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Abstract

A simplified energy balance climate model is considered with the global
mean temperature as the state variable, and an endogenous ice line. The
movements of the ice line towards the Poles are associated with damage
reservoirs where initial damages are high and then eventually vanish as
the ice caps vanish and the damage reservoir is exhausted. We couple this
climate model with a simple economic growth model and we show that
the endogenous ice line induces a nonlinearity. This nonlinearity when
combined with two sources of damages - the conventional damages due
to temperature increase and the reservoir damages - generates multiple
steady states and Skiba points. It is shown that the policy ramp implied
by this model calls for high mitigation now. Simulation results suggest
that the policy ramp could be U-shaped instead of the monotonically
increasing with low starting mitigation gradualist policy ramp.

Keywords: Energy Balance Climate Models, Damage Reservoir, Ice
Line, Permafrost, Heat Diffusion, Policy Ramp, Skiba Points

JEL Classification: Q54, Q58

1 Introduction

Energy balance climate models (EBCMs) have been extensively used to study
Earth’s climate (e.g. [30], [23], [24], [25]), and [37]). The basic components of
these models are incoming solar radiation, outgoing infrared radiation, trans-
portation of heat across the globe and the presence of an endogenous ice line
where latitudes north (south) of the ice line are solid ice and latitudes south
(north) of the ice line are ice free.
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In this paper we study the economics of climate change by coupling a simpli-
fied EBCM with an economic growth model. Coupling the two models provides
a link between economic activity and climate change, since the increase in the
accumulation of atmospheric carbon dioxide due to human generated carbon
dioxide emissions reduces outgoing infrared radiation and thus increases the
Earth’s surface temperature.
In the economics literature the economics of climate change have been mainly

studied in the framework of integrated assessment models (IAMs) with carbon
cycle (e.g. [22], [19], [20], [21]), but without heat transport or endogenous ice
lines. We believe that the approach in this paper, using EBCMs to model
the climate of a coupled economic-climatic model, can provide new insights
regarding the profile of mitigation policy and the potentially partial distribution
of damages. This is because the explicit presence of a spatial dimension and
an ice line whose latitude is determined endogenously may help, as we will
suggest below, to identify specific damage profiles that cannot be identified by
the traditional IAMs, and provide new insights about policy ramps.
An interesting issue for policy design purposes, which can be addressed by

EBCMs, is damage reservoirs. Damage reservoirs in the context of climate
change can be regarded as sources of climate damages which will eventually cease
to exist when the source of the damages is depleted. Ice lines and permafrost can
be regarded as such damage reservoirs, which are latitude dependent objects.
Regarding ice lines, there has been a lot of concern about the effects of ice

melting, i.e. the ice lines being pushed closer to the North and South Poles
by global warming,1 and how the incorporation of these effects into economic
models might affect decisions to engage in large scale mitigation efforts now. To
be more precise, when the ice lines move closer to the poles we might expect
that marginal damages from this moving will be large at first and then diminish
as the ice line approaches the Poles. When there is no ice left on the Poles
this damage reservoir will have been exhausted.2 Hence marginal damages are
plausibly higher when the polar ice caps are larger i.e. there’s a larger source
of ice to melt. Let us explain this argument in more detail. Suppose human
effects are causing the ice lines to move closer to the Poles. Suppose damages
from this effect are proportional to the amount of ice melting. Let us consider
now damages from moving the ice line by dx towards the North Pole. The
ice area lost in the Northern Hemisphere when the Northern ice line is at xs
is approximately proportional to 2(1 − xs)dx for small dx. Thus as human
activities move the ice line towards the North Pole the ice area lost diminishes
and marginal damages diminish also. The presence of an endogenous ice line in
the EBCM allows us to model this type of damages explicitly given the relevant
information.3

1Of course these simple models do not capture elements of potentially abrupt changes in
ice melting and its impact on coastlines that are stressed by, for example, Oppenheimer ([26],
[27]), but nevertheless they provide useful insight into the expected effects of climate change.

2The damages which we refer to here are those caused by sea level rise due to the release
of water from melting glacial ice sheets. Further sea level rise can also be caused by thermal
expansion of warming oceans, as a direct result of a rising global temperature. Which of these
effects dominate depends upon the time scale studied. For example, the Intergovernmental
Panel on Climate Change’s Fourth Assessment Report ([12]) concluded that thermal expansion
can explain about 25 percent of observed sea-level rise for 1961-2003 and 50 percent for 1993-
2003, but with considerable uncertainty. There may of course also be other damages caused
by the increasing loss of the ice caps and their role in regulating the climate.

3Scientific evidence seems to support the argument that ice sheets might be seriously
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Permafrost is also related to damage reservoirs. Permafrost or permafrost
soil is soil at or below the freezing point of water (0 ◦C or 32 ◦F) for two or more
years. Permafrost regions occupy approximately 22.79 million square kilome-
ters (about 24 percent of the exposed land surface) of the Northern Hemisphere
([39]). Permafrost occurs as far north as 84◦N in northern Greenland, and as
far south as 26◦N in the Himalayas, but most permafrost in the Northern Hemi-
sphere occurs between latitudes of 60◦N and 68◦N. (North of 67◦N, permafrost
declines sharply, as the exposed land surface gives way to the Arctic Ocean.)
Recent work investigating the permafrost carbon pool size estimates that 1400-
1700 Gt of carbon is stored in permafrost soils worldwide. This large carbon
pool represents more carbon than currently exists in all living things and twice
as much carbon as exists in the atmosphere ([32]).
Thawing of permafrost as high latitudes become warmer can also be mod-

elled in this context. Thawing of permafrost is expected to bring widespread
changes in ecosystems, increase erosion, harm subsistence livelihoods, and dam-
age buildings, roads, and other infrastructure. Loss of permafrost will also cause
release of greenhouse gasses, methane in wetter areas and CO2 in dryer areas.
Furthermore, permafrost damages are related to damage reservoirs since when
permafrost is gone they will vanish provided appropriate adaptation has been
implemented.4

The permafrost feedback suggests that permafrost carbon emissions could
affect long-term projections of future temperature change. An increase in Arctic
temperatures could release a large fraction of the carbon stored in permafrost
soils. Studies indicate that up to 22% of permafrost could be thawed already
by 2100. Once unlocked under strong warming, thawing and decomposition of
permafrost can release amounts of carbon until 2300 comparable to the historical
anthropogenic emissions up to 2000 (approximately 440 GtC) ([34]).
EBCMs, by explicitly introducing the spatial dimension into the climate

module of the problem, can help in the understanding of this type of latitude
dependent damages and incorporate them into the decision-making problem re-
lated to climate change. In particular, if we allow for reservoir damages, we
actually introduce two types of damage functions with different temporal pro-
files. These are the traditional damage function used by the IAMs, in which
damages increase monotonically with temperature, and a damage function as-
sociated with damage reservoirs. This damage function will indicate higher
damages earlier when the reservoir is ‘full,’in the sense that there is a lot of ice
north or south of the ice lines and a lot of carbon stored into permafrost soils.

affected by relatively low increases in temperature. Oppenheimer [26] reports a number of
results suggesting that both the Greenland Ice Sheet (GIS) and the West Antarctic Ice Sheet
(WAIS) could be highly vulnerable to temperature rise within the range studied by the current
IAMs. Oppenheimer and Alley [27] report that a 2-4◦C global mean warming could be
justified for WAIS. Carlson et al. [7] conclude that geologic evidence for a rapid retreat of the
Laurentide ice sheet, which is the most recent (early Holocene epoch) and best documented
disappearance of a large ice sheet in the Northern Hemisphere, may describe a prehistoric
precedent for mass balance changes of the Greenland Ice Sheet over the coming century. In
a recent report from the European Energy Agency [8], it was stated that one of the potential
large-scale changes likely to affect Europe is the deglaciation of the WAIS and the GIS and
that there is already evidence of accelerated melting of the GIS. Further, a sustained global
warming in the range of 1-5◦C above 1990 temperatures, could generate tipping points leading
to at least partial deglaciation of the GIS and WAIS, thus implying a significant rise in sea
levels.

4For more details see for example [39], [40], [29].
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Once the ice caps are gone and the thawed permafrost has released most of its
carbon, then reservoir damages will be exhausted.
In the present paper we couple an EBCM with an endogenous ice line, with

a simplified growth model with two types of damages from climate change,
traditional and damage reservoir type. Our results suggest that endogenous ice
lines and damage reservoirs introduce convexities which induce multiple steady
states and Skiba points. The policy implication of these results is that when
damage reservoirs are ignored we have a unique steady state and the policy
ramp is monotonically increasing. That is, carbon taxes start at low levels and
increase with time, which is the ‘gradualist approach’to climate policy [19], [20],
[21]. On the other hand the existence of damage reservoirs and multiple steady
states induced by endogenous ice lines results in policy ramps which suggest high
mitigation now, the opposite of what is advocated by the gradualist approach.
Furthermore by incorporating damage reservoirs into a DICE type model, our
simulations suggest a U-shaped policy ramp with high mitigation now.5

The rest of the paper is structured as follows. Since EBCMs are new in eco-
nomics we proceed in steps that we believe make this methodology accessible
to economists. In section 2 we present a basic energy balance climate model6

which incorporates human impacts on climate which result from carbon dioxide
emissions that eventually block outgoing radiation. In developing the model
we follow North ([23], [24]) and use his notation. Section 3 couples the spa-
tial EBCM with an economic growth model characterized by both traditional
and reservoir damages. We show that nonlinearities induced by endogenous ice
lines and reservoir damages result in multiple steady states and Skiba points.
Furthermore the optimal policy ramps are characterized by high current mitiga-
tion. In section 4 we simulate the well known DICE model allowing for damage
reservoirs and derive a U-shaped policy ramp. The last section concludes.

2 A Simplified One-dimensional Energy Balance
Climate Model

In this section we present a simplified integrated model of economy and climate,
with the climate part motivated by one-dimensional energy balance models de-
scribed in the introduction. The term “one-dimensional”means that there is an
explicit one-dimensional spatial dimension in the model, measured in terms of
latitudes. The important feature of these models is that they allow for heat dif-
fusion or transportation across latitudes which increases the relevance of these
models in describing climate. Let T (x, t) denote the surface temperature at
location (or latitude) x and time t measured in ◦C. Climate dynamics in the

5Multiple equilibria and high current mitigation are also suggested by models incorprating
uncertain climate thresholds into DICE ([14], [16]). See also Naevdal [18] for an optimal
control version featuring uncertain thresholds. More recently Cai et al. [6] have formulated
a dynamic stochastic version of DICE which they call DSICE. They also extend their model
to include stochastic tipping point possibilities. They show how this additional real world
complexity substantially affects the optimal policy results in comparison to DICE.

6For more on EBCMs, see for example Pierrehumbert [28].
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context of the ECBM (e.g. [23, 24], [25]) are defined as:

B
∂T (x, t)

∂t
= QS(x)α(x, xs)− [A+BT (x, t)− gM (t)] +D

∂

∂x

[
(1− x2)B∂T (x, t)

∂x

]
(1)

Ts = T (xs(t), t) (2)

where x denotes the sine of the latitude “x”, where units of x are chosen so
that x = 0 denotes the Equator, x = 1 denotes the North Pole7 and to simplify
we just refer to x as “latitude”. A and B are constants which are used to
relate outgoing infrared radiation flux I(x, t) measured in W/m2 at latitude
x at time t with the corresponding surface temperature T (x, t) through the
empirical formula,8

I(x, t) = A+BT (x, t), A = 201.4W/m2, B = 1.45W/m2. (3)

Q is the solar constant9 divided by 4; D is a thermal diffusion coeffi cient that
has been computed as D = 0.649Wm−2oC−1 ([25]); S(x, t) is the mean annual
meridional distribution of solar radiation which is normalized so that its integral
from 0 to 1 is unity; α(x, xs(t)) is the absorption coeffi cient which is one minus
the albedo of the earth-atmosphere system, with xs(t) being the latitude of the
ice line at time t. In (4) below the ice line absorption drops discontinuously
because the albedo jumps discontinuously. North [24], page 2034, equation (3)
specifies this co-albedo function as:10

α(x, xs) =

{
b0 = 0.38 x > xs

α0 + α2P2(x) x < xs
,

α0 = 0.697
α2 = −0.0779.

(4)

In this set-up the ice line is determined dynamically by the condition ([5], [23],
[24]):

T > −10oC no ice line present
T < −10oC ice present

(5)

and the ice line function xs(t) solves the equation −10 = T (xs(t), t).
Although the introduction of heat diffusion adds extra complexity, since it

requires the use of partial differential equations, a more simplified approach is
to use the so-called two-mode approximation ([23, 24] [25]) that employs the
relatively simpler framework of ordinary differential equations. The two-mode
approximation is defined as T (x, t) = T0(t) + T2(t)P2(x) where T0(t), the first

7Symmetry for the part x ∈ [−1, 0] is assumed. This assumption is common in EBCMs.
8 It is important to note that the original Budyko [5] formulation cited by North parame-

terizes A,B as functions of fraction cloud cover and other parameters of the climate system.
North [24] points out that due to non-homogeneous cloudiness A and B should be functions
of x. There is apparently a lot of uncertainty involving the impact of cloud dynamics (e.g.
[33] versus [17]). Hence robust control in which A,B are treated as uncertain may be called
for but this is left for further research.

9The solar constant includes all types of solar radiation, not just the visible light. It is
measured by satellite to be roughly 1.366 kilowatts per square meter (kW/m2).
10A smoothed version of a co-albedo function is equation (38) of North et al. ([25], (p. 98)).
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mode, and T2(t), the second mode, solve the ordinary differential equations:11

BdT0
dt

= −(A+BT0(t)) +

∫ 1

0

QS2(x)α(x, xs(t))dx+ g (M (t)) (6)

BdT2
dt

= −(1 + 6D)BT2(t) + 5

∫ 1

0

[QS2(x)α(x, xs(t)) + g (M (t))]P2(x)dx (7)

T0(0) = T00, T2(0) = T02, P2(x) =
(3x2 − 1)

2
. (8)

In (6)-(8), P2(x) = (3x2−1)/2 is the second Legendre polynomial that provides
the spatial dimension to the solution.
From the two-mode approximation of the temperature, we obtain the global

mean temperature mT = T0(t), which is the integral of T̂ (x, t) over x from zero
to one,12 and the variance of the temperature,

VT =

∫ 1

0

[
T̂ (x, t)− T0(t)

]2
dx =

∫ 1

0

(T2(t)P2(x))2dx =
(T2(t))

2

5
(9)

Local temperature means at latitudes (x, x+dx) and the mean temperature
over a set of latitudes, Z = [a, b], are defined by

[T0(t) + T2(t)P2(x)] dx,m [a, b] =

∫ b

a

[T0(t) + T2(t)P2(x)] dx (10)

while the variance of temperature over the set of latitudes Z = [a, b] is

V [a, b] =

∫ b

a

[T0(t) + T2(t)P2(x)−m [a, b; t]]
2
dx. (11)

When the area Z = [a, b] is introduced, it is plausible to assume that utility
in each area [a, b] depends upon both the mean temperature and the variance
of temperature in that area. For example we may expect increases in mean
temperature and variance to have negative impacts on output in any area Z,
if it is located in tropical latitudes. In contrast mean temperature increases in
some areas Z (e.g. Siberia) may increase rather than decrease utility.13 Existing
dynamic IAMs cannot deal with these kinds of spatial elements, such as impacts
of changes in temperature variance, generated by climate dynamics over an area
Z.
In the climate model M (t) is the stock of the atmospheric carbon dioxide.

This stock affects the evolution of the temperature through the function g, and
evolves through time under the forcing of human inputs in the form of emissions
of green house gasses (GHGs) h (x, t) emitted at latitude x and time t.

11For a detailed derivation of temperature dynamics with hyman imputs and the two-model
solution in the context of a one-dimensional EBCM see Brock et al. [2].
12This is because

∫ 1
0 P2(x)dx = 0.

13 In a stochastic generalization of our model, we could introduce a stochastic process to
represent “weather,” i.e. very high frequency fluctuations relative to the time scales we are
modeling here. Here the “local variance” of high frequency phenomena like “weather” may
change with changes in lower frequency phenomena such as mean area Z temperature and
area Z temperature variance. We leave this task to future research.
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For the human input we assume that emissions h (x, t) relate to S (t) by the
simple equation

Ṁ (t) =

∫ 1

0

h(x, t)dx−mM (t) = h (t)−mM (t) (12)

where m is the carbon decay rate. To simplify the exposition we reduce the
number of state variables in the problem by assuming that M (t) has relaxed to
a steady state and it relates to h (t) through the simple linear relation M (t) =
(1/m)h (t) . Thus we approximate g (M (t)) by a simple linear relation γh (t) .14

In this model the latitude of the ice line can move in time in response to changes
in human input since the ice line solution depends on h(t). Moving of the ice
line towards the poles generates the damages related to damage reservoirs.
The climate model (6)-(8) that incorporates human input, which affects the

evolution of temperature can be further simplified by following simplifications
proposed by Wang and Stone [35] which suggest that an approximation for the
solution equation T (x, t) = T0(t) + T2(t)P2(x) can be achieved by replacing
T2(t) by an appropriate constant. Then dT (x, t)/dt = dT0(t)/dt, where T0(t), is
global mean surface (sea level) temperature. Writing T (t) = T0(t) the evolution
of the global mean temperature can be approximated by:

dT (t)

dt
= −A

B
− T (t) +

1

B

∫ 1

0

[QS2(x)α(x, xs(t))] dx+ g (S (t)) . (13)

Thus the Wang-Stone [35] approximation reduces the model to one whose
evolution is described by (13). Wang and Stone [35] (equation 3) calibrate the
model to get a simple equation for the ice line

xs(t) = (aice + biceT (t))1/2, aice = 0.6035, bice = 0.02078. (14)

3 The Economic-ClimateModel: Damage Reser-
voirs and Multiple Steady States

We introduce the two types of damages due to climate change mentioned earlier..
Let us define these damages by two functions D1(T (t)) and D2(xs(t)), where 1
denotes the traditional damages due to temperature rise, and 2 denotes damages
due to reservoir damages from movement of the ice line towards the north and
permafrost melting. A simplified integrated EBCM can be developed along the
following lines.
We consider a simplified economy with aggregate capital stockK. An amount

K2 from this capital stock is diverted to alternative “clean technologies”. Out-
put in this economy is produced by capital and emissions h according to a
standard production function F (K −K2, h+ φK2), where φ is an effi ciency pa-
rameter for clean technologies.15 The cost of using a unit of h is Ch(h),with

Ch(0) = 0, C
′

h > 0, C
′′

h > 0. The use of emissions can be reduced by employing

14More complicated and probably more realistic approximations will not affect our qualita-
tive results regarding the multiplicity of steady states and the emergence of Skiba points.
15See Xepapadeas [38] for different ways in which emissions and environment can be modeled

as production factors.
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clean technologies at an effective rate φK2. Denoting consumption by C, net
capital formation in our simplified economy is described by

dK

dt
= F (K −K2, h+ φK2)− C − Ch(h)− δK (15)

where δ is the depreciation rate on the capital stock. Assuming a linear utility
function or U(C) = C, we consider the problem of a social planner that seeks to
maximize discounted life time consumption less damages from climate change
subject to (13), (14), and (15).
In this set-up the problem of the social planner can be described, in terms

of the following Most Rapid Approach Problem (MRAP) problem,16

V (T (0)) = max

∫ ∞
0

e−ρt [F (K −K2, h+ φK2)− Ch(h)− (δ + ρ)K (16)

−D1(T (t))−D2(xs(t))] dt

subject to (14) and

dT (t)

dt
= −A

B
− T (t) +

γ

B
h(t) +

1

B
Ψ(T (t)), (17)

Ψ(T (t)) =

∫ 1

0

[QS2(x)α(x, xs(t))] dx , T (0) = T0, (18)

where V (T (0)) is the current value state valuation function, ρ is the subjec-
tive rate of discount on future utility,and the nonlinear function Ψ(T (t)) is an
increasing function of T ([23]). Problem (16)-(18), after the successive approx-
imations have been made, has practically been reduced, regarding the climate
part, to a zero-dimensional model as found in North et al. [25]. We believe
that this exercise is of value because it outlines a pathway to extensions to one-
dimensional models and is even suggestive via the Legendre basis method of
how one might potentially extend the work to two-dimensional models on the
sphere.17 Problem (16)-(18) is in principle tractable to phase diagram meth-
ods with the costate variable on the vertical axis and the state variable on the
horizontal axis.
At this point, it should be noted that technical change and population growth

could also have been introduced in the form of Harrod neutral (labor augment-
ing) technical change, a formulation which is required for consistency with bal-
anced growth in the neoclassical context. Balanced growth formulations allow
us to conduct phase diagram analysis as in the text below. In this case the
production function might be written as F (K −K2, h + φK2, AL), where F is
a constant returns to scale production function and dA/dt = gA, dL/dt = nL,
where g is the rate of exogenous labor augmenting technical change and n is

16The assumption of linear utility allows the capital accumulation problem too be written
as a MRAP problem. Problem (16) is an approximation of the MRAP problem for very
large B and −B ≤ dK

dt
≤ B. In problem (16) capital, K, can thus be eliminated as a state

variable. It should also be noted that in this section, damages are modeled using an additive
functional form as explained in Weitzman [36]. In section 4 we will revert to the more common
multiplicative form. The main qualitative results hold for both these forms.
17Research in progress [3] focuses on the development of a two-dimensional spherical coupled

climate/economic dynamics model by using a basis of spherical harmonics as in Wu and North
[37]. This approach, as well as the Legendre basis approach we are using in this paper for
one-dimensional models, fits in nicely with the general approach to approximation methods
in Judd ([13], Chapter 6).
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the population rate of growth. Output, capital, consumption, emissions and the
capital accumulation equation (15) can thus be defined in per effective worker
(AL) terms. However the temperature dynamics (18) and (20) now have a non-
autonomous term due to exponentially growing emissions. Dealing with this
problem while staying within a framework of autonomous dynamics, requires
introduction of emission reducing technological progress at an appropriate rate
in order to be able to transform the temperature dynamics into a stationary
form so that phase diagram techniques of analysis of autonomous systems can
still be applied. However, this is beyond the scope of the current paper. In
the current paper we wish to show how spatial EBCMs can be integrated with
capital accumulation models in economics while preserving analytical tractabil-
ity. The time stationary analysis developed here indicates that a full analysis of
more realistic non-stationary systems is potentially tractable now that we have
pointed the way in this paper.
Returning to our time stationary framework, we feel that insights are gained

more rapidly by analyzing the following qualitatively similar problem that is
strongly motivated by the problem (16)-(18):

V (T (0)) = max

∫ ∞
0

e−ρt [F (K −K2, h+ φK2)− Ch(h)− (δ + ρ)K (19)

−D1(T )−D2(T )] dt

s.t.
dT

dt
= aT − bTT + cTh , (aT , bT , cT ) > (0, 0, 0) (20)

where D
′

1(T ) = a1T, implying increasing marginal damages due to temperature
increase, while D

′

2(T ) is a function increasing at low T reaching a maximum and
then decreasing gradually to zero. The shape of D2(T ) is intended to capture
initially increasing marginal damages associated with damage reservoirs which
reach a maximum as temperature increases, and eventually vanish once the
polar ice caps are gone.
The exposition of a number of issues related to damages functions is useful at

this point. Assuming a quadratic or a higher degree power function for damages
D1(T ) due to temperature increase is consistent with damages related to falling
crop yields or reduction to ecosystem services, and this has been the shape
adopted in many IAMs. To consider a plausible shape for D2(T ) we have argued
in the introduction that as the ice line moves towards the north, there is initially
a large quantity of ice to melt which can generate high melt per unit time. As the
ice cap is reduced, the melt is reduced and eventually tends to zero when the ice
cap disappears. Similar behavior is expected by permafrost. Once permafrost
is gone further damages associated with permafrost thawing should vanish. A
potential damage function invoking these properties is the gamma function (see
Appendix A) which we will be using throughout the paper to capture this type
of effect. Another function having similar properties is the S-shaped function
used in Brock and Starrett [4] to describe internal loading of phosphorous in a
lake system. This functional form yielded give very similar qualitative results
to the ones obtained with the gamma function. Further discussion regarding
the shape of D2(T ) can be found in Appendix A.1. Furthermore, we argue that
the combination of these two damage functions, D1(T ) and D2(T ), each one
associated with climate change impacts having different time profiles and being

9



disciplined by scientific evidence, provides a more comprehensive description of
the problem.
To further analyze the economic part of the problem, define

π(h) = max
K≥0,K2≥0

{F (K −K2, h+ φK2)− (δ + ρ)K} . (21)

Since we assume that F (·, ·) is concave increasing, π(h) is an increasing concave
function of h.18 We may now write down the current value Hamiltonian and
the first order necessary conditions for an optimum,

H(h, T, λT ) = π(h)− Ch(h)−D1(T )−D2(T ) + λT (aT − bTT + cTh) (22)

π′(h) = C ′h − λT cT ⇒ h = h∗(λT ) , h∗
′
(λT ) > 0, (23)

where it is understood in (23) that the inequality conditions of boundary solu-
tions are included, and

dT

dt
= aT − bTT + cTh

∗(λT ) , T (0) = T0 (24)

dλT
dt

= (ρ+ bT )λT + a1T +D′2(T ). (25)

We know that since λT (t) = ∂V (T (t))
∂T (t) := V ′(T (t)) < 0, the costate variable

can be interpreted as the shadow cost of temperature. We also know that if
a decentralized representative firm pays an emission tax, then the path of the
optimal emission tax is −λT (t). We can study properties of steady states of
the problem (16)-(18) by analyzing the phase portrait implied by (24)-(25).
The isocline dT/dt = 0 is easy to draw for (24). Along this isocline we have
dλT
dT = bT

cTh∗
′ > 0, by using (23), thus along this isocline λT is increasing in T.

There is a value λTc such that if λT (t) < λTc then h∗ = 0 and aT /bT = T .
If there are no ice line damages, the dλT /dt isocline is just a linear decreasing
function of T that is zero at T = 0, or λT = − a1

(ρ+bT )
T, which implies that λT < 0

for all T > 0. Now add the damages emerging from the damage reservoir to this
function. The isocline is defined as

λT | dλT
dt =0

= −a1T +D′2(T )

(ρ+ bT )
.
dλT
dT

= −a1 +D
′′

2 (T )

(ρ+ bT )
. (26)

With a gamma function representation of D2(T ), D
′′

2 (T ) is positive and de-
creasing, it becomes negative, reaches a minimum and vanishes after becoming
positive again. This induces a nonlinearity to the dλT /dt = 0 isocline. In gen-
eral it is expected that this isocline will have an inverted N-shape, which means
that with an increasing dT/dt = 0 isocline if a steady state (T̄ , λ̄T ) exists, there
will be either one or three steady states. To study the stability properties of
these steady states we form the Jacobian matrix of (24)-(25),

J(T̄ , λ̄T ) =

[
−bT cTh

∗′(λ̄T )

a1 +D
′′

2 (T̄ ) bT + ρ

]
. (27)

If at a steady state a1 + D
′′

2 (T̄ ) > 0 so that the dλT /dt = 0 isocline is
decreasing then det J(T̄ , λ̄T ) < 0 and the steady state is a local saddle point.

18Note that π′(0) <∞ if φ > 0 for the alternative “clean” technology.
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If a1 + D
′′

2 (T̄ ) < 0 so that the dλT /dt = 0 isocline is increasing, the steady
state is an unstable spiral.19 Thus when a unique steady state exists it will
be a saddle point. The case of three candidate optimal steady states T̄1 <
T̄2 < T̄3 is of particular interest. In this case given the shapes of the two
isoclines the smallest one and the largest one are saddles and the middle one is
an unstable spiral. Thus we have a problem much like the lake problem analyzed
by Brock and Starrett [4], and following a similar argument, it can be shown
(under modest regularity conditions so that the Hamiltonian is concave-convex
in T ) that there are two value functions, call them, Vmitigate(T ) and Vadapt(T ),
and a “Skiba” point Ts ∈ (T̄1, T̄3) such that Vmitigate(Ts) = Vadapt(Ts). For
T0 < Ts, it is optimal to follow the costate/state equations associated with
Vmitigate(T ) and converge to T̄1, while for T0 > Ts it is optimal to follow the
costate/state equations associated with Vadapt(T ) and converge to T̄3. In Figure
1 we present this situation for an appropriate choice of functional forms and
parameters.20 Besides the solution path the figure also plots the isoclines both
with and without ice line damages. Without ice line damages we have the
case when the λ̇T -isocline is a linear decreasing function of T, implying that we
get a unique global saddle point at the crossing of the λ̇T = 0, Ṫ = 0 isoclines
denoted by T̄n. For the case with ice line damages on the other hand, we get the
inverted N-shaped λ̇T , isocline giving us a “Skiba”point Ts lying just between
the unstable spiral T̄2 and the local saddle point T̄3.

0 0.5 1 1.5 2 2.5
0.4
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0

λ T

Figure 1: Multiple steady states and Skiba point

Hence, for low initial T0 < T̄1, it will be optimal to levy a low initial carbon
tax even though there is a polar ice cap threat and then gradually increasing

19The eigenvalues of J are: 1
2

(ρ ±
√

∆), where ∆ = ρ2 +

4
[
(a1 +D

′′
2 (T̄ ))cT h

∗′ + bT (bT + ρ)
]
. When a1 + D

′′
2 (T̄ ) > 0 then ∆ < 0 and we

have two complex eigenvalues with positive real parts which implies an unstable spiral.
20The assumed functions, parameters and calculations used in figure 1 are provided in

Appendix A.
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the carbon tax along a gradualist policy ramp. However, if T0 ∈ (T̄1, Ts), it is
optimal to tax carbon higher at T0 and let the tax gradually fall. But if the
initial temperature is large enough, the ice caps are essentially already gone and
damage reservoirs have been exhausted. Then the optimal thing to do is to tax
carbon initially quite modestly but along an increasing schedule through time
to deal with the rising marginal damages due to temperature rise. Figure 1 thus
shows how the qualitative picture changes completely when a different shape for
the ice line damage function is considered. In particular, the area T ∈ (T̄1, Ts)
is of interest since, if ice line damages go unaccounted for, the optimal strategy
will be to levy a low carbon tax which eventually will raise temperature to T̄n,
while in a model with ice line damages included the exact opposite will be true,
implying a decrease in temperature to T̄1.

It is important to note that this stationary model is not rich enough to cap-
ture the eventual rather sharp increase along the “gradualist” policy ramp of
Nordhaus ([19], [20]) because in Nordhaus’s case the Business as Usual (BAU)
emissions path would be growing because of economic growth. Thus the dam-
ages from temperature rise alone, growing quadratically as the quantity of emis-
sions grows, would lead to the gradualist path of carbon taxes “taking off” in
the future. However, this simple stationary model does expose the new behavior
of a higher initial carbon tax for T0 ∈ (T̄1, Ts). Our runs of the DICE model in
section 5 exhibit a sharply higher carbon tax at the beginning due to the extra
ice line damages added to Nordhaus’s damages.21

4 Energy balance - integrated assessment mod-
els with damage reservoirs

In this section we incorporate the framework of the simplified energy balance
models developed above into a framework similar to well established IAMs such
as the DICE/RICE models proposed by Nordhaus. We use notation close to that
of Nordhaus for the DICE/RICE part of the model. Consider the continuous
time spatial analog of Nordhaus’s equations ([19] Appendix 1 or [20], A.1-A.20)
where we have made some changes to be consistent with our notation and have
suppressed (x, t) arguments to ease typing, unless (x, t) is needed for clarity,

W =

∫ ∞
0

e−ρt
∫ 1

0

φ(x)U(C)dxdt, (28)

where U(C) is utility and C is aggregate consumption at (x, t), and φ(x) is a
Negishi weight function.22 Furthermore,

Yn = C +
dK

dt
+ δK (29)

Yn = Ω(1− Λ)Y, Y = F (K) (30)

21Note that Nordhaus does include damages from ice melt, but the climate model above
with moving ice line adds another component of ice melt that has a declining marginal damage
function.
22The maximization of objective (28) with the “Negishi” φ(x)weighting function is a way

of computing a Pareto Optimum competitive equilibrium allocation across latitudes as in
Nordhaus’s [20] discrete time non-spatial formalization. For a presentation of the use of the
Negishi weights in IAMs, see Stanton [31].
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where, Yn(x, t) is output of goods and services at latitude x and time t, net of
abatement and damages; Ω(T (x, t)) is the damage function (climate damages as
fraction of output) as a function of temperature at (x, t); Λ(x, t) is the abatement
cost function (abatement costs as fraction of output)23 at (x, t); and F (K(x, t))
is a concave production function of capital. δ is the usual depreciation rate
of capital. As explained in the previous section, technology and labor have
been removed from the production function in order to avoid problems of non-
stationarity in the temperature equation.
Aggregate emissions at time t are defined as:

E(t) =

∫ 1

0

σ(1− µ(x, t))Y (x, t)dx (31)

where σ is ratio of uncontrolled industrial emissions to output (metric tons
carbon per output at a base year prices), and µ(x, t) is the emissions-control
rate (fraction of uncontrolled emissions) at (x, t). Climate dynamics in the
context of the ECBM are given by (1) and (2). Notice that we have replaced
Nordhaus’s climate equations [20], equations A.14-A.20) with the spatial climate
dynamics, (1) and (2).
Maximization of objective (28) subject to the constraints above is a very

complicated and diffi cult optimal control problem of the PDE (1) on an infinite
dimensional space x ∈ [0, 1]. We reduce this problem to a much simpler approx-
imate problem of the optimal control of a finite number of “modes”using the
two-mode approach described earlier.
For the two-mode approximation equations T (x, t) = T0(t) +T2(t)P2(x), (1)

and (2) reduce to the pair of ODEs

dT0
dt

=
1

B

[
−(A+BT0) +

∫ 1

0

QS2(x)α(x, xs(t))dx+ γE (t)

]
, T0(0) = T00

(32)

dT2
dt

=
1

B

[
−(1 + 6D)BT2 + 5

∫ 1

0

QS2(x)α(x, xs(t))P2(x)dx

]
, T2(0) = T02

(33)

T0(t) + T2(t)P2(xs(t)) = Ts, Ts = −10oC. (34)

Before continuing notice that North’s two-mode approximation has reduced
a problem with a continuum of state variables indexed by x ∈ [0, 1] to a problem
where the climate part has only two state variables. We can make yet a further
simplification by assuming, as in section 3, that the utility function is linear,
i.e. U(C) = C . This will allow us to write (28) as the MRAP problem:

W =

∫ ∞
0

e−ρt
∫ 1

0

φCdxdt =

∫ ∞
0

e−ρt
∫ 1

0

φ [Ω(1− Λ)F − (ρ+ δ)K] dxdt.

(35)
Note that for the two mode approximation, the damage function should be

defined as:
Ω(T (x, t)) = Ω(T0(t) + T2(t)P2(x)). (36)

23With our spatial approach abatement costs could be made site specific which would enable
a more comprehensive analysis of issues concerning, e.g., geoengineering. However this goes
beyond the scope of the current paper and is left for future research.
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To ease notation we introduce the inner product notation 〈f, g〉 =
∫ 1
0
f(x)g(x)dx.

We may now write the current value Hamiltonian for the optimal control prob-
lem (35) and show how we have drastically simplified the problem by using a
two-mode approximation,24

H =

∫ 1

0

φ

[
Ω(1− Λ)F − (ρ+ δ)K +

λ0
B
σ(1− µ)F

]
dx (37)

λ0
B

[〈QSα, 1〉 −A−BT0] +
λ2
B

[5 〈QSα,P2〉 − (1 + 6D)BT2] .

For the simplified problem (35), the capital stock and the emissions control rate
K∗(x, t), µ∗(x, t) are chosen to maximize H for each (x, t), which is a relatively
simple problem. However there is one complication to be addressed. The ab-
sorption function α(x, xs(t)) depends upon the ice line xs(t) where the ice line
is given by a solution of (34), i.e.

xs(t) = P−1+

(
Ts − T0(t)
T2(t)

)
(38)

where the subscript “+”denotes the largest inverse function of the quadratic
function P2(x) := (1/2)(3x2−1). Notice that the inverse function is unique and
is the largest one on the set of latitudes [0, 1]. Equation (38) induces a non-
linear dependence of equations (32) and (33) through the absorption function,
but no new state variables are introduced by this dependence. An additional
dependence induced by equations (32) and (33) as well as equation (38) is on
the damage function which we parameterize as:

Ω = Ω(T0(t), T
2
2 (t)P 22 (x);xs(t), x) (39)

The first term in (39) represents damages to output at latitude x as a function
of average planetary temperature as in Nordhaus ([19], [20]) and the second term
is an attempt to capture extra damages due to climate “variance”. Note that
the component P 22 (x) is larger at x = 0 and x = 1 than it is at the “temperate”
latitude x = (1/3)1/2 where P 22 (x) = 0. This is an admittedly crude attempt to
capture the component of damages due to “wetter places getting wetter” and
“dryer places getting dryer” as well as damages to arctic latitudes compared
to temperate latitudes. But some of this dependence can be captured also in
the “x”term in the parameterization (39). Finally the impact on damages at
latitude x due to shifts in the ice line is captured by inclusion of the ice line
in (39). This is a fairly flexible parameterization of spatial effects (i.e. latitude
specific effects) that are not captured in the traditional non-spatial formulations
of integrated assessment models.

4.1 Optimal mitigation and location specific policy ramp

Let us first illustrate optimal mitigation using our two-mode simplification of
our original “infinite mode”problem with linear utility by considering a version
24The important thing to note about this Hamiltonian compared to the Hamiltonian of

the original problem (28) is this. The original problem would generate a Hamiltonian with
a continuum of costate variables, one for each x ∈ [0, 1]. The two-mode approximation
approach developed could be quite easily extended to an n-mode approximation approach.
Since however North argues that a two-mode approximation is quite good, we continue with
a two-mode approximation here.
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of the problem where the impact of policy {µ(x, t)} on the location of the ice
line xs(t) is ignored. That is there is no ice line dependence of any functions
of the problem including the absorption function. In this simplified case the
albedo function depends only upon x and thus the terms 〈QSα, 1〉 , 〈QSα,P2〉
do not depend upon T0(t), T2(t) in (32) and (33). Hence the two costate ODEs
would become

dλ0
dt

= (ρ+ 1)λ0 −
∂H
∂T0

= (ρ+ 1)λ0 −
∫ 1

0

φ
∂Ω

∂T0
(1− Λ)Fdx (40)

dλ2
dt

= (ρ+ 1 + 6D)λ2 −
∂H
∂T2

= (ρ+ 1 + 6D)λ2 −
∫ 1

0

φ
∂Ω

∂T2
(1− Λ)Fdx

Wang and Stone [35] argue that one can even get a fairly good approxima-
tion of T2 by exploiting how fast mode 2 converges relative to mode zero in
equation (33) as compared to (32). Hence we can further simplify the problem
by assuming that T2 has already converged to:

T2 =
5 〈QSα,P2〉
(1 + 6D)B

(41)

for each T (t).25 The Hamiltonian (37) for the case when the absorption function
and T2 are constant can thus be written as26

H =

∫ 1

0

[
φ(Ω(1− ψµ)F − (ρ+ δ)K) +

λ0
B
σ(1− µ)F

]
dx (42)

+
λ0
B

[Qα−A−BT0] . (43)

In this case we obtain the following switching decision rule for µ∗(x, t)27

µ∗(x, t)

 = 0
∈ [0, 1]

= 1

 for − λ0(t)

 <
=
>

 φ(x)ψB

σ(x)
Ω (44)

Ω = Ω(T0(t), (T2P2(x))2, x) (45)

λ0(t) =

∫ ∞
s=t

e−(ρ+1)(s−t)
[∫ 1

0

Ω(1− ψµ∗)F ∂Ω

∂T0
dx

]
ds. (46)

Suppose some type of institution wanted to implement this social optimum.
One way to do it would be to impose a tax τ(λ) = −λ0(t)

B on emissions when
individual agents solve the static problems

max
{µ∈[0,1],K≥0}

{Ω(1− ψµ)F − (ρ+ δ)K − τ(λ)σ(1− µ)F} . (47)

We see right away that the first order necessary conditions for the problem
(47) are the same with those resulting from the Hamiltonian function (42). Since

25Note that in the case where the absorption function does not depend upon xs(t) the RHS
of (41) is constant.
26Note that with a constant absorption function, 〈QSα, 1〉 = 〈Q(1 + S2P2(x))α, 1〉 =
〈Qα+QS2αP2(x), 1〉 = 〈Qα, 1〉 = Qα, since 〈QS2αP2(x), 1〉 = 0.
27Here, we have also assumed that abatement costs (Λ = ψµ, ψ > 0) are linear, implying

that the solution is of the bang-bang type. In section 4.2 we will consider a nonlinear version
of abatement costs.
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F (K) is a concave increasing function, then setting τ(λ) = −λ0(t)
B implements

the social optimum. Note that the socially optimal emissions tax is uniform
across all locations as one would expect from Nordhaus ([19], [20]).
An important question arises at this point: What substantive difference does

the spatial climate model coupled to the economic model add that is not already
captured by non-spatial climate models? There are several important differences
regarding policy implications.
The emission reduction policy ramp µ∗(x, t) is location specific and dictates

µ∗(x, t) = 1 for all (x, t) where the relative Negishi weight φ(x) on welfare at
that location is small (recall that

∫ 1
0
φ(x)dx = 1 by normalization). Assume

that the damage function Ω = Ω(T0(t), (T2P2(x))2, x) = Ω(T0(t), (T2P2(x))2) is
decreasing in both arguments.28 This crudely captures the idea that damages
increase at each latitude as average planetary temperature, T0(t), increases and
as a measure of local climate “variance” (T2P2(x))2 increases. Let R denote a
set of “at risk latitudes”with low values of Ω(T0(t), (T2P2(x))2), i.e. with high
values of the arguments. The set R is a crude attempt to capture latitudes
that would be relatively most damaged by climate change. A plausible type of
objective would be to solve the social problem above but with φ(x) > 0, x ∈ R,
φ(x) ' 0, x /∈ R . We see right away that this social problem would require all
xs not in R to reduce all emissions immediately. In general we have,

µ∗(x, t) = 1, for − λ0(t) >
φ(x)ψB

σ(x)
Ω (48)

and vice versa. This makes good economic sense. The marginal social burden
on the planet as a whole of a unit of emissions at date t, no matter from which
x it emanates is, −λ0(t). Locations x where the Negishi weight on the location
is small, where emissions per unit of output are relatively large (relatively large
σ(x)), and that are already relatively heavily damaged (Ω(T0(t), (T2P2(x))2, x)
is high) are ordered to stop emitting. Thus our modeling allows plausible spec-
ifications of the economic justice argument stemming from geography to shape
policy rules.
In the following section, we use this framework to extend our results in

the presence of an discontinuous absorption function that changes at the ice
line. This is a more realistic model which introduces ice line damages which we
develop in the context of a DICE/RICE-type integrated assessment model.

4.2 Optimal mitigation in an IAM-type model with dam-
age reservoirs

We now introduce as the absorption function the version proposed in North
([23]) where

α(x, xs) = 1− α(x) =

{
α1 = 0.38 x > xs
α0 = 0.68 x < xs

, (49)

where α(x) is the albedo. With this absorption function, the dynamics T0(t) in
(32) and the T2 approximation in (41) become respectively

28 (T2P2(x))2 denotes the variance of the average temperature at location x.
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dT0
dt

=
1

B

[
−(A+BT0) +Q(α0 − α1)

∫ x=xs(t)

x=0

(1 + S2P2(x))dx+ γE +Qα1

]
(50)

T2 =
1

(1 + 6D)B

[
5Q(α0 − α1)

∫ x=xs(t)

x=0

(1 + S2P2(x))P2(x)dx+Qα1S2

]
,

(51)

where the equation for the ice line is, using (38),

xs(t) =

[
2

3

Ts − T0(t)
T2

+
1

3

] 1
2

. (52)

The objective (28) and the constraints (49)-(52) determine optimal mitiga-
tion over time and latitude. The discontinuous absorption function can create
a strong nonlinearity where a small change in T0 can cause a large change in
damages at some latitudes. However this nonlinearity makes it diffi cult to pro-
ceed with analytical solutions. To obtain a qualitative idea of the impact of
the nonlinearity due to the absorption function and the ice line, we use the cli-
mate parametrization used by North [23] (α0 = 0.68, α1 = 0.38, A = 201.4, B =
1.45, S2 = −0.483, Ts = −10, Q = 334.4). The heat transport coeffi cient D is
found to be approximately 0.2214 by calibrating the ice line function to the
current ice line estimate (xs = 0.95).29

The system (50)-(52) is highly nonlinear and can be simplified by deriving
a polynomial approximation of xs as a function of T0(t). We proceed in the
following way. If we substitute xs(t) from (52) into (51), then T2 is a fixed
point of (51). We solve numerically the fixed point problem (51) for values
of T0 ∈

[
−T̄0, T̄0

]
, obtaining the solution T̂2(T0). Substituting this back into

equation (52) gives us the x̂s(T̂2(T0), T0) which is then used to fit a quadratic
curve on (T0, x̂s) by using least squares. Thus x̂s is approximated by a convex
curve x̂s = ζ0 + ζ1T0 + ζ2T

2
0 = ζ(T0), (ζ0, ζ1, ζ2) > 0.30 Making use of this

approximation, the system (50)-(52) can thus be written as:

dT0
dt

=
1

B
[−(A+BT0) +Q(α0 − α1)θ(T0) + E +Qα1] (53)

where θ(T0) :=

[
x̂s +

S2
2

(x̂3s − x̂s)
]
with x̂s := ζ0 + ζ1T0 + ζ2T

2
0

Assuming linear utility once again, the Hamiltonian can be written as:

H =

∫ 1

0

[
φ[KβΩ(T0)(1− Λ)− (ρ+ δ)K] +

λ0
B
σ(1− µ)Kβ

]
dx (54)

+
λ0
B

[−A−BT0 +Q(α0 − α1)θ(T0) +Qα1] .

29The calibration procedure is explained in detail by North ([24] p.2035-2037).
30The estimated quadratic function was

x̂s = 0.7126 + 0.0098T0 + 0.0003T 20 , R2 = 0.99.
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We now assume that abatement costs are increasing in abatement activities,
Λ = ψµ2. The optimal µ and K will thus be defined as:

µ∗(x, t) = − λ0σ

2BφψΩ(T0)
,∀x ∈ [0, 1] (55)

K∗(x, t) =

(
ρ+ δ

β

) 1
β−1

[
Ω(T0)(1− ψµ∗2)−

λ0
φB

σ(1− µ∗)
] −1
β−1

. (56)

and the canonical system becomes:

dT0
dt

=

[
−A−BT0 +Q(α0 − α1)θ(T0) +

∫ 1

0

σ(1− µ∗)K∗βdx
]

(57)

dλ0
dt

= (ρ+ 1− Q

B
(α0 − α1)θ′(T0))λ0 −

∫ 1

0

[
K∗βΩ′(T0)(1− ψµ∗2)

]
dx (58)

which can be solved numerically given a specific shape of φ(x).
To proceed further we need a more detailed specification for the damage

function, which as explained above should contain a temperature component
denoted by D1(T0) and an ice line component, denoted by D2(T0). We spec-
ify the damage function in the following way. Lost output from tempera-
ture induced damages is: Y − Y

1+D1(T0)
= Y D1(T0)

1+D1(T0)
:= Y d1(T0). Lost out-

put from ice line movement towards the poles written as a function of T0 is:
Y − Y

1+D2(T0)
= Y D2(T0)

1+D2(T0)
:= Y d2(T0). The sum of lost output from both sources

is: LostY = Y d1(T0) + Y d2(T0). Thus net output available for consumption
and mitigation is: Y − LostY = (1− d1(T0)− d2(T0))Y .

If we define Ωi(T0) = 1
1+Di(T0)

, i = 1, 2, then the term (1− d1(T0)− d2(T0))
can be written as the damage function Ω of the system (55)-(58) in the form

Ω(T0) = Ω1(T0) + Ω2(T0)− 1. (59)

As the global warming problem concerns damages resulting from temperature
increases rather than decreases, we restrict the state space to include only tem-
peratures T0 > 15◦C, i.e. in the vicinity of the present average global temper-
ature level.31 In the spatial model used in this section, this temperature level
is found by setting E = 0 and solving (53), which gives us T0 ≈ 15.27. Hence,
15◦C can be viewed as a rough ballpark estimate of the preindustrial global
temperature average. Damages are assumed to start at 15◦C and we thus write
our normalized damage function as Ω(T0 − 15). Furthermore, we will use the
same functional forms for the damage functions as used in section 3.
The EBCM that we presented in this section, resulting from the concepts

developed in the earlier part of the paper, has many similarities to the tra-
ditional IAMs but also two potentially important differences. The first is the
discontinuous absorption function and the second is an alternative shape for ice
line damages as opposed to other temperature related damages. Together they
introduce complex nonlinearities into the temperature dynamics. The question

31During the development of many energy balance models in the 1960s and 1970s the main
concern was usually not that of global warming, but rather that of drastic global cooling that
could result due to a slight decrease in the solar constant. This hypothesis was later coined
“Snowball earth”by Kirschvink [15].
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Figure 2: IAM: Multipe steady states and Skiba point

of whether these differences imply significant deviations from the model’s pre-
dictions, cannot be answered analytically due to the high complexity of the
models. So we resort to numerical simulations.
Figure 2 shows the results for the spatial climate model presented in this

section. As in section 2 this model also gives us 3 candidate optimal steady
states, T̄01 < T̄02 < T̄03, where the largest and the smallest ones are saddles
while the middle one is an unstable spiral.32 Between the unstable spiral T̄2
and the saddle T̄3 we have a Skiba point T̄s similar to that of section2.33 Hence,
for low initial temperatures T00 < T̄1 a low but gradually increasing carbon tax
is optimal, while for T00 < Ts we get the case where it is optimal to levy a high
carbon tax at T00 and then gradually decrease it. Furthermore, figure 2 also
depicts the case when ice line damages are omitted, T̄n. In contrast to section
2, both of the isoclines are now affected and in order to keep the figure from
becoming too messy, we have chosen to plot only the single equilibrium at the
crossing of these isoclines, which is denoted by the black dot at T̄n in figure 3.
The qualitative behavior is however the same as in section 2, i.e. the “damage
reservoir - no ice line damage equilibrium” is a saddle having a positive slope
for the Ṫ -isocline and a negative slope for the λ̇-isocline.

32The corresponding eigenvalues are approximated numerically as e01 = [−0.3974, 0.4174],
e02 = [0.0100± 0.2045i] and e03 = [−0.1946, 0.2146].
33Greiner et al. [11] find multiple equilibria in a zero-dimensional EBCM, where albedo is

modeled by a continuous S-shaped function of temperature. The derived multiple-equilibria
and Skiba planes, however, only apply for fixed levels of abatement, i.e. there is just a single
control variable (consumption). If, however, the social planner can control both consump-
tion and abatement then there exists only a single stable saddle. Our approach, apart from
explicitly addressing the more appropriate one-dimensional model also differs in the sense
that we obtain multiple equilibria and Skiba points when controlling both consumption and
abatement.
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5 The DICE Model with Damage Reservoirs

Both the relatively simple model of section 2 and the more complex model
of section 4 strongly suggest that the explicit modeling of ice line damages
shows the need for strong mitigation now. In order to further demonstrate
that this result is robust to the choice of model, we now turn to the DICE
model. The purpose of this exercise is to show how the introduction of ice line
damages into the damage function, along the lines suggested by the EBCMs,
will affect the optimal emission policy implied by DICE. The DICE model, the
most well known of the IAMs, assumes that all damages to the economy evolve
according to the quadratic equation (A.5) in Nordhaus [19]. This equation
has been calibrated to a 2.5 degree warming based on an aggregate of impact
studies from a variety of different sources.34 In order to separate out the ice
line component from the total amount of damages, we follow the procedure
shown in section 4.2. We thus simply replace (A.5) with equation (59) from
this section. Hence, we have two separate damage components, D1(T ) and
D2(T ), which can be calibrated independently according to different impact
assessments. Nordhaus [19] finds the aggregate impact of a 2.5 degree warming
to be roughly 2% of GDP. Since, it is not possible to determine exactly how
much of this 2% fall in GDP is due to ice line specific damages, we simply make
a crude assumption that approximately half of these damages are attributable
to the ice line component D2(T ).35 Next, we make the following assumptions
regarding the shapes of the temperature and ice line specific components, i.e.
we set D1(T ) = a1T

5 and D2(T ) = a2e
−2TT 2. In a manner consistent with

Nordhaus ([19]) we then proceed by calibrating the parameters a1 and a2 so
that D1(2.5) = 0.01 and D2(2.5) = 0.01. In this way our new damage function
produces an amount of damage at a 2.5 degree warming which is equivalent
to that in the original model but will differs from it for all other temperature
levels.
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34See Nordhaus ([19] accompanying notes p.23-25).
35On page 24 of the accompanying notes of the DICE 2007 ([19]) model there is an impact

assessment by region and impact type. These are then weighted based on GDP estimates for
2105. As these weights are not provided, it is not possible to determine a specific region or
impact type.
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Figure 3: U-shaped policy ramp
This new damage function has the property that the temperature compo-

nent, having a larger exponent than the original quadratic function, makes the
impact of GDP on the temperature much larger when temperature levels start
to rise above 3 degrees. On the other hand when temperature levels are lower,
the damages from the ice line are the ones that dominate.36 Figure 3 plots the
optimal emission control rate resulting from the DICE-2007 model with and
without ice line damages. As can be seen from this graph, the separation of
different damage structures gives us a U-shaped policy where it is optimal to
mitigate more initially as opposed to the normal gradualist policy ramp. The
figure also displays a simple robustness check, showing how the results are af-
fected by changing the values for the discount rate and damage exponent. As
can be seen from the left graph, raising the discount rate seems to strengthen
the case for an act now policy as opposed to the more gradualist path at the
same level of discounting. Although these results remain specific to our as-
sumptions regarding the shape of the damage function for the ice line as well
as the temperature component, they still exemplify the sensitivity of the model
to structural changes in the damage function and the impact of incorporating
insights from energy balance models.

6 Summary, Conclusions, and Suggestions for
Future Research

In this paper we introduce the economics profession to spatial Energy Balance
Climate Models (EBCMs) and show how to couple them to economic models
while deriving analytical results of interest to economists and policy makers.
While we believe this contribution is of importance in its own right, we also
show how introduction of the spatial dimension incorporated into the EBCMs
leads to new ways of looking at climate policy.
In particular, by accounting for an endogenous ice line and paying attention

to the associated damage reservoirs and albedo effects we show that due to non-
linearities even simple economic-EBCMs generated multiple steady states and
policy ramps which do not in general follow the “gradualist”predictions. These
results carry over to more complex models where the economic module has an
IAM structure. The interesting issue from the emergence of multiple steady
states, is that when the endogenous ice line and discontinuous albedo are ig-
nored, as in traditional IAMs, the policy prescription of these models could
be the opposite of the policy dictated by the economic-EBCMs. Furthermore
the spatial aspect of the EBCMs allows arguments associated with the spatial
structure of climate change damages to shape policy rules. When we applied
the damage function implied by the EBCMs and calibrated appropriately simu-
lations in the DICE model gave results interpretable as a U-shaped policy ramp
indicating an important deviation from the gradualist policy ramp derived from
the standard DICE model. Thus a rapid mitigation policy can be justified on
the new insights obtained by coupling the economy with the EBCMs.
Areas for further research could range from making the economics more so-

36See Ackerman et al. [1] for a discussion regarding different values for the exponent of the
damage function used in DICE.
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phisticated by abandoning the simplifying assumption of linear utility; allowing
for technical change and knowledge spillovers across latitudes; or introducing
strategic interactions among regions,37 to extending the EBCMs. Future work
that needs to be done regarding EBCMs is extension to two-dimensional spher-
ical EBCMs because Earth is a sphere, not a line. [3] are attempting to make a
dent in this problem. They frame the problem as a recursive dynamic program-
ming problem where the state vector includes a number of “spherical modes”
that are analogs of the modes in this paper as well as economic state variables.
Another possible extension could be the consideration of new policy instru-
ments. Emissions reduction acts on the outgoing radiation in the sense that by
reducing emissions the outgoing radiation increases through the second term of
the right hand side of (1). Another kind of policy could act on the first term
of the right hand side of (1) in the sense of reducing the incoming radiation.
This type of policy might be associated with geoengineering options. Finally a
policy which acts on the damage function in the sense of reducing damages for
any given level of temperature and radiation balance might be associated with
adaptations options. Unified economic-EBCMs might be a useful vehicle for
analyzing the structure and the trade offs among these different policy options.

37These extensions will undoubtedly increase the complexity and the computational needs
for solving the economic-EBCMs.
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A Appendix: derivations and assumptions

This section drafts some of the more specific assumptions on which figure 1 is
based. The production function in (21) is assumed to take the following form:

F (K −K2, h+ φK2) = (K −K2)
β1(h+ φK2))

β2 (60)

with β1 > 0, β2 > 0. The solution to problem (21) is derived from the first
order conditions:

∂F

∂K
= β1(K −K2)

β1−1(h+ φK2))
β2 − (δ + ρ) = 0 (61)

∂F

∂K2
= −β1(K −K2)

β1−1(h+ φK2))
β2 + β2φ(K −K2)

β1(h+ φK2))
β2−1 = 0

(62)

Solving the system (61) and (62) for K and K2 gives the solution to problem
(21).

K∗2 (h) =
1

φ

(
(δ + ρ)

β1

(
β1
φβ2

)1−β1) 1
β1−1+β2

− h

φ

K∗(h) =
β1
φβ2

h+

(
1 +

β1
β2

)
K∗2 (h)

Plugging these values back into (21) allows us to write π(h) as a linear function
of h:

π(h) = Ã+ B̃h

with

Ã :=

(
β1
φβ2

)β1 ( (δ + ρ)

β1

(
β1
φβ2

)1−β1) β1+β2
β1−1+β2

− (δ + ρ)
(1 + φ)

φ

(
(δ + ρ)

β1

(
β1
φβ2

)1−β1) 1
β1−1+β2

B̃ := −(δ + ρ)

(
β1
φβ2

− (1 + φ)

φ

)
which is increasing in h given that β1/β2 < (1+φ). Assuming also thatD1(T ) =
a1T

2, D2(T ) = a2 exp(−2T )T 2 and Ch(h) = chh
2, where a1, a2, ch > 0. 38

Substituting this into (22) and using the first order condition we can thus derive
the canonical system:

dT

dt
= aT − bTT + cT

B̃ + λT cT
2ch

, T (0) = T0 (63)

dλT
dt

= (ρ+ bT )λT + a1T − 2a2e
−2T (T − 1)T (64)

From (63) and (64) it is easy to confirm the shape of the isoclines depicted in
figure 1. For the numerical calculations of the solution paths and the Skiba
point we used numerical methods described in [10], [9]. The parameter values
used for the numerical calculations are given in the table below:
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Parameter Value Description
ρ 0.02 discount rate
β1 0.3 elasticity of capital with respect to output
β2 0.6 elasticity of energy with respect to output
δ 0.1 depreciation rate of capital
φ 0.9 effi ciency parameter of clean energy
a1 0.09 damage parameter of D1(T )
a2 0.7 damage parameter of D2(T )
aT 0.8 parameter of temperature equation
bT 0.6 parameter of temperature equation
cT 0.85 parameter of temperature equation
ch 0.05 parameter of cost function

Table 1: The parameter values of figure 1

We also tested the following S-shaped functional form for ice line damages:

D2(T ) = θ
T γ

ϕ+ T γ
, with {γ, θ, ϕ} > 0

For appropriate values of the parameters we got the same qualitative results as
displayed in the phase plots of both section 2 and 4.

A.1 Damage reservoirs

Although we have already provided some intuitive arguments regarding the
shape of D2(T ) and strengthened these arguments with empirical findings from
the literature, further rigor might be called for. Consider the following line of
argumentation:
Define xs(T ) = min{1, (ai + biT )0.5} to modify the Wang/Stone equation

(14) for the ice line so it can’t go above 1 where the ice caps are completely gone.
Tune the ai, bi parameters of Wang/Stone so that xs(T ) reaches one at a very
large value of T , call it T ∗. Note that D2(T

∗) is very small for T > T ∗. This
is good enough to motivate the right hand part of the specification of D2(T )
for large T . Now motivate D2(T ) by specifying a function g(·) such that D2(T )
is an approximation to g(xs(T )). Note that since g(xs(T )) must be zero for
T > T ∗, D2(T ) can’t be exactly represented by g(xs(T )) but is close enough for
T > T ∗ to serve as a "good enough" approximation in return for its tractability
as shown by our phase diagrams in section 2 and 4.
One could also argue for an alternative formulation of the D2(T ) that does

not include adaptation abilities to damages which are implicitly assumed in our
current formulation. Such a damage function, would look similar to the gamma
function in our paper except that damages would not go to zero but instead
level off at some T ∗ implying that a certain fraction of output is lost forever for
T > T ∗. Such an S-shaped function has been used frequently in the literature

38The shape of D1(T ) has become fairly standard in the literature. Still, in a recent review
by [1], they uncovered no rationale, whether empirical or theoretical, for adopting a quadratic
form for the damage function. The shape of D2(T ) is motivated in the text and in appendix
A.1.
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describing non-convexities adherent in ecosystems, see e.g. [4]. We tested such
an S-shaped functional form which proved to give very similar qualitative results
to the ones we present in this paper. From a technical point of view the choice
between this form and the gamma function is thus only a matter of preference.
Of course, no one really knows exactly what the damages to world welfare

as a whole are as the ice lines retreat from their present position to the poles,
but it seems plausible to expect the damages to initially increase, perhaps at
an increasing rate as people struggle to deal with the large adjustment costs
of dealing with melting of a large ice mass, but as the ice mass gets smaller,
the adjustment costs should get smaller until the costs start dropping due to
smaller and smaller ice masses melting. As the remaining ice mass shrinks to
zero with increasing T one could thus argue that D2(T ) goes to zero.
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