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REPUTATION IN LONG-RUN RELATIONSHIPS

ALP E. ATAKAN AND MEHMET EKMEKCI

Abstract. We model a long-run relationship as an infinitely repeated game played by two equally

patient agents. In each period, the agents play an extensive-form game of perfect information.

There is incomplete information about the type of player 1 while player 2’s type is commonly

known. We show that a sufficiently patient player 1 can leverage player 2’s uncertainty about his

type to secure his highest payoff in any perfect Bayesian equilibrium of the repeated game.
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1. Introduction and Related Literature

Maintaining a reputation can benefit an economic agent since it lends credibility to his future

commitments, threats or promises. So, the agent may forego short-run profits to cultivate a repu-

tation in anticipation of long-run benefits. The incentive to build a reputation is most pronounced

if the agent is patient, that is, if the short-run loss is less important to the agent than the long-run

benefit. There is a tension, however, if the agent faces an opponent who is equally patient: the

opponent may also sacrifice short-run payoffs to extensively test the agent’s resolve to go through

with his commitments, threats or promises. This can make it prohibitively expensive and unde-

sirable to build a reputation. In this paper we focus on equally patient agents to highlight this

tension. We explore how reputation concerns affect the outcomes of repeated interactions between

two equally patient agents who make choices sequentially.

Consider two players involved in a long-run relationship, for example a husband and wife, an

employee and an employer, two countries, or two legislators. In each period of the relationship the

two players must decide whether to undertake policy A, policy B or to undertake neither of the two

policies. Unanimity is required for any policy to be chosen. Player 1 (he) prefers policy A, player

2 (she) prefers policy B, and both players prefer some policy to no policy at all. These policies can

represent competing treaties in a pollution abatement negotiation between two countries, budget

alternatives under consideration for two political rivals, or even weekend plans bargained over by

a married couple. The games depicted in Figure 1a and Figure 1b are possible versions of the

strategic situation that the players repeatedly face.1
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(a) Player 2 moves first.
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(b) Player 1 moves first.

Figure 1. The battle of the sexes.

1In all of our figures the first component of the payoff vector is player 1’s payoff and the second is player 2’s payoff.
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Suppose that player 2 suspects that her opponent always chooses policy A. In particular, she

believes that player 1 is either fully rational, or with probability z > 0, a Stackelberg type who is

committed to playing A. A rational player 1, cognizant of player 2’s uncertainty, has an incentive

to mimic the Stackelberg type. If player 2 is convinced that player 1 is the Stackelberg type, then

she will have no choice but to play A and policy A will be the outcome in each period. So, a patient

player 1 may play A for many periods, even if player 2 plays B, (i.e., at the expense of reaching an

agreement) in order to convince player 2 that he is indeed the Stackelberg type. However, player

2 knows that player 1 has an incentive to mimic the Stackelberg type. Consequently, an equally

patient player 2 may play B (i.e., resist playing A) for many periods making building a reputation

particularly costly, especially if she deems it sufficient likely that player 1 is rational and he will

eventually start playing B.

Given these two opposing forces, can player 1 build a reputation and ensure that policy A is

implemented? Or alternatively, will screening by player 2 keep a rational player 1 from building

a reputation? Our main finding addresses these questions: Suppose that the players are equally

and arbitrarily patient. If the game in Figure 1a or Figure 1b is played repeatedly, then policy A

is implemented in each period and player 1 receives a payoff equal to 2 in any perfect Bayesian

equilibrium of the repeated game. This outcome is independent of which player moves first and

independent of how small, z, the initial uncertainty about player 1’s type is.

More generally, we model a long-run relationship as an infinitely repeated game played by two

equally patient agents. In each period, the agents play an extensive-form game of perfect informa-

tion. We assume that player 2 is uncertain about the type of player 1 while player 1 is perfectly

informed about the type of player 2.

In the previous example, player 1’s reputation allowed him to credibly commit to always choosing

the same action. However we can conceive of other strategic situations where player 1 may want to

commit to a more complex strategy that rewards or punishes his opponent in a history dependent

way. For example, player 1 may want to be known for playing tit-for-tat, or for punishing bad

behavior consistently. To capture reputation effects more generally, we assume that player 1 is

either fully rational or one of many commitment types. Each commitment type is programmed to

play a certain repeated game strategy. The commitment type central to our analysis is the dynamic



REPUTATION 5

Stackelberg type. This type plays the repeated game strategy that player 1 would choose, if player

1 could publicly pre-commit to any repeated game strategy. Ideally, player 1 would like to convince

his opponent that his future actions will fully conform to the behavior of the dynamic Stackelberg

type.

In this framework, we prove a reputation result that uniquely characterizes the long-run outcome.

We show that a sufficiently patient player 1 can use his ability to mimic the dynamic Stackelberg

type and his opponent’s uncertainty about his type to secure his most preferred outcome for the

repeated game. More precisely, if player 1 is a dynamic Stackelberg type with positive probability,

then player 1 receives his highest payoff that is consistent with the individual rationality of player

2, in any perfect equilibrium of the repeated game, as the common discount factor of the players

converges to one.

1.1. Related literature. This paper is closely related to the literature on reputation effects in

repeated games. We make three main contributions to this literature: First, we provide a reputation

result for a new class of repeated games played by two equally patient players: repeated extensive-

form games of perfect information. Previous reputation results for equally patient agents are for

only a limited class of repeated simultaneous move games. Most previous work has instead focused

on a long-run (i.e, patient) player facing a myopic (i.e, infinitely less patient) opponent. Second,

we highlight the distinct role that perfect information plays for a reputation result with equally

patient agents. Third, we introduce novel methods, inspired by the bargaining literature (Myerson

(1991), section 8.8), to analyze reputation effects in repeated games.

Much of the previous literature on reputation considers a patient player 1 who faces a myopic

opponent. Most prominently, Fudenberg and Levine (1989, 1992) showed that if there is positive

probability that player 1 is a type committed to playing the Stackelberg action in every period,

then player 1 gets at least his static Stackelberg payoff in any equilibrium of the repeated game.2

Reputation results have also been established for repeated games where player 1 faces a non-myopic

opponent, but one who is sufficiently less patient than player 1 (see Schmidt (1993), Celantani et al.

(1996), Aoyagi (1996), or Evans and Thomas (1997)). Again, however, the repeated interactions

2The static Stackelberg payoff for player 1 is the highest payoff he can guarantee in the stage game through public
pre-commitment to a stage game action (a Stackelberg action). See Fudenberg and Levine (1989) or Mailath and
Samuelson (2006), page 465, for a formal definition.
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that these papers consider are genuinely long-run only from the point of view of player 1 and this

feature is crucial for the results.

In a game with a non-myopic opponent, player 1 may achieve a payoff that exceeds his static

Stackelberg payoff with a history dependent strategy that rewards or punishes player 2. Conversely,

future punishments or rewards can induce player 2 to not best respond to a Stackelberg action and

thereby force player 1 below his static Stackelberg payoff.3 These complications render reputation

effects fragile in repeated games with equally patient players: A reputation result obtains in a

repeated simultaneous-move game only if there is a strictly dominant action in the stage game

(Chan (2000)), or if there are strictly conflicting interests in the stage game (Cripps et al. (2005)).4

For other repeated simultaneous-move games any individually rational payoff can be sustained in a

perfect equilibrium, if the players are sufficiently patient (see folk theorems by Cripps and Thomas

(1997) and Chan (2000)).

Previous literature on reputation with equally patient agents focuses on repeated simultaneous-

move games (e.g., Cripps and Thomas (1995), Cripps and Thomas (1997), Chan (2000) or Cripps

et al. (2005)).5 In contrast, we focus on repeated extensive-form games of perfect information.

This allows us to establish a reputation result that covers a wide class of games. In particular,

we establish reputation results for repeated locally non-conflicting interests games, and repeated

strictly conflicting interests games.6 For the class of games we consider, without incomplete in-

formation, the folk theorem of Fudenberg and Maskin (1986) applies, under a full dimensionality

condition (see Wen (2002)). Also, if the normal-form representation of the extensive-form stage

game is played simultaneously, then a folk theorem applies to games with locally non-conflicting

interests even under incomplete information (see Cripps and Thomas (1997) or Chan (2000)).

3Player 2 may expect punishments or rewards from either the rational type of player 1 after he chooses a move that
would not be chosen by the Stackelberg type (Celantani et al. (1996) section 5 or Cripps and Thomas (1997)), or
from a commitment type other than the Stackelberg type (Schmidt (1993) or Celantani et al. (1996)).
4There are strictly conflicting interests in a game if the action which is the best for player 1 is the worst for his
opponent. See Assumption 1 for a precise statement.
5 Cripps and Thomas (1997), Chan (2000) Cripps et al. (2005) assume equal discount factors, as we do, to model
equally patient agents whereas Cripps and Thomas (1995) assumes no discounting and uses the limit of means. Also
see Bar-Isaac (2003), Cripps and Thomas (2003), Wiseman (2005), Faingold (2005) and Peski (2008) for related
results in repeated games with one-sided incomplete information
6There are locally non-conflicting interests in a game if the payoff profile where player 1 receives his highest payoff is
strictly individually rational for player 2.
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Our finding points out that reputation effects are particularly salient in repeated sequential-move

games (i.e., games of perfect information), whereas reputation effects are absent in a wide range of

repeated simultaneous-move games. For example, our reputation result implies a unique outcome

for the sequential-move battle of the sexes (Figure 1a or Figure 1b) whereas in the simultaneous-

move battle of the sexes game (Figure 2) a folk theorem obtains. For a more striking example

BA

Player 2

B

(0, 0)

A

(2, 1)

Player 1
B

(1, 2)

A

(0, 0)

1

Figure 2. The simultaneous-move battle of the sexes.

consider the repeated common interest game (Figure 3a or Figure 3b), where player 1 is potentially

a Stackelberg type who always plays U . This game appears as a strong candidate for reputation

effects to arise. It is costless for player 1 to mimic the Stackelberg type and build a reputation. Also,

player 2 unambiguously benefits if player 1 is able to build a reputation and concentrate play on

(U, L). Surprisingly, any individually rational payoff profile can be sustained in a perfect Bayesian

equilibrium, if the players are arbitrarily patient (Cripps and Thomas (1997)). In contrast, in the

repeated sequential-move game, the players receive a payoff equal to one in any perfect Bayesian

equilibrium. We discuss in detail the Cripps and Thomas (1997) construction for the simultaneous-

move common interest game, and how perfect information (sequentiality) allows us to avoid their

conclusion in section 4.1.
5
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(a) Simultaneous-move.

6

RL

Player 2

D

(0, 1
4 )

U

(1, 1)

P1
D

(0, 0)

U

(0, 0)

P1

(b) Sequential-move.

Figure 3. A common interest game.
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With two equally patient players the techniques of Fudenberg and Levine (1989, 1992), which are

commonly used to establish reputation results, are not applicable. Instead we use novel methods,

inspired by the bargaining literature (Myerson (1991), section 8.8), to establish our reputation

result. Our result hinges on perfect information at the decision nodes where player 1’s normal type

reveals rationality. Subgame perfection, coupled with perfect information, imposes tight bounds on

player 2’s continuation payoffs at these nodes. These bounds preclude the possibility that player 1

builds a reputation slowly and punishes player 2 for best responding to the Stackelberg strategy.

1.2. Outline of the paper. The paper proceeds as follows: section 2 describes the repeated game

of complete and incomplete information. Section 3 presents the main reputation result and details

the argument in an example. The proof of the main theorem is described in section 3.1 and can

be found in the appendix. Section 4 discusses our assumptions, the results and an extension.

Specifically, sections 4.1 and 4.2 show the necessity of our assumptions through some examples.

Section 4.3 expands further on the dynamic Stackelberg type. Section 4.4 considers issues pertaining

to commitment types other than the dynamic Stackelberg type and learning. Finally, section 4.5

argues that our reputation result obtains for strictly conflicting interest stage games even without

the perfect information assumption.

2. The Model

In the repeated game a stage game Γ is played by players 1 and 2 in periods t ∈ {0, 1, 2, ...}

and the players discount payoffs using a common discount factor δ ∈ [0, 1). The stage game Γ is

a two-player finite game of perfect information, that is, all information sets of Γ are singletons

(perfect information).

D is the set of nodes of the stage game Γ (decision nodes and terminal nodes), d is a typical

element of D, Y ⊂ D is the set of terminal nodes and y is a typical element of Y . The payoff

function of player i is gi : Y → R. The finite set of pure stage game actions for player i is Ai and

the set of mixed stage game actions is Ai.7 For any action profile a = (a1, a2) ∈ A1 ×A2 there is a

unique terminal history y(a) ∈ Y under the path of play induced by a. Slightly abusing notation

7An action ai ∈ Ai is a contingent plan that specifies a move from the set of feasible moves for player i at any decision
node d where player i is called upon to move.
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we let gi(a) = gi(y(a)) for any a ∈ A1 × A2, and we let gi(α) denote the payoff to mixed action

profile α ∈ A1 ×A2.

In the repeated game players have perfect recall and can observe past outcomes. Y t ×D is the

set of period t ≥ 0 public histories and h = {y0, y1, ..., yt−1, d} is a typical element. Ht ≡ Y t is the

set of period t ≥ 0 public histories of terminal nodes and ht = {y0, y1, ..., yt−1} is a typical element.

Types and Strategies. Before time 0 nature selects player 1’s type ω from a countable set of

types Ω according to common-knowledge prior µ. Player 2 is known with certainty to be a normal

type that maximizes expected discounted utility. Ω contains a normal type for player 1 that we

denote N . Player 2’s belief over player 1’s types, µ :
�∞

t=0 Y t×D → ∆(Ω), is a probability measure

over Ω after each period t public history.

A behavior strategy for player i is a function σi :
�∞

t=0 Ht → Ai and Σi is the set of all behavior

strategies. A behavior strategy chooses a mixed stage game action given any period t public history

of terminal nodes.8 Each type ω ∈ Ω \ {N} is committed to playing a particular repeated game

behavior strategy σ1(ω). A strategy profile σ = ({σ1(ω)}ω∈Ω, σ2) lists the behavior strategies of

all the types of player 1 and player 2. For any period t public history ht and σi ∈ Σi, σi|ht is the

continuation strategy induced by ht. For σ1 ∈ Σ1 and σ2 ∈ Σ2, Pr(σ1,σ2) is the probability measure

over the set of (infinite) public histories induced by (σ1, σ2).

The repeated game and payoffs. A player’s repeated game payoff is the normalized dis-

counted sum of the stage game payoffs. For any infinite public history h∞ = {y0, y1, ..., }, ui(h∞, δ) =

(1− δ)
�∞

k=0 δkgi(yk), and ui(h−t, δ) = (1− δ)
�∞

k=t δk−tgi(yk) where h−t = {yt, yt+1, ...}. Player

1 and player 2’s expected continuation payoff, following a period t public history, under strategy

profile σ, are given by U1(σ, δ|ht) = U1(σ1(N), σ2, δ|ht) and

U2(σ, δ|ht) =
�

ω∈Ω

µ(ω|ht)U2(σ1(ω), σ2, δ|ht), respectively,

where Ui(σ1(ω), σ2, δ|ht) = E(σ1(ω),σ2)[ui(h−t, δ)|ht] is the expectation over continuation histories

h−t with respect to Pr(σ1(ω)|ht ,σ2|ht ). Also, Ui(σ, δ) = Ui(σ, δ|h0).

8Abusing notation we will use σi to also denote mixed repeated game strategies for player i. Behavior strategies and
mixed strategies are equivalent, by Kuhn’s theorem, in this framework.
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The repeated game of complete information, that is, the repeated game without any commitment

types, with discount factor equal to δ ∈ [0, 1), is denoted Γ∞(δ). The repeated game of incomplete

information, with the prior over the set of commitment types given by µ ∈ ∆(Ω) and the discount

factor equal to δ ∈ [0, 1), is denoted Γ∞(µ, δ).

The stage game. The minimax payoff for player i is ĝi = minαj∈Aj maxαi∈Ai gi(αi, αj). For

games that satisfy perfect information there exists ap
1 ∈ A1 such that g2(ap

1, a2) ≤ ĝ2 for all a2 ∈

A2.9 The set of feasible payoffs is F = co{g1(a1, a2), g2(a1, a2) : (a1, a2) ∈ A1 × A2}; and the

set of feasible and individually rational payoffs is G = F ∩ {(g1, g2) : g1 ≥ ĝ1, g2 ≥ ĝ2}. Let

ḡ1 = max{g1 : (g1, g2) ∈ G}. We assume that the stage game satisfies the following assumption.

Assumption 1. The stage game Γ satisfies either of the following:

(i) (Locally Non-Conflicting Interests) For any g ∈ G and g� ∈ G, if g1 = g�1 = ḡ1, then

g2 = g�2 > ĝ2, or

(ii) (Strictly Conflicting Interests) There exists a1 ∈ A1 such that any best response to a1 yields

payoffs (ḡ1, ĝ2). Also, g2 = ĝ2 for all (ḡ1, g2) ∈ G.10

Assumption 1 requires that the payoff profile where player 1 obtains ḡ1 is unique (for example,

this is true if the game Γ is a generic extensive form game). Items (i) and (ii) are mutually

exclusive. Item (i) requires that the game have a common value component: in the payoff profile

where player 1 receives his highest payoff player 2 receives a payoff that strictly exceeds her minimax

value. In contrast, item (ii) requires that the action which is the best for player 1 is the worst

for his opponent. The sequential games that we discussed in the introduction (Figures 1a, 1b, and

3b) all satisfy Assumption 1. For example, the sequential battle of the sexes where player 1 moves

second (Figure 1a) and where player 1 moves first (Figure 1b) are games of locally non-conflicting

interests and strictly conflicting interests, respectively. We discuss some games that do not satisfy

Assumption 1 in section 4.2.

If there is an action for player 1, a1 ∈ A1, and a best response for player 2 to action a1,

a2 ∈ A2, such that g1(a1, a2) = ḡ1, then we define as
1 = a1 and ab

2 = a2. Otherwise, we define

9Consider the zero-sum game where player 1’s payoff is equal to −g2(a1, a2). The minimax of this game is (−ĝ2, ĝ2)
by definition. Perfect information and Zermelo’s lemma imply that this game has a pure strategy Nash equilibrium
(ap

1, a2) ∈ A1 ×A2. Because the game is a zero sum game g2(a
p
1, a2) = ĝ2.

10See Cripps et al. (2005), or Mailath and Samuelson (2006), page 541.
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(as
1, a

b
2) ∈ A1×A2 as an action profile such that g1(as

1, a
b
2) = ḡ1.11 For example, in the battle of the

sexes game depicted in Figure 1a the stage game action as
1 chooses move A in both of player 1’s

information sets and ab
2 = A. In this game as

1 and ab
2 are uniquely determined. For the common

interest game depicted in Figure 3b the action ab
2 is unique and ab

2 = L. However, in this game as
1

is not uniquely determined. It can either be the stage game action that always chooses U or the

action that chooses U after L and D after R. In this case we pick as
1 arbitrarily from these two

choices.12

If Γ satisfies Assumption 1 (i), then there exists ρ ≥ 0 such that

(1)
����
g2 − g2(as

1, a
b
2)

ḡ1 − g1

���� ≤ ρ, for any (g1, g2) ∈ F.

If Γ satisfies Assumption 1 (ii), then there exists ρ ≥ 0 such that

(2) g2 − g2(as
1, a

b
2) ≤ ρ(ḡ1 − g1), for any (g1, g2) ∈ F.

The set of feasible payoffs in the repeated game is equal to the set of feasible stage game payoffs

F . If Γ satisfies Assumption 1 (i), then equation (1) implies that
����
U2(σ1, σ2, δ)− g2(as

1, a
b
2)

ḡ1 − U1(σ1, σ2, δ)

���� ≤ ρ, for any two repeated game strategies σ1 ∈ Σ1 and σ2 ∈ Σ2.

If Γ satisfies Assumption 1 (ii), then equation (2) implies that

U2(σ1, σ2, δ)−g2(as
1, a

b
2) ≤ ρ(ḡ1−U1(σ1, σ2, δ)), for any two repeated game strategies σ1 ∈ Σ1 and σ2 ∈ Σ2.

Dynamic Stackelberg payoff, strategy and type. Let

U s
1 (δ) = sup

σ1∈Σ1

inf
σ2∈BR(σ1,δ)

U1(σ1, σ2, δ),

11Assumption 1 implies that there exists an action profile (as
1, a

b
2) ∈ A1 × A2 such that g1(a

s
1, a

b
2) = ḡ1. If there is

more than one action profile that satisfies our definition, then we pick (as
1, a

b
2) arbitrarily as any one of these action

profiles.
12If Γ is a strictly conflicting interest game, then a

b
2 is a best response to a

s
1. If Γ is a locally non-conflicting interest

game, then a
b
2 is not necessarily a best response to a

s
1. For an example that satisfies Assumption 1 where a

b
2 is not a

best response to a
s
1 see Figure 4.
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where BR(σ1, δ) denotes the set of best responses of player 2, in the repeated game Γ∞(δ), to the

repeated game strategy σ1 of player 1. Let σs
1(δ) denote a strategy that satisfies

inf
σ2∈BR(σs

1(δ),δ)
U1(σs

1(δ), σ2, δ) = U s
1 (δ),

if such a strategy exists. We call U s
1 (δ) the dynamic Stackelberg payoff and σs

1(δ) a dynamic

Stackelberg strategy for player 1.13 The dynamic Stackelberg payoff for player 1 is the highest

payoff that player 1 can secure in the repeated game through public pre-commitment to a repeated

game strategy. The dynamic Stackelberg strategy for player 1 is a repeated game strategy such

that any best response of player 2 to this strategy gives player 1 at least his dynamic Stackelberg

payoff.

If Γ satisfies Assumption 1, then U s
1 (δ) = ḡ1 and a dynamic Stackelberg strategy exists in the

repeated game Γ∞(δ) for all δ that exceed a cutoff δ∗ ∈ [0, 1). The dynamic Stackelberg payoff,

which we define for the repeated game, may exceed the static Stackelberg payoff (for a definition of

the static Stackelberg payoff see Fudenberg and Levine (1989) or Mailath and Samuelson (2006)).

We focus on a particular dynamic Stackelberg type, denoted S, that plays a strategy σ1(S). The

strategy σ1(S) has a profit and a punishment phase. In the profit phase the strategy plays as
1 and

in the punishment phase the strategy plays ap
1. The strategy begins the game in the profit phase.

The strategy remains in the profit phase in period t, if it was in the profit phase in period t − 1

and g1(yt−1) = ḡ1. The strategy moves to the punishment phase in period t, if it was in the profit

phase in period t− 1 and g1(yt−1) �= ḡ1. If the strategy moves to the punishment phase in period

t, then it remains in the punishment phase for np − 1 periods and then moves to the profit phase.

Intuitively, σ1(S) punishes player 2, by minimaxing her for the next np− 1 periods, if she does not

allow player 1 to obtain a payoff of ḡ1. The number of punishment periods np − 1 is the smallest

integer such that

(3) g2(as
1, a2) + (np − 1)ĝ2 < npg2(as

1, a
b
2)

for any a2 ∈ A2 such that g1(as
1, a2) < g1(as

1, a
b
2) = ḡ1. Assumption 1 implies that np ≥ 1 exists.

The number of punishment periods is chosen to ensure that it is a best response for a sufficiently

13The terminology follows Aoyagi (1996) and Evans and Thomas (1997).
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patient player 2 to play ab
2 in every period against σ1(S). That is, if σ2 ∈ BR(σ1(S), δ), then

U1(σ1(S), σ2, δ) = ḡ1, for sufficiently high δ. Consequently, σ1(S) is a dynamic Stackelberg strategy

for sufficiently high δ.

If np = 1, then S is a simple Stackelberg type and the static Stackelberg payoff coincides with

the dynamic Stackelberg payoff for any discount factor (see Figure 1a, Figure 1b or Figure 3b).

If np > 1, then the dynamic Stackelberg payoff strictly exceeds the static Stackelberg payoff for a

sufficiently high discount factor (see Figure 4).

2

RL

Player 1

R

(0, 2)

L

(3, 1)

P2
R

(0, 0)

L

(0, 0)

P2

Figure 4. For this stage game as
1 = L and we pick ab

2 as the action that always chooses
move L. Also, in this example the Stackelberg type S plays L in the profit phase, R in the
two period punishment phase of the repeated game and np = 3.

In what follows we assume that Ω contains the dynamic Stackelberg type S. Let the set of other

commitment types, Ω− = Ω\{S, N}. In words, Ω− is the set of types other than the Stackelberg

type and the normal type.

Equilibrium and beliefs. The analysis in the paper focuses on the perfect Bayesian equilibria

(PBE) of the game of incomplete information Γ∞(µ, δ). In equilibrium, beliefs are obtained, where

possible, using Bayes’ rule given µ(·|h0) = µ(·) and conditioning on players’ equilibrium strategies.

If µ(S) > 0, then belief µ(·|ht) is well defined after any period t public history where player 1 has

played according to σ1(S).

3. The Main Reputation Result

Our main reputation result, Theorem 1, restricts attention to stage games of perfect information

that satisfy Assumption 1 and considers a repeated game Γ∞(µ, δ) where µ(S) > 0. The theorem

provides a lower bound on player 1’s payoff in any PBE and the formal statement is given below.
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Theorem 1. Assume perfect information and Assumption 1. For any δ ∈ [0, 1), any µ ∈ ∆(Ω)

such that µ(S) > 0 and any PBE strategy profile σ of Γ∞(µ, δ)

U1(σ, δ) ≥ ḡ1 − f(z) max {1− δ, µ(Ω−)} ,

where z = µ(S) and f is a decreasing, positive function that is independent of δ and µ.

Proof. The function f is defined in equation (9) in the appendix. The proof is in the appendix. �

The theorem implies that as δ goes to one and µ(Ω−) (the probability of other commitment types)

goes to zero, player 1’s payoff converges to ḡ1, his highest payoff. Consequently, a normal type for

player 1 can secure a payoff arbitrarily close to ḡ1, his dynamic Stackelberg payoff, in any PBE of

the repeated game, for a sufficiently high discount factor and for sufficiently low probability mass on

other commitment types. Player 1 can attain the bound given in the theorem by simply mimicking

the Stackelberg type. Notice that the bound given in the theorem is not particularly sharp, if the

probability of other commitment types, µ(Ω−), is substantial. However, under certain assumptions

player 1 can receive a payoff arbitrarily close to ḡ1, with no restrictions on the probability of other

commitment types. We discuss such issues related to other commitment types in section 4.4.

In this section we prove the reputation result given in Theorem 1, under the assumption that

µ(Ω−) = 0, for the example depicted in Figure 5. At the end of the section we discuss the main

argument for Theorem 1 that is given in the Appendix. 15

RL

Player 2

D

(0,−a)

U

(1, 0)

P1
D

(c, b)

U

(0,−l)

P1

Figure 5. Assume that l ∈ (0, 1], a ∈ (0, 1], b ∈ [−1, 1] and c ∈ [0, 1/2]. This is a game of
locally non-conflicting interests where np = 1. If l = 1, a = 1, b = 1 and c = 1/2, then this is
a normalized version of the sequential-move battle of the sexes game depicted in Figure 1a.
If l = 1, a = 3/4, b = −1 and c = 0, then this is a normalized version of the sequential-move
common interest game depicted in Figure 3b.

Recall (as
1, a

b
2) ∈ A1 × A2, defined in the text preceding equation (1), is an action profile such

that g1(as
1, a

b
2) is equal to player 1’s highest stage game payoff. For this example, player 1’s highest
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stage game payoff is equal to one, the stage game action as
1 plays U after either L or R; and ab

2 is a

best response to as
1 and plays L. Also, np = 1 and the Stackelberg type S plays as

1 in each period

of the repeated game (i.e, S plays U at each decision node of player 1).14 Our reputation result,

for this particular example, is stated below.

Corollary 1. Suppose that the stage game Γ is given by Figure 5 and assume that µ(Ω−) = 0. For

any reputation level µ(S) = z > 0 we have limδ→1 U1(σ(δ), δ) = 1 where σ(δ) is a PBE strategy

profile for the repeated game Γ∞(µ, δ).

In what follows, because µ(Ω−) = 0, we use z ∈ [0, 1] to represent the measure µ. One should

understand this to mean µ(S) = z and µ(N) = 1 − z. We begin with some definitions. Let the

resistance of strategy σ2 be given by

r(σ2, δ) = 1− U1(σ1(S), σ2, δ).

Notice the definition of the resistance of strategy σ2 implies that the expected discounted number

of periods where player 2 plays R against U is r(σ2, δ), if player 2 uses strategy σ2 and player 1 uses

strategy σ1(S). Consequently, if player 2 uses strategy σ2 and her opponent uses strategy σ1(S),

then player 2’s payoff, U2(σ1(S), σ2, δ), is equal to −lr(σ2, δ).

Below we define the resistance function, R(z, δ), which is an upper-bound on how much player

2 can resist (or hurt) type S in any PBE of Γ∞(z, δ).

Definition 1 (Resistance function). For any measure z > 0 and δ ∈ [0, 1) let

R(z, δ) = sup{r(σ2, δ) : σ2 is part of a PBE profile σ of Γ∞(z, δ)}.

In this section we work under the hypothesis that R(z, δ) is a non-increasing function of z for

each δ ∈ [0, 1). This is for expositional convenience only and allows us to convey the main ideas of

the argument without the more technical details. The main proof, given in the appendix, does not

use this assumption, and the steps involved in relaxing this assumption are discussed in section 3.1.

At the start of any period t, if player 1’s reputation level is at least z > 0, then player 1 can

guarantee a continuation payoff of at least 1 − R(z, δ), by playing according to the Stackelberg

14For the definition of n
p see equation (3). For this game the static and dynamic Stackelberg payoffs coincide and

are equal to one, for any discount factor.
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strategy σ1(S). This follows from the definition of R, subgame perfection, and our assumption that

R is non-increasing. We will argue that limδ→1 R(z, δ) = 0, for any z > 0.

Consider a PBE σ of the repeated game Γ∞(z, δ). Suppose that the players are at a history in

which player 1 has played U in each period before t and player 2 has played a2 ∈ {L, R} in period

t. Further suppose that player 1 plays D with positive probability at this decision node, i.e., player

1 reveals that he is not the Stackelberg type. Also, let player 1’s reputation level be z� > 0 at the

start of period t + 1, if he plays U instead of D. In the next lemma we bound the continuation

payoffs for both players in terms of resistance R(z�, δ) at any such decision node. The argument

for the lemma is as follows: if player 1 is playing D with positive probability, then the payoff from

playing D must be at least as large as the payoff from playing U . However, if player 1 plays U , he

gets at worst zero for the period, ensures that his reputation is z� at the start of the subsequent

period, and thus guarantees 1 − R(z�, δ) at the start of period t + 1. Given this lower bound on

player 1’s continuation payoff a bound on player 2’s continuation payoff follows from equation (1).

Lemma 1. Suppose z > 0 and pick any PBE σ of Γ∞(z, δ), period t public history ht where player

1 has played U in each period, and suppose player 1 is to play D in period t given history (ht, a2),

where a2 ∈ {L, R}. Let z� = µ(S|ht, a2, U); then |U2(σ1(N), σ2, δ|ht, a2, D)| ≤ ρ(R(z�, δ)+(1−δ)/δ),

where ρ ≤ 1.

Proof. If player 1 plays U in period t, then his reputation level is z� = µ(S|ht, a2, U) and he

can guarantee a continuation payoff equal to 1 − R(z�, δ), by using σ1(S). Also, player 1 can

get at worst zero in period t by playing U . Consequently, his payoff from playing U is at least

δU1(σ, δ|ht, a2, U) ≥ δ(1− R(z�, δ)). If instead player 1 plays D, then he can get at most c for the

current period and δU1(σ, δ|ht, a2, D) as his continuation payoff. Because player 1 is willing to play

D instead of U we have (1−δ)c+δU1(σ, δ|ht, a2, D) ≥ δU1(σ, δ|ht, a2, U). Hence, U1(σ, δ|ht, dt, D) ≥

1 − R(z�, δ) − (1 − δ)c/δ ≥ 1 − R(z�, δ) − (1 − δ)/δ. The bound on player 2’s payoff follows from

equation (1) and (U1(σ, δ|ht, dt, D), U2(σ1(N), σ2, δ|ht, dt, D)) ∈ F . The constant ρ in equation (1)

is equal to 1 for this particular game. The argument is also depicted graphically in Figure 6. �

We now use Lemma 1 to sketch the argument for Corollary 1. Suppose that player 1’s reputation

level is z. Consider a PBE σ = (σ1(N), σ1(S), σ2) where player 2 resists the Stackelberg type by
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9

RL

Player 2

D

δU1(σ, δ|ht, L,D)

U

(1− δ) + δ(1 −R(z�, δ))

P1

D

c(1 − δ) + δU1(σ, δ|ht, R,D)

U

δ(1 −R(z��, δ))

P1

Figure 6. This figure depicts the payoff player 1 can guarantee by playing U and his
payoff if he instead plays D. In the figure z� = µ(S|ht, L, U) and z�� = µ(S|ht, R, U). If
player 1 is to play D after R, then (1 − δ)c + δU1(σ, δ|ht, R, D) ≥ δ(1 − R(z��, δ)). Conse-
quently, U1(σ, δ|ht, R, D) ≥ 1 − R(z��, δ) − (1 − δ)c/δ, equation (1) and ρ ≤ 1 implies that
|U2(σ, δ|ht, R, D)| ≤ R(z��, δ) + (1 − δ)c/δ. Similarly, if player 1 is to play D after L, then
|U2(σ, δ|ht, L,D)| ≤ R(z�, δ)− (1− δ)/δ.

approximately R(z, δ). In this PBE player 2 loses approximately lR(z, δ) in the event that player

1 is the Stackelberg type. We compare player 2’s payoff in this PBE with her payoff if she uses an

alternative strategy that plays L until player 1 plays D for the first time and then reverts back to

the equilibrium strategy σ2. If player 2 uses the alternative strategy, then she avoids losing lR(z, δ)

in the event that player 1 is the Stackelberg type. We then use the fact that the PBE strategy σ2

must give player 2 a payoff that is at least as great as the payoff from using the alternative strategy.

This establishes a bound on R(z, δ), for any z sufficiently close to 1.

Suppose that player 1 plays D for the first time in some period t. In each period, up to period t

player 2 receives at best zero, in period 2 she receives at best 1−δ; and she receives at most R(z, δ)+

(1−δ)/δ as a continuation payoff after period t, by Lemma 1 and by our assumption that R is non-

increasing. Consequently, player 2 gets at most δt(1−δ)+δt+1(R(z, δ)+(1−δ)/δ) ≤ R(z, δ)+2(1−δ),

if player 1 plays D for the first time in period t. If player 1 always plays U in each period, then

player 2 receives at most −lR(z, δ). Player 1 will play U in every period with at least probability z

because type S always plays U . So, player 1 will play D in some period t, with probability at most

1− z. Thus, player 2’s payoff in PBE σ is at most (1− z)(R(z, δ) + 2(1− δ))− zlR(z, δ). Lemma

2, that we state below, establishes an upper bound that formalizes this line of reasoning.
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Suppose that player 2 uses the alternative strategy and player 1 plays D for the first time

in some period t. Play 2 receives at least −R(z, δ) − (1 − δ)/δ as a continuation payoff after

period t, by Lemma 1 and by our assumption that R is non-increasing. Also, she receives zero in

each period up to period t, because she plays L and player 1 plays U . In period t she receives

−a(1 − δ) ≥ −(1 − δ), because she plays L and player 1 plays D and because a ∈ (0, 1]. If player

1 plays U in every period, then player 2 receives zero. Player 1 will play D in some period t, with

probability at most 1− z. Consequently, player 2’s payoff, if she uses the alternative strategy, is at

least −(1− z)(δt(1− δ) + δt+1(R(z, δ) + (1− δ)/δ)) ≥ −(1− z)(R(z, δ) + 2(1− δ)). Lemma 3, that

we state below, establishes a lower bound that formalizes this line of reasoning.

The payoff that player 2 gets from the equilibrium strategy σ2 must be least as great as the

payoff she receives from the alternative strategy. So, −(1−z)(R(z, δ)+2(1−δ)) ≤ (1−z)(R(z, δ)+

2(1−δ))−zlR(z, δ). Rearranging, R(z, δ) ≤ 4(1−z)(1−δ)/(lz−2(1−z)) ≤ 4(1−δ)/(lz−2(1−z)).

Thus, for z sufficiently close to one R(z, δ) ≤ 8(1− δ)/lz.15 So, the resistance at reputation level z

is very close to zero, if δ is close to one. The argument for Corollary 1 then proceeds to show that

we can redo this exercise for z� sufficiently close to z, and then z�� sufficiently close to z�, working

down to any z > 0 that we wish, in finitely many steps.

We now proceed to establish an upper and a lower bound (Lemmata 2 and 3) for player 2’s PBE

payoffs. The following definition introduces a stopping time, T (σ, z, z�), which we use to construct

the upper and the lower bound. T (σ, z, z�) is the first period in which player 1’s reputation level

exceeds z�, if his initial reputation level is z and the players use strategy profile σ. For an integer

T , let E[0,T ] denote the event (set of infinite public histories) where player 1 plays D for the first

time in period t for some t ∈ {0, ..., T}. Then, Pr(σ1,σ2)[E[0,T ]] is the probability that player 1 plays

D, for the first time in period t for some t ∈ {0, ..., T}, if player 1 is using strategy σ1 and player 2

is using strategy σ2.

Definition 2 (Stopping time). For any strategy profile σ = (σ1(N), σ1(S), σ2) where σ2 is a pure

strategy, reputation levels z > 0 and z� > z let

T (σ, z, z�) = min{k ∈ {0, 1, 2, ...} : z/(1− q(k)) ≥ z�},
15To be precise, if z is close to one, then lz/2 ≥ 2(1−z). So, lz−2(1−z) ≥ lz/2 and hence R(z, δ) ≤ 4(1− δ)/lz/2 =
8(1− δ)/lz.
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where q(k) = (1− z) Pr(σ1(N),σ2)[E[0,k]]; and let T (σ, z, z�) =∞ if the set is empty.16

Suppose that player 1’s initial reputation level is z, σ is a PBE strategy profile and T (σ, z, z�)

is the stopping time defined above. If hT (σ,z,z�)+1 is a history consistent with σ1(S) and σ2, i.e.,

player 1 has always played U in all periods up to and including period T , then by definition,

µ(S|hT (σ,z,z�)+1) ≥ z�. Also, by definition, the total probability that player 1 plays D for the first

time in any period t ∈ {0, 1, ..., T (σ, z, z�)− 1} is at most 1− z/z�.

Lemma 2 (Upper-bound). Suppose 0 ≤ z < z� ≤ 1. Let σ = (σ1(N), σ1(S), σ2) denote a PBE of

Γ∞(z, δ) where player 2’s resistance is at least R(z, δ)− � and � > 0. Then,

(4) U2(σ, δ) ≤ q(R(z, δ) + 2(1− δ)) + R(z�, δ) + 2(1− δ)− zl(R(z, δ)− �)

where q = 1− z/z�.

Proof. Let σ∗2 denote a pure strategy in the support of σ2 such that the resistance of σ∗2 is at least

R(z, δ) − �. Since the resistance of σ2 is at least R(z, δ) − �, there must be a pure strategy in the

support of σ2 that has resistance of at least R(z, δ) − �. Let profile σ∗ = (σ1(N), σ1(S), σ∗2) and

let T = T (σ∗, z, z�). By the definition of the stopping time in Definition 2, player 1’s reputation

exceeds z� at the end of period T , if U is played in all periods up to and including T , and if player

2 is playing according to σ∗2. Again by Definition 2, the total probability that player 1 plays D for

the first time in a period t ∈ {0, ..., T − 1} is at most q = 1 − z/z�. We bound player 2’s payoffs

in the following three events: (i) The event that player 1 plays D for the first time in some period

t < T . The probability of this event is at most q. (ii) The event that player 1 plays D for the first

time in some period t ≥ T . The probability of this event is at most 1. (iii) The event that player

1 never plays D. The probability of this event is at least z, because S never plays D. These three

events are exhaustive.

In a period where player 1 plays U player 2 receives at most zero. Consequently, player 2’s total

payoff in all the periods until player 1 plays D for the first time is at most zero. If event (i) occurs

16We restrict the definition above to pure strategies for player 2. For a mixed strategy for player 2, the period in
which player 1’s reputation exceeds z

� may depend on the realization of player 2’s mixture. So, if σ2 is not a pure
strategy, then the stopping time T (σ, z, z

�) is a random variable. This introduces additional notation, and taking σ2

as a pure strategy suffices for our purposes.
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and player 1 plays D for the first time in period t, then player 2 receives zero until period t, receives

at most (1 − δ) in period t,17 and receives a continuation payoff of at most R(z, δ) + (1 − δ)/δ by

Lemma 1, and the assumption that R is non-increasing. So, if event (i) occurs, then player 2’s

payoff is at most R(z, δ) + 2(1− δ) because

R(z, δ) + 2(1− δ) ≥ δt(1− δ) + δt+1(R(z, δ) + (1− δ)/δ) for any t.

If event (ii) occurs and player 1 plays D for the first time in period t, then player 2 receives zero

until period t, receives at most (1 − δ) in period t, and receives a continuation payoff of at most

R(z�, δ) + (1− δ)/δ, by Lemma 1, and by R non-increasing. So, if event (ii) occurs, then player 2’s

payoff is at most R(z�, δ) + 2(1− δ) because

R(z�, δ) + 2(1− δ) ≥ δt(1− δ) + δt+1(R(z�, δ) + (1− δ)/δ) for any t.

If event (iii) occurs, then player 1 plays U in each period. Player 2’s payoff in this event is at most

−l(R(z, δ) − �), by the definition of resistance. Putting the bounds on player 2’s payoffs in the

three events together implies that,

U2(σ, δ) ≤ q(R(z, δ) + 2(1− δ)) + R(z�, δ) + 2(1− δ)− zl(R(z, δ)− �).

�

Lemma 3 (Lower-bound). Suppose 0 ≤ z < z� ≤ 1. In any PBE σ of Γ∞(z, δ)

(5) U2(σ, δ) ≥ −q(R(z, δ) + 2(1− δ))−R(z�, δ)− 2(1− δ)

where q = 1− z/z�.

Proof. Pick any PBE σ of Γ∞(z, δ). Let σ∗2 denote a strategy that moves according to ab
2 after

any period k public history hk, if there is no deviation from σ1(S) in hk, and coincides with PBE

strategy σ2 if player 1 has deviated from σ1(S) in hk. Let strategy profile σ∗ = (σ1(N), σ1(S), σ∗2)

and let T = T (σ∗, z, z�). We again look at the following three events: (i) The event that player 1

plays D for the first time in some period t < T . The probability of this event is at most q. (ii) The

17Player 2’s highest stage game payoff is one in this game because b ≤ 1.
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event that player 1 plays D for the first time in some period t ≥ T . The probability of this event

is at most 1. (iii) The event that player 1 never plays D.

Player 2’s payoff until player 1 plays D for the first time is zero by definition. If event (i)

occurs and player 1 plays D for the first time in period t, then player 2 receives zero until period t,

receives at worst −a(1 − δ) ≥ −(1 − δ) in period t, and receives a continuation payoff of at worst

−R(z, δ)− (1− δ)/δ, by Lemma 1 and R non-increasing. Consequently, player 2’s payoff is at least

−δt(1− δ)− δt+1(R(z, δ) + (1− δ)/δ) ≥ −R(z, δ)− 2(1− δ).

If event (ii) occurs and player 1 plays D for the first time in period t, then player 2 receives zero

until period t, receives at worst −(1− δ) in period t, and receives a continuation payoff of at worst

−R(z�, δ)− (1− δ)/δ, by Lemma 1 and R non-increasing. Consequently, player 2’s payoff is at least

−δt(1− δ)− δt+1(R(z�, δ) + (1− δ)/δ) ≥ −R(z�, δ)− 2(1− δ).

If event (iii) occurs, then player 1 never plays D and consequently player 2 receives zero. Putting

the bounds on player 2’s payoffs in the three events together implies that,

U2(σ, δ) ≥ U2(σ∗, δ) ≥ −q(R(z, δ) + 2(1− δ))−R(z�, δ)− 2(1− δ).

�

Below we use the fact that the upper-bound provided in Lemma 2 must exceed the lower-bound

given in Lemma 3 to obtain a functional inequality that relates maximal resistance at any two

reputation levels. We then use this functional inequality to complete our proof.

Lemma 4 (Functional Inequality). For any z ∈ [z, 1] and z < z� ≤ 1

(6) R(z, δ)(zl − 2q) ≤ 2R(z�, δ) + 8(1− δ)

where q = 1− z/z�.

Proof. For any � > 0 there exists a PBE σ where player 2’s resistance is at least R(z, δ) − �, by

the definition of resistance. By Lemma 2, equation (4) holds for any � > 0 and any PBE σ where

player 2’s resistance is at least R(z, δ)− �. Also, the upper-bound in equation (4) must exceed the



22 ATAKAN AND EKMEKCI

lower-bound in (5) for any PBE σ. Combining (4) and (5), taking � → 0, and substituting z for z

implies that R(z, δ)(zl − 2q) ≤ 4R(z�, δ) + 4(1 + q)(1− δ). Using q ≤ 1 delivers inequality (6). �

Proof of Corollary 1 under the assumption that R is non-increasing. Let q = zl/4. For any z ∈

[z, 1] and any z� ∈ (z, 1] such that 1− z/z� ≤ q inequality (6) implies

R(z, δ)(zl − 2q) ≤ 2R(z�, δ) + 8(1− δ) (using q = 1− z/z� ≤ q )

R(z, δ) ≤ 4
zl

(R(z�, δ) + 4(1− δ)) (substituting zl/4 for q)

R(z�(1− q), δ) ≤ 4
zl

(R(z�, δ) + 4(1− δ)). (substituting z�(1− q) for z)(7)

Notice R(1, δ) = 0. For z = 1−q and z� = 1 inequality (7) and R(1, δ) = 0 imply that R(1−q, δ) ≤

16(1− δ)/zl. Again, for z = (1− q)2 and z� = 1− q, inequality (7) and R(1− q, δ) ≤ 16(1− δ)/zl

imply that R((1− q)2, δ) ≤ 64(1− δ)/(zl)2 + 16(1− δ)/zl. More generally, for any z ≥ z,

R(z, δ) ≤ 4(1− δ)
n̄�

j=1

�
4
zl

�j

,

where n̄ is the smallest integer such that (1− q)n̄ ≤ z. Consequently, limδ→1 R(z, δ) ≤ limδ→1 4(1−

δ)
�n̄

j=1 (4/zl)j = 0. �

3.1. Description of the proof of Theorem 1. Our discussion up to this point established

a reputation result for the example depicted in Figure 5. However, under the assumptions of

µ(Ω−) = 0 and R non-increasing, the same argument works, with minor modifications, for any

stage game of perfect information that satisfies Assumption 1 and np = 1. We now sketch the steps

involved in allowing for np > 1, µ(Ω−) > 0 and relaxing the assumption that R is non-increasing.

Lemmata A.1 and A.2 are the technical steps that allow us to accommodate a more complicated

dynamic Stackelberg type who may punish player 2, i.e., the case where np > 1. Lemma A.1

shows that player 2 faces an average per-period cost, l > 0, of not best responding to the dynamic

Stackelberg type, i.e., U1(σ1(S), σ2, δ) = 1 − r implies U2(σ1(S), σ2, δ) ≤ −lr, if she is sufficiently

patient. At any node where player 1 deviates from σ1(S), player 1 may have to carry-out an np− 1

period punishment phase if he instead plays according to σ1(S) in order to maintain his reputation.

Lemma A.2 is an analog of Lemma 1 that accounts for these punishment phases.
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Allowing for other commitment types, i.e., µ(Ω−) > 0, requires incorporating the relative likeli-

hood of the other commitment types as an additional state variable and accounting for the event

that player 2 can be facing another commitment type, in the lower and upper-bound calculations.

The relative likelihood µ(Ω−)/µ(S) is non-increasing if player 1 plays according to σ1(S). This

monotonicity allows us to treat µ(Ω−)/µ(S) as an additional state variable in Definitions A.2 and

A.3. The effect of the other commitment types is at most ±Mφ on the lower-bound and the upper-

bound. This is because player 1 is another commitment type with probability φ and player 2 can

at most gain or loose M against any type. Consequently, if φ is small, then the effect of other

commitment types on the functional equation is also small.

The central technical issue in the complete argument involves relaxing the assumption that

R(z, δ) is non-increasing in z. Call z∗ a right-hand maximum of R if R(z, δ) ≤ R(z∗, δ) for all

z > z∗. If two reputation levels z ∈ [z, 1] and z� > z are right-hand maximums of R, then the

argument provided in the main text implies

R(z, δ)(zl − qC1) ≤ C2R(z�, δ) + C3M(1− δ),

where q = 1− z/z�; and C1, C2 and C3 are positive constants independent of δ, z� and z that only

depend on the parameters of the stage game as in equation (6). Rewriting,

q ≥ zD1 −D2R(z�, δ)/R(z, δ)−D3(1− δ)/R(z, δ),

where D1, D2 and D3 are positive constants independent of δ, z� and z that only depend on the

parameters of the stage game. We build a sequence of reputation levels that are “approximate”

right-hand maximums of R. Let K > 1 be a constant such that zD1 − D2/K − D3/K ≥ zD1/2

(equation (10)). Let zn(δ) be the supremum over reputation levels z such that R(z, δ) ≥ Kn(1− δ)

(Definition A.2). If z is greater than zn(δ), then R(z, δ) < Kn(1−δ). Each element of this sequence

is “approximately” a right-hand maximum of R and we prove, for any zn(δ) ∈ [z, 1],

qn(δ) ≥ zD1 −D2
R(zn−1(δ), δ)
R(zn(δ), δ)

−D3
1− δ

R(zn(δ), δ)
≥ zD1 −D2

Kn−1(1− δ)
Kn(1− δ)

−D3
1− δ

Kn(1− δ)
,
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where qn(δ) = 1 − zn(δ)/zn−1(δ). Substituting in for K gives qn(δ) ≥ zD1/2 ≡ q. Let n̄ denote

the smallest integer such that (1 − q)n̄ ≤ z. So, zn̄(δ) ≤ z for any δ, and for any z ≥ z ≥ zn̄(δ),

R(z, δ) ≤ K n̄(1− δ). Consequently, limδ→1 R(z, δ) = 0.

4. Discussion

4.1. Necessity of perfect information. Perfect information is necessary for a reputation result

in repeated locally non-conflicting interests games. Without perfect information, a folk theorem

applies for example to the simultaneous-move common interest game in Figure 3a (Cripps and

Thomas (1997)), which is a locally non-conflicting interest game. For a reputation result in repeated

strictly conflicting interests stage games, perfect information assumption is not required (see Cripps

et al. (2005) or section 4.5).

Figure 5 is a normalized sequential common interest game if a = 1 and b = −1. Consequently,

Corollary 1 is a particular example of a reputation result for a repeated locally non-conflicting

interests game (the sequential common interest game). Lemma 1 is central for establishing Corollary

1 and the perfect information assumption is required for Lemma 1. In order to flesh out the intuition

of why perfect information is necessary, we construct a PBE for the repeated simultaneous move

common interest game given in Figures 3a, where there is no analog of Lemma 1. In this PBE, the

players’ payoffs are low, if z is close to zero and δ is close to one.18 That is, the failure of Lemma

1 also leads to the failure of the reputation result.

Suppose player 2 plays R and player 1 uses a mixed strategy that plays D with small probability

for the first K periods. After the first K periods (L, U) is played forever. In this construction

U1(σ) = U2(σ) = δK . Also, the continuation payoff for the players, after (R,D) or (R,U), is

equal to δK−t in any period t ∈ {0, ..,K − 1}. To ensure that player 2 has an incentive to play

R, she is punished in the event that she plays L and player 1 plays D (thus revealing rationality).

Punishment entails a continuation payoff for player 2 that is close to zero.19 Player 1 is willing to

mix between U and D in the first K periods since player 2 only plays R on the equilibrium path.

In this construction, by choosing player 2’s continuation payoff close to zero at (L, D), she can be

deterred from playing L even if player 1 reveals rationality with a small probability in each period.

18This construction follows Cripps and Thomas (1997).
19After (L, D) or (R, D) we are in a repeated game of complete information and any payoff in [0, 1] can be supported.
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However, if the probability that player 1 reveals rationality is small in each period, then it takes

many periods for player 1 to build a reputation and K can be chosen large to ensure low payoffs

for both players.

This argument hinges on choosing low continuation payoffs for player 2 after terminal node

(L, D), during the first K periods. In the first K periods when player 1 makes his move he expects

player 2 to play L with probability zero. Consequently, the terminal node (L, D) is reached with

probability zero and thus we can put no restrictions on payoffs at (L, D). In contrast, if player 1

moves after observing player 2 as in Figures 3b, then Lemma 1 implies that player 2’s continuation

payoff after (L, D) is at least −2R(z/(1− q), δ)− 2(1− δ), i.e., Lemma 1 imposes a tight bound on

the amount of punishment that player 2 can expect after choosing L.

For our reputation result we make extensive use of Lemma 1 in establishing the upper and lower

bounds for player 2’s payoffs (Lemma 2 and Lemma 3). In Lemma 2, player 2’s payoff is bounded

along the equilibrium path. Consequently, in this lemma the perfect information assumption is not

required. Consider again the equilibrium described for the simultaneous-move game. The bound

in Lemma 1 applies verbatim to the simultaneous-move game at node (R,D) (which is the node of

interest for Lemma 2), because player 1 believes that player 2 plays R with probability one on the

equilibrium path.

In contrast to Lemma 2, perfect information is essential for Lemma 3. In Lemma 3 we consider

a strategy for player 2 that plays L until player 1 deviates from U and we give a lower-bound for

player 2’s payoff after (L, D). Lemma 1 provides a lower-bound on player 2’s payoff after (L, D)

in the case of perfect information. However, there is no analog of Lemma 1 that provides a tight

bound on player 2’s payoff after (L, D) for the simultaneous-move game. For example, in the PBE

we construct we can put no restrictions on payoffs after node (L, D) beyond individual rationality

and feasibility. This is because player 1 expects to reach node (L, D) with probability zero.

4.2. Necessity of Assumption 1. Assumption 1 can fail in two ways. First, Assumption 1 fails

if the payoff profile where player 1 receives ḡ1 is not unique in G, for example if Γ is non-generic.

Such a failure is depicted in Figure 7a. Second, Assumption 1 fails if, (ḡ1, ĝ2) ∈ G, but Γ is not a

strictly conflicting interests game. Such a failure is depicted in Figure 7b. A reputation result also

fails to obtain in both of these examples.
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(a) A common interest game
that is non-generic.
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(1, 1)

P1
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(0, 0)

H

(0, 0)

P1

(b) A moral hazard mixing game.

Figure 7. Games that fail to satisfy Assumption 1.

In the non-generic common interest game depicted in Figure 7a suppose that the Stackelberg

type of player 1 always plays U and µ(S) < 1/2. We describe a PBE where player 1 receives a

payoff strictly lower than one. Suppose on the equilibrium path (R,U) is played in the first K

periods and (L, U) is played thereafter. Player 1 does not build a reputation in this PBE. Choose

K such that both players receive payoff equal to 1/2. Suppose, if player 2 deviates from equilibrium

by playing L, then player 1’s normal type reveals rationality by playing D, and the stage-game

equilibrium (L, D) is played thereafter. Consequently, player 2 receives µ(S) if she deviates from

the equilibrium strategy which is less than her equilibrium payoff 1/2.

In the moral hazard game depicted in Figure 7b player 1’s dynamic Stackelberg payoff is 1.5

and player 2’s minimax value is zero. In this game a dynamic Stackelberg strategy does not exist

but there are strategies that deliver a payoff arbitrarily close to the dynamic Stackelberg payoff.

Suppose that player 1’s mixed actions are observed at the end of each period. One might conjecture

that a payoff arbitrarily close to the dynamic Stackelberg payoff could be obtained by mimicking a

Stackelberg type, S, that plays H with probability 1/2 + �. This is not the case: Suppose that on

the equilibrium path player 1 plays H with probability 1/2 + �, in each period. Player 2 plays N

for the first K periods and plays B thereafter. Choose K such that δK = 1/2. Consequently, no

reputation is built on the equilibrium path and equilibrium payoffs are ((1.5−�)/2, �/2). If player 1

deviates from equilibrium and reveals rationality, then player 2 plays N forever. If player 2 deviates

from equilibrium and plays B, then player 1 reveals rationality by playing L. In the subsequent
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complete information game an equilibrium with payoffs (1.5, 0) is played.20 This construction is a

PBE for any choice of �, if µ(S) < 1/2: If player 2 deviates and plays B, then she is facing S with

probability µ(S) and receives payoff equal to �, and she is facing the normal type with probability

1− µ(S) and receives payoff equal to zero. However, µ(S)� < �/2.

4.3. The Stackelberg type. In the repeated games that we consider, the dynamic Stackelberg

strategy is not necessarily unique. For example in the game depicted in Figure 4, the grim trigger

strategy is also a dynamic Stackelberg strategy. Mimicking the grim-trigger strategy would not

however give player 1 a high payoff. This is because the punishment phase is also very costly for

player 1. In contrast, the particular Stackelberg type that we choose is not very costly to mimic

since the punishment phase is short, i.e., np is chosen minimally. If we had chosen any other finite

length n > np for the punishment phase, instead of np, our reputation result would still hold.

4.4. Other commitment types. As noted previously by Schmidt (1993), Celantani et al. (1996)

or Evans and Thomas (1997), if there a chance that player 1 is a commitment type, other than the

Stackelberg type, then player 1 may be unable to build a reputation. Previous work has addressed

this issue by assuming that types are learned due to exogenous noise (Celantani et al. (1996)

or Aoyagi (1996)); by restricting the class of games (Schmidt (1993)); or by considering more

complicated types (Evans and Thomas (1997)).

In the environment we consider, the presence of commitment types can also hinder player 1

from building a reputation. A patient player 2 may resist the Stackelberg type because she fears

punishment or expects a reward for not best responding, either from another commitment type

or from player 1’s normal type. Our reputation result holds because, as we show, punishments or

rewards cannot come from player 1’s normal type; and because we assume that the probability of

another commitment type is small compared to the probability of the Stackelberg type.

The restriction on the relative likelihood of other commitment types can be relaxed if the other

commitment types are uniformly learnable. A uniformly learnable type reveals itself not to be the

Stackelberg type, at a rate that is bounded away from zero, uniformly across all histories. If the

other commitment types are uniformly learnable, then player 1 can play according to σ1(S) and

20Playing (N, L) in each period is a PBE of the complete information repeated game. Consequently, the threat of
switching to (N, L) can incentivize a patient player 1 to play H with probability 1/2 in each period.
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ensure that player 2’s posterior belief that player 1 is a type in Ω− is arbitrarily small in finitely

many periods. If player 2’s posterior belief that player 1 is a type in Ω− is small, then Theorem

1 implies that player 1’s payoff is close to one, for sufficiently large discount factors. However,

the restriction to uniformly learnable types is a non-trivial assumption. For example, it rules out

the “perverse” type (see Schmidt (1993)) who plays like the dynamic Stackelberg type on the

equilibrium path, but responds to deviations in a history dependent way.

In previous work, Schmidt (1993) and Celantani et al. (1996) establish reputation results with a

non-mypopic player 2, even when the set of commitment types is arbitrary. Celantani et al. (1996)

assume that player 2’s moves are imperfectly observed with full support.21 This assumption ensures

that all relevant histories are sampled with positive probability, without any experimentation by

player 2. If player 2’s moves are imperfectly observed, then a rich set of commitment types are

uniformly learnable. A similar assumption would also enable us to allow for a rich set of commitment

types in the framework that we consider here.22

The reputation result of Schmidt (1993) obtains if there are conflicting interests in the stage

game, player 2’s discount factor is fixed, and player 1 is arbitrarily more patient. Conflicting

interests imply that the punishment that player 2 can expect from any other commitment type

(her minimax payoff) is no worse than best responding to the Stackelberg type and receiving her

minimax payoff. A commitment type may also reward player 2 for not best responding to the

Stackelberg type. But, since player 2’s discount factor is fixed, a reward for player 2 must entail

behavior, that differs from the Stackelberg type, that occurs in a bounded number of periods T .

If player 1 is sufficiently patient, he will mimic the Stackelberg type for these T periods, depriving

player 2 from a reward and thus building a reputation. However, rewards for an equally patient

player 2 need not accrue in a bounded number of periods. A commitment type that rewards player 2

for resisting the Stackelberg type, in a history dependent manner, can hinder player 1 from building

a reputation against an equally patient opponent, even with strictly conflicting interests.

21Also, see Aoyagi (1996) for a similar assumption.
22See Atakan and Ekmekci (2008) which assumes player 2’s moves are imperfectly observed with full support and
shows under this assumption that the set of other types can be taken as the set of all finite automata and the perfect
information assumption can be dropped.
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4.5. Games with strictly conflicting interests. Cripps, Dekel, and Pesendorfer (2005) obtain a

reputation result for Bayes-Nash equilibria and simultaneous-move strictly conflicting interests stage

games. A similar result can be obtained using the method developed here: Redefine R(z, δ) using

Bayes-Nash equilibrium instead of PBE. The upper-bound established in Lemma A.3 remains valid

for Bayes-Nash equilibria. This is because all the arguments were constructed on the equilibrium

path without any appeal to perfect information or subgame perfection. Also, U2(σ) ≥ ĝ2 = 0

in any Bayes-Nash equilibrium. Consequently, a functional inequality similar to (6) holds, and a

reputation result follows.

Appendix A. Proof of Theorem 1

Let M = max{max{|g1|, |g2|} : (g1, g2) ∈ F} and normalize payoffs, without loss of generality,

such that

(8) ḡ1 = 1; g1(a1, a2) ≥ 0 for all a ∈ A; and g2(as
1, a

b
2) = 0.

For any z ∈ (0, 1) let

K(z) = max
�

4ρ(1 + 2npM) + 16M

lz
, 1

�
.

For any z ∈ (0, 1) let

(9) f(z) =
K(z)n̄(z)

z

where n̄(z) is the smallest integer j such that (1− zl/4ρ)j < z. In what follows fix z > 0, fix

(10) K = K(z), and n̄ = n̄(z).

We show that

U1(σ, δ) ≥ 1− f(z) max {1− δ, µ(Ω−)} = 1− K n̄

z
max {1− δ, µ(Ω−)}

for any µ ∈ ∆(Ω) such that µ(S) = z and any PBE strategy profile σ of Γ∞(µ, δ).

Definition A.1 (Resistance). For any measure µ ∈ ∆(Ω) and δ ∈ [0, 1) let

R(µ, δ) = sup{r(σ2, δ) : σ2 is part of a PBE profile σ of Γ∞(µ, δ)}.
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where r(σ2, δ) = 1− U1(σ1(S), σ2, δ) for any σ2.

Lemma A.1. Posit perfect information and Assumption 1. There exists δ∗ ∈ [0, 1) and l > 0 such

that for any r ≥ 0, if U1(σ1(S), σ2, δ) = 1− r, then U2(σ1(S), σ2, δ) ≤ −lr, for all δ > δ∗.

Proof. The definition of np given in inequality (3) implies that there exists a δ∗ < 1 and l > 0 such

that, for all δ > δ∗,

(11) g2(as
1, a2) +

np−1�

k=1

δkg2(ap
1, a

�
2) < −lnp

for any a2 ∈ A2 such that g1(as
1, a2) < 1 and a�2 ∈ A2. For public history ht = {y0, y1, ..., yt}, let

i(ht) = 1, if g1(yt) < 1 and σ1(S, ht) = as
1; and i(ht) = 0, otherwise. Player 1 receives at least

zero in any period t where i(ht) = 1 and also receives at least zero in the subsequent np − 1 period

punishment phase. In all other periods player 1 receives one. Consequently, U1(σ1(S), σ2, δ) ≥

1 − np(1 − δ)E(σ1(S),σ2)

��∞
t=0 δti(ht)

�
and (1 − δ)E(σ1(S),σ2)

��∞
t=0 δti(ht)

�
≥ r/np.23 If i(ht) = 1,

then player 2 receives a total discounted payoff of at most −npl(1−δ) for periods t through t+np−1,

if δ > δ∗ by equation (11). In any period where as
1 is played and i(ht)=0 player 2 receives zero.

Consequently, U2(σ1(S), σ2) ≤ −npl(1− δ)E(σ1(S),σ2)

��∞
t=0 δti(ht)

�
≤ −lr, if δ > δ∗. �

In what follows, we assume that δ > δ∗. Also, we say that player 1 deviated from σ1(S) in the

tth period of a public history h∞ if there exists a node d within period t where the move of player

1 differs from the move that strategy σ1(S) would have chosen at that node.

Lemma A.2. Pick any PBE σ of Γ∞(µ, δ), period t public history h = (ht, d0), and suppose player

1 is to deviate from σ1(S) at node d0 with positive probability given h. Let ht+1 be any public history

of terminal nodes that is reached with positive probability under Pr(σ1(N)|h,σ2|h); let h� = (ht, d�) be

the public history that is reached immediately (with positive probability under Pr(σ1(S)|h,σ2|h)) if

σ1(S) is used at d instead of deviating; and let µ� = µ(·|h�), then

|U2(σ1(N), σ2, δ|ht+1)| ≤ ρ(R(µ�, δ) + npM(1− δ)/δ), if Γ satisfies Ass. 1 (i), and

U2(σ1(N), σ2, δ|ht+1) ≤ ρ(R(µ�, δ) + npM(1− δ)/δ), if Γ satisfies Ass. 1 (ii).

23The bound on player 1’s payoff is crude especially for low δ.
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Proof. If player 1 plays according to σ1(S) at d0 and through the remaining nodes of period t,

then he obtains at lest zero for the period and an np − 1 period punishment phase may ensue.

His payoff is at least zero in these periods. So, his payoff if he plays according to σ1(S) is at

least δnp(1 − R(µ�, δ)). Alternatively, if he plays according to σ1(N) and deviates from σ1(S),

he receives at most M(1 − δ) for the period, and U1(σ, δ|ht+1) as his continuation payoff. So,

M(1− δ) + δU1(σ, δ|ht+1) ≥ δnp(1−R(µ�, δ)). This implies that

U1(σ, δ|ht+1) ≥ δnp−1(1−R(µ�, δ))−M(1− δ)/δ ≥ 1−R(µ�, δ)− npM(1− δ)/δ.

The bounds on player 2’s payoff follow from equations (1), (2) and (U1(σ, δ|ht+1), U2(σ1(N), σ2, δ|ht+1)) ∈

F . �

Pick any period t public history h = (ht, d0), and suppose player 1 moves at node d0. Under

perfect information, the public history that is reached immediately following ht only depends on

player 1’s strategy and is independent from player 2’s strategy. This distinction is relevant when

we find a lower-bound for player 2’s payoff in Lemma A.4 by considering a non-equilibrium strategy

for player 2 and applying Lemma A.2.

Definition A.2 (Reputation Thresholds). For each n ≥ 0, let

zn(δ, φ) = sup{z : ∃µ ∈ ∆(Ω) s.t. R(µ, δ) ≥ Kn max{φ, 1− δ}, µ(S) = z, µ(Ω−)/µ(S) ≤ φ},

where K is the constant defined in equation (10).

Definition A.3. For any ξ > 0 and z ∈ (0, 1) let

R̄(ξ, z, δ, φ) = sup{r : ∃µ ∈ ∆(Ω) s.t. R(µ, δ) ≥ r, µ(S) = z� ∈ [z − ξ, z], µ(Ω−)/µ(S) ≤ φ}.

By definition, there exists µ such that µ(S) = z ∈ [zn(δ, φ) − ξ, zn(δ, φ)] and µ(Ω−)/µ(S) ≤ φ,

and PBE σ of Γ∞(µ, δ) such that σ2 has resistance of at least R̄(ξ, zn, δ, φ)− ξ. Also, by definition,

R̄(ξ, zn, δ, φ) ≥ Kn max{φ, 1− δ}. The definition of zn(δ, φ) and R̄(ξ, zn, δ, φ) ≥ Kn max{φ, 1− δ}

implies that if µ(S) ∈ [zn(δ, φ) − ξ, zn−1(δ, φ)] and µ(Ω−)/µ(S) ≤ φ, then R(µ, δ) ≤ R̄(ξ, zn, δ, φ)

in any PBE profile σ of Γ∞(µ, δ). In what follows we establish a upper bound on Player 2’s payoff
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in any PBE where the resistance is at least R̄(ξ, zn, δ, φ)− ξ and a lower bound on player 2’s PBE

payoff. First we introduce a stopping time that we use for the argument.

Definition A.4 (Stopping time). For any integer T , E[0,T ] denotes the event (set of infinite public

histories) where player 1 deviates from σ1(S) for the first time in period t for some 0 ≤ t ≤ T .

For any strategy profile σ = ({σ1(ω)}ω∈Ω, σ2) where σ2 is a pure strategy, measure µ ∈ ∆(Ω) and

z� ∈ (µ(S), 1] let

T (σ, µ, z�) = min{t : µ(S)/(1− q(t)) ≥ z�},

where q(t) =
�

ω∈Ω µ(ω) Pr(σ1(ω),σ2)

�
E[0,T ]

�
; and let T (σ, µ, q) =∞ if the set is empty.

Suppose that player 1’s initial reputation level µ(S) = z and µ(Ω−)/µ(S) ≤ φ. If hT (σ,µ,q)+1 is a

history consistent with σ1(S) and σ2, i.e., player 1 has not deviated from σ1(S) in hT (σ,µ,q)+1, then,

by definition, then, µ(S|hT (σ,z,z�)+1) ≥ z�. Also, by definition, the total probability that player 1

deviates from the Stackelberg strategy for the first time in any period t ∈ {0, 1, ..., T (σ, z, z�) − 1}

is at most 1− z/z�, and Bayes’ rule implies that µ(Ω−|hT (σ,µ,q)+1)/µ(S|hT (σ,µ,q)+1) ≤ φ.

Lemma A.3. Posit perfect information and Assumption 1. Pick µ ∈ ∆(Ω) such that µ(S) =

z ∈ [zn(δ, φ) − ξ, zn(δ, φ)] and µ(Ω−)/µ(S) ≤ φ, and pick PBE σ of Γ∞(µ, δ) such that r(δ, σ2) ≥

R̄(ξ, zn, δ, φ)− ξ. For the chosen PBE σ,

U2(σ, δ) ≤ ρ(q(δ, φ, n, ξ)R̄(ξ, zn, δ, φ) + Kn−1� + 2npM�) + 5M�− (R̄(ξ, zn, δ, φ)− ξ)(zn(δ, φ)− ξ)l,

(12)

where � = max{φ, 1− δ} and q(δ, φ, n, ξ) = 1− (zn(δ, φ)− ξ)/zn−1(δ, φ).

Proof. Choose pure strategy σ∗2 in the support of the possibly mixed strategy σ2 such that r(σ∗2, δ) ≥

R̄(ξ, zn, δ, φ)− ξ. Since the mixed strategy has resistance equal to R̄(ξ, zn, δ, φ)− ξ, there must be a

pure strategy in the support of this mixed strategy which has resistance of at least R̄(ξ, zn, δ, φ)−ξ.

Let profile σ∗ = ({σ1(ω)}ω∈Ω, σ∗2) and let T = T (σ∗, µ, q(δ, φ, n, ξ)). Given that µ(S) = z and

µ(Ω−)/µ(S) ≤ φ if player 1 has not deviated from σ1(S) in ht that is consistent with σ∗2, then

µ(Ω−|ht)/µ(S|ht) ≤ φ; and for t ≤ T , µ(S|ht) ≥ z; and for t > T , µ(S|ht) ≥ zn−1. We bound

player 2’s payoff in the events ω = N and E[0,T−1]; ω = N and E[T,∞); ω = N and he never deviates

from σ1(S); ω = S; and ω ∈ Ω−. Player 2’s payoff until the time t that player 1 deviates from
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σ1(S) is at most (1− δ)M ≤ �M . Her payoff is zero if she plays ab
2 against as

1, Lemma A.1 implies

that her payoff is negative if she does not play ab
2 against as

1 and a punishment phase is completed,

and there can be at most one incomplete punishment phase until player 1 deviates from σ1(S).

Suppose that h∞ ∈ E[0,T−1] and let h = (hj , d) denote the node in period j where player 1

deviates from σ1(S) for the first time in the infinite public history h∞. Player 2’s payoff up until

period j is at most �M . Player 2’s payoff in period j is at most �M . Lemma A.2 and � ≥ (1 − δ)

imply that U2(σ1(N), σ2, δ|hj+1) ≤ ρ(R̄(ξ, zn, δ, φ) + �Mnp). Hence, for any such period j player

2’s payoff is at most

M� + δjM� + δj+1ρ(R̄(ξ, zn, δ, φ) + �Mnp) ≤ 2M� + ρ(R̄(ξ, zn, δ, φ) + npM�)

So,

(13) U2(σ1(N), σ2, δ|E[0,T−1]) ≤ 2M� + ρ(R̄(ξ, zn, δ, φ) + npM�).

Suppose that h∞ ∈ E[T,∞) and let h = (hj , d) denote the node where player 1 deviates from σ1(S)

for the first time in the infinite public history h∞. Player 1’s reputation exceeds zn−1 at the start of

period j+1 if he plays according σ1(S) through period j. Consequently, resistance is at most Kn−1�

at the start of period j + 1 and Lemma A.2 implies that U2(σ1(S), σ2, δ|hj+1) ≤ ρ�(Kn−1 + npM).

So, an argument identical to the previous paragraph implies that

(14) U2(σ1(N), σ2, δ|E[T,∞)) ≤ 2M� + ρ�(Kn−1 + npM).

If player 1 never deviates from σ1(S), then player 2 receives at most zero. Player 2 can get at most

M against any other commitment type and this happens with probability φz ≤ φ ≤ �. Player 2’s

resistance is R̄(ξ, zn, δ, φ) − ξ in the equilibrium under consideration, she loses (R̄(ξ, zn, δ, φ) − ξ)l

against S by Lemma A.1, and this happens with probability z ≥ zn(δ, φ) − ξ. The probability

of N and E[0,T−1] is at most q(δ, φ, n, ξ); and the probability of N and E[T,∞) is at most one.

Consequently, equations (13) and (14) imply

U2(σ, δ) ≤ q(δ, φ, n, ξ)ρR̄(ξ, zn, δ, φ) + ρKn−1�− (zn(δ, φ)− ξ)(R̄(ξ, zn, δ, φ)− ξ)l + 2ρnpM� + 5M�.

�
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Lemma A.4. Posit perfect information and Assumption 1 item (i). Suppose that µ(S) = z ∈

[zn(δ, φ)− ξ, zn(δ, φ)] and µ(Ω−)/µ(S) ≤ φ. In any PBE σ of Γ∞(µ, δ),

(15) U2(σ, δ) ≥ −ρ(R̄(ξ, zn, δ, φ)q(δ, φ, n, ξ) + Kn−1� + 2npM�)− 3M�,

where � = max{φ, 1− δ} and q(δ, φ, n, ξ) = 1− (zn(δ, φ)− ξ)/zn−1(δ, φ).

Proof. Fix a PBE profile σ of Γ∞(µ, δ) where µ(S) = z ∈ [zn(δ, φ)−ξ, zn(δ, φ)] and µ(Ω−)/µ(S) ≤ φ.

Let σ∗2 denote a strategy that moves according to ab
2 after any period k public history hk, if there is no

deviation from σ1(S) in hk, and coincides with PBE strategy σ2 if player 1 has deviated from σ1(S)

in hk. Let profile σ∗ = ({σ1(ω)}ω∈Ω, σ∗2), let T = T (σ∗, µ, q(δ, φ, n, ξ)). Player 2 receives zero in each

period until player 1 deviates from σ1(S) because (as
1, a

b
2) is played under (σ1(S), σ∗2). Also, player

2’s payoff in the period player 1 deviates from σ1(S) is at least−M�. We use the reasoning in Lemma

A.3 and apply Lemma A.2 to obtain U2(σ1(N), σ2, δ|E[0,T−1]) ≥ −ρ(R̄(ξ, zn, δ, φ) + npM�) −M�

and U2(σ1(N), σ2, δ|E[T,∞)) ≥ −ρ�(Kn−1 + npM) − M�. If player 1 never deviates from σ1(S),

then player 2 receives zero. Player 2 can get at least −M against any other commitment type with

probability at most φ ≤ �, gets zero against the Stackelberg type with probability z. Following the

same reasoning as in Lemma A.3 implies that

U2(σ, δ) ≥ U2(σ∗, δ) ≥ −ρR̄(ξ, zn, δ, φ)q(δ, φ, n, ξ)− ρ�Kn−1 − 2ρnpM�− 3M�.

�

Completing the argument for Theorem 1 by using Lemma A.3 and Lemma A.4. If Γ satisfies As-

sumption 1 and perfect information, then equation (12) is satisfied, by Lemma A.3. If Γ satisfies

Assumption 1 (i) and perfect information, then equation (15) is satisfied, by Lemma A.4. Also, if

Γ satisfies Assumption 1 item (ii), then U2(σ, δ) ≥ ĝ2 = 0, and equation (15) is trivially satisfied

because the right hand side of the inequality is negative. Combining the upper and lower bounds

for U2(σ, δ), given by equations (12) and (15), and simplifying by canceling � delivers

(zn(δ, φ)− ξ)l
R̄(ξ, zn, δ, φ)− ξ

�
≤ 2ρ

�
q(δ, φ, ξ)R̄(ξ, zn, δ, φ)

�
+ Kn−1 + 2npM

�
+ 8M.
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Let qn(δ, φ) = 1 − zn(δ, φ)/zn−1(δ, φ). R̄(ξ, zn, δ, φ) ∈ [0, 1] for each ξ, we pick any convergent

subsequence and let limξ→0 R̄(ξ, zn, δ, φ) = R̄(zn, δ, φ). Taking ξ → 0 implies that q(δ, φ, n, ξ) →

qn(δ, φ) and

zn(δ, φ)lR̄(zn, δ, φ)/� ≤ 2ρ(qn(δ, φ)R̄(zn, δ, φ)/� + Kn−1 + 2npM) + 8M.

Rearranging,

qn(δ, φ) ≥ zn(δ, φ)l
2ρ

− Kn−1�

R̄(zn, δ, φ)
− 2npM�

R̄(zn, δ, φ)
− 4M�

ρR̄(zn, δ, φ)
.

Also, R̄(ξ, zn, δ, φ) ≥ Kn� for each ξ implies that R̄(zn, δ, φ) ≥ Kn�. Consequently,

qn(δ, φ) ≥ zn(δ, φ)l
2ρ

− Kn−1

Kn
− 2npM

Kn
− 4M

ρKn
.

So, qn(δ, φ) ≥ zl
2ρ −

1
K − 2npM

Kn − 4M
ρKn , for any zn(δ, φ) ≥ z. The definition of K, which is given in

equation (10), implies that

zl

2ρ
− 1

K
− 2npM

Kn
− 4M

ρKn
≥ zl

2ρ
− 1

K
− 2npM

K
− 4M

ρK
≥ zl

4ρ
> 0

for any n ≥ 1. Consequently, qn(δ, φ) ≥ zl
4ρ > 0, for any zn(δ, φ) ≥ z. So, zn(δ, φ) ≥ z implies

that 1− zn(δ, φ)/zn−1(δ, φ) ≥ zl
4ρ for all δ < 1, φ > 0 and n = 0, 1, ...,∞. Also, the definition of n̄,

which is given in equation (10), requires that (1 − zl
4ρ)n̄ < z. So, the definition of n̄ implies that

zn̄(δ, φ) ≤ (1− zl
4ρ)n̄ < z, for each δ < 1 and φ > 0. Consequently, if µ(S) ≥ z and µ(Ω−)/µ(S) ≤ φ,

then R(µ, δ) ≤ K n̄ max{1−δ, φ} and U1(σ, δ) ≥ 1−K n̄ max{1−δ, φ} ≥ 1−K n̄/z max{1−δ, µ(Ω−)}

for all PBE σ of Γ∞(µ, δ). �
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