)

The optimal degree of utilization is determined by

ut =
rk∗
a′′
rkt . (23)

Here a′′ is the derivative of the per-unit-of-capital cost function a(ut) evaluated at

the steady state utilization rate. The aggregate resource constraint is given by:

yt = (1 + g∗)

[
c∗
y∗
ct +

i∗
y∗

(
it +

rk∗
eγ − 1 + δ

ut

)]
+ gt, (24)

where c∗/y∗ and i∗/y∗ are the steady state consumption-output and investment-

output ratios, respectively, and g∗/(1 + g∗) corresponds to the government share

of aggregate output. The process gt can be interpreted as exogenous government

spending shock. It is assumed that fiscal policy is passive in the sense that the

government uses lump-sum taxes to satisfy its period budget constraint. Finally,

all stochastic processes described above are assumed to be AR(1) processes with

normally distributed errors.

State-Space Representation of the DSGE Model. We use the method in

Sims (2002) to solve the log-linear approximation of the DSGE model. We collect

all the DSGE model parameters in the vector θ, stack the structural shocks in the
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vector εt, and derive a state-space representation for our vector of observables yt,

which is composed of the transition equation:

st = T (θ)st−1 +R(θ)εt, (25)

which summarizes the evolution of the states st, and of the measurement equations:

yt = Z(θ)st +D(θ), (26)

which maps the states onto the vector of observables yt, where D(θ) represents the

vector of steady state values for these observables. Specifically, for our standard set

of macro time series the set of measurement equations is:

Real output growth (%, annualized)

400(lnRGDPt − lnRGDPt−1) = 400(yt − yt−1 + zt) + γ

Hours (%)

100 lnLt = 100(Lt + lnLadj)

Labor Share (%)

100 lnLSHt = 100(Lt + wt − ŷt + ln lsh∗)

Inflation (%,annualized)

400(lnPt − lnPt−1) = 400πt + π∗

Interest Rates (%,annualized)

400 lnRt = 400Rt +R∗,

(27)

where RGDPt, Lt, LSHt, Pt, and Rt represent real per capita GDP, total per

capita hours, the labor share, the price level, and the interest rate, respectively.10

The quantities γ, π∗, and R∗ are the annualized (in percent) steady state real

output growth, inflation, and nominal interest rate, respectively, lsh∗ is the steady

10Relative to Smets and Wouters (2007) we use the labor share as opposed to growth in wages,

both because it contains level information relative to wages, which among other things allows

us to estimate the capital share, and because it provides a measure of real marginal costs, a

key variable for inflation in New Keynesian models. We also choose to exclude consumption and

investment. Del Negro et al. (2007) find that the non-stationarity of the great ratios involving

consumption and investment is one of the main sources of misspecification of DSGE models. Such

misspecification may in principle “pollute” the outcome of the model comparison done in this paper.

Since consumption and investment as observables do not necessarily play a key role in the exercise

at hand we therefore chose to exclude them. Del Negro and Schorfheide (2008), a paper about

model comparison, take the same route.



14

states of the labor share and the parameter Ladj captures the units of measured

hours (it can be viewed as a re-parameterization of the steady state associated with

the time-varying preference parameter φt that appears in the households’ utility

function). As a measure of inflation we use either the GDP deflator (our baseline)

or CPI, depending on the the corresponding inflation expectation measure, and as

a measure of interest rates we use the federal funds rate. Appendix A provides

further details on the data. In our benchmark specification we use 97 quarters of

data spanning the post-Volcker disinflation period: 1984Q2 to 2008Q2.

Whenever we include observed k-quarter ahead inflation expectations πO,t+kt to

our set of time series, the set of equations (27) is augmented to include:

πO,t+kt = IEMi
t [πt+k]

= 400Z(θ)π,.T (θ)kst + π∗,
(28)

where IEMi
t [πt+k] are the (annualized) inflation expectations obtained from the

DSGE model Mi. The second line shows how to compute these expectations us-

ing the transition equation (25), where Z(θ)π,. is the row of Z(θ) corresponding to

inflation. In our application k = 4. Equation (28) embodies the assumption that

observed expectations are rational, which arguably clashes with some of the evi-

dence mentioned in the introduction. Section 5.8 discusses this issue, and explores

alternative formulations.

3 Predictive Checks in the Cross-Section

Let yi1,T = {yit}Tt=1 define time series i. A natural question in the DSGE model

estimation literature is the following: How does a model that is estimated to fit

time series y1
1,T through yJ1,T fare in fitting time series yJ+1

1,T through yJ+K
1,T ? In this

paper, for instance, we ask how the Christiano et al. (2005)/Smets and Wouters

(2003) model, which allegedly fits standard macro time series well, fare in describing

observed inflation expectations. The same question can be posed for asset prices,

the yield curve, and several other time series.
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Let Y 0
1,T and Y 1

1,T denote {y1
1,T , . . . , y

J
1,T } and {yJ+1

1,T , . . . , yJ+K
1,T }, respectively.

One can of course compute the marginal likelihood for series y1
1,T though yK+J

1,T ,

namely

p(Y 0
1,T , Y

1
1,T |Mi) =

∫
p(Y 0

1,T , Y
1

1,T |θ,Mi)p(θ|Mi)dθ, (29)

whereMi is the model under consideration, p(Y 0
1,T , Y

1
1,T |Mi) denotes the likelihood

function, and p(θ|Mi) the prior chosen for θ. While the quantity p(Y 0
1,T , Y

1
1,T |θ,Mi)

is certainly of interest, and we will compute it in our application, it may not neces-

sarily address the researcher’s question. This is for two reasons. First, this quantity

is often sensitive to the prior chosen, and prior elicitation for some of the DSGE

model parameters can be challenging (see Del Negro and Schorfheide (2008)). The

researcher who is interested in knowing how well the model fits the time series yJ+1
1,T

through yJ+K
1,T may want to use as a prior the posterior obtained from estimating

the model on time series y1
1,T through yJ1,T , p(θ|Y 0

1,T ,Mi), which will arguably be

less dependent on the initial prior p(θ|Mi) chosen. In our case, the exercise would

be to use the posterior obtained from fitting standard macro time series in order to

evaluate the model’s ability to fit expectations. The object of interest would then

be the predictive likelihood (see Geweke (2005), page 66):

p(Y 1
1,T |Y 0

1,T ,Mi) =

∫
p(Y 1

1,T |θ, Y 0
1,T ,Mi)p(θ|Y 0

1,T ,Mi)dθ, (30)

applied to the cross sectional dimension. The second reason why we may be inter-

ested in p(Y 1
1,T |Y 0

1,T ,Mi), rather than in p(Y 0
1,T , Y

1
1,T |Mi), is that the latter provides

information on how well modelMi fits both Y 0
1,T and Y 1

1,T , while the researcher may

want to disentangle the goodness of fit of one set of time series versus the other.

The quantity p(Y 1
1,T |Y 0

1,T ,Mi) tells us how well modelMi fits Y 1
1,T only, conditional

on the parameter distribution delivering the best possible fit for Y 0
1,T . This quantity

easily obtains as the ratio of two objects we know how to compute, p(Y 0
1,T , Y

1
1,T |Mi)

and p(Y 0
1,T |Mi):

p(Y 1
1,T |Y 0

1,T ,Mi) =
p(Y 0

1,T , Y
1

1,T |Mi)

p(Y 0
1,T |Mi)

. (31)

In addition to computing the predictive likelihood as in expression (30), it is
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also interesting to compare the predictive density

p(Y ∗11,T |Y 0
1,T ,Mi) =

∫
p(Y ∗11,T |θ, Y 0

1,T ,Mi)p(θ|Y 0
1,T ,Mi)dθ (32)

with the actual realization Y 1
1,T , where Y ∗11,T are fictitious time series for Y 1 obtained

from the DSGE model Mi conditional on Y 0
1,T . Draws from the predictive density

p(Y ∗11,T |Y 0
1,T ,Mi) are obtained using the state-space representation of the DSGE

model, namely by repeatedly executing the following steps: (i) draw θ from the

posterior p(θ|Y 0
1,T ,Mi), (ii) conditional on the realization of θ and Y 0

1,T , draw the

unobserved states s1,T from p(s1,T |Y 0
1,T ,Mi) (e.g., using the method in Carter and

Kohn (1994)), (iii) use the DSGE model-implied mapping between s1,T and Y 1 (in

our case, expression (28)) to obtain a time series Y ∗,11,T . This exercise is conducted

in section 5.2. Geweke (2005) and Geweke (2007) extensively discuss the role of

predictive checks in Bayesian analysis.

4 Measurement and Issues with Modeling Inflation Ex-

pectations

Several issues arise when using inflation expectations as observables in the estimation

of DSGE models. First, there are many measures of inflation expectations available,

for different inflation measures, and at different horizons. Our measurement choice

of inflation expectations for the benchmark specification coincides with that of Erceg

and Levin (2003): We use four quarters ahead expectations for the GDP deflator

obtained from the Survey of Professional Forecasters. We check for the robustness

of the results using different sources of expectations (Blue Chip versus SPF), and

different inflation measures (CPI versus GDP deflator). An alternative source of

inflation expectations is the Michigan Survey of households, which are available at

the one and ten years horizons. However in that Survey households are asked about

inflation in general, as opposed to any specific measure, and that makes it hard to

have a measurement of expectations that is consistent with the chosen measure of

inflation.
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In terms of forecast horizons, we choose the longest forecast horizon for which

data are available since the 1980s, namely four quarters, since arguably longer fore-

cast horizons are more informative on agents’ views about the policymakers’ infla-

tion target. Measures of inflation expectations for forecasting horizon longer than

4 quarters ahead are available but with limitations in terms of sample length and

frequency. SPF provides average CPI inflation forecasts for the following 10 years

but the sample starts in 1990Q4. Blue Chip and the Philadelphia Fed’s Livingston

survey also provide 10-years CPI inflation forecast staring 1979Q4 but the forecasts

are taken only twice a year.11

Another serious issue is that forecasters (whether SPF or Blue Chip) have only

the latest vintage of data available, while the econometrician often uses the final

vintage. This is potentially important, especially for revision in the inflation measure

itself, which will heavily condition the forecasts. This is not the only paper that

uses inflation expectations together with revised data for macroeconomic variables

(Canova and Gambetti (2007), Leduc et al. (2007), and Clark and Davig (2009), who

use structural VARs, are recent examples). Addressing the issue of data revisions

when using observed expectations as observables represents a major challenge, which

we do not undertake in this paper. We do however show the robustness of the results

when we use CPI as a measure of inflation, as opposed to the more heavily revised

GDP deflator. Non-seasonally adjusted CPI is never revised. Seasonally adjusted

CPI has revisions, but these are fairly small compared to those for the GDP deflator,

as shown by Figure A.1 in the appendix. In addition, in a robustness exercise we try

to assess whether data revisions are quantitatively important by adding the revision

of time t inflation data (i.e, the difference between first and last vintage) to the

measurement equation.

A third issue is the one of information synchronization. SPF forecasters pro-

11Concerning the 5-years horizon, Blue Chip includes forecasts which are also taken twice a year,

while SPF produces quarterly forecast starting only in 2005Q3. SPF also provides quarterly 5

and 10 years forecast for PCE inflation but those start in 2007Q1. Finally, SPF produces 2 year

forecasts for CPI (core and total) and PCE (core and total) inflation but they are available since

2007Q1 (CPI is available since 2005Q3).
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vide their forecasts in the middle of the quarter, and hence have partial information

about the state of the economy in the current quarter. We deal with this issue by

checking the robustness of the results to different assumptions regarding the timing

of the agents’ information set. The benchmark results are obtained assuming that

observed expectations are formed using current quarter information (which is also

the assumption used in Canova and Gambetti (2007)). The alternative assumption,

which we call “Lagged Information” specification, is that the forecasters are only

endowed with information up to the previous quarter. Last, forecasts are hetero-

geneous, and our model cannot account for such heterogeneity (sticky information

models can produce heterogeneous expectations, see Mankiw et al. (2003)). This is

a very interesting and important avenue of research, which we do not pursue in this

paper.

5 Results

Here is the road map of our results: The next section describes the choice of priors

and their implications in terms of the observables. Section 5.2 visually investigates

the extent to which inflation expectations generated from a model estimated on a

standard set of macro time series resemble the actual data. Section 5.3 proceeds to

a more formal model comparison exercise. Section 5.4 uses the DSGE-VAR method-

ology to address the issue of whether the models we consider adequately describe

the behavior of inflation expectations. Section 5.5 provides the results of a pseudo

out-of-sample forecasting exercise. Section 5.6 describes the features of the pos-

terior distributions obtained under the Perfect and Imperfect Information models.

Sections 5.7 and 5.8 assess the robustness of our findings. In particular, section 5.8

allows for discrepancies between model-implied and observed expectations, either

due to classical measurement error, to the effect of data revisions, or to the impact

of lagged forecast errors. Finally, section 5.9 considers a sample that starts in 1980

and hence includes the so-called Volcker disinflation.



19

5.1 Prior Choice and Prior Predictive Checks

Table 1 shows the priors for the parameters of the policy rule (1) and the associated

law of motion for the inflation target π∗t (2), which are the key parameters for the

exercise conducted here. Priors for the responses to inflation (ψ1) and the measure

of economic activity (ψ2) – output growth in the baseline specification – in the

policy rule, persistence (ρr), and steady state inflation target (π∗) are as chosen as

follows. The prior on π∗ is centered using pre-sample information on inflation, as

in Del Negro and Schorfheide (2008). The prior on ψ1 and ψ2 are centered at 2

and .2 respectively, and imply a fairly strong response to inflation and a moderate

response to output. Priors on variance of i.i.d. policy shocks σr is centered at

.15. In general the priors on the standard deviations of the shocks are chosen so

that overall variance of endogenous variables is roughly close to that observed in

the pre-sample 1959Q3-1984Q1, informally following the approach in Del Negro and

Schorfheide (2008). Key priors are those on persistence and standard deviation of

the innovation to π∗t process, as they determine, together with the prior on σr, the

agents’ Kalman gain in the Imperfect Information model. We follow Erceg and

Levin (2003) and make the process followed by π∗t very persistent: The prior for ρπ∗

is centered at .95 and the 90% bands range from about .91 to .99. The half-lives of

a shock to π∗t corresponding to the prior mean and 90% bands for ρπ∗ are 14, 7, and

69 quarters, respectively.

In the Benchmark prior the prior on σπ∗ , centered at .05, is independent from

all other parameters, and is fairly loose.12 An alternative prior (“Signal-to-Noise

Ratio Prior”) places a prior directly on the Signal-to-Noise ratio (and hence induces

dependence between σπ∗ and σr) and is centered at the value that delivers a Kalman

gain of approximately .13, the value calibrated by Erceg and Levin (2003).

Priors on nominal rigidities parameters are shown in the top panel of Table 2. To

check robustness to the degree of nominal rigidities in the economy we consider two

priors, as in Del Negro and Schorfheide (2008): “Low Rigidities” (loosely calibrated

12In this and all other tables the standard deviations σπ∗ and σr are not annualized.
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at Bils and Klenow (2004) values of average duration less than 2 quarters), and

“High Rigidities” (duration about 4 quarters).

Priors on remaining parameters are shown in the bottom panel of Table 2. The

priors on “Endogenous Propagation and Steady State” are all chosen as in Del Negro

and Schorfheide (2008). Specifically, the prior for the habit persistence parameter

h is centered at 0.7, which is the value used by Boldrin et al. (2001). The prior

for a′′ implies that in response to a 1% increase in the return to capital, utilization

rates rise by 0.1 to 0.3%. These numbers are considerably smaller than the one used

by Christiano et al. (2005). The 90% interval for the prior distribution on νl implies

that the Frisch labor supply elasticity lies between 0.3 and 1.3, reflecting the micro-

level estimates at the lower end, and the estimates of Kimball and Shapiro (2003)

and Chang and Kim (2006) at the upper end. We use a pre-sample of observations

from 1959Q3-1984Q1 to choose the prior means for the parameters that determine

steady states.

The priors on standard deviations and autocorrelations are chosen so that over-

all variance and autocorrelations of endogenous variables is roughly close to that

observed in the pre-sample 1959Q3-1984Q1 (see Table A.1 in the appendix). Ta-

ble A.1 also shows that although we use the same prior for both the models under

consideration – the Imperfect and Perfect Information models – the prior predictive

statistics are fairly similar across models.

5.2 Inflation Expectations: Model and Data

If we generate fictional time series of expected inflation from the various models

under consideration when these are estimated without including measured expecta-

tions among the observables, do we obtain anything that looks like the actual data?

Figure 1 addresses this question. The figure shows the 4-quarters ahead median

forecast for the GDP deflator (dashed and dotted line), together with 4-quarters

ahead expected inflation generated by the Perfect Information (top panel), Imper-

fect Information (middle panel) models, and the model with a constant inflation
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target (Fixed-π∗ – bottom panel). These predictive paths for inflation expectations

are obtained as described in section 3. Specifically, we estimate each model Mi on

the dataset without inflation expectations (Y 0
1,T ), generate draws for the states st

from the distribution p(s1,T |Y 0
1,T ,Mi), and then obtain inflation expectations using

expression (28). The solid line and the shaded areas in Figure 1 represent the me-

dian, the 67, and the 95 percent bands of the predictive distribution of IEMi
t [πt+4],

computed period by period. In generating these figures we also condition on two lags

of the variables included in Y 0, but not on the initial level of inflation expectations.

In section 5.7 we show that this does not make a big difference.

Figure 1 shows that the predictive paths of inflation expectations generated by

the three models are actually quite similar to one another, and quite different from

the actual data. It appears that model implied inflation expectations are generally

below actual expectations in the first part of the sample and above in the second

part. Table 3 provides information about the correlation between model implied

and actual inflation expectations. For each draw of the time series {IEMi
t [πt+4]}T1 we

compute the correlation with πO,t+4
t , and then display the median and the 90 percent

bands. The correlation between model implied and actual inflation expectations is

fairly small. For the whole sample the median correlation in level is around .25 for

all three models, and is not significantly positive (the 5th quintile of the distribution

is below zero in all three cases). In first differences the correlation is virtually zero:

.12 for the Perfect Information model, and below .1 for the remaining two models.

Visually it may appear that the discrepancy between model-implied and ob-

served expectations is largest in the first part of the sample. One may infer that the

main shortcoming of the models under consideration consists in missing the timing

of the downward shift in inflation expectations occurred in the early nineties. In

fact, the bottom of Table 3 the correlations in the second part of the sample are

even worse than for the whole sample. They are negative – and almost significantly

so – in levels and close to zero in first differences.

Figure 1 is not particularly useful for the purpose of model comparison. This

is because the bands in Figure 1 are computed period by period, and therefore do
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not account for the autocorrelation in inflation expectations. The formal model

comparison exercise is therefore carried out in the next section.

5.3 Model Comparison

Table 4 shows the log marginal likelihood for three models: Imperfect Information,

Perfect Information, and the model with constant inflation target (Fixed-π∗). For

all models we use the Benchmark prior. The Dataset with Expectations has the

SPF four quarters ahead median forecast for the GDP deflator among the observ-

ables. For these results we assume that the expectations are generated using current

quarter information. In the remainder of the paper we condition on two lags of the

variables included in Y 0 unless we indicate otherwise.

Table 4 shows that for the dataset without expectations (column (1)) all three

models perform about the same, with the Fixed-π∗ model performing slightly worse.

The difference in ln p(Y 0
1,T |Mi) for the Imperfect and Perfect Information models is

.69, which implies a posterior odd of roughly 2 in favor of the Imperfect Information

model. The difference in ln p(Y 0
1,T |Mi) for the Fixed-π∗ is larger, about 5. Although

this difference implies that the posterior odds are heavily against the Fixed-π∗ model,

Del Negro and Schorfheide (2008) show that for marginal likelihoods for DSGE

models are quite sensitive to the choice of priors, so that a difference of 5 can in

principle be overturned by choosing a slightly different prior.

When SPF inflation expectations are included among the observables, the Per-

fect Information model performs significantly better than both the Fixed-π∗ and

the Imperfect Information model. The difference in the log marginal likelihoods

ln p(Y 0
1,T , Y

1
1,T |Mi) between the Perfect and Imperfect Information models is about

25 in favor of the latter. The data disfavors the Fixed-π∗ even more strongly. Since

the marginal likelihoods ln p(Y 0
1,T |Mi) are similar across models, these differences

translate into differences in ln p(Y 1
1,T |Y 0

1,T ,Mi). They imply that the Perfect In-

formation model fits observed inflation expectations much better than either the

Imperfect Information or the Fixed-π∗ model. The fact that the differences are
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large indicates that the extra observable included in Y 1
1,T contains quite a lot of

information as to which model describes it best.

The intuition for the above result lies in the fact that while the econometrician

estimating the Perfect Information model can rely on the latent variable π∗t to fit the

data, the econometrician estimating the Imperfect Information one cannot. Recall

that in the Imperfect Information model all the econometrician can infer from the

data is the agents’ belief about π∗t , which we call π∗t|t. The law of motion of the

agents’ perception of the inflation target π∗t|t is given by:

π∗t|t = (1−K)ρπ∗π
∗
t−1|t−1 +Kπ̃t, (33)

which obtains rearranging equation (5). As we iterate this law of motion forward

starting from the initial condition π∗0|0, we realize that the econometricians only

degree of freedom lies in the choice of this initial condition. After that, the path

for π∗t|t is pinned down by that of the interest feedback rule residual π̃t, defined in

equation (3). In the benchmark specification where the interest rate responds to

inflation and output growth the residual π̃t is pinned down by the data, for given

parameters.

Figure 2 shows visually what we just described. The top panel of Figure 2

plots the mean estimate of the latent variable π∗t|t for the Imperfect Information

model for the dataset without (black line) and with (gray line) inflation expectations

(we condition on the same set of parameters in computing both lines, namely the

value of θ that maximizes p(θ|Y 0
1,T ,Mi)). Similarly, the bottom panel shows the

mean estimate of the latent variable π∗t for the Perfect Information model for the

dataset without (black line) and with (gray line) inflation expectations. Since in

the Imperfect Information model agents do not observe the actual π∗t , these two

latent variables are conceptually equivalent in that in each model they drive the

agents’ beliefs about the inflation target. Both panels also show observed inflation

expectations (dashed-and-dotted line).

The time series for π∗t|t and π∗t look very similar across the two models when

the econometrician does not have information about inflation expectations (black
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lines in top and middle panels). Not surprisingly, for both models the movement in

these time series mirrors that of the model-generated inflation expectations in Fig-

ure 1. When inflation expectations are included among the observables, the path

for π∗t in the Perfect Information model moves closer to that of observed inflation

expectations. Very loosely speaking, the filtering procedure realizes that the model

is failing to match the new observable, and adjusts the latent state π∗t accordingly.

For the Imperfect Information model the path for π∗t|t barely moves, and only as

a result of changes in π∗0|0. Because of the tight cross-equation restrictions embed-

ded in equation (5), the filtering procedure cannot adjust π∗t|t to match inflation

expectations.

5.4 DSGEs vs. VARs

How good are the DSGE models we consider at fitting observed inflation expecta-

tions? We have established in Section 5.3 that the version with Perfect Information

outperforms that with Imperfect Information. Still, is the Perfect Information model

any good? In order to address this question we compare the DSGE model’s fit for

inflation expectations to that of VARs. In particular, we follow Del Negro and

Schorfheide (2004) and consider VARs with a prior that originates from the DSGE

model. Del Negro and Schorfheide (2004) label this class of models DSGE-VARs

(we refer to that paper for the details of this approach). Linear DSGE models such

as those considered here can be viewed as – approximately – VARs subject to cross-

equation restrictions. We can ask: How much does the fit of the data improve as we

relax these cross-equation restrictions? The answer will give us some indication on

the degree of misspecification of the DSGE model. In particular, the key parameter

in the DSGE-VAR methodology is the one capturing the tightness of the DSGE

model-based prior, called λ, with higher values of λ corresponding to tighter priors.

Figure 3 shows how much the fit of the VARs – as measured by the marginal

likelihood – improves as we lower λ, that is, as we relax the restrictions from

the DSGE model. The top and bottom panels of Figure 3 present the results

for the Imperfect and Perfect Information models, respectively. Specifically, for
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each value of λ we compute the difference between the marginal likelihoods of

the DSGE-VAR and DSGE models for the dataset with (ln pV ARλ (Y 0
1,T , Y

1
1,T |Mi)−

ln pDSGE(Y 0
1,T , Y

1
1,T |Mi) – dashed line) and without expectations (ln pV ARλ (Y 0

1,T |Mi)−

ln pDSGE(Y 0
1,T |Mi) – solid line). We choose a grid for the values of λ equal to

{.33, .5, .75, 1, 1.5, 2, 5}, which is similar to that chosen in previous studies. We con-

sider a VAR with two lags for this exercise.

We find that as we relax the cross-equation restrictions the marginal likelihood

improves both for datasets with and without inflation expectations. This evidence,

suggesting that DSGE models are misspecfied, is in line with existing results in the

literature (Del Negro et al. (2007)). In all cases the λ-curve is approximately U-

shaped, which is what we would expect since when the DSGE priors become “too

loose” (λ approaching zero) the log marginal likelihood goes to minus infinity.

For the dataset without expectations the λ-curves (solid lines) are roughly the

same: For this dataset the two models are about equally misspecified. For the

dataset with expectations (dashed lines) the fit of the DSGE-VAR model relative

to the DSGE model is much higher for the Imperfect Information model than for

the Perfect Information, for each value of λ. In other words, when inflation ex-

pectations are included among the observables the same degree of relaxation of the

cross-equation restrictions (same λ) yields much better fit for the Imperfect Infor-

mation model than for the Perfect Information, indicating that the former is more

at odds with the data than the latter. This finding is consistent with the results in

section 5.3.

Figure 3 also shows that even the Perfect Information model is inferior to

VARs in fitting the dynamics of inflation expectations. The gap between the

dashed and the solid lines measures the difference between ln pV ARλ (Y 0
1,T , Y

1
1,T |Mi)−

ln pV ARλ (Y 0
1,T |Mi) and ln pDSGE(Y 0

1,T , Y
1

1,T |Mi)− ln pDSGE(Y 0
1,T |Mi). The second

term equals ln pDSGE(Y 1
1,T |Y 0

1,T ,Mi) and captures the DSGE model’s ability to fit

inflation expectations only, as discussed in section 3 (this number is reported in the

third column of Table 4). The first term approximately measures the same quantity
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for the DSGE-VAR.13 The fact that the dashed line is above the solid line, even for

the Perfect Information model, and that the gap between the two lines at the peak

is larger than 10 log-likelihood points, provides some evidence that even the Perfect

Information model is misspecified in fitting the dynamics of inflation expectations.

5.5 Out-of-sample Forecasting Performance

Section 5.2 showed that four quarters ahead inflation expectations generated from

the DSGE models, when these expectations are not part of the dataset on which

the models are estimated, are quite at odds with the observed expectations. This

could be due either to the fact that the DSGE models are misspecified, that is,

cannot capture the dynamics of this series, or that observed expectations contain

information that is absent from the other data, in the sense that they allow for a

more precise reading on the state of the economy. Section 5.4 provides some evidence

that the first explanation has some merit, particularly for the Imperfect Information

model. In this section we perform an out-of-sample forecasting exercise in order to

investigate whether the second explanation is also relevant. Namely, we want to

find out whether including observed inflation expectations among the observables

improves the forecasting performance for the other observables: this would suggest

that observed inflation expectations are informative on the state of the economy.

Table 5 provides the root mean squared errors (RMSEs) for output, inflation,

interest rates and, when part of the dataset, inflation expectations for one, four,

and eight quarters ahead, computed for the period 1990Q1-2008Q2. Specifically, we

estimate each model using rolling windows of 97 observations (the same number of

observations for the baseline results), where the first window ends in 1990Q1 and

the last one ends in 2008Q1. For each end-date we compute projections for the

following eight quarters and the forecasts’ mean-squared errors. Note that the four

quarters ahead inflation forecasts for the dataset that include inflation coincide, by

construction, with the SPF forecasts.

13It is not quite the same quantity because the two VARs are conditioning on a slightly different

set of initial observations.
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We find that for the dataset without inflation expectations the two models’ RM-

SEs are almost identical for one period-ahead forecasts, which is consistent with the

marginal likelihoods results in Table 4 (recall that the likelihood is a function of one

period ahead forecast errors). Similarly, for the dataset with inflation expectations

the one period-ahead RMSEs for the Perfect Information model are better than those

for the Imperfect Information, particularly for output. For this dataset, the perfect

Information model provides better forecasts of observed inflation expectations at all

horizons, also consistently with the results in Table 4.

Interestingly, the four quarters ahead forecasts from the Perfect Information

model when inflation expectations are not included are marginally more accurate

than the SPF forecasts (RMSEs of 1.07 versus 1.09). Regardless, having SPF fore-

casts among the observables improves the forecasts of other variables, including in-

flation at horizons different than four quarters, for the Perfect Information model.14

For the Imperfect Information one, this is also true with the exception of one-quarter

ahead forecasts of output growth. These results suggest that observed inflation ex-

pectations provide important information to the econometrician on the state of the

economy.

5.6 Posterior Estimates, Impulse Responses and Variance Decom-

position

Table 6 shows the posterior mean and standard deviation (in parenthesis) of the

parameters. The main differences in parameter estimates between the posterior

without (p(θ|Y 0
1,T ,Mi)) and with inflation expectations (p(θ|Y 0

1,T , Y
1

1,T ,Mi)) for the

Imperfect Information model are as follows. The ratio of σπ∗ to σr decreases from

.13 to .11 between columns (1) (p(θ|Y 0
1,T ,Mi)) and (2) (p(θ|Y 0

1,T , Y
1

1,T ,Mi)) , and

the estimates of ρπ∗ and ρr decrease as well. The importance of nominal rigidities

decreases, consistently with the results discussed in section 5.7. The importance

14This is not true for all variables, however. Forecasting accuracy for hours and the labor share

worsen at most horizons when inflation expectations are included. This is the case for both the

Perfect and Imperfect Information models.
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of investment adjustment increases by about 60%, which implies that investment

specific shocks become much more powerful when inflation expectations are used

in the estimation. The persistence of shocks all increase, except for productivity

shocks where it stays about the same. The shocks standard deviations generally

rise, and particularly that of government spending shocks gt.

Changes in parameters for the Perfect Information model are quite modest. The

curvature of the disutility from working νl decreases between columns 1 (p(θ|Y 0
1,T ,Mi))

and 2 (p(θ|Y 0
1,T , Y

1
1,T ,Mi)), thereby making hours more elastic, and the persistence

of φt shock decreases (with a more elastic labor supply the reliance on φt shocks to

explain movements in hours decreases). Movements in the inflation target become

larger and more persistent (both σπ∗ and ρπ∗ increase).

Figure 4 shows the impulse responses of inflation and the interest rate to a one

standard deviation permanent (επ
∗
t ) and transitory (εRt ) policy shocks obtained us-

ing the posterior from the dataset without inflation expectations (impulse responses

obtained from the dataset with inflation expectations are quite similar, and are

shown in Figure A.2 in the Appendix). The top and bottom panels show the im-

pulse responses under Imperfect and Perfect Information, respectively. Although

the impulse responses are obtained using the respective posterior distribution, the

standard deviations to both shocks are similar across models (see Table 6), so the

magnitude of the shock is about the same. Yet the response of inflation and interest

rates are quite different. The initial response to inflation under Imperfect Infor-

mation is much smaller than under Perfect Information, as agents are uncertain as

to whether it is a permanent or a transitory shock. Eventually the two impulse

response converge, but this implies that the response under Imperfect Information

is more hump-shaped. Conversely, the impact of a transitory shock on inflation is

stronger under Imperfect Information than under Perfect Information.

Table 7 shows the (unconditional) variance decomposition computed using the

posterior distribution for the Imperfect and Perfect Information models obtained

using the dataset that includes observed inflation expectations. The time-varying

inflation target π∗t is the main driver of inflation expectations in the Perfect Infor-
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mation model, while it explains very little under Imperfect Information, consistently

with the intuition discussed in section 5.3.

5.7 Robustness to the Choice of Priors, Datasets, Timing Conven-

tions, Initial Conditions, Policy Rules, and Choice of Shocks

This section investigates the robustness of the model comparison results to the choice

of priors, datasets, timing conventions, and policy rules.

Robustness to Priors: Lines (1) and (2) of Table 8 report the model comparison

results under the “‘High Nominal Rigidities” prior and “Signal-to-Noise Ratio” prior

described in section 5.1, respectively. We find that the “High Nominal Rigidities”

prior favors the Perfect Information relative to the Imperfect Information model, in

that the difference in ln p(Y 1
1,T |Y 0

1,T |Mi) is larger in favor of the Perfect Information

model (we use the “Low Nominal Rigidities” prior as a Benchmark precisely because

it gives the Imperfect Information model the best shot). Using the “Signal-to-Noise

Ratio” prior makes little difference.

Robustness to Data Sets and Timing Assumptions: Lines (3) through (6)

show the log marginal likelihoods for the two models under different timing as-

sumptions (“Lagged Information” specification), source for inflation expectations

(“Blue Chip” versus SPF), and inflation measure (CPI versus GDP deflator). Un-

der the “Lagged Information” specification the forecasters in the SPF Survey are

only endowed with information up to the previous quarter. Results are robust to

both timing assumptions and measurement choices. The gap in ln p(Y 1
1,T |Y 0

1,T |Mi)

between the Perfect and Imperfect Information models varies among the different

specifications, but is always larger than 20. The gap widens substantially whenever

we use CPI (which is less subject to revisions) as opposed to the GDP Deflator.

Robustness to Conditioning Assumptions: As mentioned above, in our bench-

mark specification we condition on two lags of the variables included in Y 0 when

computing marginal likelihoods, so that effectively we compute ln p(Y 0
1,T |Mi, Y

0
−1,0)
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and ln p(Y 0
1,T , Y

1
1,T |Mi, Y

0
−1,0) (for simplicity of notation we mostly omit the con-

ditioning on Y 0
−1,0). Given that during the first part of our sample both inflation

and inflation expectations are trending down, conditioning may play a non trivial

role. For this reason, line (7) reports the marginal likelihoods without conditioning

on any variables, while line (8) reports the results when conditioning also on the

first two lags of inflation expectations. While initial conditions matter in terms of

marginal likelihood computations, from the perspective of model comparison the

results do not change.

Figure A.3 in the appendix is the same as Figure 1 – it shows the time series of

expected inflation generated by the various models estimated without observations

on actual expectations – except for the initial condition. Specifically the econome-

trician computing the unobserved states st is endowed with information about the

level of inflation expectations at the beginning of the sample (1984Q1). That is, the

econometrician is drawing the states st from the distribution p(s1,T |Y 0
1,T , Y

1
0 ,Mi)

instead of p(s1,T |Y 0
1,T ,Mi). For all the models the inclusion of the initial level of

inflation expectations brings the model generated expectations closer to the actual

data in the first few quarters of the sample, but otherwise the paths are essentially

the same as those in Figure 1.

Robustness to Policy Rule Specification: Lines (9) through (12) report the

model comparison results under different specifications of the policy rule, where the

policy makers target the output gap (deviations from the stochastic steady state)

as opposed to the output growth (“Output Gap”), a four-quarter moving average

of inflation as opposed to current inflation (“4Q Inflation”), or where the the law

of motion for the inflation target follows the rule suggested by Gurkaynak et al.

(2005) (“GSS”). Under this rule the marginal likelihood gap between the Imperfect

and Perfect Information models stays roughly constant or increases. Under the rule

proposed by Gurkaynak et al. (2005) the gap narrows, but it is still larger than 17.15

As an final robustness checks we consider the case where π∗t enters the intercept of

15In the estimation of the GSS model we used the value of χ = .02 in expression (6), which is

the value used by Gurkaynak et al. (2005).
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the feedback rule (equation (8)). Again, the results are very similar.

Robustness to Choice of Shocks (Discount Rate): The Imperfect Information

models has seven shocks, as discussed in section 2. Due to the fact that two of the

shocks (the i.i.d. policy shock and the shocks to the target π∗t ) are not separately

observed by either the agents in the model or the econometrician, but commingle into

the policy rule innovation π̃t, effectively this model has six independent disturbances.

Whenever observed inflation expectations are added to the data set, this model

has therefore as many shocks as observables. Del Negro and Schorfheide (2009)

show that introducing additional shocks into a model is tantamount to relaxing

the cross-equation restrictions: the additional shocks can improve the model’s fit by

capturing dynamics that the existing set of shocks was not able to capture. One may

wonder to what extent the worse fit for the imperfect information model relative to

the perfect information is partly due to the set of shocks originally chosen. If so,

introducing another shock may improve the imperfect information’s model ability

to explain inflation expectations. We therefore introduce a shock that is commonly

used in DSGE models, namely a shock to the rate at which the representative agent

discounts the future, which we refer to as bt. Like most other shocks, bt is also

assumed to follow an AR(1) process. In terms of the log-linearized conditions this

shock enters equation (17), which becomes:

(eγ − hβ)(eγ − h)ξt = −(e2γ + βh2)(ct − bt)

+ βheγIEt[ct+1 + zt+1] + heγ(ct−1 − zt)− βhe−γ(e2γ + βh2)IEt[bt+1],
(34)

and equation (15), which becomes:

w̃t = ζwβIEt

[
w̃t+1 + ∆wt+1 + πt+1 + zt+1 − ιwπt−1

]
+

1− ζwβ
1 + νl(1 + λw)/λw

(
νlLt − wt +

eγ(eγ − h)

(e2γ + βh2)
bt − ξt +

1

1− ζwβ
φt

)
. (35)

Line (13) of Table 8 reports the marginal likelihoods under these different model

specification. For the standard set of macro variables the addition of discount rate

shocks barely improves the marginal likelihood, especially for the Imperfect Informa-

tion model. For the data set with observed inflation expectations the improvement
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over the benchmark specification is substantial. This is the case for both models,

however, so the relative ranking is unaffected.

Melecky et al. (2008) propose to relax in the Imperfect Information model the

cross-equation restriction that links the Kalman gain in expression (5) to the signal-

to-noise ratio, and hence to the estimates of the standard deviations σr and σπ∗ ,

and treat the Kalman gain K as an independent parameter in the estimation. We

consider this modification using a prior for the K centered at .13 (the calibrated

value in Erceg and Levin (2003)) with a standard deviation of .1. Line (14) of Table 8

shows that this modification has virtually no effect on the Imperfect Information

model’s fit, both without and with observed inflation expectation as an observable.

In the latter case the posterior mean for K is .08. The intuition for this result is the

same as discussed in section 5.3. Independently of how K is chosen, equation (5)

embeds cross-equation restrictions that prevent any adjustment to π∗t|t required to

match observed inflation expectations.

5.8 Allowing for Measurement Error/Irrationality in Observed In-

flation Expectations

The measurement equation (28):

πO,t+kt = 400IEdsget [πt+k] + π∗

implies that observed inflation expectations are fully rational. In this section we

ask whether our results are robust to violations of (28), whether these are due to

“irrationality” of private forecasters or to issues of data revisions and data synchro-

nization.

First, we allow for measurement error in equation (28):

πO,t+kt = 400IEdsget [πt+k] + π∗ + χt, (36)

where the error χt is assumed to be either i.i.d. (“i.i.d. Meas. Error” case) or to

follow and AR(1) process (“AR(1) Meas. Error” case). In both cases χt evolves

independently from all other shocks in the model. Rows (1) and (2) of Table 9 show
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the marginal likelihoods for the models where we allow for measurement error in

expectations.16 The Perfect Information model is still superior to the specification

with Imperfect Information when the measurement error is i.i.d.. The difference in

ln p(Y 1
1,T |Y 0

1,T |Mi) is about 16, which is smaller than in Table 4 but still substantial.

The fit of the two models are essentially the same under AR(1) measurement error.

We conjecture that the autoregressive measurement error largely “takes care” of

the misspecification in the Imperfect (and to some extent also in the Perfect) Infor-

mation model, so we essentially revert to the original result that when the dataset

does not include inflation expectations the fit of the two models is about the same.

We substantiate this conjecture using the variance decomposition for observed infla-

tion expectations – both unconditional and 10-quarters ahead – shown in Table 10.

We find that i.i.d. measurement error is not all that important for both the Imper-

fect and Perfect Information models. Its contribution is small for the unconditional

variance, and between 30 and 45 percent at the 10-quarters ahead horizon. The

AR(1) measurement error is the most important source of variation for observed

expectations in both models, however. Measurement error explains about 60 and

40-45 percent of the variance for the Imperfect and Perfect Information models,

respectively. These results may not be easily explained just by appealing to data

revisions/synchronization issues. While issues of data revisions and synchronization

are likely to introduce a mismatch between measured and model-generated infla-

tion expectations, our prior would be that this mismatch is relatively short-lived.

The results for the AR(1) measurement error show otherwise: For both the Perfect

and Imperfect Information model the mean estimate of the AR(1) coefficient for

measurement error is about .87.

Next, we investigate what lies behind the measurement error by putting more

structure on the discrepancy between model implied and observed expectations.

16Note that the marginal likelihood for the data set without expectations ln p(Y 0
1,T |Mi) is the

same as in the benchmark case: Whenever observed expectations are not part of the observables,

the measurement error parameters do not enter the likelihood. Since the priors on these parameters

are proper (they integrate to one), the marginal likelihood is the same.
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That is, we use the alternative measurement equation:

πO,t+kt = 400IEdsget [πt+k] + π∗ + γ′xt, (37)

where γ is a κ×1 parameter vector, and xt consists of a κ×1 vector of time t observ-

ables. This alternative specification postulates that the discrepancy between model

implied and observed expectations depends on observables. This is a natural case

to consider for two reasons. First, the “irrationality” of observed expectations lit-

erature shows that inflation forecast errors depend on current information. Second,

there is evidence that data revisions are dependent from the state of the economy

(Aruoba (2008)).

The first specification we analyze is the one where xt includes the constant:

Some literature argues that a bias exists in observed inflation expectations, and

the constant allows to capture such bias.17 Row (3) of Table 9 investigates this

hypothesis, using a prior for the constant has mean zero and standard deviation

.75%. The marginal likelihood results indicate that the evidence in favor of a bias is

very weak. The marginal likelihood is actually worse for the Imperfect Information

model, and only slightly better for the Perfect Information one. The 90% posterior

bands for the bias parameter are on both sides of zero.

Row (4) of Table 9 investigates whether the discrepancy depends on current in-

flation, output, and labor share. The prior for the elements of the vector γ all have

mean zero and standard deviation .5%, and all specifications include the constant.

The rationale for considering these specifications is that forecasters may react differ-

ently to the state of the economy than predicted by the rational expectations model.

It turns out that none of these models significantly improves over the benchmark

specification. The only parameters for which 90% posterior bands are not on both

sides of zero is the response to output growth, but economically this coefficient is

small.

Row (5) uses the lagged SPF forecast error (that is the difference between real-

ized time t inflation and time t−4 four quarters ahead SPF forecasts) as a regressor.

17See for example Lloyd (1999) and Roberts (1997).
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As mentioned in the introduction, several papers document that forecast errors from

measured expectations display autocorrelation. We therefore check whether “cor-

recting” observed expectations for the effect of the lagged forecast error brings the

model any closer to the data. As a prior for γ we use either a fairly uninformative

prior (centered at zero with a standard deviation of .5) or a prior based on the

outcome of a pre-sample regression of time t on time t− 4 SPF forecast error (this

prior is centered at .5 with a standard deviation of .2). For brevity we show only

the second set of results in Row (5) of Table 9. We find that the inclusion of lagged

SPF forecast error in the measurement equation does not significantly improve the

model’s fit over the benchmark specification. The posterior mean is found to be

between .1 and .2, lower than the prior mean.

Finally, in Row (6) of Table 9 we consider adding to the vector of regressors xt

the difference between the first and the last release of inflation at time t. The purpose

of this exercise is to assess whether part of the discrepancy between the model’s and

observed expectations is due to the fact that SPF forecasters only have the latest

first release of the data, while the econometrician estimating the model uses the

revised data. We find that the impact of data revision is always insignificant, and

that their inclusion does not improve the fit of the model.18

In summary, we find that the Imperfect Information model fits observed inflation

expectations worse than the Perfect Information one regardless of whether we allow

for a discrepancy between model implied and observed expectations. The only

exception is the AR(1) measurement error. In this case the two model have roughly

the same fit, but that is because the measurement error explains about half of the

fluctuations in observed inflation expectations.

18We use an uninformative prior (centered at zero with a standard deviation of .5) for the element

of γ corresponding to data revisions. This is because the outcome of the regression of SPF forecast

errors on inflation revision has the opposite sign whether we use the pre-sample or the actual sample,

and is barely significant whenever we include the lagged forecast error among the regressors.
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5.9 Using Data from the Great Disinflation

According to Erceg and Levin (2003) the Great Disinflation of the early eighties is

the poster child for the Imperfect Information model: The Central Bank raised rates

in order to bring down inflation, but agents initially had trouble telling whether it

represented a shift in π∗t or a temporary interest rate shock. As a consequence,

inflation expectations decline very gradually. One would therefore think that our

conclusions about the ability of the Imperfect and Perfect Information model could

be reversed using data from that period.

Similarly to Figure 1, Figure 5 shows the time series of expected inflation gener-

ated by the various models estimated without observations on actual expectations,

except that the sample begins in 1980Q1. As in Figure 1 we see no dramatic dif-

ferences between the outcomes from the Perfect and Imperfect Information models,

even during the Great Disinflation period. For both models the decline in model

generated expectations occurs too early relative to the decline in the actual data.

An issue with the Great Disinflation period, and particularly with its early phase,

is that the rule adopted by the monetary authorities may have been different from

that employed since the mid-eighties (see, among the others, Lubik and Schorfheide

(2007)) . At the same time, estimating the models over the 1980-1984 period only

would imply using a very short time series. For the sake of notation, call T0, T1,

and T2 the quarters corresponding to 1980Q1 (beginning of time series considered

in Erceg and Levin), 1984Q2 (beginning of our benchmark estimation period) to

2008Q2 (end of our sample). The first row of Table 11 performs the standard model

comparison exercise over the benchmark estimation period T1 to T2, computing

the usual quantities ln p(Y 0
T1,T2
|Mi) and ln p(Y 0

T1,T2
, Y 1

T1,T2
|Mi). The only difference

between these numbers and those in Table 4 is that we do not condition on any pre-

sample observations (these numbers correspond to those in row (7) of Table 8). The

second row of Table 11 performs the model comparison exercise over the period T0 to

T2, and computes the quantities ln p(Y 0
T0,T2
|Mi) and ln p(Y 0

T0,T2
, Y 1

T0,T2
|Mi). We find

that our findings are once again fairly robust: For the standard set of observables
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Y 0
T0,T2

the two models perform very similarly, but once observed expectations are

added to the set of observables the Perfect Information model fares better.

We now ask a slightly different question. Suppose we have estimated the model

over the post-84 period and made an assessment about the relative fit of the two

models, how does the additional information from the Great Disinflation period

update our view of the two models? The objects of interest are now

ln p(Y 0
T0,T1 , Y

1
T0,T1 |Y

0
T1,T2 , Y

1
T1,T2 ,Mi) = ln p(Y 0

T0,T2 , Y
1
T0,T2 |Mi)−ln p(Y 0

T1,T2 , Y
1
T1,T2 |Mi),

where the equality shows that these objects can computed as the difference between

quantities we already have computed (not conditioning on any pre-sample obser-

vations makes this convenient). Note that this exercise can be seen as a training

sample in reverse. Usually in training sample exercises we move forward: We form

a prior over the T0 to T1 sample and then estimate the model using data between

T1 and T2. Here we go backward: We form a prior over the post-84 period and then

compare the models over the Great Disinflation. The result is that during the Great

Disinflation period the Imperfect Information model fares better, consistently with

Erceg and Levin (2003) and Schorfheide (2005). The third row of Table 11 shows

that the differences in log marginal likelihoods is about 10 in favor of the Imper-

fect Information model. This evidence should not be interpreted as indicating that

the Imperfect Information model is superior to the Perfect Information one for the

Great Disinflation period. It simply shows that, taken as given how bad the Imper-

fect Information model fits the data in the post-1984 period relative to the Perfect

Information one, the 1980-84 data updates our relative assessment in favor of the

Imperfect Information specification.

6 Conclusions

The paper provides evidence on the extent to which inflation expectations generated

by a standard Christiano et al. (2005)/ Smets and Wouters (2003) -type DSGE

model are in line with what observed in the data. We consider three variants of
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this model that differ in terms of the behavior of the central banks’ inflation target

and of the agents’ information on this variable. Our findings indicate that: i)

time-variation in the inflation target is needed in order to capture the evolution of

expectations during the post-Volcker disinflation period; ii) the variant where agents

have imperfect information is strongly rejected by the data; iii) inflation expectations

appear to contain information that is not present in the other series, and iv) none

of the models fully account for the evolution of observed inflation expectations.

Our findings leave several questions open. First, throughout this paper we as-

sume that observed inflation expectations are rational. Models that incorporate

adapting learning could provide a better fit to the data. Second, we only consider

imperfect information about the inflation target. However, imperfect information

about other driving forces can also shape the dynamics of inflation expectations.

For example, many studies have discussed the link between the high US inflation

rate in the 70s and the productivity slowdown that occurred at that time (and that

was not fully detected until much later). Third, given our finding that observed

inflation expectations contain information about the state of the economy, it may

be desirable to expand the set of observables to include, for example, forecasts for

GDP growth or other variables. Finally, expanding the set of macro-variables to

include, for example, unemployment (and accordingly increase the complexity of

the model) could improve the fit of inflation and hence of observed expectations.

We leave these interesting extensions for future research.
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A Data

The data set is obtained from Haver Analytics (Haver mnemonics are in italics). We

compile observations for the variables that appear in the measurement equation (27).

Real output is obtained by dividing the nominal series (GDP) by population 16 years

and older (LN16N), and deflating using the chained-price GDP deflator (JGDP). We

compute quarter-to-quarter output growth as log difference of real GDP per capita

and multiply the growth rates by 400 to convert them into annualized percentages.

Our measure of hours worked is computed by taking total hours worked reported in

the National Income and Product Accounts (NIPA), which is at annual frequency,

and interpolating it using growth rates computed from hours of all persons in the

non-farm business sector (LXNFH). We divide hours worked by LN16N to convert

them into per capita terms. We then take the log of the series multiplied by 100

so that all figures can be interpreted as percentage changes in hours worked. The

labor share is computed by dividing total compensation of employees (YCOMP)

obtained from the NIPA by nominal GDP. We then take the log of the labor share

multiplied by 100. Inflation rates are defined as log differences of the GDP deflator

and converted into annualized percentages. The nominal rate corresponds to the

effective Federal Funds Rate (FFED), also in percent. As an alternative measure of

the nominal rate we use the three months Tbill (FTBS3),

We use Survey of Professional Forecasters (SPF) quarterly measures of expected

inflation. We consider both expectations for GDP deflator19 and for CPI inflation.

In particular, we use the median four -quarters-ahead forecast of inflation in annu-

alized terms. Concerning the information available to the forecasters, the survey

is sent out at the end of the first month of each quarter and responses deadlines

occur in the middle month of each quarter. Therefore, respondents have knowl-

edge about the BEA advance report of the National Income and Product Accounts.

We also compute the revisions in GDP deflator and CPI occurred since 1982 us-

ing the real time dataset available from the Federal Reserve Bank of Philadelphia

19In more detail, the forecast are for the GDP price index, seasonally adjusted (base year varies).

Prior to 1996, the forecast variable was the GDP implicit deflator. Prior to 1992, the GNP deflator.
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(http://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/).

As an alternative measure of inflation expectations, we use Blue Chip monthly

forecasts of CPI inflation. We choose forecast horizons of three and four quarters

ahead. In order to compare Blue Chip and SPF quarterly forecast of CPI infla-

tion, we use the Blue Chip forecasts available in the middle month of each quarter.

This roughly corresponds to the time period when SPF participants provide their

forecasts.
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Table 1: Priors on Policy Parameters

Parameter Domain Density Para (1) Para (2) 5% 95%

ψ1 R+ Gamma 2.00 0.25 1.592 2.408

ψ2 R+ Gamma 0.20 0.10 0.049 0.349

ρr [0,1) Beta 0.50 0.200 0.170 0.827

π∗ R Normal 4.3 2.5 0.520 8.17

σr R+ InvGamma 0.150 4.00 0.080 0.298

ρπ∗ [0,1) Beta 0.950 0.025 0.913 0.989

Benchmark Prior

σπ∗ R+ InvGamma 0.050 8.000 0.032 0.078

Signal-to-Noise Ratio Prior

σNR = σP
σT

R+ Gamma 0.180 0.150 0.001 0.380

Notes: Para (1) and Para (2) correspond to means and standard deviations for the Beta, Gamma, and Nor-

mal distributions and to s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

The last two columns report the 5th and 95th quintile of the prior distribution.
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Table 2: Priors on Non-Policy Parameters

Parameter Domain Density Para (1) Para (2) 5% 95%

Priors on Nominal Rigidities Parameters

Low Rigidities (Benchmark)

ζp [0,1) Beta 0.450 0.100 0.285 0.614

ζw [0,1) Beta 0.450 0.100 0.285 0.614

High Rigidities

ζp [0,1) Beta 0.750 0.100 0.590 0.913

ζw [0,1) Beta 0.750 0.100 0.590 0.913

Priors on “Endogenous Propagation and Steady State” Parameters

α [0,1) Beta 0.330 0.020 0.297 0.362

s′ ′ R+ Gamma 4 1.500 1.614 6.303

h [0,1) Beta 0.700 0.050 0.619 0.782

a′ R+ Gamma 0.200 0.100 0.049 0.349

νl R+ Gamma 2 0.75 0.787 3.137

r∗ R+ Gamma 1.5 1 0.106 2.883

γ R+ Gamma 1.650 1 0.204 3.073

g∗ R+ Gamma 0.300 0.100 0.143 0.459

ιp [0,1) Beta 0.5 0.280 0.043 0.922

ιw [0,1) Beta 0.5 0.280 0.049 0.932

Priors on ρs and σs

ρz [0,1) Beta 0.400 0.250 0.000 0.764

ρφ [0,1) Beta 0.750 0.150 0.530 0.982

ρλf [0,1) Beta 0.750 0.150 0.530 0.982

ρµ [0,1) Beta 0.750 0.150 0.530 0.982

ρg [0,1) Beta 0.750 0.150 0.530 0.982

σz R+ InvGamma 0.200 4.000 0.107 0.395

σφ R+ InvGamma 2.500 4.000 1.326 4.930

σλf R+ InvGamma 0.300 4.000 0.161 0.596

σµ R+ InvGamma 0.500 4.000 0.264 0.99

σg R+ InvGamma 0.300 4.000 0.159 0.594

Notes: Para (1) and Para (2) correspond to means and standard deviations for the Beta, Gamma, and Nor-

mal distributions and to s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

The last two columns report the 5th and 95th quintile of the prior distribution.
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Table 3: Correlation between Model-Implied and SPF Inflation Expectation

Perfect Information Imperfect Information Fixed π∗

Entire Sample (1984Q2-2008Q2)

Level 0.25 (-0.06 , 0.52) 0.27 (-0.03 , 0.54) 0.22 (-0.27 , 0.60)

First Difference 0.12 (-0.02 , 0.25) 0.07 (-0.08 , 0.20) 0.08 (-0.05 , 0.21)

Second Half of Sample (1996Q1-2008Q2)

Level -0.17 ( -0.41 , 0.07 ) -0.28 ( -0.54 , 0.06 ) -0.28 ( -0.54 , 0.06 )

First Difference 0.06 ( -0.12 , 0.24 ) 0.06 ( -0.13 , 0.24 ) 0.07 ( -0.08 , 0.19 )

Notes: The table reports the correlation between predictive paths for four quarters ahead inflation expec-

tations, obtained as described in section 3, and SPF inflation expectations. The former are computed using

the dataset that does not include inflation expectations among the observables. We report the median and

in parenthesis the 10th and 90th quintile of the posterior distribution.



49

Table 4: Model Comparison

ln p(Y 0
1,T ) ln p(Y 0

1,T , Y
1

1,T ) ln p(Y 1
1,T |Y 0

1,T )

Dataset Dataset

without with

Expectations Expectations

(1) (2) (2) - (1)

Imperfect Information -703.62 -811.04 -107.42

Perfect Information -704.31 -786.35 -82.04

Fixed π∗ -709.29 -821.84 -112.55

Notes: The table shows the log marginal likelihood for three models: Imperfect Information, Perfect Infor-

mation, and the model with constant inflation target (Fixed-π∗). For all models we use the Benchmark prior.

The Dataset with Expectations uses the SPF four quarters ahead median forecast for the GDP deflator. We

assume that the expectations are generated using current quarter information.
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Table 5: Out-of-Sample Forecasting Performance

Quarters

ahead
Output Growth Inflation Interest Rate Exp. Inflation

Imperfect Information

w/o Infl. Exp

1 2.67 1.02 1.73

4 2.44 1.24 2.86

8 2.56 1.79 3.45

with Infl. Exp

1 3.09 0.91 1.32 0.45

4 2.01 1.09 1.95 0.81

8 2.22 1.52 2.31 1.19

Perfect Information

w/o Infl. Exp

1 2.67 1.04 1.79

4 2.36 1.07 2.84

8 2.52 1.57 3.19

with Infl. Exp

1 2.60 0.91 1.31 0.44

4 2.18 1.09 2.07 0.71

8 2.41 1.43 2.60 0.94

Notes: The table provides the root mean squared errors (RMSEs) for output, inflation, interest rates and,

when part of the dataset, inflation expectations for 1, 4, and 8 quarters ahead, computed for the period

1990Q1-2008Q2.
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Table 6: Posterior Estimates for Selected Parameters

Parameters

Imperfect
Information

Dataset without
Expectations

(1)

Imperfect
Information

Dataset with
Expectations

(2)

Perfect
Information

Dataset without
Expectations

(3)

Perfect
Information

Dataset with
Expectations

(4)

Policy Parameters

ψ1 2.442 ( 0.225) 1.915 ( 0.123) 2.497 ( 0.247) 2.324 ( 0.191)

ψ2 0.282 ( 0.112) 0.255 ( 0.106) 0.232 ( 0.093) 0.264 ( 0.110)

ρr 0.407 ( 0.077) 0.375 ( 0.065) 0.454 ( 0.067) 0.592 ( 0.043)

ρπ? 0.945 ( 0.025) 0.907 ( 0.021) 0.943 ( 0.025) 0.974 ( 0.011)

σr 0.404 ( 0.037) 0.422 ( 0.033) 0.389 ( 0.036) 0.435 ( 0.035)

σπ∗ 0.054 ( 0.010) 0.048 ( 0.009) 0.058 ( 0.012) 0.066 ( 0.009)

Nominal Rigidities Parameters

ζp 0.579 ( 0.061) 0.530 ( 0.057) 0.558 ( 0.051) 0.580 ( 0.061)

ιp 0.285 ( 0.182) 0.494 ( 0.202) 0.346 ( 0.181) 0.317 ( 0.167)

ζw 0.249 ( 0.069) 0.186 ( 0.031) 0.238 ( 0.061) 0.353 ( 0.098)

ιw 0.400 ( 0.251) 0.540 ( 0.257) 0.375 ( 0.253) 0.370 ( 0.236)

Other “Endogenous Propagation and Steady State” Parameters

α 0.340 ( 0.003) 0.340 ( 0.004) 0.340 ( 0.003) 0.341 ( 0.003)

s′ ′ 2.831 ( 0.880) 4.529 ( 1.152) 3.002 ( 0.902) 3.543 ( 1.205)

h 0.649 ( 0.047) 0.636 ( 0.053) 0.658 ( 0.049) 0.640 ( 0.046)

a′′ 0.291 ( 0.112) 0.212 ( 0.097) 0.275 ( 0.102) 0.274 ( 0.095)

νl 2.153 ( 0.534) 2.690 ( 0.649) 2.271 ( 0.588) 1.327 ( 0.510)

r∗ 1.000 ( 0.423) 1.424 ( 0.541) 1.019 ( 0.452) 1.259 ( 0.471)

π∗ 2.470 ( 0.996) 3.068 ( 0.574) 2.106 ( 0.759) 3.662 ( 1.134)

γ 1.629 ( 0.333) 1.511 ( 0.330) 1.646 ( 0.362) 1.454 ( 0.314)

g∗ 0.272 ( 0.090) 0.304 ( 0.100) 0.287 ( 0.092) 0.306 ( 0.107)

ρs and σs

ρz 0.203 ( 0.094) 0.200 ( 0.095) 0.247 ( 0.090) 0.177 ( 0.098)

ρφ 0.837 ( 0.071) 0.980 ( 0.013) 0.850 ( 0.062) 0.569 ( 0.218)

ρλf 0.823 ( 0.073) 0.838 ( 0.059) 0.840 ( 0.058) 0.803 ( 0.071)

ρµ 0.885 ( 0.050) 0.910 ( 0.025) 0.897 ( 0.044) 0.894 ( 0.051)

ρg 0.810 ( 0.116) 0.824 ( 0.056) 0.798 ( 0.140) 0.982 ( 0.016)

σz 0.699 ( 0.055) 0.693 ( 0.052) 0.709 ( 0.055) 0.689 ( 0.047)

σφ 3.008 ( 0.516) 3.327 ( 0.589) 3.055 ( 0.638) 2.656 ( 0.660)

σλf 0.146 ( 0.031) 0.175 ( 0.031) 0.156 ( 0.026) 0.149 ( 0.023)

σµ 0.468 ( 0.115) 0.410 ( 0.083) 0.464 ( 0.111) 0.398 ( 0.099)

σg 0.291 ( 0.050) 0.426 ( 0.047) 0.267 ( 0.050) 0.410 ( 0.050)

Notes: The table reports the posterior mean and standard deviation (in parenthesis) of the parameters for

the Imperfect and Perfect Information models obtained from both the datasets with and without inflation

expectations.
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Table 7: Variance Decomposition

Variables Tech φ µ g λf π∗ Money

Imperfect Information

Output Growth 0.25 0.35 0.11 0.22 0.05 0.00 0.01

Labor Supply 0.00 0.94 0.05 0.01 0.01 0.00 0.00

Labor Share 0.05 0.03 0.00 0.02 0.88 0.00 0.01

Inflation 0.13 0.15 0.44 0.07 0.08 0.03 0.07

Interest Rate 0.08 0.09 0.60 0.08 0.05 0.00 0.08

Exp. Inflation 0.01 0.01 0.90 0.00 0.00 0.05 0.00

Perfect Information

Output Growth 0.29 0.12 0.17 0.20 0.10 0.00 0.04

Labor Supply 0.03 0.09 0.31 0.3 0.06 0.00 0.01

Labor Share 0.06 0.07 0.00 0.01 0.83 0.00 0.02

Inflation 0.06 0.08 0.11 0.01 0.08 0.59 0.05

Interest Rate 0.05 0.08 0.35 0.01 0.06 0.28 0.14

Exp. Inflation 0.01 0.00 0.14 0.00 0.00 0.84 0.00

Notes: The table shows the (unconditional) variance decomposition computed using the posterior distribu-

tion for the Imperfect and Perfect Information models obtained using the dataset that includes observed

inflation expectations.
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Table 8: Robustness of Model Comparison Results

Imperfect Information Perfect Information

ln p(Y 0
1,T ) ln p(Y 0

1,T , Y
1
1,T ) ln p(Y 1

1,T |Y
0
1,T ) ln p(Y 0

1,T ) ln p(Y 0
1,T , Y

1
1,T ) ln p(Y 1

1,T |Y
0
1,T )

Dataset Dataset Dataset Dataset

without with without with

Expectations Expectations Expectations Expectations

(1) (2) (2) - (1) (3) (4) (4) - (3)

Robustness to Priors

(1) High Nominal Rigidities Prior

-701.65 -820.84 -119.19 -705.39 -789.26 -83.87

(2) Signal-to-Noise Ratio Prior

-703.86 -811.97 -108.11 -709.66 -786.59 -76.93

Robustness to Data Sets and Timing Assumptions

(3) Lagged Information

-703.62 -800.74 -97.12 -704.31 -780.53 -76.22

(4) Blue Chip Expectations

-703.62 -761.68 -58.06 -704.31 -742.11 -37.80

(5) CPI and SPF Expectations

-761.28 -844.98 -83.70 -763.72 -771.38 -7.66

(6) CPI and Blue Chip Expectations

-761.28 -865.04 -103.76 -763.72 -779.31 -15.59

Robustness to Conditioning Assumptions

(7) No Conditioning

-711.641 -816.67 -105.03 -711.67 -789.84 -78.17

(8) Conditioning on Initial Level of Inflation Expectations

-810.49 -784.83

Notes: The table shows the log marginal likelihood for the Imperfect Information and Perfect Information

models under different choices of priors, datasets, timing conventions, policy rules, and set of shocks. Lines

(1) and (2) report the results under the “High Nominal Rigidities” prior and “Signal-to-Noise Ratio” prior,

respectively. Lines (3) to (6) show the log marginal likelihood for the two models under different timing

assumptions (“Lagged Information” specification), measures of inflation and measures of inflation expec-

tations (“Blue Chip Expectations”, “CPI and SPF Expectations”, “CPI and Blue Chip Expectations”).

Lines (7) and (8) report the results under different conditioning assumptions. Lines (9)-(11) report the

results under different specifications of the policy rule, where the policy makers target output growth as

opposed to the output gap (“Output Growth”), a four-quarter moving average of inflation as opposed to

current inflation (“4Q Inflation”), or where the the law of motion for the inflation target follows the rule

suggested by Gurkaynak et al. (2005) (“GSS”). Line (12) consider the case where π∗t enters the intercept

of the feedback rule, as in equation (8). Line (13) reports the results after augmenting the model with an

additional shock (discount rate shock). Line (14) uses the specification proposed by Melecky et al. (2008)
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Table 8: Robustness of Model Comparison Results – Continued

Imperfect Information Perfect Information

ln p(Y 0
1,T ) ln p(Y 0

1,T , Y
1
1,T ) ln p(Y 1

1,T |Y
0
1,T ) ln p(Y 0

1,T ) ln p(Y 0
1,T , Y

1
1,T ) ln p(Y 1

1,T |Y
0
1,T )

Dataset Dataset Dataset Dataset

without with without with

Expectations Expectations Expectations Expectations

(1) (2) (2) - (1) (3) (4) (4) - (3)

Robustness to Policy Rule Specification

(9) Output Gap

-715.46 -816.23 -100.77 -709.17 -791.74 -82.57

(10) 4Q Inflation

-703.74 -820.96 -117.22 -698.88 -790.42 -91.5

(11) GSS

-707.79 -805.64 -97.85 -709.45 -789.99 -80.54

(12) π∗t entering intercept

-702.78 -806.99 -104.21 -704.99 -787.41 -82.42

Other Robustness Checks

(13) Additional Shocks (Discount Rate)

-701.09 -792.10 -90.01 -703.58 -773.04 -69.46

(14) Melecky et al. (2008)

-704.59 -811.68 -107.09
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Table 9: Allowing for Measurement Error/Irrationality in Observed Inflation Ex-

pectations

Imperfect Information Perfect Information

ln p(Y 0
1,T ) ln p(Y 0

1,T , Y
1
1,T ) ln p(Y 1

1,T |Y
0
1,T ) ln p(Y 0

1,T ) ln p(Y 0
1,T , Y

1
1,T ) ln p(Y 1

1,T |Y
0
1,T )

Dataset Dataset Dataset Dataset

without with without with

Expectations Expectations Expectations Expectations

(1) (2) (2) - (1) (3) (4) (4) - (3)

(0) Benchmark specification

-703.62 -811.04 -107.42 -704.31 -786.35 - 82.04

Measurement Error

(1) i.i.d. Measurement Error

-703.62 -796.31 -92.69 -704.31 -780.89 -76.58

(2) AR(1) Measurement Error

-703.62 -775.31 -71.69 -704.31 -775.21 -70.90

(3) Bias

-703.62 -811.48 -107.86 -704.31 -784.82 -80.51

(4) Bias + Response to Current Inflation, Labor Share, and Output Growth

-703.62 -814.29 -110.67 -704.31 -786.16 -81.85

(5) Response to Lagged Forecast Error

-703.62 -812.60 -108.98 -704.31 -786.22 -81.91

(6) Response to Lagged Forecast Error and Data Revision

-703.62 -815.23 -111.61 -704.31 -789.55 -85.24

Notes: The table shows the log marginal likelihood for the Imperfect Information and Perfect Information

models when allowing for discrepancies between observed and model generated expectations. Line (0) shows

the results from the benchmark specification for ease of comparison. Lines (1) and (2) report the log

marginal likelihood for the two models measurement errors are added (“i.i.d. Measurement Error”, and

“AR(1) Measurement Error”). Lines (3) and (4) allow for bias in measured inflation expectations, and

for a different response to current inflation, labor share, and output growth than that warranted by the

rational expectation model. Lines (5) and (6) introduce in the measurement equation for observed inflation

expectation a correction to lagged forecast error and data revision.



56

Table 10: Variance Decomposition for Observed Inflation Expectations: Models

with Measurement Errors

Variables Tech φ µ g λf π∗ meas. Money

Unconditional

Imperfect Information
i.i.d.

Meas. Error
0.02 0.02 0.63 0.00 0.01 0.16 0.14 0.01

AR(1)

Meas. Error
0.01 0.01 0.26 0.00 0.01 0.12 0.57 0.00

Perfect Information
i.i.d.

Meas. Error
0.01 0.01 0.21 0.00 0.01 0.67 0.07 0.00

AR(1)

Meas. Error
0.01 0.00 0.25 0.00 0.00 0.27 0.41 0.00

Ten Quarters Ahead

Imperfect Information
i.i.d.

Meas. Error
0.01 0.01 0.60 0.00 0.01 0.16 0.18 0.01

AR(1)

Meas. Error
0.01 0.01 0.27 0.00 0.01 0.09 0.60 0.01

Perfect Information
i.i.d.

Meas. Error
0.01 0.02 0.29 0.00 0.02 0.53 0.11 0.00

AR(1)

Meas. Error
0.01 0.00 0.28 0.00 0.00 0.24 0.43 0.00

Notes: The table shows the posterior means of the variance decomposition for observed inflation expectations

– both unconditional and ten quarters ahead – for the Imperfect Information and Perfect Information models

with both i.i.d. and AR(1) measurement error. The posteriors are obtained using the dataset that includes

observed inflation expectations.
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Table 11: Using Data from the Great Disinflation

Imperfect Information Perfect Information

ln p(Y 0
Ti,Tj

) ln p(Y 0
Ti,Tj

, Y 1
Ti,Tj

) ln p(Y 1
Ti,Tj

|Y 0
Ti,Tj

) ln p(Y 0
Ti,Tj

) ln p(Y 0
Ti,Tj

, Y 1
Ti,Tj

) ln p(Y 1
Ti,Tj

|Y 0
Ti,Tj

)

Dataset Dataset Dataset Dataset

without with without with

Expectations Expectations Expectations Expectations

(1) (2) (2) - (1) (3) (4) (4) - (3)

(1) Post-Disinflation Data Set (1984-2008, standard)

-711.641 -816.67 -105.03 -711.67 -789.84 -78.17

(2) Post-1980 Data Set (1980-2008)

-918.02 -1057.45 -139.43 -921.38 -1041.51 -120.13

(3): (2)-(1), Updating over the Great Disinflation Period

-240.78 -251.67

Notes: The table shows the log marginal likelihood for the Imperfect Information and Perfect Information

models under different data sets.
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Figure 1: Inflation Expectations: Data vs Model Prediction
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Notes: The figure shows the 4-quarters ahead median forecast for the GDP deflator (dashed and dotted

line), together with 4-quarters ahead expected inflation generated by the Perfect Information (top panel),

Imperfect Information (middle panel) models, and the model with a constant inflation target (Fixed-π∗ –

bottom panel). The predictive paths for inflation expectations are obtained as described in section 3. The

solid line shows the median values and the shaded areas represent the 67 and 95% bands of the predictive

distribution, respectively, computed period by period.



59

Figure 2: π∗t
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Notes: The top panel of the figure plots the mean estimate of the latent variable π∗
t|t for the Imperfect

Information model for the dataset without (black line) and with (gray line) inflation expectations. The

bottom panel shows the mean estimate of the latent variable π∗t for the Perfect Information model for the

dataset without (black line) and with (gray line) inflation expectations. The dashed-and-dotted line shows

observed inflation expectations.
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Figure 3: DSGE vs VARs
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Notes: The figure plots the difference between the marginal likelihoods of the DSGE-VAR and DSGE

models for the dataset with and (ln pV ARλ (Y 0
1,T , Y

1
1,T |Mi)− ln pDSGE(Y 0

1,T , Y
1
1,T |Mi) – dashed line) and

without expectations (ln pV ARλ (Y 0
1,T |Mi) − ln pDSGE(Y 0

1,T |Mi) – solid line) for a grid of values for the

hyper-parameter λ, which measures the tightness of the DSGE prior. The top and bottom panels present

the results for the Imperfect and Perfect Information models, respectively.
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Figure 4: Impulse Responses
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Notes: The plot show the impulse responses of inflation and the interest rate to the permanent and transitory

policy shocks (εPt and εRt ) for the Imperfect Information and the Perfect Information models obtained using

the posterior from the dataset without inflation expectations.
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Figure 5: Inflation Expectations: Data vs Model Prediction, 1980-2008 Sample
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Notes: The figure shows the 4-quarters ahead median forecast for the GDP deflator (dashed and dotted

line), together with 4-quarters ahead expected inflation generated by the Perfect Information (top panel),

Imperfect Information (middle panel) models, and the model with a constant inflation target (Fixed-π∗ –

bottom panel). The predictive paths for inflation expectations are obtained as described in section 3. The

solid line shows the median values and the shaded areas represent the 67 and 95% bands of the predictive

distribution, respectively, computed period by period.
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Table A.1: Prior Implications for Moments of the Endogenous Variables

Variables St. Dev. Autocorr.

Imperfect

Information

Perfect

Information
Data

Imperfect

Information

Perfect

Information
Data

OutputGrowth 3.48 3.47 4.33 0.39 0.39 0.28

LaborSupply 2.98 2.98 3.20 0.93 0.93 0.96

LaborShare 1.39 1.39 2.24 0.86 0.86 0.95

Inflation 3.13 3.15 2.77 0.71 0.72 0.88

InterestRate 4.34 4.38 4.30 0.85 0.85 0.87

Exp. Inflation 1.37 1.40 0.86 0.85

Notes: The pre-sample statistics (column Data) are in italics. These statistics are computed over the sample

1959Q3-1984Q1. Inflation expectations are not available during most of the pre-sample. The in-sample

standard deviation and first-order autocorrelation of inflation expectations are 1.21, and 0.86, respectively.
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Figure A.1: Revisions in Inflation Data: Real Time vs Last Vintage
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Notes: The figure plots data revisions for two measures of inflation: GDP deflator and CPI. The solid line

shows the real time measure (that is, first vintage available) while the dashed-dotted line shows the most

recent vintage.
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Figure A.2: Impulse Responses (Dataset with Inflation Expectations)
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Notes: The plot show the impulse responses of inflation and the interest rate to the permanent and transitory

policy shocks (εPt and εRt ) for the Imperfect Information and the Perfect Information models obtained using

the posterior from the dataset with inflation expectations.
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Figure A.3: Inflation Expectations: Data vs Model Prediction, Conditioning on

Initial Observation for Inflation Expectations
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Notes: The figure shows the 4-quarters ahead median forecast for the GDP deflator (dashed and dotted

line), together with 4-quarters ahead expected inflation generated by the Perfect Information (top panel),

Imperfect Information (middle panel) models, and the model with a constant inflation target (Fixed-π∗ –

bottom panel). The predictive paths for inflation expectations are obtained as described in section 3. The

solid line shows the median values and the shaded areas represent the 67 and 95% bands of the predictive

distribution, respectively, computed period by period.




