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Abstract

We examine the design of incentive-compatible screening mechanisms for dynamic environ-

ments in which the agents�types follow a (possibly non-Markov) stochastic process, decisions

may be made over time and may a¤ect the type process, and payo¤s need not be time-separable.

We derive a formula for the derivative of an agent�s equilibrium payo¤ with respect to his cur-

rent type in an incentive-compatible mechanism, which summarizes all �rst-order conditions for

incentive compatibility and generalizes Mirrlees�s envelope formula of static mechanism design.

We provide conditions on the environment under which this formula must hold in any incentive-

compatible mechanism. When specialized to quasi-linear environments, this formula yields a

dynamic �revenue-equivalence� result and an expression for dynamic virtual surplus, which is

instrumental for the design of optimal mechanisms. We also provide some su¢ cient conditions

for incentive compatibility, and for its robustness to an agent�s observation of the other agents�

past and future types. We apply these results to a number of novel settings, including the de-

sign of pro�t-maximizing auctions and durable-good selling mechanisms for buyers whose values

follow an AR(k) process.

JEL Classi�cation Numbers: D82, C73, L1.

Keywords: asymmetric information, stochastic processes, incentives
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1 Introduction

We consider the design of incentive-compatible mechanisms in a dynamic environment in which

agents receive private information over time and decisions may be made over time. The model

allows for serial correlation of the agents�private information as well as the dependence of this

information on past decisions. For example, it covers as special cases such problems as the allocation

of resources to agents whose valuations follow a stochastic process, the procedures for selling new

experience goods to consumers who re�ne their valuations upon consumption, or the design of

multi-period procurement auctions for bidders whose cost parameters evolve stochastically over

time and may exhibit learning-by-doing e¤ects.

A fundamental di¤erence between dynamic and static mechanism design is that in the former, an

agent has access to a lot more potential deviations. Namely, instead of a simple misrepresentation

of his true type, the agent can make this misrepresentation conditional on the information he

has observed in the mechanism, in particular on his past types, his past reports (which need

not have been truthful), and past decisions (from which he can make inferences about the other

agents�types). Despite the resulting complications, we deliver some general necessary conditions for

incentive compatibility and some su¢ cient conditions, and then use them to characterize optimal

(e.g. pro�t-maximizing) mechanisms in several applications.

The cornerstone of our analysis is the derivation of a formula for the derivative of an agent�s

equilibrium expected payo¤ in an incentive-compatible mechanism with respect to his private in-

formation. Similarly to Mirrlees�s �rst-order approach for static environments (Mirrlees, 1971), our

formula (hereafter referred to as dynamic payo¤ formula) provides an envelope-theorem condition

summarizing local incentive compatibility constraints. In contrast to the static model, however,

the derivation of this formula relies on incentive compatibility in all the future periods, not just

in one given period. Furthermore, unlike some of the earlier papers about dynamic mechanism

design, we identify conditions on the primitive environment for which the dynamic payo¤ formula

must hold in any incentive-compatible mechanism (not just in �well-behaved�ones). In addition

to carrying over the usual static assumptions of �smoothness�of the agent�s payo¤ function in his

type and connectedness of the type space (see, e.g., Milgrom and Segal, 2002), the dynamic setting

requires additional assumptions on the stochastic process governing the evolution of each agent�s

information.

Intuitively, our dynamic payo¤ formula represents the impact of an (in�nitesimal) change in

the agent�s current type on his equilibrium expected payo¤. In addition to the familiar direct e¤ect

of the current type on the agent�s utility, the formula also accounts for the current type�s impact

on the type distributions in each of the future periods, which is both direct and indirect through

its impact on the distribution of types in intermediate periods. All these stochastic e¤ects are

1



summarized with a function that can be interpreted as a (nonlinear) impulse response of the future

type to the current type. Our dynamic payo¤ formula adds up the utility e¤ects of all the future

types weighted by their impulse responses to the current type. As for the current type�s e¤ects

through the agent�s messages to the mechanism, the formula ignores them, by the usual envelope

theorem logic.

For ease of exposition, in the �rst part of the paper (Section 3) we consider an environment

with a single agent who observes all the relevant history of the mechanism and derive the dynamic

payo¤ formula for this environment. In Section 4 we adapt the dynamic payo¤ formula to a multi-

agent environment, in which an agent may observe only a part of the entire history generated

by the mechanism, and must therefore form beliefs about the unobserved parts such as the types

of the other agents as well as the unobserved past decisions made by the mechanism. We show

that the single-agent analysis extends to multi-agent mechanisms provided that the stochastic

processes governing the evolution of the agents� types are independent of one another, except

through their e¤ect on the decisions observed by the agents. In other words, we show how the

familiar �Independent Types�assumption for static mechanism design should be properly adjusted

to a dynamic setting to guarantee that the agents�equilibrium payo¤s can still be pinned down by

an envelope formula.

For the special case of quasilinear environments, we use the dynamic payo¤ formula to establish a

dynamic �revenue equivalence theorem�that links the payment rules in any two Bayesian incentive-

compatible mechanisms that implement the same allocation rule. In particular, for a single-agent

deterministic mechanism, this theorem pins down, in each state, the total payment that is necessary

to implement a given allocation rule, up to a state-independent constant. With many agents, or with

a stochastic mechanism, the theorem pins down the expected payments as function of each agent�s

type history, where the expectation is with respect to the other agents�types and/or the stochastic

decisions taken by the mechanism. However, if one requires a strong form of robustness, which we

call �Other-Ex Post Incentive Compatibility�(OEP-IC)� according to which the mechanism must

remain incentive-compatible even if an agent is shown at the beginning of the game all the other

agents�(future) types and randomization outcomes� then the theorem again pins down, for each

agent and for each state, the total payment up to a state-independent constant (which may depend

on the other agents�types and randomization outcomes).

Next, we use the dynamic envelope formula to express the expected pro�ts in an incentive-

compatible and individually rational mechanism as the expected �virtual surplus,� appropriately

de�ned for the dynamic setting. This derivation uses only the agents�local incentive constraints,

and only the participation constraints of the agents� lowest types in the initial period. Ignoring

all the other incentive and participation constraints yields a dynamic �Relaxed Program,� which
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is in general a dynamic programming problem. In particular, the Relaxed Program gives us a

simple intuition for the optimal distortions introduced by a pro�t-maximizing principal: Since only

the �rst-period participation constraints bind (due to the unlimited bonding possibilities in the

quasilinear environment with unbounded transfers), the distortions trade o¤e¢ ciency for extraction

of the agents��rst-period information rents. However, due to informational linkages in the stochastic

type processes, the principal distorts the agents�consumptions not only in period one, but also in

any subsequent period in which his type is responsive to the �rst-period type, as measured by our

impulse response function.

In particular, we �nd that when an agent�s type in period t > 1 hits its highest or lowest

possible value, the informational linkage disappears and the principal implements the e¢ cient level

of consumption in that period (provided that payo¤s are additively time-separable). However, for

intermediate types in period t, the optimal mechanism entails distortions (for example, when types

are positively correlated over time in the sense of First-Order Stochastic Dominance, and the agents�

payo¤s satisfy the single-crossing property, the optimal mechanism entails downward distortions).

Thus, in contrast to the static model, with a continuous but bounded type space, distortions in

each period t > 1 are typically non monotonic in the agents�types. This is also in contrast with

the results of Battaglini (2005) for the case of a Markov process with only two types in each period.

Studying the Relaxed Program is not satisfactory unless one its solutions can be shown to

satisfy all of the remaining incentive and participation constraints. We provide a few su¢ cient

conditions for these constraints to be satis�ed. In particular, we show that in the case where the

agents�types follow a Markov process and their payo¤s are Markovian in their types (so that it

is enough to check one-stage deviations from truthtelling), a su¢ cient condition for an allocation

rule to be implementable is that the partial derivative of the agent�s expected utility with respect

to his current type when he misreports be nondecreasing in the report. One can then use the

dynamic payo¤ formula to calculate this partial derivative� the condition is fairly easy to check.

(Unfortunately, this condition is not necessary for incentive-compatibility� a tight characterization

is evasive because of the multidimensional decision space of the problem.) This su¢ cient condi-

tion also turns useful when checking incentive compatibility is some non-Markov settings that are

su¢ ciently �separable.�

In some standard settings we can actually state an even simpler su¢ cient condition for incentive

compatibility, which also ensures that incentive compatibility is robust to an agent learning in

advance all of the other agents�types (and therefore to any weaker form of information leakage in

the mechanism). This condition is that the transitions that describe the evolution of the agents�

private information are monotone in the sense of First-Order Dominance, the payo¤s satisfy the

single-crossing property, and the allocation rule is �strongly monotonic� in the sense that the
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consumption of a given agent in any period is nondecreasing in each of the agent�s type reports,

for any given pro�le of reports by the other agents.

In Section 5, we show how the aforementioned results can be put to work in a couple of simple,

yet illuminating, applications. The �rst application is a setting where the agents�types follow an

autoregressive stochastic process of degree k (AR(k)) and where each agent�s payo¤ is a¢ ne in his

types (but not necessarily in his consumption). This speci�cation can capture for example auctions

with intertemporal capacity constraints, habit formation, and learning-by-doing. In this case, the

principal�s Relaxed Program turns out to be very similar to the expected social surplus maximiza-

tion program, the only di¤erence being that the agents�true values in each period are replaced by

their corresponding �virtual values.�In the AR(k) case, the di¤erence between an agent�s true value

and his virtual value in period t, which can be called his �handicap�in period t, is determined by

the agent�s �rst-period type, the hazard rate of the �rst period type�s distribution, and the impulse

response function, which in the case of an AR(k) process is a constant that is independent of the

realizations of the process.1 Intuitively, the impulse response constant determines the informational

link between period t and period 1, while the �rst-period hazard rate captures the importance that

the principal assigns to the trade-o¤between e¢ ciency and rent-extraction as perceived from period

one�s perspective (just as in the static model). Since the handicaps depend only on the �rst-period

type reports, the Relaxed Program at any period t � 2 can be solved by running an e¢ cient (i.e.,
expected surplus-maximizing) mechanism on the handicapped values. Thus, while constructing an

e¢ cient mechanism may in general require solving an involved dynamic programming problem (due

to possible intertemporal payo¤ interactions), once it is constructed it can be easily converted into

a solution to the pro�t-maximizing Relaxed Program. We also use the fact that the solution to the

Relaxed Program looks �quasi-e¢ cient�from period 2 onward to show that it can be implemented

in a mechanism that is incentive compatible from period 2 onward (following truthtelling in period

one). This can be done for example using the �Team Mechanism�payments proposed by Athey

and Segal (2007) to implement e¢ cient allocation rules. As for incentive compatibility in period

one, we were only able to check it application-by-application, but we have been able to verify it in

a few special settings.

The second application is an environment in which the agents� types continue to follow an

AR(k) process, but where all agents�preferences are additively time-separable, with arbitrary �ow

payo¤s. This setting is particularly simple because the Relaxed Program separates across periods

and states and so we do not need to solve a dynamic programming problem. Under the standard

monotone hazard rate assumption on the agents�initial type distribution and the standard third-

derivative assumption on their utility functions, the Relaxed Program is solved by a Strongly

1The term �handicapped auction� was �rst used in Eso and Szentes (2007), but in a more special setting (see
Section 2).
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Monotone allocation rule, which then implies that it is implementable in an incentive-compatible

mechanism (and one that is robust to information leakage). The optimal mechanism exhibits

interesting properties: for example, an agent�s consumption in a given period depends only on his

initial report and his current report, but not on intermediate reports. This can be interpreted as a

scheme where the agents make up-front payments that reduce their future distortions.

The rest of the paper is organized as follows. Section 2 brie�y discusses some related literature.

Section 3 presents the results for the single-agent case. Section 4 extends the analysis to quasi-linear

settings with multiple agents. Section 5 presents a few applications. All proofs are in the Appendix

at the end of the manuscript.

2 Related Literature

The last few years have witnessed a fast-growing literature on dynamic mechanism design. A

number of recent papers propose transfer schemes for implementing e¢ cient (expected surplus-

maximizing) mechanisms that generalize static VCG and expected-externality mechanisms (e.g.,

Bergemann and Välimäki (2007),Athey and Segal (2007), and references therein), but do not provide

a general analysis of incentive compatibility in dynamic settings.

Our analysis is more closely related to the pioneering work of Baron and Besanko (1984) on

regulation of a natural monopoly and the more recent paper of Courty and Li (2000) on advance

ticket sales. Both papers consider a two-period model with one agent and use the �rst-order

approach to derive optimal mechanisms. The agent�s types in the two periods are serially correlated

and this correlation determines the distortions in the optimal mechanism. Courty and Li also

provide some su¢ cient conditions for the allocation rule to be implementable. Our paper builds on

the ideas in these papers but extends the approach to allow for multiple periods, multiple agents,

and more general payo¤s and stochastic structure. Contrary to these early papers, we also provide

conditions on the primitive environment that validate the ��rst-order approach.�

Battaglini (2005) derives the optimal selling mechanism for a monopolist facing a single con-

sumer whose type follows a two-state Markov process. Our results for a model with continuous

types indicate that many of his predictions are speci�c to his two-type setting (we discuss this in

greater detail in subsection 4.6). Gershkov and Moldovanu (2008a) and Gershkov and Moldovanu

(2008b) consider both e¢ cient and pro�t maximizing mechanisms to allocate objects to buyers

that arrive randomly over time. Since each agent in their model lives only instantaneously, their

incentive constraints are static. The papers�payo¤-equivalence can be viewed as a static result

applied separately to each short-lived agent.2

2Other recent papers that study dynamic pro�t-maximizing mechanisms include Bognar, Borgers, and Meyer-ter
Vehn (2008) and Zhang (2008). The key di¤erence between these papers and ours is that these papers look at
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Eso and Szentes (2007) consider a two-period model with many agents but with a single decision

in the second period. They propose a novel approach to the characterization of optimal mechanisms,

which uses the Probability Integral Transform Theorem ( e.g., Angus, 1994) to represent an agent�s

second-period type as a function of his �rst-period type and a random shock that is independent

of the �rst-period type. In Pavan, Segal, and Toikka (2009), we show how the independent-shock

approach can be used to identify conditions for incentive compatibility in in�nite-horizon settings.

The results in that paper complement those in the current one in that, when applied to �nite-

horizon models, they permit one to validate the dynamic payo¤ formula identi�ed in this paper

under a di¤erent (and not nested) set of assumptions.

Eso and Szentes also derive a pro�t-maximizing auction and coin the term �handicapped auc-

tion� to describe it. However, in their two-period AR(1) setting, it turns out that any incentive-

compatible mechanism, not just a pro�t-maximizing one, can be viewed as a �handicapped auction.�

What we �nd more surprising is that, under the special assumptions of an AR(k) type process and

a¢ ne payo¤s, even with many periods the optimal mechanism remains a �handicapped mechanism.�

The distinguishing feature of such mechanisms is that the allocation in a given period depends only

on that period�s reports and the �rst-period reports but not on any intermediate reports.3

The paper is also related to the macroeconomic literature on dynamic optimal taxation. While

the early literature typically assumes i.i.d. shocks (e.g. Green (1987), Thomas and Worrall (1990),

Atkeson and Lucas (1992)), the more recent literature considers the case of persistent private

information (e.g. Fernandes and Phelan (2000), Golosov, Kocherlakota, and Tsyvinski (2003),

Kocherlakota (2005), Golosov and Tsyvinski (2006), Kapicka (2006), Tchistyi (2006), Biais, Mari-

otti, Plantin, and Rochet (2007), Zhang (2006), Williams (2008)). While our work shares several

modelling assumptions with some of the papers in this literature, its key distinctive aspect is the

general characterization of incentive compatibility as opposed to some of the features of the optimal

mechanism in the context of speci�c applications.4

Dynamic mechanism design is also related to the literature on multidimensional screening, as

noted, e.g., in Rochet and Stole (2003). Nevertheless, there is a sense in which incentive com-

patibility is much easier to ensure in a dynamic mechanism than in a static multidimensional

mechanism. This is because in a dynamic environment an agent is asked to report each dimension

of his private information before learning the subsequent dimensions, and so he has fewer deviations

particular issues that can emerge in dynamic environments, such as costly participation, while our abstracts from
some of these issues but instead provides a more general characterization of incentive-compatibility.

3Also, while Eso and Szentes use their model to study primarily the e¤ects of the seller�s information disclosures
on surplus extraction in a special setting, here we focus on the characterization of incentive compatible mechanisms
in general dynamic settings.

4Some of this work limits its analysis to the characterization of �rst-order conditions for intetemporal consumption
smoothing (the inverse Euler equation), either leaving the dynamics of the optimal mechanism unspeci�ed or solving
for it numerically.
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available than in the corresponding static environment in which he observes all the dimensions at

once. Because of this, the set of implementable allocation rules proves to be signi�cantly larger

in a dynamic environment than in the corresponding static multidimensional environment. For

example, the pro�t-maximizing dynamic allocation rules obtained in our applications would not be

implementable if the agents were to observe all of their private information at the outset of the

mechanism.

We also touch here upon the issue of transparency in mechanisms. Calzolari and Pavan (2006a)

and Calzolari and Pavan (2006b) study its role in environments in which downstream actions (e.g.

resale o¤ers in secondary markets, or more generally contract o¤ers in sequential common agency)

are not contractible upstream. Pancs (2007) also studies the role of transparency in environments

where agents take nonenforceable actions such as investment or information acquisition.

3 Single-agent case

3.1 General setup

3.1.1 The Environment

We consider an environment with one agent and �nitely many periods, indexed by t = 1; 2; : : : ; T .

In each period t there is a contractible decision yt 2 Yt, whose outcome is observed by the agent.
(In the next section we apply the model to a more general setup where yt is the part of the decision

taken in period t that is observed by the agent.) Each Yt is assumed to be a measurable space with

the sigma-algebra left implicit. The set of all possible histories of feasible decisions is denoted by

Y �
QT
�=1 Y� : That Y is a subset of

QT
�=1 Y� captures the possibility that the decisions that are

feasible in period t may depend on the decisions made in previous periods. Given Y; for any t we

then let Y t � fyt 2
Qt
�=1 Y� : (y

t; yt+1; :::; yT ) 2 Y for some (yt+1; :::; yT ) 2
QT
�=t+1 Y�g denote the

set of feasible period-t histories of decisions.5 For the full histories we drop the superscripts so that

y is an element of Y � Y T .

Before the period-t decision is taken, the agent receives some private information �t 2 �t � R.
We implicitly endow the set �t with the Borel sigma-algebra. We refer to �t as the agent�s current

type. The set of all possible type histories at period t is then denoted by �t �
Qt
�=1�� . An element

� of � � �T is referred to as the agent�s type.
The distribution of the current type �t may depend on the entire history of past types and on the

history of past decisions (�t�1; yt�1) 2 �t�1� Y t�1. In particular, we assume that the distribution

of �t is governed by a history-dependent probability measure (�kernel�) Ft
�
�j�t�1; yt�1

�
on �t;

5By convention, all products of measurable spaces encountered in the text are endowed with the product sigma-
algebra.
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such that Ft (Aj�) : �t�1 � Y t�1 ! R is measurable for all measurable A � �t:
6 Note that the

distribution of �t depends only on variables observed by the agent. We denote the collection of

kernels by

F �


Ft : �

t�1 � Y t�1 ! �(�t)
�T
t=1

;

where for any measurable set A, �(A) denotes the set of probability measures on A. We abuse nota-

tion by using Ft(�j�t�1; yt�1) to denote the cumulative distribution function (c.d.f.) corresponding
to the measure Ft(�t�1; yt�1).

The agent is a von Neumann-Morgenstern decision maker whose preferences over lotteries over

�� Y are represented by the expectation of a (measurable) Bernoulli utility function

U : �� Y ! R:

Although some form of time separability of U is typically assumed in applications, this is not needed

for our results. What is essential is only that the agent�s preferences be time consistent, which is

captured here by the assumption that the agent is an expected-utility maximizer, with a Bernoulli

function that is constant over time.

An often encountered special case in applications is one where private information evolves in a

Markovian fashion, and where the agent�s payo¤ is Markovian in the following sense.

De�nition 1 The environment is Markov if

(M1) for all t, and all (�t�1; yt�1) 2 �t�1 � Y t�1, Ft(�t�1; yt�1) does not depend on �t�2, and

(M2) there exists functions


At : �t � Y t ! R++

�T�1
t=1

and


Bt : �t � Y t ! R

�T
t=1

such that for all

(�; y) 2 �� Y ,

U (�; y) =

TX
t=1

 
t�1Y
�=1

A� (�� ; y
� )

!
Bt
�
�t; y

t
�
:

Condition (M1) guarantees that the stochastic process governing the evolution of the agent�s

type is Markov, while Condition (M2) ensures that in any given period t, after observing history�
�t; yt�1

�
, the agent�s von Neumann-Morgenstern preferences over future lotteries depend on his

type history �t only through the current type �t. In particular, it encompasses the case of addi-

tive separable preferences (At
�
�t; y

t
�
= 1 for all t) as well as the case of multiplicative separable

preferences (Bt
�
�t; y

t
�
= 0 for all t < T ).

6Throughout, we adopt the convention that for any set A, A0 � f?g.
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3.1.2 Mechanisms

A mechanism in the above environment assigns a set of possible messages to the agent in each

period. The agent sends a message from this set and the mechanism responds with a (possibly

randomized) decision that may depend on the entire history of messages sent up to period t, and

on past decisions. By the Revelation Principle (adapted from Myerson, 1986), for any standard

solution concept, any distribution on �� Y that can be induced as an equilibrium outcome in any

�indirect mechanism�can also be induced as an equilibrium outcome of a �direct mechanism� in

which the agent is asked to report the current type, and where, in each period, he �nds it optimal

to report truthfully, conditional on having reported truthfully in the past.

Letmt 2 �t denote the agent�s period-tmessage, andmt � (m1; : : :mt) 2 �t denote a collection
of messages, from period one to period t:

De�nition 2 A direct mechanism is a collection


 �



t : �

t � Y t�1 ! �(Yt)
�T
t=1

such that (i) for all t, all measurable A � Yt, 
t(Aj�) : �t � Y t�1 ! [0; 1] is measurable, and (ii)

for all t, all (�t; yt�1) 2 �t � Y t�1, yt 2 Supp[
t(�j�t; yt�1)] =) (yt�1; yt) 2 Y t:

The notation 
t(Ajmt; yt�1) stands for the probability that the mechanism generates yt 2
A � Yt given history (mt; yt�1) 2 �t � Y t�1, while Supp[
t(�j�t; yt�1)] denotes the support of the
distribution 
t(�j�t; yt�1) : The requirement that, for any yt 2 Supp[
t(�j�t; yt�1)]; (yt; yt�1) 2 Y t

guarantees that the decisions taken in period t are feasible given past decisions yt�1.

Given a direct mechanism 
, and a history (�t�1;mt�1; yt�1) 2 �t�1��t�1�Y t�1, the following

sequence of events takes place in each period t:

1. The agent privately observes his current type �t 2 �t drawn from Ft
�
�j�t�1; yt�1

�
.

2. The agent sends a message mt 2 �t.

3. The mechanism selects a decision yt 2 Yt according to 
t(�jmt; yt�1).

A (pure) strategy for the agent in a direct mechanism is thus a collection of measurable functions

� �


�t : �

t ��t�1 � Y t�1 ! �t
�T
t=1

:

De�nition 3 A strategy � is truthful if for all t and all ((�t�1; �t);mt�1; yt�1) 2 �t��t�1�Y t�1,

�t((�
t�1; �t);m

t�1; yt�1) = �t:
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This de�nition identi�es a unique strategy; such a strategy has the property that the agent

reports his current type truthfully after any history, including non-truthful ones. Note that we

are not claiming it is safe to restrict attention to mechanisms with the property that the truthful

strategy (as de�ned above) is optimal at all histories. As explained above, the Revelation Principle

in fact simply guarantees that it is safe to restrict attention to mechanisms in which the agent

�nds it optimal to report truthfully conditional on having reported truthfully in the past; this

is equivalent to requiring that the truthful strategy (as de�ned above) be optimal at all truthful

histories.7

In order to describe expected payo¤s, it is convenient to develop some more notation. First we

de�ne histories. For all t = 0; 1; : : : ; T , let

Ht �
�
�t ��t�1 � Y t�1� [ ��t ��t � Y t�1� [ ��t ��t � Y t

�
;

where by convention H0 = f?g, and H1 = �1 [ (�1 ��1)[ (�1 ��1 � Y1). Then Ht is the set of

all histories terminating within period t, and, accordingly, any h 2 Ht is referred to as a period-t

history. We let

H �
T[
t=0

Ht

denote the set of all histories. A history (�s;mt; yu) 2 H is a successor to history (�̂
j
; m̂k; ŷl) 2 H

if (1) (s; t; u) � (j; k; l), and (2) (�j ;mk; yl) = (�̂
j
; m̂k; ŷl). A history h = (�s;mt; yu) 2 H is a

truthful history if mt = �t.

Fix a direct mechanism 
, a strategy �, and a history h 2 H. Let �[
; �]jh denote the (unique)
probability measure on ���� Y� the product space of types, messages, and decisions� induced
by assuming that following history h in mechanism 
, the agent follows strategy � in the future.

More precisely, let h = (�s;mt; yu). Then �[
; �]jh assigns probability one to (�̂; m̂; ŷ) such that
(�̂
s
; m̂t; ŷu) = (�s;mt; yu). Its behavior on ����Y is otherwise induced by the stochastic process

that starts in period s with history h, and whose transitions are determined by the strategy �,

mechanism 
, and kernels F . If h is the null history we then simply write �[
; �]. We also adopt

the convention of omitting � from the arguments of � when � is the truthful strategy. Thus �[
]

is the ex-ante measure induced by truthtelling while �[
]jh is the measure induced by the truthful
strategy following history h.

7One can safely restrict attention to mechanisms in which the agent �nds it optimal to report truthfully at
any history, provided in each period t, the agent is asked to report his complete history �t as opposed to the new
information �t. This alternative class of direct mechanisms was proposed by Doepke and Townsend (2006). While
these mechanisms permit one to restrict attention to one-stage deviations from truthtelling, the deviations that
one must consider are multidimensional and contingent on possibly inconsistent reporting histories. Whether this
alternative class of mechanisms facilitates the characterization of implementable outcomes is thus unclear.
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Given this notation, E�[
;�]jh[U(~�; ~y)] denotes the agent�s expected payo¤ at the history h when
he plays according to the strategy � in the future.8

For most of the results we use ex-ante rationality as our solution concept. That is, we require

the agent�s strategy to be optimal when evaluated at date zero, before learning �1. In a direct

mechanism this corresponds to ex-ante incentive compatibility de�ned as follows.

De�nition 4 A direct mechanism 
 is ex-ante incentive compatible (ex-ante IC) if for all strategies

�,9

E�[
][U(~�; ~y)] � E�[
;�][U(~�; ~y)]:

This notion of IC is arguably the weakest for a dynamic environment. Thus deriving necessary

conditions for this notion gives the strongest results. However, for certain results it is convenient

to de�ne IC at a given history.

De�nition 5 Given a direct mechanism 
, the agent�s value function is a mapping V 
 : H ! R
such that for all h 2 H,

V 
(h) = sup
�
E�[
;�]jh[U(~�; ~y)]:

De�nition 6 Let h 2 H. A direct mechanism 
 is incentive compatible at history h (IC at h) if

E�[
]jh[U(~�; ~y)] = V 
(h):

In words, 
 is IC at h if truthful reporting in the future maximizes the agent�s expected payo¤

following history h. This de�nition is �exible in that it allows us to generate di¤erent notions of IC

as special cases by requiring IC at all histories in a particular subset. For example, ex-ante IC is

equivalent to requiring IC only at the null history. Or in a static model (i.e., if T = 1), the standard

de�nition of interim incentive compatibility obtains by requiring 
 to be IC at all histories where

the agent knows only his type. In a dynamic model a natural alternative is to require that if the

agent has been truthful in the past, he �nds it optimal to continue to report truthfully. This is

obtained by requiring 
 to be IC at all truthful histories.

The Principle of Optimality implies the following lemma.

Lemma 1 If 
 is IC at h, then for �[
]jh-almost all successors h0 to h, 
 is IC at h0.
8Throughout we use �tildes� to denote random variables with the same symbol without the tilde corresponding

to a particular realization.
9Restricting attention to pure strategies is without loss: By the Revelation Principle the agent can be assumed to

report truthfully on the equilibrium path. As for deviations, a mixed strategy (or a collection of behavioral strategies)
induces a lottery over payo¤s from pure strategies. Thus, if there is a pro�table deviation to a mixed strategy, then
there is also a pro�table deviation to a pure strategy in the support of the mixed strategy.
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In particular, if 
 is ex-ante IC , then truthtelling is also sequentially optimal at truthful future

histories h with probability one, and the agent�s equilibrium payo¤ at such histories is given by

V 
(h) with probability one. We will sometimes �nd it convenient to focus on such histories, and

they are the only ones that matter for ex-ante expectations.

3.2 Necessary Conditions for IC

We now set out to derive a recursive formula for (the derivative of) the agent�s expected payo¤

in an incentive compatible mechanism. This formula extends to dynamic models the standard use

of the envelope theorem in static models to pin down the dependence of the agent�s equilibrium

utility on his true type (see, e.g., Milgrom and Segal, 2002). We begin with a heuristic derivation

of the result. First recall the standard approach with T = 1, which expresses the derivative of the

agent�s equilibrium payo¤ in an IC mechanism with respect to his type as the partial derivative of

his utility function with respect to the true type holding the truthful equilibrium message �xed:

dV 
(�1)

d�1
=

Z
Y1

@U (�1; y1)

@�1
d
1(y1j�1) = E�[
]j�1

"
@U(~�1; ~y1)

@�1

#
:

For the moment we ignore the precise conditions for the argument to be valid.

With T > 1, we may be interested in evaluating the equilibrium payo¤ starting from any

period t. In general, the agent�s expected utility from truthtelling following a truthful history

h = (�t; �t�1; yt�1) is

E�[
]jh
h
U(~�; ~y)

i
=Z

U (�; y) dFT+1
�
�T+1j�T ; yT

�
d
T

�
yT jmT ; yT�1

�
� � � dFt+1

�
�t+1j�t; yt

�
d
t

�
ytjmt; yt�1

�����
m=�

;

where dFT+1(�T+1j�T ; yT ) � 1. Assume for the moment that this expression is su¢ ciently well-

behaved so that the derivatives encountered below exist. Suppose one then replicates the argument

from the static case. That is, consider the agent�s problem of choosing a continuation strategy

given the truthful history (�t; �t�1; yt�1). Assuming that an envelope argument applies, one would

then di¤erentiate with respect to the agent�s current type �t holding the agent�s truthful future

messages �xed. The current type directly enters the payo¤ in two ways. First, it enters the agent�s

utility function U . This gives the term E�[
]jh[@U(~�; ~y)=@�t]. Second, it enters the kernels F . This
gives (after integrating by parts and di¤erentiating within the integral) for each � > t the term

�E�[
]jh
"Z

@F� (�� j~�
��1

; ~y��1)

@�t

@V 
((~�
��1

; �� ); ~�
��1

; ~y��1)

@��
d��

#
:
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This suggests that a marginal change in the current type a¤ects the equilibrium payo¤ through

two di¤erent channels. First, it changes the agent�s payo¤ from any allocation. Second, it changes

the distribution of future types in all periods � > t, and hence leads to a change in the period-�

expected utility captured by the derivative of the value function V 
 evaluated at the appropriate

history.

While the above heuristic derivation isolates the e¤ects of the current type on the agent�s

equilibrium payo¤, it does not address the technical conditions for the derivation to be valid. In

fact, in general the di¤erentiability of the value function at future histories can not be taken for

granted so that the actual formal argument is more involved. (See the discussion after Proposition

1.) Furthermore, we do not want to impose any restriction on the mechanism 
 to guarantee

di¤erentiability of the value function. This would clearly be restrictive, for example, for the purposes

of deriving implications for optimal mechanisms. Instead, we seek to identify properties of the

environment that guarantee that, in any IC mechanism, the value function is su¢ ciently well

behaved.

Our derivation makes use of the following assumptions.

Assumption 1 For all t, �t = (�t; �t) � R for some �1 � �t � �t � +1.

Assumption 2 For all t, and all (�t�1; yt�1) 2 �t�1 � Y t�1,
R
j�tjdFt(�tj�t�1; yt�1) < +1.

Assumption 3 For all t, and all (�t�1; yt�1) 2 �t�1 � Y t�1, the c.d.f. Ft(�j�t�1; yt�1) is strictly
increasing on �t.

Assumption 4 For all t, and all (�; y) 2 �� Y , @U(�; y)=@�t exists and is bounded uniformly in
(�; y).

Assumption 5 For all t, all � < t, and all (�t; yt�1) 2 �t � Y t�1, @Ft(�tj�t�1; yt�1)=@�� exists.
Furthermore, for all t, there exists an integrable function Bt : �t ! R+ [ f+1g such that for all
� < t, and all (�t; yt�1) 2 �t � Y t�1,

��@Ft(�tj�t�1; yt�1)=@�� �� � Bt(�t):

Assumption 6 For all t, and all yt�1 2 Y t�1, the probability measure Ft
�
�j�t�1; yt�1

�
is continu-

ous in �t�1 in the total variation metric.10

Assumptions 1 and 4 are familiar from static settings (see, e.g., Milgrom and Segal, 2002). The

assumption that each �t is open permits us (a) to accommodate the possibility of an unbounded

10See, e.g., Stokey and Lucas (1989) for the de�nition of the total variation metric.
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support (e.g. �t = R), and (b) to avoid quali�cations about left and right derivatives at the
boundaries. All subsequent results extend to the case that �t is closed. Assumptions 2 and 3

are also typically made in static models. Assumption 2 is trivially satis�ed if �t is bounded.

Assumption 3 is a full support assumption, which is related to Assumption 1. While Assumption 1

requires that the set of feasible types be connected, Assumption 3 requires that the set of relevant

types also be connected. The assumption that the support �t is history-independent simpli�es

some of the proofs but is not essential; one may for example accommodate the case that �t follows

an ARIMA process with bounded noise, in which case Assumption 3 is violated (see e.g. Pavan,

Segal, and Toikka (2009)).11

Assumption 5 requires that the distribution of the current types depends su¢ ciently smoothly

on past types. The motivation for it is essentially the same as for requiring that, even in static

settings, utility depends smoothly on types (i.e., Assumption 4). In a dynamic model the agent�s

expected payo¤ depends on his true type both through the utility function U and the kernels F .

The combination of Assumptions 4 and 5 guarantees that the agent�s expected payo¤ depends

smoothly on types.12 Since Assumption 5 does not have a counterpart in the static model, it is

instructive to consider what restrictions it imposes on the stochastic process for �t. In particular,

it implies that the partial derivative of the expected current type with respect to any past type �� ,
@
@��
E[~�tj�t�1; yt�1], exists and is bounded uniformly in (�t�1; yt�1)� see Lemma A1 in the Appendix.
It turns out that for non-Markov settings Assumption 5 by itself does not impose enough

smoothness on the dependence of the kernels on past types, which is why we impose also Assumption

6. Note that when the functions Ft
�
�j�t�1; yt�1

�
are absolutely continuous, this assumption is

equivalent to the continuity of their densities in �t�1 in the L1 metric.

We are now ready to state our �rst main result.

Proposition 1 Suppose Assumptions 1-6 hold. (If the environment is Markov, then Assumption

6 can be dispensed with.) If 
 is IC at the truthful history ht�1 �
�
�t�1; �t�1; yt�1

�
, then

V 
(�t; h
t�1) is Lipschitz continuous in �t, and for a.e. �t,

@V 
(�t; h
t�1)

@�t
=

E�[
]j(�t;h
t�1)

"
@U(~�; ~y)

@�t
�

TX
�=t+1

Z
@F� (�� j~�

��1
; ~y��1)

@�t

@V 
((~�
��1

; �� ); ~�
��1

; ~y��1)

@��
d��

#
:

(1)

11Depending on the notion of IC, the assumption of connectedness may also be dropped. This is the case, e.g., if
one requires IC at all possible �t. Without connectedness, the interpretation however becomes an issue. For example,
consider a static model where �1 = [0; 1] but where F assigns probability one to the set f0; 1g. Is this a model with
a continuum of types in which IC is imposed for all �1 2 [0; 1], or a model with two types with IC imposed only on
�1 2 f0; 1g?
12A weaker joint (or �reduced form�) assumption imposing restrictions directly on the expected payo¤ as opposed

to U and F separately would also su¢ ce, although need not be easier to verify.
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The recursive formula (1) pins down how the agent�s equilibrium utility varies as a function of

the current type �t. It is a dynamic generalization of Mirrlees�s static envelope theorem formula

(Mirrlees, 1971) (which obtains as a special case when T = t = 1). As suggested in the heuristic

derivation preceding the result, an in�nitesimal change in the current type has two kinds of e¤ects

in a dynamic model. First, there is a direct e¤ect on the �nal utility from decisions, which is

captured by the partial derivative of U with respect to �t. This is the only e¤ect present in static

models. With more than one period, there is a second, indirect, e¤ect through the impact of the

current type on the distribution of future types. This is captured by the sum within the expectation.

The e¤ect of the current type �t on the distribution of period � type is captured by the partial

derivative of F� with respect to �t. The induced change in utility is evaluated by considering the

partial derivative of the period-� value function V� with respect to �� .

The proof, which is in the appendix, is by backward induction, rolling backwards an envelope

result at each stage. The argument is not trivial because, contrary to the static case, the continuation

payo¤ cannot be assumed to be di¤erentiable in the current type. This is because the continuation

payo¤ is itself a recursive formulation of the agent�s future optimizations. Hence the standard

version of the envelope theorem does not apply. However, we show that, at each history, the value

function is Lipschitz continuous in the current type �t, and thus has left- and right-side derivatives

with respect to �t everywhere. We then prove an envelope theorem similar to those in Milgrom

and Segal (2002) and in Ely (2001) that relates the side derivatives of the value function to the

side derivatives of the objective function (the continuation payo¤) evaluated at the optimum. The

backward induction in the proof uses this envelope theorem to roll backward the side derivatives.

A �nal complication arises from the fact that, as noted by Ely (2001), an envelope theorem based

on side derivatives yields payo¤ equivalence only if the possible �kinks� in the objective function

are �convex� (i.e., open upwards). However, it turns out that whenever a maximizer exists, the

value function has convex kinks. Thus, along the equilibrium path, where truthtelling is optimal

by incentive compatibility (with probability one), any kinks in the value function must indeed be

convex.

Remark 1 While we have restricted the agent to observe a one-dimensional type in each period, the

same necessary condition (1) for incentive compatibility can be applied to a model in which the agent

observes a multidimensional type in each period, by restricting the agent to observe one dimension

of his current type at a time and report it before observing the subsequent dimensions. Indeed,

since this restriction only reduces the set of possible deviations, it preserves incentive compatibility,

and so condition (1) must still hold. However, incentive compatibility is harder to ensure when the

agent observes several dimensions at once (see Remark 2 for more detail).
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3.2.1 Closed-form expression for expected payo¤ derivative

The recursive formula for the partial derivative of V 
 with respect to current type �t in Proposition

1 can be iterated backwards to get a closed-form formula. Although this can in principle be done

under the assumptions of the proposition, a more compact expression obtains if we make the

following additional assumption.

Assumption 7 For all t and all
�
�t�1; yt�1

�
2 �t�1 � Y t�1, the function Ft

�
�j�t�1; yt�1

�
is ab-

solutely continuous with density ft
�
�tj�t�1; yt�1

�
> 0 for a.e. �t 2 �t.

The existence of a strictly positive density allows us to write the formula in (1) terms of ex-

pectation operators rather than integrals. Using iterated expectations then yields the following

result.

Proposition 2 Suppose Assumptions 1-7 hold. (If the environment is Markov, then Assumption

6 can be dispensed with.) If 
 is IC at the truthful history ht�1 � (�t�1; �t�1; yt�1), then

V 
(�t; h
t�1) is Lipschitz continuous in �t, and for a.e. �t,

@V 
(�t; h
t�1)

@�t
= E�[
]j(�t;h

t�1)

"
TX
�=t

J�t (
~�
�
; ~y��1)

@U(~�; ~y)

@��

#
;

(2)

where J tt (~�
t
; ~yt�1) � 1 and

J�t (�
� ; y��1) �

X
K2N, l2NK+1:
t=l0<:::<lK=�

KY
k=1

I lklk�1(�
lk ; ylk�1) for � > t;

with

Iml (�
m; ym�1) � �@Fm(�mj�

m�1; ym�1)=@�l
fm(�mj�m�1; ym�1)

:

The intuition for the formula in (2) is as follows. The term Iml can be interpreted as the �direct

response�of signal �l to a small change in signal �m, m > l: The term J�t can then be interpreted

as the �total�impulse response of �t to �� , � > t: It incorporates all the ways in which �t can a¤ect

the distribution of �� , both directly and through its e¤ect on the intermediate signals observed by

the agent. The calculation of J�t counts all possible chains of such e¤ects. For example, in the

Markov case, Iml = 0 for l < m � 1, hence we have J�t
�
�� ; y��1

�
=

�Y
k=t+1

Ikk�1(�
k; yk�1) �there is

only one chain of e¤ects, which goes through all the periods.
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Example 1 Let �t evolve according to an AR(k) process:

�t =

kX
j=1

�j�t�j + "t,

where �t = 0 for any t � 0; �j 2 R for any j = 1; :::; k, and where "t is the realization of the random
variable ~"t distributed according to some absolutely continuous c.d.f. Gt with strictly positive density

over R if t � 2 and over a connected set �1 � R if t = 1, with (~"s)Ts=1 jointly independent. For

convenience, hereafter we let �j � 0 for all j > k. Then

F�
�
�� j���1; y��1

�
= G�

0@�� � kX
j=1

�j���j

1A ;

so that for any � > t,

I�t
�
�� ; y��1

�
� �

@F�
�
�� j���1; y��1

�
=@�t

f� (�� j���1; y��1)
= ���t;

and

J�t
�
�� ; y��1

�
=

X
M2N, l2NM+1:t=l0<:::<lM=�

MY
m=1

�lm�lm�1 :

Thus in this case the impulse response J�t
�
�� ; y��1

�
is a constant that does not depend on the

realizations of (�; y) (but may still depend on t and � ). In the special case of an AR(1) process we

have

I�t
�
�� ; y��1

�
=

(
�1 if � = t+ 1

0 otherwise,

which implies that J�t
�
�� ; y��1

�
= (�1)

��t.

3.3 Su¢ cient conditions for IC

While the formula in (2) summarizes local (�rst-order) incentive constraints, it does not imply

the satisfaction of all (global) incentive constraints. In this section we formulate some su¢ cient

conditions for incentive compatibility. These conditions generalize the well-known monotonicity

condition, which together with the �rst-order condition characterizes incentive-compatible mecha-

nisms in the static model with a one-dimensional type space. The static characterization cannot be

extended to the dynamic model, which could be viewed as an instance of a multidimensional mech-

anism design problem, for which the characterization of incentive compatibility is more di¢ cult

(see, e.g., Rochet and Stole, 2003). More precisely, there are two sources of di¢ culty in ensuring
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incentive compatibility in a dynamic setting: (a) in general one needs to consider multiperiod devi-

ations, since once the agent lies in one period, his optimal continuation strategy may require lying

in subsequent periods as well;13 and (b) even if one focuses on single-period deviations, in which

the agent misrepresents his current one-dimensional type, the decisions assigned by the mechanism

from that period onward form a multidimensional decision space.

While these problems make it hard to have a complete characterization of incentive compatibil-

ity, we can still formulate su¢ cient conditions for IC that prove useful in a number of applications.

Problem (a) is sidestepped by focusing on environments in which we can assure that truthtelling

is an optimal continuation strategy even following deviations, and so incentive compatibility can

be assured by checking one-stage deviations. While this focus is quite restrictive, it includes all

Markov environments, as well as some other interesting cases� see for example the application to

sequential auctions with AR(k) values considered in subsection 5.2. Problem (b) is sidestepped by

formulating a monotonicity condition that, while not always necessary for IC, is su¢ cient and is

easy to check in applications.

Proposition 3 Suppose the environment satis�es the assumptions of Proposition 2. Fix any period

t and for any period-t history h, let

D
 (h) � E�[
]jh
"

TX
�=t

J�t (
~�
�
; ~y��1)

@U(~�; ~y)

@��

#
:

Suppose that for any truthful history
�
�t�1; �t�1; yt�1

�
,

(i) E�[
]j((�t�1;�t);�t�1;yt�1)[U(~�; ~y)] is Lipschitz continuous in �t, and for a.e. �t,

d

d�t
E�[
]j((�

t�1;�t);�t�1;yt�1)[U(~�; ~y)] = D

�
(�t�1; �t); (�

t�1; �t); y
t�1� :

(ii) For any mt, for a.e. �t,

�
D


�
(�t�1; �t); (�

t�1; �t); y
t�1��D


�
(�t�1; �t); (�

t�1;mt); y
t�1�� � (�t �mt) � 0; (3)

(iii) 
 is IC at any (possibly non-truthful) period t+ 1 history.

Then 
 is IC at any truthful period-t history.

Proposition 2 implies that condition (i) in Proposition 3 is a necessary condition for the mech-

anism to be IC at all truthful period-t histories (Recall that this means that the agent�s value

13Note that the di¢ culty of controlling for multi-stage deviations is something one must deal with even if one
considers the alternative class of direct mechanisms proposed by Doepke and Townsend (2006) in which the agent
reports his complete history �t in each period t, as opposed to the new information �t:
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function at these histories coincides with the expected equilibrium payo¤). The addition of con-

ditions (ii) and (iii) is then su¢ cient (but in general not necessary) for IC at all truthful period-t

histories. The proof is based on a lemma in the appendix that extends to a dynamic setting a re-

sult by Garcia (2005) for static mechanism design with one-dimensional type and multidimensional

decisions.

The assumption that the mechanism is IC at all period t + 1 histories, including non-truthful

ones, is rather strong, but it is satis�ed in some applications. As a prominent example, in a Markov

setting, the history �t of the agent�s true types does not a¤ect his incentives in period t + 1 after

�t+1 is observed. Thus, any mechanism that is IC at all truthful period t + 1 histories must also

be IC at all period t+ 1 histories. In this case, the Proposition can be iterated backward starting

from period T + 1 to establish IC in all periods and at all histories.

Proposition 3 can be generalized to establish the optimality of an arbitrary strategy � at any

arbitrary history h: To this purpose, it su¢ ces to consider a �ctitious mechanism 
̂ that responds

to the agent�s reports about his type �̂t with a recommendation �t (ht�1; �t) about the message

to send in the original mechanism 
: Provided the support of �t (ht�1; �) coincides with the entire
set �t� which guarantees that any deviation in period t from �t (ht�1; �t) can be interpreted as a

misrepresentation of �t to the new mechanism 
̂� then the optimality of � at ht = (ht�1; �t) can be

veri�ed by checking a single-crossing condition similar to the one that in (3) establishes optimality

of a truthful strategy at a truthful history.

4 Multi-agent quasilinear case

We now introduce multiple agents. The multi-agent model we consider features three important

assumptions: (1) the environment is quasilinear (i.e., the decision taken in each period can be

decomposed into an allocation and a vector of monetary payments and the agents�preferences are

quasilinear in the payments), (2) the type distributions are independent of past monetary payments

(but they may still depend on past allocations), and (3) types are independent across agents. After

setting up the model we show how from the perspective of an individual agent, the model reduces

to the single-agent case studied in the previous section.

4.1 Quasilinear environment

There are N agents indexed by i = 1; : : : ; N . In each period t = 1; : : : ; T; each agent i is

shown a nonmonetary �allocation� xit 2 Xit, where Xit is a measurable space, and asked to

make a payment pit 2 R. The set of all feasible histories of joint allocations is denoted by

X �
QT
t=1

QN
i=1Xit: Given X, we then let Xt �

QN
i=1Xit denote the set of period-t feasible
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allocations, X�i;t �
Q
j2f1;:::;Ng;j 6=iXjt the set of period-t allocations for all agents other than i,

and Xt
i �

Qt
s=1Xis, Xt �

Qt
s=1

QN
i=1Xis, and Xt

�i �
Qt
s=1

Q
j2f1;:::;Ng;j 6=iXjs the corresponding

sets of period-t histories. This formulation allows for the possibility that the set of feasible allo-

cations in each period depend on the allocations in the previous periods, and/or that the set of

feasible decisions with each agent depends on the decisions taken with the other agents.14 ;15

Each agent i observes his own allocations xTi but not the other agents�allocations x
T
�i: The

observability of xit should be thought of as a technological restriction: in each period, a mechanism

can reveal more information to agent i than xit, but it cannot conceal xit. As for the payments,

because the results do not hinge on the speci�c information the agents receive about p, we leave

the description of the information the agents receive about p unspeci�ed.

As in the single-agent case, histories are denoted using the superscript notation. For example,�
xt; pt

�
is an element of Xt � RNt.

In each period t, each agent i privately observes his current type �it 2 �it � R. The current
type pro�le is then denoted by �t � (�1t; : : : ; �Nt) 2 �t �

Q
i�it. The distribution of the type

pro�le � 2 � �
QT
t=1�t is described in the following de�nition.

We omit superscripts for full histories, with the exception of xTi � (xi1;:::; xiT ), pTi � (pi1;:::; piT ),
and �Ti � (�i1;:::; �iT ) (and the sets they are elements of). This is to avoid confusion between, e.g.,
xt � (x1t; :::; xNt) and xi � (xi1; :::; xiT ).

Agent i�s payo¤ function is denoted by Ui : ��X � RT ! R.
We then de�ne a quasi-linear environment as follows.

De�nition 7 The environment is quasilinear if the following hold:

1. There is a sequence of decisions (x; p) 2 X � RNT , where x =
�
xT1 ; : : : ; x

T
N

�
is an allocation,

p is a vector of payments, and for all i, xTi is the minimal information about x received by

agent i.

2. The distribution of the type pro�le � is governed by the kernels


Ft : �

t�1 �Xt�1 ! �(�t)
�T
t=1
.

3. For all i, the payo¤ function of each agent i, Ui : � � X � RT ! R, takes the quasilinear
form

Ui(�; x; p
T
i ) = ui(�; x)�

TX
t=1

pit

14For example, the (intertemporal) allocation of a private good in �xed supply �x can be modelled by letting X =
fx 2 RtN+ :

P
it xit � �xg; while the provision of a public good whose period-t production is independent of the level of

production in any other period can be modelled by letting X =
QT
t=1Xt with Xt =

�
xt 2 RN+ : x1t = x2t = ::: = xNt

	
.

15This formulation does not explicitly allow for decisions that are not observed by any agent at the time they are
made; however, such decisions can easily be accomodated by introducing a �ctitious agent observing them. In this
case, one can also interpret xit as the �signal�that agent i receives in period t about the unobservable decision.
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for some measurable ui : ��X ! R.

Note that part 2 restricts the distribution of � to be independent of the payments. As for part

3, note that, for the sake of generality, we allow agent i�s utility to depend on things he does not

observe, namely xT�i and �
T
�i.

16

De�nition 8 We have Independent Types if, for all t, all
�
�t�1; xt�1

�
2 �t�1 �Xt�1,

Ft(�j�t�1; xt�1) =
NY
i=1

Fit(�j�t�1i ; xt�1i );

where for all i, all t; all (�t�1i ; xt�1i ) 2 �t�1i �Xt�1
i , Fit(�j�t�1i ; xt�1i ) is a c.d.f. on �it:

This de�nition is the proper extension of the Independent-Type assumption of static mechanism

design to the dynamic settings considered here; it permits us to extend such static results as revenue-

equivalence and the virtual surplus representation of expected pro�ts. Note that the de�nition can

be broken up into three parts: (i) Conditional on any history (�t�1; xt�1), period-t types are

independent across agents. (ii) The distribution of agent i�s period-t type, Fit(�j�t�1i ; xt�1i ), does

not depend on the other agents�past types, except possibly indirectly through the history of private

decisions xt�1i observed by agent i. (iii) The distribution Fit(�j�t�1i ; xt�1i ) also does not depend on

the history of decisions xt�1�i that the agent has not observed. It is easy to see that if assumptions

(i) or (ii) are not satis�ed, then a mechanism similar to the one proposed by Cremer and McLean

(1988) could be used to fully extract the agents�surplus. It turns out that, if assumption (iii) is not

satis�ed, then a similar full surplus extraction is possible by using a randomized mechanism� see

the discussion after Proposition 4 below.

Throughout this section we will maintain the assumptions that the environment is quasilinear

and that types are independent. To highlight the role of the other assumptions, we will then

dispense with such quali�cation in the subsequent results.

4.2 Multi-agent mechanisms

For most of the analysis we will focus on the Bayesian Nash Equilibria (BNE) of the mechanisms

designed for the environment described above. As discussed for the single-agent case, this solu-

tion concept imposes the weakest form of rationality on the agents�behavior and thus yields the
16Some readers may feel that an agent must always be able to observe his own �nal payo¤ (indeed, this was the

case in the model in Section 3). This is compatible with an interdependent-valuation model in which agent i observes
xT�i and �

T
�i at the end of period T , provided that one assumes that at that moment the game is over, in the sense

that the mechanism does not make payments contingent on reports about ui(�; x): If, instead, in an interdependent-
valuation model, one were to allow agents to report their �nal payo¤s and condition payments on such information,
as in Mezzetti (2004), one would then e¤ectively convert the model into one with correlated private observations, in
which case full surplus extraction is possible.
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strongest necessary conditions for incentive compatibility. The su¢ cient conditions we o¤er, will

however ensure implementation with a stronger solution concept such as (weak) Perfect Bayesian

Equilibrium.

By the revelation principle (adapted from Myerson, 1986), it is without loss of generality to

restrict attention to Bayesian incentive compatible �direct mechanisms� (de�ned more precisely

below) where (1) in each period each agent con�dentially reports his current type �it to the mecha-

nism, and (2) the mechanism reports no information back to the agents (i.e., each agent i observes

only (�Ti ; x
T
i ) plus whatever is assumed observable about the payments).

17 The proof for (1) is the

familiar one. As for (2), suppose there exists an incentive-compatible direct mechanism where more

information is revealed to the agents than what described in (2). Concealing this additional informa-

tion would then amount to pooling di¤erent incentive-compatibility constraints resulting in a new

IC mechanism that implements the same outcomes (i.e., the same distribution over ��X �RNT ).
When exploring the implications of incentive compatibility, it is also convenient to assume

that all payments take place at the very end. This is actually without loss of generality. In fact,

because postponing payments amounts to hiding information, for any IC mechanism in which some

payments are made (and possibly observed) in each period, there exists another IC mechanism in

which all payments are postponed to the end which induces the same distribution over ��X and,

for all �, it induces the same total payments.

For notational simplicity hereafter we restrict attention to deterministic mechanisms. This

entails no loss since randomizations could always be generated by introducing a �ctitious agent

whose type is publicly observed. We will also formulate su¢ cient conditions under which such

randomizations will not be useful.

De�nition 9 A deterministic direct mechanism is a pair h�;  i, where � =


�t : �

t ! Xt

�T
t=1

with

�(�) 2 X for all � 2 � is an allocation rule, and  : �! RN is a (total) payment scheme.

A deterministic direct mechanism h�;  i de�nes the following sequence in each period t, following
a history �t�1 of type observations and a history mt�1 =

�
mt�1
1 ; : : : ;mt�1

N

�
of type reports by the

agents:

1. Each agent i privately observes his current type �it 2 �it drawn from Fit(�j�t�1i ; �t�1i (mt�1)).

2. Each agent i sends a con�dential message mit 2 �it to the mechanism.

3. The mechanism implements the decision �t
�
mt
�
.

4. Each agent i observes �it
�
mt
�
.

17 In our environment there are no actions to be privately chosen by the agents. If the agents were also to choose
hidden actions, then a direct mechanism would also send the agents recommendations for the hidden actions.
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After period T , the mechanism also implements the payments  
�
mT
�
.

A mechanism induces an extensive form game between the agents. A (pure) strategy for agent

i is a complete contingent plan

�i �


�it : �

t
i ��t�1i �Xt�1

i ! �it
�T
t=1

:

Truthful strategies are de�ned as in the single-agent case.

If all agents play truthful strategies, a deterministic allocation rule � induces a stochastic

process on the agents�types � described by the kernels Ft(�j�t�1; �t�1(�t�1)). We let �[�] denote
the resulting probability measure on �. Similarly, if all agents but i are playing truthful strategies,

while agent i follows a strategy �i, this induces a stochastic process on
�
�;mT

i

�
2 ���Ti , which is

described by the kernels F , allocation rule �, and strategy �i. We let �i[�; �i] denote the resulting

probability measure on � � �Ti . Equipped with this notation, we can de�ne ex-ante incentive
compatibility of a mechanism as follows.

De�nition 10 A deterministic direct mechanism h�;  i is ex-ante Bayesian Incentive Compatible
(ex-ante BIC) if for all i and all �i,

E�[�][ui(~�; �(~�))�  i(~�)] � E�i[�;�i][ui(~�; �( ~mT
i ;
~�
T
�i))�  i( ~mT

i ;
~�
T
�i)]:

That is, a mechanism is ex-ante BIC if the truthful strategies form a Bayesian Nash Equilibrium

of the game induced by the mechanism.

4.3 Mapping the multi-agent into the single-agent case

We now show that, from the perspective of each agent, the environment described above can be

mapped into the single-agent model of Section 3. To see this, �x an arbitrary agent i. Given any

deterministic mechanism h�;  i, when all agents other than i (henceforth denoted by �i) are playing
truthful strategies, agent i e¤ectively faces a randomized mechanism where the randomizations are

due to the uncertainty that agent i faces about the other agents� types. Over the course of the

mechanism, agent i only observes (�Ti ;m
T
i ; x

T
i ). However, the mechanism depends on the other

agents� types �T�i through their equilibrium messages; furthermore, agent i�s utility may depend

directly on �T�i and x
T
�i. Thus evaluating the optimality of i�s strategy requires keeping track of his

beliefs about �T�i conditional on the observed history.

Formally the problem faced by agent i can be mapped into the single-agent model considered

in the previous section as follows. For all t < T , let Yit = Xit and Y t
i = Xt

i , while for t = T; let

YiT = XiT �
Q
j 6=i
QT
s=1Xjs ��T�i and then let Y T

i �
QN
j=1

QT
s=1Xjs ��T�i be such that, for each�

(xTi ; x
T
�i); �

T
�i
�
2 Y T

i , (x
T
i ; x

T
�i)

r 2 X; where (xTi ; xT�i)
r
is simply the reorganization of (xTi ; x

T
�i)
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given by (x11; :::; xN1; :::; x1T ; :::; xNT ): Finally, let Yi;T+1 = R and Y T+1
i = Y T

i � R: That is, in
periods t < T , the decision yit = xit consists of the part of the allocation observed by agent i

and Y T
i consists of the set of (feasible) histories of private decisions for agent i: In period T , the

decision yiT also shows the agent the rest of the variables a¤ecting his utility (i.e., the part of the

allocation xT�i unobservable to him and the other agents�types �
T
�i); the set Y

T
i is then constructed

to contain only histories of feasible decisions. Finally, in period T + 1, which is introduced just as

a convenient modelling device, the agent observes his payment pTi :

Agent i�s type �Ti evolves according to the kernels Fi =


Fit : �

t�1
i �Xt�1

i ! �(�it)
�T
t=1

=

Fit : �

t�1
i � Y t�1

i ! �(�it)
�T
t=1
, where the equality is by de�nition of Y t

i . There is no type in

period T + 1 so that, formally, �i;T+1 can be taken to be an arbitrary singleton.

In the single-agent setup, agent i�s payo¤ is de�ned over �Ti � Y T+1
i , where Y T+1

i �
QT+1
t=1 Yit.

However, by construction �Ti � Y T+1
i is simply a reordering of ��X �R, the domain of agent i�s

payo¤ function Ui in the multi-agent environment.

Agent i faces a randomized mechanism 
i = 
i[�;  ] �



it : �

t
i � Y t�1

i ! �(Yit)
�T+1
t=1

con-

structed as follows. Let Hi �
�
(�si ;m

t
i; y

u
i ) 2 �si ��ti � Y u

i : T + 1 � s � t � u � s� 1 � �1
	
de-

note the set of agent i�s private histories and Hi(�) � Hi denote the subset of Hi that is feasible

given �: Formally, Hi(�) �
�
(�si ;m

t
i; y

u
i ) 2 Hi : y

u
i = �ui (m

u
i ;m

u
�i) for some m

u
�i 2 �u�i

	
is simply

the collection of private histories with the property that, given agent i�s reports, the decisions

observed by agent i can be obtained as the result of a report by the other agents.

We �rst construct inductively a consistent family of regular conditional probability distrib-

utions (rcpd) that represent the evolution of agent i�s beliefs about �T�i, conditional on observ-

able allocations and his own messages.18 Fix t � T . Suppose that, for all periods � � t, all

m��1
i ; a rcpd ��i;��1(�j�

��1
i (m��1

i ; ~�
��1
�i )) on �

��1
�i exists with the property that, for any y��1i =

���1i (m��1
i ; ���1�i ); �

��1
�i 2 ���1�i ; �

�
i;��1(�j�

��1
i (m��1

i ; ~�
��1
�i ) = y��1i ) assigns measure one to the set

f���1�i 2 ���1�i : ���1i (m��1
i ; ���1�i ) = y��1i g: Note that the conditioning here is on the random vari-

able ���1i (m��1
i ; ~�

��1
�i ) taking values in Y

��1
i . The assumption clearly holds vacuously for t = 1.

Now, for all mt
i, the rcpd �

�
i;t�1(�j�

t�1
i (mt�1

i ; ~�
t�1
�i )) and the kernels F�i;t(�j�t�1�i ; �

t�1
�i (m

t�1
i ; �t�1�i ))

induce a probability measure on �t�i.
19 Since �t�i � R(N�1)t, a rcpd of ~�

t
�i given �(�

t
i(m

t
i;
~�
t
�i)) al-

ways exists, where �(�ti(m
t
i;
~�
t
�i)) denotes the sigma-algebra generated by the random variable

�ti(m
t
i;
~�
t
�i) (see, e.g., Theorem 10.2.2 in Dudley, 2002). Furthermore, it is easy to see that

there also always exists a rcpd with the property that, for any y�i = ��i (m
�
i ; �

�
�i); �

�
�i 2 ���i;

��i;� (�j��i (m�
i ;
~�
�
�i) = y�i ) assigns measure one to the set f���i 2 ���i : ��i (m�

i ; �
�
�i) = y�i g: We then

let ��i;t(�j�ti(mt
i;
~�
t
�i)) be such rcpd. Consistency of the family follows by construction. At t = T the

decision yiT reveals to the agent �T�i, and hence his beliefs are degenerate in periods T and T + 1.

18See, e.g., Dudley (2002) for the de�nition of a regular conditional probability distributions.
19Formally, F�i;t(�j�t�1�i ; �

t�1
�i (m

t�1
i ; �t�1�i )) �

Q
j 6=i Fjt(�j�

t�1
j ; �t�1j (mt�1

i ; �t�1�i )):
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Given the system of rcpd ��i � h��i;t�1 : �
t�1
i � Y t�1

i ! �(�t�1�i )iTt=2, in each period t, agent i�s
beliefs over (�t�i;m

t
�i; x

t�1
�i ) at any feasible private history hit = (�

t
i;m

t
i; y

t
i) assign probability one

to (�t�i;m
t
�i; x

t
�i) 2 �t�i ��t�i �Xt

�i such that m
t
�i = �t�i and x

t
�i = �t�i(m

t
i; �

t
�i):

The randomized mechanism 
i = 
i[�;  ] is then derived as follows. Let t < T and �x a history

(�ti;m
t
i; y

t�1
i ). Then for any measurable A � Yit, the probability that yit 2 A is


it(Ajmt
i; y

t�1
i ) �Z

f�t�i2�t�i:�it(mti;�t�i)2Ag
dF�i;t(��i;tj�t�1�i ; �

t�1
�i (m

t�1
i ; �t�1�i ))d�

�
i;t�1

�
�t�1�i j�

t�1
i (mt�1

i ; ~�
t�1
�i ) = yt�1i

�
:

The measure 
iT (�jmT
i ; y

T�1
i ) is de�ned analogously except that the integral is over the set

�
�T�i 2 �T�i :

�
�iT (m

T
i ; �

T
�i); �

T
�i(m

T
i ; �

T
�i); �

T
�i
�
2 A

	
:

Finally, 
i;T+1(�jmT
i ; (x

T
i ; x

T
�i; �

T
�i)) is de�ned to be a point mass at  (m

T
i ; �

T
�i). This de�nes the

randomized direct mechanism 
i = 
i[�;  ].

Thus, from the perspective of agent i, there is a decision yit in each period t, his type �it evolves

according to kernels Fi, utility is given by Ui, and he is facing a randomized direct mechanism 
i.

This is the setup considered in the single-agent part.

Now, a strategy �i together with a private history hi 2 Hi induce a probability measure

�i[
i; �i]jhi on �Ti � �Ti � Y T+1
i . Since 
i is derived from the multi-agent mechanism h�;  i,

we abuse notation and write �i[h�;  i ; �i]jhi to emphasize the connection to the original mech-
anism. For the truthful strategy and the null history the measure is then denoted �i[�;  ]jhi
and �i[h�;  i ; �i], respectively. The agent�s payo¤ from truthtelling following history hi is thus

E�i[�; ]jhi [Ui(~�
T
i ; ~y

T+1
i )] = E�i[�; ]jhi [Ui(~�; ~x; ~pTi )], where the equality is by de�nition of y

T+1
i . We

can then de�ne the value function V 
i[�; ]i : Hi ! R and incentive compatibility at a private history
hi analogously to the single-agent case.

It will be convenient to let �Ti [�; �i]jhi denote the marginal of �i[h�;  i ; �i]jhi on �Ti ��Ti �Y T
i

given private history hi, with �Ti [�]jhi in case �i is the truthful strategy. Thus, �Ti [�; �i]jhi is a
probability measure on types, messages, and nonmonetary allocations, but not on the payments

(which by our convention are only made in period T+1). The role of this notation is to highlight the

fact that the stochastic process over everything but the payments in the quasilinear environment is

determined by the allocation rule � and independently of the payment rule  . Since the payment

scheme  is a deterministic function of the messages (which under �Ti [�]jhi are truthful), we can
use �Ti [�]jhi to write agent i�s payo¤ under a truthful strategy as E�

T
i [�]jhi [ui(~�; ~x) +  i(~�)].
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4.4 Revenue equivalence

Suppose the assumptions in Proposition 1 hold for any i. We then have that in any mechanism that

is IC for agent i at a feasible truthful private history ht�1i =
�
�t�1i ; �t�1i ; xt�1i

�
, the derivative of the

value function with respect to �it does not depend on the payment scheme. Under the assumptions

of Proposition 1, this can be seen by iterating (1) backward starting from t = T .

In a quasi-linear environment, the aforementioned proposition thus implies that, in any ex-ante

BIC mechanism, the value function of each agent i at �[�]-almost every truthful private history

hti =
�
�it; h

t�1
i

�
; t � 1, is pinned down by the allocation rule � up to a constant ki(ht�1i ) that may

depend on ht�1i , but not on �it: This in turn implies that the �innovation�E�[�][ i(~�)j~�it; ~ht�1i ] �
E�[�][ i(~�)j~ht�1i ] in the expected transfer of each agent i due to his own type �it is the same in

any two ex-ante BIC deterministic mechanisms h�;  i and h�;  ̂i implementing the same allocation
rule.20

Using the law of iterated expectations, one can also get rid of the dependence of the constant

ki(h
t�1
i ) on the history ht�1i . To see this, suppose there is a single agent i and assume, for simplicity,

that there are only two periods. Now consider any two ex-ante BIC deterministic mechanisms

h�;  i and h�;  ̂i implementing the same allocation rule �. Then in period two, for �[�]-almost
every truthful history h1i = (�i1; �i1; �(�i1)), there exists a scalar �i(h1i ) = Ki(�i1) such that, for

any �i2, V 
i[�; ]
�
�i2; h

1
i

�
� V 
i[�; ̂]

�
�i2; h

1
i

�
= Ki(�i1). A similar result also applies to period

one: there exists a scalar Ki such that, for each �i1, V 
i[�; ] (�i1) � V 
i[�; ̂] (�i1) = Ki. Because

V 
i[�; ] (�i1) � V 
i[�; ̂] (�i1) is simply the expectation of V 
i[�; ]
�
�i2; h

1
i

�
� V 
i[�; ̂]

�
�i2; h

1
i

�
, we

then have that Ki(�i1) = Ki for all �i1: Clearly, the same result extends to any T: Furthermore,

because the value function coincides with the equilibrium payo¤ with probability one and because

the latter is simply the di¤erence between the expectation of u(~�
T
; �(~�

T
)) and the expectation of

 (~�
T
), we have that the entire payment scheme  is uniquely determined by the allocation rule �

up to a scalar.

Next, consider a setting with multiple agents. Provided that types are independent, then the

total payment that each agent i expects to make to the mechanism as a function his period-one

type is uniquely determined by the allocation rule � up to a scalar Ki that does not depend on �i1.

This is the famous "revenue equivalence" result extensively documented in static environments.

More generally, one can show that the same result extends to any arbitrary period t � 1 provided
that the following condition holds.

Assumption 8 (DNOT) Decisions do Not A¤ect Types: For all i = 1; :::; N , t = 2; :::; T , �t�1i 2
�t�1i ; the distribution Fit

�
�j�t�1i ; xt�1i

�
does not depend on xt�1i .

20Given a mechanism h�;  i ; E�[�][ i(~�)j~hti] denotes the expectation of  i(~�) conditional on the random variable
~hti, where, as usual, conditional expectations are interpreted as Radon-Nikodym derivatives.
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We then have the following result.

Proposition 4 Suppose that, for each i = 1; :::; N , the assumptions of Proposition 1 hold. Consider

any two ex-ante BIC deterministic mechanisms h�;  i and h�;  ̂i implementing the same allocation
rule �.

(i) Then for all i, there exists a Ki 2 R such that

E�[�][ i(~�) j ~�i1]� E�[�][ ̂i(~�) j ~�i1] = Ki:

(ii) If, in addition, assumption DNOT holds (with N = 1; assumption DNOT can be dispensed

with), then, for all i and any t; s,

E�[ i(~�) j ~�
t
i]� E�[ ̂i(~�) j ~�

t
i] = E�[ i(~�) j ~�

s
i ]� E�[ ̂i(~�) j ~�

s
i ]: (4)

The value of Proposition 4 is twofold: (a) it sheds light on certain real-world institutions (for

example, it can be used to establish revenue-equivalence across di¤erent dynamic auctions formats);

(b) it facilitates the characterization of pro�t-maximizing mechanisms by permitting one to express

the principal�s expected payo¤ as expected virtual surplus, as illustrated below. Both (a) and

(b) use the result of Proposition 4 only for t = 1: However, the property that, when decisions do

not a¤ect types, the di¤erence in expected payments remains constant over time in the sense of

condition (4) also turns useful in certain applications.

Note also that the result in Proposition 4 can be sharpened by considering a stronger solution

concept. Suppose one is interested in mechanisms with the property that each agent �nds it optimal

to report truthfully even after being shown at the beginning of the game, before learning his period-

one type, the entire pro�le of the other agents� types �T�i. Then a simple iterated expectation

argument similar to the one sketched above implies that, for each agent i, payments are uniquely

determined not only in expectation but for each state (�Ti ; �
T
�i): given any pair of ex-ante BIC

deterministic mechanisms h�;  i and
D
�;  ̂

E
implementing the same allocation rule, for any i there

exists a scalar Ki(�
T
�i) such that  i(�

T
i ; �

T
�i) �  ̂i(�

T
i ; �

T
�i) = Ki(�

T
�i) for any �

T
�i. (We provide

su¢ cient conditions for the resulting mechanism to satisfy this robustness to information leakage

in Proposition 9 below.) This strengthening is the dynamic extension of the static result whereby

going from BIC to dominant-strategy incentive compatibility pins down the payment of each type

of each agent up to a function of the other agents�types.

Lastly, note that a key assumption in Proposition 4 is that types are independent. As mentioned

above, this assumption has two parts: First, it requires that, given (�t�1; xt�1), current types are

independent across agents; Second it requires that the distribution of each agent i�s current type

�it depends only on things observable to agent i, that is, on (�t�1i ; xt�1i ). The importance of the
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�rst part for revenue equivalence is well understood. The arguments are the same as in static

environments (see, e.g., Cremer and McLean, 1988). The importance of the second part may be

less obvious. To see it, suppose for simplicity that there are only two periods and assume that

the distribution of �i2 depends not only on �i1; xi1 but also on a variable x�i;1 that is not directly

observed by agent i but which is observed by the principal (or by whoever runs the mechanism).

Depending on the application, one may think of x�i;1 as the amount of R&D commissioned to a

research lab (the principal) by competitive clients (the other agents); alternatively, one may think

of x�i;1 as the unobservable quality of a product supplied by the principal to buyer i. If x�i;1 is

known to the principal but not to agent i and if it is correlated with �i2, then the principal can

extract all the private information that agent i possesses about �i2 for free (the arguments here are

once again the same as in the case of correlated types). This clearly precludes revenue equivalence.

4.5 Dynamic virtual surplus and optimal mechanisms

In a static setting, the envelope formula permits one to calculate the agents� information rents,

providing a useful tool for designing optimal mechanisms. We show here how this approach extends

to a dynamic setting. We start by showing how the dynamic payo¤ formula derived in Section 3

permits one to compute expected rents and then show how the latter can be used to derive optimal

mechanisms.

Suppose that, in addition to the N agents, there is a �principal�(referred to as �agent 0�) who

designs the mechanism and whose payo¤ takes the quasilinear form

U0(�; x; p) = u0(x; �) +
NX
i=1

pi

for some measurable function u0 : ��X ! R. As standard in the literature, we assume that the
principal designs the mechanism and then makes a take-it-or-leave-it o¤er to the agents in period

one after each agent has observed his �rst-period type.21 We then restrict the principal to o¤er a

mechanism that is accepted in equilibrium by all agents with probability one. Hereafter, we will

refer to any such mechanism as an Individually-Rational Bayesian-Incentive-Compatible (IR-BIC)

mechanism.22

The requirement that all agents accept the mechanism gives rise to participation constraints in

period 1. In addition, agents might have the ability to quit the mechanism at later stages, which

21 If the principal could approach the agents at the ex-ante stage, before they learn their private information, she
could extract all the surplus and hence she would implement an e¢ cient allocation rule.
22While our de�nition of IR-BIC mechanism requires that almost all types �1 �nd it optimal to participate and

that for almost all �1 the value function coincides with the equilibrium payo¤ under truthtelling (by all agents), in
many applications it is simple to guarantee that participation and truthful reporting be optimal for all �1:
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may give rise to participation constraints in subsequent periods. However, the principal can always

relax all the participation constraints after the initial acceptance decision by asking each agent to

post a bond when accepting the mechanism; this bond is forfeited if the agent quits the mechanism,

else is returned to the agent after period T .23 While the possibility of bonding clearly simpli�es

the analysis, in many applications of interest, participation can be guaranteed in each period even

without asking the agent to post bonds, by choosing an appropriate distribution of the transfers

over time.

Hereafter, we thus restrict attention to the participation constraints that each agent faces at

the moment he is o¤ered the mechanism. This constraint requires that each agent�s expected payo¤

in the mechanism upon observing his �rst-period type be at least as high as the payo¤ the agent

obtains by refusing to participate in the mechanism (i.e. his reservation payo¤). For simplicity, we

assume that reservation payo¤s are equal to zero for all agents and all types. The participation

constraints can then be written as

V 
i[�; ](�i1) � 0 for all i, almost all �i1 2 �i1: (5)

The principal�s problem thus consists in choosing an ex-ante BIC mechanism h�;  i that maxi-
mizes her expected payo¤ among those that satisfy the agents�period-1 participation constraints.

While this problem appears quite complicated, it can be simpli�ed by �rst setting up a �Relaxed

Program�that contains only a subset of the constraints, and then providing conditions for a solution

to the Relaxed Program to satisfy all of the constraints. In particular, the Relaxed Program

replaces all the incentive-compatibility constraints with the local incentive-compatibility conditions

embodied in the period-1 dynamic payo¤ formula derived in Section 3. Speci�cally, assuming for

simplicity that the distributions satisfy Assumption 7, according to Proposition 2, ex-ante incentive-

compatibility for agent i implies that

V 
i[�; ](�i1) is Lipschitz continuous, and for a.e. �i1,

@V 
i[�; ](�i1)

@�i1
= E�

T
i [�]j�i1

"
TX
�=1

J�i1(
~�
�
i ; ~x

��1
i )

@ui(~�; ~x)

@�i�

#
:

(6)

The requirement that h�;  i is ex-ante BIC then implies that, for each i = 1; ::::; N , agent i�s

ex-ante equilibrium expected payo¤ coincides with the expectation of his period-1 value func-

tion. Condition (6) can then be used to calculate the agents�expected information rents. Letting

23The possibility of bonding relies on the following assumptions: (a) unrestricted monetary transfers (in particular,
unlimited liability); (b) quasilinear utilities (which rules out any bene�t from consumption smoothing); and (c)
utilities in the mechanism being bounded from below and utilities from quitting being bounded from above. If these
assumptions are not satis�ed, one has to consider participation constraints in all periods, which makes the analysis
harder, but still doable in certain applications.
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�i1(�i1) � fi1(�i1)=(1� Fi1(�i1)) denote the hazard rate of the distribution Fi1 and integrating by

parts, then gives

E�[�][Ui(~�; �(~�);  i(~�))] = E�[�][V 
i[�; ](~�i1)] (7)

= E�[�]
"

1

�i1(
~�i1)

TX
�=1

J�i1(
~�
�
i ; �

��1
i (~�

��1
))
@ui(~�; �(~�))

@�i�

#
+ V 
i[�; ](�i1):

As for the participation constraints, the Relaxed Program considers only those for the lowest types

�i1:

V 
i[�; ](�i1) � 0 (8)

Finally, the relaxed program treats the functions V 
i[�; ](�i1) in (7) and (8) as control variables

that can be chosen independently from (�;  ). Formally, the Relaxed Program can be stated as

follows.

Pr :

8<: max
�; ;(V 
i[�; ](�i1))

N
i=1

E�[�][U0(~�; �(~�);  (~�))]

s.t., for all i = 1; :::; N; (7) and (8) hold

Substituting (7) into the principal�s payo¤ then gives the following result.

Lemma 2 Suppose that, for each i = 1; :::; N , the assumptions of Proposition 2 hold, and �i1 >

�1. Then the principal�s expected payo¤ in any IR-BIC mechanism h�;  i equals

E�[�][U0(~�; �(~�);  (~�))] =

E�[�]
"
NX
i=0

ui(~�; �(~�))�
NX
i=1

1

�i1(
~�i1)

TX
t=1

J ti1(
~�; �(~�))

@ui(~�; �(~�))

@�it

#

�
NX
i=1

V 
i[�; ](�i1):

In what follows we will refer to the expression

E�[�]
"
NX
i=0

ui(~�; �(~�))�
NX
i=1

1

�i1(
~�i1)

TX
t=1

J ti1(
~�; �(~�))

@ui(~�; �(~�))

@�it

#
; (9)

as the �expected dynamic virtual surplus.� It is then immediate that a necessary and a su¢ cient

condition for (�;  ; (V 
i[�; ](�i1))
N
i=1) to solve the Relaxed Program is that the allocation rule �

maximizes the expected dynamic virtual surplus, that the participation constraints of the lowest

period-1 types bind, i.e.

V 
i[�; ](�i1) = 0 for all i; (10)
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and that the payment function  satis�es (7). Clearly, if the solution to the relaxed program satis�es

all the incentive and participation constraints, then it also solves the �Full Program�that consists

in maximizing the principal�s ex-ante expected payo¤ among all mechanisms that are IR-BIC. We

then have the following result.

Proposition 5 Suppose that, for each i = 1; :::; N , the assumptions of Proposition 2 hold, and

�i1 > �1. Suppose there exists an IR-BIC mechanism h�;  i such that the allocation rule �
maximizes the �expected dynamic virtual surplus� (9), the lowest types� participation constraints

(10) bind, and all the participation constraints (5) are satis�ed. Then the following are true:

(i) the mechanism h�;  i solves the Full Program;
(ii) in any mechanism that solves the Full Program, the allocation rule must maximize the

expected dynamic virtual surplus (9);

(iii) the principal�s expected payo¤ cannot be increased using randomized mechanisms.

Of course, Proposition 5 is only useful if one can indeed ensure that a solution to the Relaxed

Program satis�es all the incentive and participation constraints. We will give some su¢ cient con-

ditions for this in subsection 4.7. Below we �rst focus on the Relaxed Program and characterize

the distortions in the optimal allocation rule relative to the e¢ cient one.

4.6 Distortions

In this subsection we analyze the allocative distortions featured by the solution to the Relaxed

Program. First, we show that the classical static result about downward distortions extends to the

dynamic model under appropriate assumptions. Second, we show that the other classical static

result, that the magnitude of distortion monotonically decreases with type, need not extend to

dynamic settings, i.e. one may naturally obtain e¢ cient decisions both for the highest and the

lowest type and distortions for intermediate types.

To �x ideas, we start with a special class of environments in which the expected virtual surplus

(9) can be maximized simultaneously for all periods and states, obviating the need to solve a

dynamic programming problem. This occurs when, in addition to assumption DNOT (which ensures

that the stochastic process � over � is exogenous and does not depend on the mechanism), the set

of feasible allocations in any period t is independent of the allocations in the previous periods, and

payo¤s separate over time.

Assumption 9 (DSEP) Separability in decisions: In addition to DNOT, X =
QT
t=1Xt and, for

all i = 0; :::; N , all (�; x) 2 ��X, ui (�; x) =
PT

t=1 uit
�
�t; xt

�
.
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If DSEP holds, then the Relaxed Program is solved by requiring that for all periods t, ��almost

all �t,

�t
�
�t
�
2 arg max

xt2Xt

"
NX
i=0

uit
�
�t; xt

�
�

NX
i=1

1

�i1 (�i1)
J ti1
�
�ti
� @uit ��t; xt�

@�it

#
(11)

We compare allocation rules solving (11) to e¢ cient allocation rules ��, which, for any period t

and ��almost all �t, solve

��t
�
�t
�
2 arg max

xt2Xt

"
NX
i=0

uit
�
�t; xt

�#
: (12)

Comparing the two programs, one can see that distortions are determined by the properties of the

impulse responses J ti1
�
�ti
�
and of the partial derivative of the �ow utility uit

�
�t; xt

�
with respect to

�it: For example, suppose that, in addition to the aforementioned assumptions, the following holds.

Assumption 10 (FOSD) First-Order Stochastic Dominance: For all i = 1; :::; N , all t = 2; :::; T ,

all �it 2 �it, and all xt�1i 2 Xt�1
i , Fit

�
�itj�t�1i ; xt�1i

�
is nonincreasing in �t�1i .

Under this assumption, the impulse responses are nonnegative, i.e. J�it
�
��i ; x

t�1
i

�
� 0. Compar-

ing programs (11) and (12) in the case of a single agent (N = 1) then suggests that in the Relaxed

Program the principal distorts xt to reduce the partial derivative @uit
�
�t; xt

�
=@�it. In the stan-

dard case in which xt is one-dimensional and the agent�s �ow payo¤ uit
�
�t; xt

�
has the standard

single-crossing property, this partial derivative is reduced by reducing xt. Thus, the solution to the

Relaxed Program involves downward distortions in all periods. Intuitively, FOSD means that the

type in each period t > 1 is positively informationally linked to the period-1 type. Then, under the

single-crossing property, a downward distortion in the period-t allocation, by reducing the agent�s

information rent in period t, then also reduces his information rent in period one, thus raising the

principal�s expected payo¤.

The result of downward distortions can be extended to settings that do not satisfy assumption

DSEP and that have many agents, under the following generalization of the single-crossing property.

Assumption 11 (SCP) Single Crossing Property: X is a lattice. Furthermore, for each i =

1; :::; N , ui (�; x) has increasing di¤erences in
�
�Ti ; x

�
.

The assumption that X is a lattice is not innocuous when we have more than one agent: For

example, it holds when each xt describes the provision of a one-dimensional public good, but it need

not hold if xt describes the allocation of a private good (see footnote 14 above for both examples).

The lattice structure of X induces a lattice structure on the set X of all (measurable) decision

rules. We then have the following result.
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Proposition 6 Suppose that, for each i = 1; :::; N , the assumptions of Proposition 2 hold, and

�i1 > �1. Let X 0 � X denote the set of decision rules solving the Relaxed Program and X � � X
denote the set of decision rules maximizing expected total surplus. Suppose that, for all i = 0; :::; N ,

assumptions DNOT, FOSD, and SCP hold, and in addition,

(i) ui (�; x) is supermodular in x,

(ii) @ui(�;x)
@�it

is submodular in x, for all t:

Then X 0 � X � in the strong set order.

Conditions (i) and (ii) hold trivially when DSEP holds and each Xt is a chain (e.g., Xt �
R). The result in the proposition then means that if �0 solves the relaxed problem and �� is

e¢ cient, then the decision rule
�
�0 _ ��

�
t
(�) = �0t (�) _ ��t (�) is e¢ cient and the decision rule�

�0 ^ ��
�
t
(�) = �0t (�) ^ ��t (�) solves the relaxed problem. In particular, if �0 and �� are de�ned

uniquely with probability one, then �0 (�) � �� (�) with probability one. For an example of an

environment that does not satisfy DSEP but where the result nevertheless applies, see the section

5.1.1 on a durable good monopolist.

Next we consider how the magnitude of distortions depends on the types. In the static setting,

the classical conclusion is that the optimal mechanism implements e¢ cient decisions for the highest

type and creates downward distortions for all the other types. Consider now a dynamic setting with

a single agent (N = 1) satisfying DSEP, and consider the allocation rule in a period t > 1. Suppose

that�1t is bounded, and that at its bounds the density functions f1t
�
�1tj�t�11

�
; f1t

�
��1tj�t�11

�
> 0 for

any �t�11 : In this case, the impulse response J t11
�
�t1
�
= 0 when �1t 2

�
�1t;

��1t
	
, and so programs (11)

and (12) coincide.24 Thus, the optimal mechanism implements an e¢ cient decision not only for the

highest but also for the lowest type. To develop some intuition for this result, note that when only

period-1 participation constraints are relevant, the principal distorts the decisions only to reduce

the agent�s period-1 information rents. With time-separable payo¤s, distorting the allocations in

period t is then useful only to the extent that the type in period t is responsive to the period-1

type. When the agent�s type in period t is either the highest or the lowest possible type for that

period, it becomes unresponsive to the period-1 type, which eliminates any reason to distort the

period-t decision. In a Markov model, in which J t11
�
�t1
�
= �t�1�=1I

�+1
1�

�
��+11

�
, following �1t = �1t

or �1t = �1t distortions then vanish also in all subsequent periods, since the responsiveness to the

period-1 type is severed.

As stated, the prediction of no distortion for the lowest and the highest type is however of no

value for it refers to a zero-probability event, and the optimal allocation rule is de�ned only with

probability 1. However, under appropriate continuity assumptions, the �nding of no distortion at

the bounds can be extended to show that distortions are small for types that are close enough

24The derivatives used in calculating J t11
�
�t1
�
at the bounds must be interpreted as the appropriate side derivatives.
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to the bounds. Namely, letting St
�
xt; �

t
1

�
denote the total surplus in period t from allocation

xt (i.e., the objective function in (12)), under the assumption that lim�1t!�1t
J t11
�
�1t; �

t�1
1

�
= 0

the optimal mechanism satis�es 1(�1t;�̂1t) (�1t) �
�
supxt2Xt St

�
xt; �

t
1

�
� St

�
�t
�
�t1
�
; �t1
��
! 0 with �-

probability one as �̂1t ! �1t, where 1A (z) is the indicator function that takes value one when

z 2 A and zero otherwise. Similarly, when lim�1t!��1t
J t11
�
�1t; �

t�1
1

�
= 0, one can show that

1(�̂1t;��1t) (�1t) �
�
supxt2Xt St

�
xt; �

t
i

�
� St

�
�t
�
�ti
�
; �ti
��
! 0 with �-probability one as �̂1t ! ��1t.

Thus, under reasonable assumptions about the stochastic process, the optimal mechanism comes

close to maximizing the total surplus for types that are close to the highest or the lowest type.

It is interesting to contrast this �nding with the conclusions of Battaglini (2005), who studies

a single-agent model satisfying DSEP in which the agent�s type space in each period has only two

elements and the evolution of the agent�s type is governed by a Markov process. In his model, from

the �rst moment the agent�s type turns out to be high, distortions disappears thereafter (this result

is referred to as Generalized No Distortion at the Top, or GNDT). Furthermore, the distortions

occurring when the agent�s type remains low are monotonically decreasing in time and vanish in

the limit as T ! 1 (this result is referred to as Vanishing Distortions at the Bottom, or VDB).

As our analysis suggests, while the result of GNDT is quite robust in single-agent Markov models

satisfying DSEP, the result of VDB need not. In particular, distortions need not be monotonic

neither in type nor in time and need not vanish in the long run.

4.7 Su¢ ciency and Robustness

We now turn to su¢ cient conditions for incentive compatibility. As anticipated in the introduction,

a complete characterization is evasive because of the multidimensional decision space of the problem.

Hereafter, we propose some su¢ cient conditions for a solution to the Relaxed Program to satisfy all

of the incentive and participation constraints; we believe these conditions can help in applications.

First we provide su¢ cient conditions for the participation constraints of all types above the

lowest type to be redundant.

Proposition 7 Suppose that, for each i = 1; :::; N , the assumptions of Proposition 2 hold, and that

�i1 > �1. In addition, suppose that ui (�; x) is increasing in each �it and that assumption FOSD
holds. Then any mechanism h�;  i satisfying the lowest types� participation constraints (10) and
the dynamic payo¤ formula (6) for period one for all i satis�es all the participation constraints (5).

The result follows directly from (6) by noting that, under the conditions in the proposition, the

value function for each agent i is nondecreasing in �i1.

Next, consider incentive constraints. In what follows we provide conditions ensuring not only

that a mechanism is ex-ante Bayesian incentive-compatible, but that it is also incentive compatible
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at all feasible histories on the equilibrium path. More precisely, the value function of each agent i

at any of his truthful private history hi 2 Hi(�) coincides with his equilibrium expected payo¤:

V 
i[�; ] (hi) = E�i[�; ]jhi [ui(~�; ~x)� ~pi]:

This stronger version of incentive-compatibility thus guarantees that the allocation rule � is imple-

mentable also under a stronger solution concept such as weak Perfect Bayesian Equilibrium.

First observe that, starting from any mechanism h�;  i and any corresponding system of beliefs
h�i[�;  ]j(�)iNi=1, one can construct a new payment scheme  ̂ and a system of beliefs h�i[�;  ̂]j(�)iNi=1
such that the resulting expected utility that each agent obtains in

D
�;  ̂

E
in equilibrium (i.e., under

truthtelling by all agents) satis�es the dynamic payo¤ formula at all truthful feasible histories: i.e.,

after any truthful feasible private history hi;t�1 =
�
�t�1i ; �t�1i ; xt�1i

�
2 Hi;t�1(�); any i = 1; :::; N;

any t = 1; :::; T;

�it(�it; hi;t�1) � E�i[�; ̂]j(�it;hi;t�1)
h
ui(~�; ~x)� ~pi

i
is Lipschitz continuous in �it, and for a.e. �it,

@�it(�it; hi;t�1)

@�it
= E�

T
i [�]j(�it;hi;t�1)

24 TX
�=t

J�it

�
~�
�
i ; ~x

��1
i

� @ui �~�; ~x�
@�i�

35 :
(13)

(Recall that �i[�;  ̂]jhit and �Ti [�]jhit denote, respectively, the probability distribution over �T �
�Ti �X �R and the corresponding marginal distribution over �T ��Ti �X; when all agents other
than i play truthful strategies, agent i�s private history is hit, and starting from period t agent i

reports truthfully at all future periods, as de�ned in Subsection 4.3). To construct these payments,

for all i, all t; all (�ti; x
t�1
i ) 2 �ti �Xt�1

i , and all mit 2 �it, let

D
[�]
i (�

t
i; (�

t�1
i ;mit); x

t�1
i ) � E�Ti [�]j(�ti;(�

t�1
i ;mit);x

t�1
i )

"
TX
�=t

J�it(
~�
�
i ; ~x

�
i )
@ui(~�; ~x)

@�i�

#
: (14)

This function measures how agent i�s expected payo¤ in period t changes with �it when the agent

reported truthfully at all preceding periods, he sends a (possibly untruthful) message mit in period

t and then reports truthfully at all subsequent periods. We then have the following result.

Lemma 3 Suppose that, for each i = 1; :::; N , the assumptions of Proposition 2 hold. Let h�;  i be
any deterministic direct mechanism and h�i[�;  ]j(�)iNi=1 a corresponding system of beliefs obtained

from h�;  i using the rcpd of Subsection 4.3. Fix a period t. Consider the payment scheme  ̂
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obtained from h�;  i and h�i[�;  ]j(�)iNi=1 by setting for all i, all � 2 �,

 ̂i (�) =  i (�) + �i
�
�ti; �

t�1
i (�t�1)

�
, where

�i
�
�ti; x

t�1
i

�
� E�

T
i [�]j(�

t
i;�

t
i;x

t�1
i )

h
ui(~�; ~x)�  i(~�)

i
�
Z �it

�̂it

D
[�]
i

��
�t�1i ; z

�
;
�
�t�1i ; z

�
; xt�1i

�
dz;

where �̂it � �it is an arbitrary �nite value in the closure of �it and where h�Ti [�]j(�)iNi=1 are the
marginal distributions over �T��Ti �X of the distributions h�i[�;  ]j(�)iNi=1: Now let h�i[�;  ̂]j(�)iNi=1
denote any system of beliefs whose marginal distributions over �T � �Ti �X are the same as for

h�i[�;  ]j(�)iNi=1: Then for any i, any truthful feasible private history hi;t�1 = (�t�1i ; �t�1i ; xt�1i ) 2
Hi;t�1(�), in period t; under the beliefs �i[�;  ̂]j(�); the mechanism h�;  ̂i satis�es condition (13).

Note that the construction achieves the satisfaction of Condition (13) in period t by adding to

the original payment scheme  i (�) a payment term that depends only on reports up to period t; by

implication, this construction does not a¤ect the agents�incentives in subsequent periods. Thus,

for any given allocation rule �, and any system of beliefs h�Ti [�]j(�)iNi=1; iterating the construction
of the payments backward from period T to period one yields a mechanism that, in any period,

after any truthful feasible private history satis�es Condition (13), all i = 1; :::; N:

Now, using the payments constructed in Lemma 3, we provide a su¢ cient condition for the

allocation rule � to be implementable, which is obtained by specializing Proposition 3 to quasilinear

environments.

Proposition 8 Suppose that, for each i = 1; :::; N , the assumptions of Proposition 2 hold. Let

h�;  i be any deterministic direct mechanism and h�i[h�;  i ; �]j(�)iNi=1 a corresponding system of

beliefs (as described in Section 4.3). Suppose that, for any i = 1; :::; N any � � t + 1; given

�i[h�;  i ; �]j(�); the mechanism h�;  i is IC for agent i at any (possibly non-truthful) period-� feasible
private history hi� 2 Hi� (�). If for all i, all (�ti; x

t�1
i ) such that xt�1i = �t�1i (�t�1i ; �t�1�i ); �

t�1
�i 2

�t�1�i ,

D
[�]
i (�

t
i; (�

t�1
i ;mit); x

t�1
i ) is nondecreasing in mit;

then there exists a payment scheme  ̂ and a system of beliefs h�i[
D
�;  ̂

E
; �]j(�)iNi=1such that, for each

agent i = 1; :::; N; given the beliefs �i[
D
�;  ̂

E
; �]j(�); the mechanism h�;  ̂i is IC at (i) any truthful

period-t feasible private history hit 2 Hi� (�), and (ii) at any (possibly non-truthful) period-� feasible

private history hi� 2 Hi� (�), any � � t + 1: For any i, any �i, any hit, the marginal distribution

of �i[
D
�;  ̂

E
; �i]jhit over �T ��Ti �X is the same as that of �i[h�;  i ; �i]jhit:

To understand this result intuitively, �x a truthful feasible history
�
�t�1i ; �t�1i ; xt�1i

�
and then

let 	t (�it;mit) denote agent i�s expected utility at this history as a function of his new type �it and
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his new report mit when starting from period t+ 1 the agent reports truthfully. One can think of

mit as a one-dimensional �allocation�chosen by agent i in period t. Note that @	t (�it;mit) =@�it =

D
[�]
i (�

t
i; (�

t�1
i ;mit); x

t�1
i ); because, under the beliefs �i[h�;  i ; �]j(�); the mechanism h�;  i is IC at

any (possibly non-truthful) feasible period-� history, � � t + 1; this follows from the dynamic

payo¤ formula (2) applied to the modi�ed mechanism in which agent i�s report of �it is ignored and

replaced with the message mit. If this expression is nondecreasing in mit, then 	t has the single-

crossing property (formally, increasing di¤erences). By standard static one-dimensional screening

arguments, the monotonic �allocation rule�mit (�it) = �it is then implementable (using payments

constructed from the dynamic payo¤ formula using the construction in Lemma 3).

The proposition cannot in general be iterated backward, since it assumes IC at all feasible

period-� ; � � t + 1; histories but then derives IC only at truthful feasible period-t histories. This

re�ects a fundamental problem with ensuring incentives in dynamic mechanisms: once an agent

has lied once, he may �nd it optimal to continue lying, and it is hard to characterize his continu-

ation strategy. However, the proposition can still be applied to some interesting special cases. In

particular, in a Markov environment, an agent�s true past types are irrelevant for incentives given

his current type. This implies that IC at truthful feasible histories implies IC at all feasible histo-

ries. The proposition can then be rolled backward to derive a mechanism that is IC at all feasible

histories. In other words, starting from any system of rcpd h��i i
N
i=1 obtained from � using the

construction of Subsection 4.3, one may construct a transfers scheme  and a system of beliefs such

that, the truthful strategies, together with such beliefs constitute a weak PBE of the mechanism

h�;  i :
The result in Proposition 8 may also be useful in certain non-Markov environments, as illustrated

in subsection 5.2 below.

The monotonicity of D[�]
i (�

t
i; (�

t�1
i ;mit); x

t�1
i ) in mit can be interpreted as a weak monotonicity

condition of the allocation rule �: This is reminiscent of familiar results from static mechanism

design. In particular, when ui satis�es the SCP and N = T = 1; the result in the proposition

coincides with the familiar monotonicity condition that �(mi1) be nondecreasing in mi1: However,

while in those environments, this condition is also necessary, this is not necessarily the case in the

more general environments considered here.

Finally note that Proposition 8 can also be used to analyze the e¤ects of disclosing information

to the agents in the course of the mechanism in addition to the minimal one, as captured by

xit. Such disclosure can be captured formally by introducing a measurable space Xd
it of possible

disclosures to agent i in period t, and then considering the extended set X̂it = Xit �Xd
it, so that

x̂it =
�
xit; x

d
it

�
. While the payo¤and the stochastic process describing the evolution of agent i�s type

continues to depend on x̂it only through xit, the role of xdit is to capture the additional information
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that the mechanism discloses to agent i. The result in Proposition 8 can then be extended to

this environment by rede�ning D[�]
i so that the expectation in (14) is now made conditional on

x̂it =
�
xit; x

d
it

�
instead of just xit. Clearly, the monotonicity condition in the proposition is harder

to satisfy when more information is disclosed, but it may still be possible.

In particular, we can formulate a simple condition on the allocation rule that ensures robustness

to an extreme form of disclosure. Namely, suppose that agent i somehow learns in period t all the

other agents� types �T�i (note that this includes past, current and future ones). Formally, this

can be captured through a disclosure xdit = �T�i. We then say that the mechanism is Other-Ex-

Post incentive compatible for agent i at the feasible private history hit if truthtelling remains an

optimal strategy for agent i in this mechanism when after history hit he is shown xdit = �T�i, and

�T�i is consistent with the history of private decisions observed by agent i: Formally, suppose that

assumption DNOT holds. With an abuse of notation, then let �i[h�;  i; �i]jhit; �T�i denote the
unique probability measure over �Ti ��Ti �Y T+1

i that corresponds to the process that starts after

the history hit = (�ti;m
s
i ; y

u
i ) 2 Hit(�); t � s � u � t � 1; when agent i follows the strategy �i,

all other agents follow a truthful strategy, and in period t the agent is shown xdit = �T�i, with �
T
�i

such that yui = �ui (m
u
i ; �

u
�i) where �

u
�i = (��i;1; :::; ��i;u) 2 �u�i denotes the �rst u � T components

of �T�i;. Note that, as in the single-agent case, this measure is now uniquely pinned down by the

kernels Fi and the strategy �i:

De�nition 11 (i) The mechanism h�;  i is Other-Ex-Post IC (OEP-IC) for agent i at the feasible
private history hit = (�ti;m

s
i ; y

u
i ) 2 Hit(�); t � s � u � t � 1; if, for any xdit = �T�i such that

yui = �ui (m
u
i ; �

u
�i), any �i;

E�i[�; ]jhit;�
T
�i [ui(~�; ~x)� ~pi] � E�i[h�; i;�i]jhit;�

T
�i [ui(~�; ~x)� ~pi]:

(ii) The mechanism h�;  i is OEP-IC at period t if it is OEP-IC for each agent i = 1; :::; N at

any feasible private history hit 2 Hit(�):

(iii) The mechanism is OEP-IC if it is OEP-IC at all t = 1; :::; T:

An appealing property of OEP-IC is that it guarantees that an agent who expects all other

agents to follow a truthful strategy �nds it optimal to report truthfully after any feasible history,

irrespective of whether or not he has been truthful in the past and irrespective of the particular

beliefs he may have about the other agents�types. In other words, truthful strategies, together with

any system of beliefs obtained from h�;  i using any pro�le of rcpd (as described in Subsection
4.3) form a weak PBE of the mechanism.

It turns out that some allocation rules can be implemented in an OEP-IC mechanism, under

some additional assumptions.
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Assumption 12 (PDPD) Payo¤s Depend on Private Decisions: for each i = 1; :::; N; ui (�; x)

depends on x only through xTi .

Proposition 9 Suppose that, for each i = 1; :::; N , the assumption of Proposition 2 hold. Suppose

in addition that assumptions DNOT, FOSD, SCP and PDPD hold and that the mechanism h�;  i
is OEP-IC at any period � � t+ 1. If for all i and all � � t,

�i� (�
� ) is nondecreasing in (�it; : : : ; �i� ) for all �t�1i ; ���i; (15)

then there exists a payment rule  ̂ such that the mechanism
D
�;  ̂

E
is (i) OEP-IC for each agent

i at any truthful feasible private history hit 2 Hit(�), and (ii) OEP-IC at any period � � t+ 1.

For example, in a Markov environment, backward iteration of the result in the proposition

implies that, under its assumptions, any allocation rule that is �strongly monotone� in the sense

that each �it
�
�ti; �

t
�i
�
is nondecreasing in �ti for any given �

t
�i (which Matthews and Moore (1987)

call �attribute monotonicity�) is implementable in an OEP-IC mechanism, and therefore in a BIC

mechanism under any possible disclosure policy.25

While it should be clear from Proposition 8 that strong monotonicity is not necessary for imple-

mentability, it is particularly easy to check it in applications and it does ensure nice robustness to

any kind of information disclosure in the mechanism. Section 5.2 provides examples of applications

where the pro�t-maximizing allocation rule turns out to be strongly monotone.

Remark 2 At this point, the reader may wonder whether we could also ensure robustness to an

agent observing his own future types from the outset. This is not likely. Indeed, if agent i observes

all of his types from the outset, his IC would be characterized as in a multidimensional screening

problem. It is well known that incentives are harder to ensure in this setting. For example, in

the special case with a single agent with linear utility u (�; x) =
TX
t=1

�txt, a necessary condition for

implementability of allocation rule � is the �Law of Supply�

TX
t=1

�
�t
�
�0
�
� �t (�)

� �
�0t � �t

�
� 0 for all �0; � 2 �:

Because the pro�t-maximizing allocation rules derived in applications typically fail to satisfy this

condition, one cannot obtain robustness to the agents�observations of their own future types �for

free.� Thus, while some authors have drawn analogies between dynamic mechanism design and

static multidimensional mechanism design problems (see, e.g., Courty and Li, 2000 and Rochet

25By the de�nition of OEP-IC, any rule that is implementable in an OEP-IC mechanism is then also implementable
as a weak PBE, under any disclosure policy.
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and Stole, 2003), here we highlight an important di¤erence: signi�cantly more allocation rules are

implementable in a dynamic setting in which the agents learn (and report) the dimensions of their

types sequentially over time than in a static setting in which they observe (and report) all dimensions

at once.

Remark 3 The reader may also wonder whether there are natural conditions on the payo¤s and

the kernels that ensure that the allocation rule solving the Relaxed Program is strongly monotone.

Recall from Subsection 4.6 that in a separable environment (i.e. under DSEP) at any period t > 1,

the distortion in xit is determined by the impulse response J ti1(�
t
i) which need not be monotonic in

�it; in particular, when �it is bounded, densities are strictly positive everywhere and the functions

J ti1(�) are continuous, the distortion is zero at both �it = �it and �it = ��it and, under the additional

assumptions of FOSD and SCP, xit is distorted downward for all intermediate �it. Because of

this nonmonotonicity in the distortion, we can have �it
�
�it; �

t�1
i ; �t�i

�
< �

�
�it; �

t�1
i ; �t�i

�
for some

�it > �it. Indeed, it is to ensure that the solution to the Relaxed Program is implementable that

Eso and Szentes (2007) make their Assumption 1 that amounts to requiring that J2i1(�i1; �i2) is

nondecreasing in �i2. However, note that with a bounded type space �i2 and a strictly positive

density, this assumption can be satis�ed only when the impulse response is identically equal to zero

so that �i1 and �i2 are independent. In the applications below we will consider AR(k) processes

with unbounded type spaces in which case the impulse responses are constant� this helps ensuring

strong monotonicity of the solution to the Relaxed Program.

5 Applications

We now show how the results in the previous sections can be put to work by examining a few

applications where the agents� types evolve according to linear AR(k) processes. First, we con-

sider a class of problems in which the optimal mechanism takes the form of a quasi-e¢ cient, or

handicapped, mechanism where distortions depend only on the agents��rst period types. Next, we

consider environments where payo¤s (and incentives) separate over time as it is often assumed in

applications.

5.1 Handicapped mechanisms

Consider an environment where the set of feasible allocations is X � R(N+1)T . Note that this
formulation allows for any possible dependence of the set of feasible decisions in each period on the

history of past decisions.
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The utility of each agent i = 1; : : : ; N (gross of payments) is

ui (�; x) =
TX
t=1

�itxit � ci (x) ; (16)

where ci : R(N+1)T ! R can be interpreted an intertemporal cost function. The principal�s (gross)
payo¤ is u0 (�; x) = v0(x). Note that the cost functions ci and the principal�s payo¤ v0 need

not be time-separable, which permits us to accommodate such dynamic aspects as intertemporal

capacity constraints, habit formation, and learning-by-doing. The private information of each

agent i = 1; : : : ; N is assumed to evolve according to a linear AR(k) process, as in Example 1,

which ensures that the impulse responses are constants J ti1. We assume that the support of the

�rst period innovation "i1 (and hence that of �i1) is bounded from below.

In this environment, the expected dynamic virtual surplus takes the form

E�
"
v0

�
�(~�)

�
+

NX
i=1

"
TX
t=1

�
~�it�it(

~�
t
)� J ti1��1i1 (~�i1)�it(~�

t
)
�
� ci

�
�(~�)

�##
:

Note that the latter coincides with the expected total surplus in a model where the (gross) payo¤

to each agent i is ui(�; x) and where the (gross) payo¤ to the principal is

v̂0(�; x) � v0(x)�
NX
i=1

TX
t=1

J ti1�
�1
i1 (�i1)xit:

This implies that the solution to the Relaxed Program can be obtained by solving an e¢ ciency-

maximization program where the principal has an extra marginal cost J ti1�
�1
i1 (�i1) of allocating a

unit to agent i in period t. In general, this program can be a fairly complex dynamic programming

problem. However, in many applications, its solution can be readily found using existing methods.

What is important to us is the following observation. Assuming the period-one types are reported

truthfully, then any allocation rule that maximizes the expected dynamic virtual surplus can be

implemented through a �Handicapped� e¢ cient mechanism. In period 1 each agent i sends a

message mi1 determining his (time-varying) handicaps J ti1�
�1
i1 (mi1). The game that starts in period

two then corresponds to a private-value environment where each agent i�s payo¤, for i = 1; :::; N; is

as in (16), whereas agent 0�s payo¤ (i.e. the principal�s) is v̂0(�; x): Because the decisions that are

implemented are the e¢ cient decisions for this environment and because this virtual environment

is a private-value one, incentives at any period t � 2 can be provided using for example the �Team
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payments�(Athey and Segal, 2007) de�ned, for all �; by

 i(�) =
X
j 6=i

uj(�; �(�)); (17)

for all i = 1; ::::n, where j 6= i includes also j = 0: We then have the following result (the proof

follows directly from the arguments above).26

Proposition 10 Consider the environment with AR(k) types described above. Given any allocation

rule � that maximizes the expected dynamic virtual surplus, there exists a payment scheme  such

that, irrespective of the beliefs, the mechanism h�;  i is IC for all i at all truthful feasible private
histories hit, any t � 2.

That, under the "Team payments" of (17), each agent �nds it optimal to report truthfully at

any of his truthful history, irrespective of his beliefs about the other agents�types, messages and

decisions, follows from the same arguments that establish dominance-strategy implementation of

e¢ cient rules under VCG payments.

Incentives in the �rst period must be checked application-by-application.27 For example,

incentive-compatibility in period one can be easily guaranteed if the costs ci are identically equal

to zero for all i and if v0(x) is time-separable� the environment then becomes a special case of the

class considered in subsection 5.2.

5.1.1 Durable-good monopolist

As an example of a non-time-separable environment where the optimal mechanism takes the form

of a handicapped mechanism and where incentives can be guaranteed also in period one, consider

the problem of a monopolist selling a durable good. Let N = 1, Xt = f0; 1g for t = 1; : : : ; T ,

where xt = 1 if and only if the buyer owns the good in period t. The fact that the seller is

restricted to sales contracts (rather than rental contracts) is captured in the feasible decision set

X =
n
x 2

QT
�=1X� : xt � xt�1 8t > 1

o
. Thus, the seller chooses only the timing of the sale - the

�rst period t in which xt = 1.

While production costs could be normalized to zero, we can add generality by letting the seller

incur a �ow cost ct in each period t in which the buyer owns the good (ct could be interpreted as

26What is important for the result in Proposition 10 is that (i) the payo¤ of each agent i depends only on �Ti and
that the derivatives of ui with respect to each �it are independent of �Ti ; (ii) that the principal�s payo¤ is independent
of �; and that (iii) the total information indexes are independent of �:
27 In period 1; the model where the principal has payo¤ v̂0(�; x) is one with interdependent values since v̂0(�; x)

depends on the agents�true period-1 types through the hazard rates �i1(�i1). Hence, the implementability of a virtu-
ally e¢ cient allocation rule cannot be guaranteed directly by using Team payments, for the latter induce truthtelling
only with private values.
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service, or as an opportunity, cost). Thus the principal�s (gross) payo¤ is

v(x) = �
TX
t=1

ctxt:

The agent�s (gross) payo¤ is

u (�; x) =

TX
t=1

�txt;

where the current type �t is interpreted as the �ow utility of owning the durable good in period

t.28 The type �t evolves according to an AR(1) process with impulse-response coe¢ cient � 2 (0; 1).
The �rst-period type �1 is distributed on �1 = (�1; ��1) according to an absolutely continuous c.d.f.

F1 with density f1(�) strictly positive on �1 and hazard rate �1(�1) nondecreasing in �1.

The dynamic virtual surplus takes the form

E�
"

TX
t=1

�t(
~�
t
)(~�t � �t�1��11 (~�1)� ct)

#
: (18)

De�nition 12 An allocation rule � is a handicapped cut-o¤ rule if there exist a constant z1 in

the closure of �1, and nonincreasing functions zt : �1 ! R [ f�1;+1g, t = 2; : : : ; T , such that
for all � 2 �,

�1(�1) =

(
1 if �1 > z1,

0 if �1 � z1,

and for t > 1,

�t(�
t) =

(
1 if �t > zt(�1) or �t�1(�

t�1) = 1,

0 otherwise.

Note that handicapped cut-o¤ rules are strongly monotone. It is also easy to see that the

environment satis�es the assumptions of Proposition 9. Furthermore, the environment is Markov.

Thus we can iterate backwards the result of Proposition 9 to show that handicapped cut-o¤ rules

are implementable in a mechanism that is IC at all histories.

Proposition 11 Consider the environment described above. There exists a handicapped cuto¤ rule

that solves the relaxed problem and is part of an optimal mechanism.

The following payment scheme implements the handicapped cuto¤ rule that maximizes the

dynamic virtual surplus (18). In the �rst period the buyer is o¤ered a menu of contracts, indexed

by �1. Each contract entails an up-front payment P (�1) together with an additional payment

28Because there is no risk of confusion, in this example we simplify notation by dropping the subscripts i = 1 from
all variables.
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pt(�1) =
PT

�=t

�
c� + �

��1��11 (�1)
�
to be made at the time the good is purchased. The buyer

chooses a contract and then decides when to buy. The up-front payment P (�1) is computed using

Lemma 3; it guarantees that each type �1 (weakly) prefers the contract (P1(�1); (pt(�1))Tt=1) to

any contract (P1(�̂1); (pt(�̂1))Tt=1), �̂1 6= �1. Given the contract (P1(�1); (pt(�1))Tt=1), it is then

immediate that the buyer has the incentives to choose a purchasing strategy that maximizes the

dynamic virtual surplus (18).

Next, consider the e¢ cient rule� i.e. the policy that maximizes E�
hPT

t=1 �t(
~�
t
)(~�t � ct)

i
. This

rule can be implemented, for example, using the team payments de�ned in (??), which amounts to

setting P (�1) � 0 and pt(�1) �
PT

�=t c� . Comparing these prices to the above payment scheme for

the pro�t-maximizing rule we see that the monopolist optimally reduces the provision of the good

by selling to higher types than what is socially e¢ cient. As a result, the sale may happen later

than in the e¢ cient plan. This permits the monopolist to limit the expected surplus left to the

buyer. Note that, because X is a lattice, this result follows directly from the downward distortions

result of Proposition 6. In fact, by that Proposition, the solution of the relaxed problem continues

to have downward distortions even if we replace the AR(1) process with an arbitrary (possibly

non-Markov) process where decisions do not a¤ect types and where an increase in any past type

has a �rst-order-stochastic-dominance e¤ect on the distribution of the current type (i.e., the process

satis�es assumptions DNOT and FSOD).

5.2 Time-Separable Environments

We now consider environments in which the agents�types continue to follow an AR(k) process as

in Example 1, but where payo¤s and decisions separate over time. The set of possible decisions in

each period t is Xt � RN+1 with X =
QT
t=1Xt. Each agent i (with the principal as agent 0) has

an utility function of the form

ui (�; x) =

TX
t=1

uit(�it; xit);

with the principal�s types �0t being common knowledge. As in the previous subsection, the support

of the �rst period types is assumed to be bounded from below.

This model can �t many applications including sequential auctions, procurement, and regula-

tion.

Proposition 12 Consider the separable environment with AR(k) types described above. Suppose

the assumptions of Proposition 2 hold for each agent i = 1; : : : ; N . Suppose further that for all i =

0; :::; N and all periods t, the following are true: (1) the periodic utility function uit has increasing

di¤erences in (�it; xit); (2) the coe¢ cient �it of the AR(k) process is nonnegative; (3) the �rst-period

hazard rate �i1 (�i1) is nondecreasing; and (4) the partial derivative
@uit(�it;xit)

@�it
is nonnegative and
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submodular in (�it; xit). Then an allocation rule � can be part of a pro�t-maximizing mechanism if

and only if, for all t, �-almost all �t,

�t(�
t) 2 arg max

xt2Xt

(
u0t(�0t; x0t) +

NX
i=1

�
uit(�it; xit)�

J ti1
�i1 (�i1)

@uit(�it; xit)

@�it

�)
: (19)

Furthermore, � can be implemented in an OEP-IC mechanism using payments constructed as fol-

lows. For any agent i = 1; :::; n and all �,

 i(�) =  i1(�i1; �
T
�i) +

TX
t=2

 it(�1; �t);

where for all t � 2,

 it(�1; �t) � uit(�it; �it(�1; �t))�
Z �it

�it

@uit(r; �it(�1; (r; ��i;t)))

@�it
dr; (20)

and29

 i1(�i1; �
T
�i) � E�ij�i1

"
ui((~�

T
i ; �

T
�i); �(~�

T
i ; �

T
�i))�

TX
t=2

 it(�1; (
~�it; ��i;t))

#
(21)

�
Z �i1

�i1

E�ijr
"

TX
�=1

J�i1
@ui((~�

T
i ; �

T
�i); �(~�

T
i ; �

T
�i))

@�i�

#
dr:

The result in Proposition 12 follows essentially from Proposition 9 by observing that, in this

environment, incentives separate over time. That is, the pro�t-maximizing allocation rule can be

implemented using a mechanism where in periods t � 2, given any history, each agent simply

chooses his current message so as to maximize his �ow payo¤ uit� it. This can be seen as follows.
First note, by inspection of (19), that the allocation rule � that maximizes the expected dynamic

virtual surplus has the property that, in each period t, �t(�
t) depends only on the current reports

�t and on the agents�period-1 reports �1. This in turn follows from the fact that (i) preferences are

separable over time, (ii) decisions do not a¤ect types (DNOT), and (iii) the impulse responses J ti�
for the AR(k) processes do not depend on the realized types, and (iv) the set of feasible decisions

in each period t is history-independent, that is, X =
QT
t=1Xt. Thus, for any t � 2, agent i�s

message mit has no direct e¤ect on the allocations in periods � > t and, because the environment

is time-separable (i.e., because (i) and (ii) hold), the allocation in period t has no direct e¤ect on

the future allocations.
29Recall that the notation �ij�ti denotes the unique probability measure on �Ti that corresponds to the stochastic

process that starts in period one with �i1 and whose transitions are given by the kernels of the AR(k) process.
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Now to see that the allocation rule � that maximizes the expected dynamic virtual surplus

is implementable in an OEP-IC mechanism, �x a period t � 2 and a vector of (not necessarily

truthful) �rst-period reports �1. It is useful to think of period t as a static problem indexed by the

�rst-period reports �1. Assumptions (1), (2) and (4) in the proposition (which imply SCP, FOSD,

and PDPD) guarantee that agent i�s allocation �it(�1; �t) in this static problem is monotone in �it

for all (�1; ��i;t). As is well known, a monotone allocation can be implemented using a transfer

 it(�1; �t) that takes the form speci�ed in (20). Furthermore, because the �ow payo¤s uit depend

only on own types (i.e. this is a private-value environment), then in a static setting, such allocation

rule can be implement in dominant strategies. In our dynamic setting, this means that the period-t

allocation can be implemented even if the agents were able to observe the other agents�true types

as well as their messages. In other words, the agents�beliefs are irrelevant. The transfers  it(�1; �t)

thus guarantee that, in each period t � 2, each agent i indeed faces a static problem and �nds it

optimal to report truthfully, regardless of the history, and even if he were able to observe all other

agents�types and reports.30

As for period one, in general providing incentives at t = 1 is more involved. However, note

that assumptions (1)-(4) in the proposition guarantee that the allocation rule that maximizes the

dynamic virtual surplus is strongly monotone in the sense of Proposition 9. Following the same

steps as in the proof of Proposition 9, one can then add to the payments  it(�1; �t)� which for

convenience can be assumed to be made in each of the corresponding periods� a �nal payment of

 i1(�i1; �
T
�i) to be made in period T , after all other agents�types �

T
�i have been revealed. When the

payments  i1(�i1; �
T
�i) are as in (21) then incentives for truthtelling are guaranteed also in period

one.

Finally consider possible implementations of the pro�t-maximizing rule. First, note that in

the linear case (i.e., when uit(�it; xit) = �itxit) the implementation is particularly simple. Suppose

there is no allocation in the �rst period and assume the agents do not observe the other agents�

types (both assumptions simplify the discussion but are not essential for the argument). In period

one, each agent i chooses from a menu of �handicaps� (J ti1�
�1
i1 (�i1))

T
t=1, indexed by �i1: Then in

each period t � 2, a �handicapped�VCG mechanism is played with transfers as in (20). Lastly,

in period T + 1, each agent is asked to make a �nal payment of  i1(�i1; ~�
T
�i) (Eso and Szentes

(2007) derive this result in the special case of a two-period model with allocation only in the second

period.) This logic extends to nonlinear payo¤s in the sense that in the �rst period the agents still

choose from a menu of future plans (indexed by the �rst-period type). In the subsequent periods

the distortions now generally depend also on the current reports through the partial derivatives

30 In fact, due to time-separability, in periods t � 2 the mechanism constructed above is not only OEP IC but truly
ex-post IC (in the sense that, each agent i would �nd it optimal to report truthfully even if, in addition to learning
all other agents�types, he were able to learn also all his own future types).
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@uit(�it;xit)
@�it

. However intermediate reports (i.e., reports in periods 2; : : : ; t � 1) remain irrelevant
both for the period-t allocation and for the period-t payments.

6 Conclusions

We showed how the �rst-order approach to the characterization of necessary conditions for incentive-

compatibility can be adapted to a dynamic setting with general payo¤s, many agents, a continuum

of types, and decision-controlled (and possibly non-Markov) processes.

We then derived su¢ cient conditions for incentive compatibility that permit one to verify the

optimality of truthful reporting at a truthful history once the optimality of truthful reporting at

future histories has been veri�ed. This backward-induction approach to the characterization of

incentive-compatibility is based on the idea that, once the optimal continuation strategy is known,

the analysis of incentive-compatibility at any point in time can be reconducted to a static problem

with unidimensional types and multi-dimensional decisions.

We then specialized the analysis to multi-agent quasi-linear settings with independent types

(across agents). We �rst quali�ed in what sense the celebrated revenue equivalence result from static

mechanism design extends to dynamic environments. We then showed how optimal mechanisms

can be obtained by �rst solving a relaxed program that consists in searching for an allocation rule

that maximizes the expected dynamic virtual surplus (the latter is obtained by considering only the

lowest period-1 types participation constraints and applying the dynamic payo¤ formula to express

the agents� intertemporal rents in terms of the allocation rule). The analysis then proceeds by

verifying that the allocation rule that solves the relaxed program induces a certain dynamic single-

crossing condition on the agents�payo¤s which is the analog of the familiar monotonicity condition

from static mechanism design. Finally, the characterization is completed by iterating backwards

the dynamic payo¤ formula to construct the supporting transfers. We illustrated how this approach

can be put to work in a variety of applications including the design of revenue-maximizing auctions

for buyers whose valuations change over time.

Throughout, we maintained two key assumptions. The �rst one is that of a �nite horizon; the

second is time-consistency of the agents�preferences. As mentioned in the introduction, extending

the analysis to in�nite-horizon settings requires a di¤erent approach. This alternative approach

(which we explore in Pavan, Segal, and Toikka (2009)) complements the one in the present paper in

that, when applied to a �nite-horizon model, it permits one to validate the dynamic payo¤ formula

under a di¤erent (and not nested) set of conditions. Relaxing the time-consistency assumption is

challenging and represents an interesting line for future research.
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Appendices

A Statement and proof of Lemma A.1

Lemma A.1. Assume the environment satis�es Assumption 2. Then Assumption 5 implies that

for any t; and any � < t

9B < +1 :

���� @@�� E[�tj�t�1; yt�1]
���� � B 8(�t�1; yt�1):

Proof of Lemma A.1. Note that by Assumption 2 the expectation E[�tj�t�1; yt�1] exists. Taking
its derivative we have���� @@��

Z
�tdFt(�tj�t�1; yt�1)

���� =
����� lim�0�!��

R
�td[Ft(�tj�t�1�� ; �

0
� ; y

t�1)� Ft(�tj�t�1�� ; �� ; y
t�1)]

�0� � ��

�����
=

������ lim
�0�!��

Z
Ft(�tj�t�1�� ; �

0
� ; y

t�1)� Ft(�tj�t�1�� ; �� ; y
t�1)

�0� � ��
d�t

�����
=

�����Z @Ft(�tj�t�1; yt�1)
@��

d�t

���� ;
where the �rst equality follows by the de�nition of a derivative, the second equality follows by

Lemma 4 below, and the last equality follows by the dominated convergence theorem since the

integrand is bounded for all �t by the integrable function Bt(�t). Furthermore,�����Z @Ft(�tj�t�1; yt�1)
@��

d�t

���� � Z B(�t)d�t;

from which the claim follows by taking B �
R
B(�t)d�t:

B Proof of Proposition 1

Two kinds of period-t histories appear frequently in the proof; those including the message mt but

excluding the realization of yt, and those including the current type �t but excluding the message

mt. For expositional clarity we introduce notation to distinguish the value functions associated

with these two types of histories. For the �rst kind, we let 	t
�
�t;mt; yt�1

�
� V 
(�t;mt; yt�1)

denote the the supremum continuation expected utility. For the second kind, we continue to use the

value function V 
 but in order to clarify notation further we drop the superscript 
 and add a time

subscript. Thus we write Vt(�t;mt�1; yt�1) � V 
(�t;mt�1; yt�1). Also, it is convenient to introduce

period T+1 as a notional device and then let 	T+1
�
�T+1;mT+1; y

�
= VT+1

�
�T+1;m; y

�
= U (�; y).
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Note that, by de�nition,

	t
�
�t;mt; yt�1

�
=

Z
Vt+1

�
�t+1;mt; yt

�
dFt+1

�
�t+1j�t; yt

�
d
t

�
ytjmt; yt�1

�
; (22)

Vt+1
�
�t+1;mt; yt

�
= sup

mt+1
	t+1

�
�t+1;

�
mt;mt+1

�
; yt
�
:

The proof proceeds in a series of Lemmas.

Lemma 4 For any Lipschitz function G : �t ! R,Z
G(�t)dFt(�tj�t�1; yt�1)�

Z
G(�t)dFt(�tj�t�1; yt�1)

= �
Z
G0(�t)[Ft(�tj�t�1; yt�1)� Ft(�tj�t�1; yt�1)]d�t;

where all the integrals exist.

Proof. First note that the �rst two integrals exist, since lettingM be the Lipschitz constant for G,

and picking any �̂t 2 �t, we can write jG (�t)j �
���G��̂t����+M ����̂t���+M j�tj, and all terms have �nite

expectations with respect to the probability distributions Ft
�
�j�t�1; yt�1

�
and Ft(�j�t�1; yt�1), the

last term by Assumption 2. Thus, we can use integration by parts to writeZ
G (�t)dFt

�
�tj�t�1; yt�1

�
�
Z
G (�t) dFt

�
�tj�t�1; yt�1

�
=

Z
G(�t)d[Ft

�
�tj�t�1; yt�1

�
� Ft

�
�tj�t�1; yt�1

�
]

= �
Z
G0 (�t) [Ft

�
�tj�t�1; yt�1

�
� Ft

�
�tj�t�1; yt�1

�
]d�t

+
�
G (�t) [Ft

�
�tj�t�1; yt�1

�
� Ft

�
�tj�t�1; yt�1

�
]
����t=�t
�t=�t

:

When both ��t and �t are �nite, we have Ft
�
��tj�t�1; yt�1

�
= Ft

�
��tj�t�1; yt�1

�
= 1 and Ft

�
�tj�t; yt�1

�
=

Ft
�
�tj�t�1; yt�1

�
= 0, and the Lemma follows. If �t = �1, then as �t ! �1,

��G(�t)[Ft ��tj�t�1; yt�1�� Ft ��tj�t�1; yt�1�]��
�
�
jG(�̂t)j+M j�̂tj

� ��Ft(�tj�t�1; yt�1)� Ft(�tj�t�1; yt�1)��
+M j�tj

�
Ft
�
�tj�t�1; yt�1

�
+ Ft

�
�tj�t�1; yt�1

��
�
�
jG(�̂t)j+M j�̂tj

� ��Ft ��tj�t�1; yt�1�� Ft ��tj�t�1; yt�1���
+M

�Z
z��t

jzj dFt
�
zj�t�1; yt�1

�
+

Z
z��t

jzj dFt
�
zj�t�1; yt�1

��
! 0;
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where the �rst term converges to zero since Ft
�
�tj�t�1; yt�1

�
is continuous in �t�1 by Assumption

5, and the second term converges to zero by 2. The case where �t = +1 and �t ! +1 is treated

symmetrically.

For any function G : �! R, let

@�G (�)

@�t
= lim sup

�0t"�t

G
�
�0t; ��t

�
�G (�)

�0t � �t
and

@+G (�)

@�t
= lim inf

�0t#�t

G
�
�0t; ��t

�
�G (�)

�0t � �t
:

The following Lemma is similar to Theorem 1 of Milgrom and Segal (2002) and Theorem 1 of Ely

(2001).

Lemma 5 In an ex-ante IC mechanism 
, for any integers 1 � t � � and for �[
]-almost all

histories
�
�� ; ���1; y��1

�
,

@�V�
�
�� ; ���1; y��1

�
@�t

�
@�� 	�

�
�� ; �� ; y��1

�
@�t

and
@+V�

�
�� ; ���1; y��1

�
@�t

�
@+	�

�
�� ; �� ; y��1

�
@�t

:

Proof. By ex-ante IC we have that, for �[
]-almost all histories
�
�� ; ���1; y��1

�
, V�

�
�� ; ���1; y��1

�
=

	�
�
�� ; �� ; y��1

�
. By de�nition of V� and 	� , we have for all

�
�� ; ���1; y��1

�
and all �0t,

V�
��
�0t; �

�
�t
�
; ���1; y��1

�
� 	�

��
�0t; �

�
�t
�
; �� ; y��1

�
:

Combining the two we have for �[
]-almost all histories
�
�� ; ���1; y��1

�
and all �0t,

V�
��
�0t; �

�
�t
�
; ���1; y��1

�
� V�

�
�� ; ���1; y��1

�
� 	�

��
�0t; �

�
�t
�
; �� ; y��1

�
�	�

�
�� ; �� ; y��1

�
.

Taking �0t > �t, dividing by �0t � �t, and then taking liminf as �0t # �t yields the second inequality
in the lemma. Taking �0t < �t, dividing by �0t � �t, and then taking limsup as �0t " �t yields the �rst
inequality in the lemma.

The next two lemmas don�t rely on IC.

Lemma 6 For each t, 	t
�
�t;mt; yt�1

�
and Vt

�
�t;mt�1; yt�1

�
are equi-Lipschitz continuous in �t

� i.e., there exists M such that for all �t; �t;mt; yt�1,

��	t ��t;mt; yt�1
�
�	t

�
�t;mt; yt�1

��� �M
�t � �t ;��Vt ��t;mt�1; yt�1

�
� Vt

�
�t;mt�1; yt�1

��� �M
�t � �t :

Proof. By backward induction on t. 	T+1
�
�T+1;mT+1; yT

�
= U

�
�T ; yT

�
is equi-Lipschitz con-

tinuous in �T by Assumption 4. Now we show that for any t, if 	t
�
�t;mt; yt�1

�
is equi-Lipschitz
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continuous in �t, then Vt
�
�t;mt�1; yt�1

�
and 	t�1

�
�t�1;mt�1; yt�2

�
are equi-Lipschitz continuous

in �t and �t�1, respectively.

Indeed, suppose 	t
�
�t;mt; yt�1

�
is equi-Lipschitz continuous in �t with a constant M . Then

��Vt(�t;mt�1; yt�1)� Vt(�t;mt�1; yt�1)
�� � sup

mt

��	t(�t; (mt�1;mt); y
t�1)�	t(�t; (mt�1;mt); y

t�1)
��

� M
�t � �t ;

and so Vt is also equi-Lipschitz continuous in �t. But then,

��	t�1 ��t�1;mt�1; yt�2
�
�	t�1

�
�t�1;mt�1; yt�2

���
� sup

yt�1

����Z Vt
��
�t�1; �t

�
;mt�1; yt�1

�
dFt

�
�tj�t�1; yt�1

�
�
Z
Vt
��
�t�1; �t

�
;mt�1; yt�1

�
dFt

�
�tj�t�1; yt�1

�����
� sup

yt�1

����Z �Vt ���t�1; �t� ;mt�1; yt�1
�
� Vt

��
�t�1; �t

�
;mt�1; yt�1

��
dFt

�
�tj�t�1; yt�1

�����
+ sup
yt�1

����Z Vt
�
�t;mt�1; yt�1

�
dFt

�
�tj�t�1; yt�1

�
�
Z
Vt
�
�t;mt�1; yt�1

�
dFt

�
�tj�t�1; yt�1

�����
� sup

yt�1

Z ��Vt ���t�1; �t� ;mt�1; yt�1
�
� Vt

��
�t�1; �t

�
;mt�1; yt�1

��� dFt ��tj�t�1; yt�1�
+ sup
yt�1

Z ��Ft ��tj�t�1; yt�1�� Ft ��tj�t�1; yt�1���
�����@Vt

�
�t;mt�1; yt�1

�
@�t

����� d�t
�M

�t�1 � �t�1�1 + Z Bt (�t) d�t

�
,

where the �rst inequality uses (22), the third inequality uses Lemma 4, and the last inequality uses

Assumption 5. This shows that 	t�1 is equi-Lipschitz continuous in �t�1.

Lemma 7 For any integers � ; t such that 1 � t < � � T , and any
�
���1;m��1; y��2

�
;

@�	��1
�
���1;m��1; y��2

�
@�t

�
Z
@�V�

�
�� ;m��1; y��1

�
@�t

dF�
�
�� j���1; y��1

�
d
��1

�
y��1jm��1; y��2

�
(23)

�
Z
@V�

�
�� ;m��1; y��1

�
@��

@F�
�
�� j���1; y��1

�
@�t

d��d
��1
�
y��1jm��1; y��2

�
;

@+	��1
�
���1;m��1; y��2

�
@�t

�
Z
@+V�

�
�� ;m��1; y��1

�
@�t

dF�
�
�� j���1; y��1

�
d
��1

�
y��1jm��1; y��2

�
(24)

�
Z
@V�

�
�� ;m��1; y��1

�
@��

@F�
�
�� j���1; y��1

�
@�t

d��d
��1
�
y��1jm��1; y��2

�
:

54



Proof. Using (22), write for any �0t 6= �t

	��1
��
�0t; �

��1
�t
�
;m��1; y��2

�
�	��1

�
���1;m��1; y��2

�
�0t � �t

(25)

=

Z
V�
��
�0t; �

�
�t
�
;m��1; y��1

�
� V�

�
�� ;m��1; y��1

�
�0t � �t

dF�
�
�� j���1; y��1

�
d
��1

�
y��1jm��1; y��2

�
+

Z
V�
�
�� ;m��1; y��1

�
d

"
F�
�
�� j
�
�0t; �

��1
�t
�
; y��1

�
� F�

�
�� j���1; y��1

�
�0t � �t

#
d
��1

�
y��1jm��1; y��2

�
+

Z
V�
��
�0t; �

�
�t
�
;m��1; y��1

�
� V�

�
�� ;m��1; y��1

�
�0t � �t

d
�
F�
�
�� j
�
�0t; �

��1
�t
�
; y��1

�
� F�

�
�� j���1; y��1

��
�

d
��1
�
y��1jm��1; y��2

�
:

We examine separately the behavior of each of the three integrals in (25) as �0t ! �t:

� Third integral: Note that for any y��1;

Z
V�
��
�0t; �

�
�t
�
;m��1; y��1

�
� V�

�
�� ;m��1; y��1

�
�0t � �t

d
�
F�
�
�� j
�
�0t; �

��1
�t
�
; y��1

�
� F�

�
�� j���1; y��1

��
! 0 as �0t ! �t;

since the integrand is bounded by Lemma 6, and the total variation of the measure

d
�
F�
�
�� j
�
�0t; �

��1
�t
�
; y��1

�
� F�

�
�� j���1; y��1

��
converges to zero by Assumption 6. Thus, the third integral is bounded in absolute value by

a term that converges to zero as �0t ! �t: Now note that, in the Markov case,

V�
��
�0t; �

�
�t
�
;m��1; y��1

�
� V�

�
�� ;m��1; y��1

�
=

t�1Y
l=1

Al

�
�l; y

l
� �
Bt
�
�0t; y

t
�
�Bt

�
�t; y

t
��

+

 
At
�
�0t; y

t
�

At (�t; yt)
� 1
!"

V�
�
�� ;m��1; y��1

�
�

tX
s=1

 
s�1Y
l=1

Al

�
�l; y

l
�!

Bs (�s; y
s)

#
:

Using Lemmas 4 and 6 the third integral then becomes

�
 
At
�
�0t; y

t
�

At (�t; yt)
� 1
!Z

@V�
�
�� ;m��1; y��1

�
@��

F�
�
�� j
�
�0t; �

��1
�t
�
; y��1

�
� F�

�
�� j���1; y��1

�
�0t � �t

d�� :

(26)

By Lemma 6 and Assumption 5 the integral in (26) is bounded. Thus, the expression in (26)
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goes to zero as �0t ! �t provided that At
�
�t; y

t
�
is continuous in �t, which in turn follows

from Assumption 4 as long as Bs (�s; ys) are not identically zero for s > t. When instead

Bs (�s; y
s) are identically zero for all s > t, then

V�
��
�0t; �

�
�t
�
;m��1; y��1

�
� V�

�
�� ;m��1; y��1

�
=

t�1Y
l=1

Al

�
�l; y

l
� �
Bt
�
�0t; y

t
�
�Bt

�
�t; y

t
��

in which case the third integral is identically equal to zero.

� Second integral: Using Lemma 6 and Lemma 4 it can be expressed as

�
Z
F�
�
�� j���1�t ; �

0
t; y

��1�� F� ��� j���1; y��1�
�0t � �t

@V�
�
�� ;m��1; y��1

�
@��

d��d
��1
�
y��1jm��1; y��2

�
:

Using in addition Assumption 5, the Dominated Convergence Theorem establishes that as

�0t ! �t, the second integral in (25) converges to the second integral in (24) and (23).

� First integral: Taking its limsup as �0t " �t and using Fatou�s Lemma,31 we see that the limsup
is bounded above by the �rst integral in (23). Thus, we obtain (23). Similarly, taking the

liminf of the �rst integral in (25) as �0t # �t and using Fatou�s Lemma, we see that the liminf
of this term is bounded below by the �rst integral in (24), so we obtain (24).

Now combining the inequalities in Lemma 7 for m� = �� and the inequalities in Lemma 5 we

obtain for �[
]-almost all histories
�
���1; ���2; y��2

�
,

@�V��1
�
���1; ���2; y��2

�
@�t

�
Z
@�V�

�
�� ; ���1; y��1

�
@�t

dF�
�
�� j���1; y��1

�
d
��1

�
y��1j���1; y��2

�
�
Z
@V�

�
�� ; ���1; y��1

�
@��

@F�
�
�� j���1; y��1

�
@�t

d��d
��1
�
y��1j���1; y��2

�
;

@+V��1
�
���1; ���2; y��2

�
@�t

�
Z
@+V�

�
�� ; ���1; y��1

�
@�t

dF�
�
�� j���1; y��1

�
d
��1

�
y��1j���1; y��2

�
�
Z
@V�

�
�� ; ���1; y��1

�
@��

@F�
�
�� j���1; y��1

�
@�t

d��d
��1
�
y��1j���1; y��2

�
:

Furthermore, we have by de�nition of VT+1,

@�VT+1
�
�T+1; �T ; yT

�
@�t

=
@+VT+1

�
�T+1; �T ; yT

�
@�t

=
@VT+1

�
�T+1; �T ; yT

�
@�t

=
@U
�
�T ; yT

�
@�t

:

31Note that even though the integrand need not be nonnegative, it is bounded in absolute value by the lipschitz
constantM . Thus, in general we may have to add and subtractM from the integrand before applying Fatou�s lemma.
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So iterating the above inequalities forward for � = t + 1; t + 2; :::; T + 1 yields for �[
]-almost all�
�t; �t�1; yt�1

�
the double inequality

@�Vt
�
�t; �t�1; yt�1

�
@�t

�

E�[
]j(�
t;�t�1;yt�1)

24@U
�
~�
T
; ~yT
�

@�t
�

TX
�=t+1

Z @V�

��
~�
��1

; ��

�
; ~�
��1

; ~y��1
�

@��

@F�

�
�� j~�

��1
; ~y��1

�
@�t

d��

35
�
@+Vt

�
�t; �t�1; yt�1

�
@�t

:

To complete the proof of the proposition, recall that by de�nition, Vt
�
�t; �t�1; yt�1

�
= V 


�
�t; �t�1; yt�1

�
:

So by Lemma 6 V 

�
�t; �t�1; yt�1

�
is Lipschitz continuous in �t for all

�
�t�1; �t�1; yt�1

�
. Thus,

given any
�
�t�1; �t�1; yt�1

�
, the partial derivative @V 


�
�t; �t�1; yt�1

�
=@�t exists for almost every

�t. Whenever it does exist, it must be equal to both ends of the above double inequality, which

establishes (1).

C Other Proofs Omitted in the Main Text

Proof of Proposition 2. We proceed by backward induction. For t = T the claim follows

immediately from Proposition 1. Suppose now that it holds for all � > t for some t 2 f1; : : : ; T � 1g.
We will show that it holds also for t. Using iterated expectations and the induction hypothesis, (1)

can be written as

@V 

�
�t; h

t�1�
@�t

= E�[
]j(�t;h
t�1)

"
@U(~�; ~y)

@�t
+

TX
�=t+1

I�t (
~�
�
; ~y��1)

@V 
(~�
�
; ~�
��1

; ~y��1)

@��

#

= E�[
]j(�t;h
t�1)

"
@U(~�; ~y)

@�t
+

TX
�=t+1

I�t (
~�
�
; ~y��1)

TX
s=�

Js� (
~�
s
; ~ys�1)

@U(~�; ~y)

@�s

#

= E�[
]j(�t;h
t�1)

"
TX
�=t

J�t (
~�
�
; ~y��1)

@U(~�; ~y)

@��

#
;

where the last equality follows by the de�nition of the J�t (~�
�
; ~y��1) functions.

Proof of Proposition 3.

By (iii), it su¢ ces to consider one-stage deviations in period t. In other words, it su¢ ces

to verify that, at any truthful history
�
�t�1; �t�1; yt�1

�
, and for any current type �t, the agent�s

period-t expected payo¤ from sending the message mt in period t and then following the truthful
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strategy at any future history, which is given by

	(�t;mt; �
t�1; yt�1) � E�[
]j(�t�1;�t);(�t�1;mt);yt�1 [U(~y; ~�)];

is maximized at mt = �t. For this purpose, the following lemma is useful. (A similar approach has

been applied to static mechanism design with one-dimensional type and multidimensional decisions

but under stronger assumptions� see Garcia, 2005.)

Lemma 8 Consider a function 	 : (�; �)2 ! R. Suppose that (a) 	(�;m) is Lipschitz continuous
in � for all m, (b) � (�) � 	(�; �) is Lipschitz continuous in �, and (c) for any m, for a.e. �,

(�0 (�)� @	(�;m)=@�) � (� �m) � 0. Then �(�) � 	(�;m) for all (�;m).

Proof of the Lemma: Let g(�;m) � �(�) � 	(�;m). For any �xed m, g(�;m) is Lipschitz
continuous in � by (a) and (b). Hence, it is di¤erentiable a.e. in �, and

g(�;m) =

Z �

m

@g(z;m)

@�
dz =

Z �

m

�
�0 (z)� @	(z;m)

@�

�
dz:

By (c), the integrand is nonnegative for a.e. z � m and nonpositive for a.e. z � m. Therefore,

g(�;m) � 0 for both � � m and � < m. �
Now, to apply the Lemma, we interpret 	(�t;mt; �

t�1; yt�1) as the agent�s expected payo¤

from truthtelling in the mechanism 
̂ constructed from 
 by ignoring the agent�s report in pe-

riod t and substituting it with mt. Assumption (iii) then implies that the mechanism 
̂ is IC

at any period-t history, and by implication, 	(�t;mt; �
t�1; yt�1) coincides with the agent�s value

function in the new mechanism 
̂. Applying to 
̂ the result in Proposition 2, we then have

that, for any mt, 	(�;mt; �
t�1; yt�1) is Lipschitz continuous in �t and @	(�t;mt; �

t�1; yt�1)=@�t =

D

�
�t;
�
�t�1;mt

�
; yt�1

�
a.e. �t. The former property establishes assumption (a) in the Lemma.

Assumption (i) in the proposition establishes assumption (b) in the Lemma and, together with as-

sumption (ii) in the proposition, it establishes assumption (c) in the Lemma. The Lemma then im-

plies that, at any truthful history (�t�1; �t�1; yt�1), and given any �t, the function 	(�t; �; �t�1; yt�1)
is maximized at mt = �t which in turn implies that the mechanism 
 is IC at any truthful period-t

history.

Proof of Proposition 4. Given h�;  i and h�;  ̂i; let 
i[�;  ] and 
i[�;  ̂] denote any two
randomized direct mechanisms that agent i faces respectively under h�;  i and h�;  ̂i, as de�ned in
subsection 4.3. Then let V 
i[�; ] : Hi ! R and V 
i[�; ̂] : Hi ! R denote the corresponding value
functions.

We �rst establish the following result.
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Lemma 9 Suppose the assumptions in Proposition 4 hold. Then, for any i, any t; �[�]�almost all

truthful private histories ht�1i = (�t�1i ; �t�1i ; �t�1i (�t�1i ; �t�1�i )); there exists a scalar Kit(h
t�1
i ) such

that

V 
i[�; ]
�
�it; h

t�1
i

�
� V 
i[�; ̂]

�
�it; h

t�1
i

�
= Kit(h

t�1
i ) for all �it: (27)

Proof of the Lemma. Take any i = 1; :::; N: From Lemma 1, the fact that h�;  i and h�;  ̂i
are ex-ante BIC implies that they are IC at �Ti [�]-almost all truthful private histories h

t�1
i �

(�t�1i ; �t�1i ; �t�1i (�t�1i ; �t�1�i )), for any t � 1 (recall that �Ti [�] is the unique probability measure

describing agent i�s beliefs over �T ��Ti �X in any mechanism implementing the allocation rule

�).

Iterating (1) backward, then implies that, under quasi-linearity, for any t � 1 and �Ti [�]�almost
all truthful private histories ht�1i ; the value functions V 
i[�; ]

�
�; ht�1i

�
and V 
i[�; ̂]

�
�; ht�1i

�
are

Lipschitz continuous in �it and

@V 
i[�; ]
�
�it; h

t�1
i

�
@�it

=
@V 
i[�; ̂]

�
�it; h

t�1
i

�
@�it

a.e. �it:

This also implies that for �[�]�almost all truthful private histories ht�1i , there exists a scalar

Kit(h
t�1
i ) such that the condition in (27) holds. �

The result in part (i) then follows directly from this lemma by letting Ki = Ki1(h
0), where h0

is the null history, and noting that, in any ex-ante BIC mechanism, the value function coincides

with the expected payo¤ under truthtelling with probability one.

The proof for part (ii) is by induction. Suppose there exists a Ki 2 R such that

E�[�][V 
i[�; ](~�i� ; ~h��1i ) j ~��i ]� E�[�][V 
i[�; ̂](~�i� ; ~h��1i ) j ~��i ] = Ki (28)

when � = t � 1: We then show that (28) holds also � = t+ 1:

First note that for �[�]�almost all private histories (�it; ht�1i );

V 
i[�; ](�it; h
t�1
i ) = E�

T
i [�]j�it;h

t�1
i [V 
i[�; ](~�it+1; ~h

t
i)]:

By the law of iterated expectations, we then have that

E�[�][V 
i[�; ](~�it; ~ht�1i ) j ~�ti] = E�[�][V 
i[�; ](~�i;t+1; ~hti) j ~�
t
i]
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It follows that

E�[�][V 
i[�; ](~�it; ~ht�1i ) j ~�ti]� E�[�][V 
i[�; ̂](~�it; ~ht�1i ) j ~�ti]
= E�[�][V 
i[�; ](~�i;t+1; ~hti) j ~�

t
i]� E�[�][V 
i[�; ̂](~�i;t+1; ~hti) j ~�

t
i]

= E�[�][V 
i[�; ](~�i;t+1; ~hti)� V 
i[�; ̂](~�i;t+1; ~hti) j ~�
t
i]

= E�[�][Ki;t+1(~h
t
i) j ~�

t
i];

(29)

where the last equality follows from Lemma 9.

Now note that, when assumption DNOT holds, the stochastic process �[�] over � does not

depend on �: Because any truthful private history ~hti is then a deterministic function of ~�
t
i and ~�

t
�i

and because types are independent we then have that

E�[Ki;t+1(~h
t
i) j ~�

t
i] = E�[Ki;t+1(~h

t
i) j ~�

t+1
i ] (30)

= E�[V 
i[�; ](~�i;t+1; ~hti) j ~�
t+1
i ]� E�[V 
i[�; ̂](~�i;t+1; ~hti) j ~�

t+1
i ],

where the last equality follows again from Lemma 9. Combining (29) with (30) then gives

E�[V 
i[�; ](~�i;t+1; ~hti) j ~�
t+1
i ]� E�[V 
i[�; ̂](~�i;t+1; ~hti) j ~�

t+1
i ]

= E�[�]j[V 
i[�; ](~�it; ~ht�1i ) j ~�ti]� E�[�]j[V 
i[�; ̂](~�it; ~ht�1i ) j ~�ti]

Using again the fact that the value function coincides with the equilibrium payo¤ with probability

one then gives the result.

Finally note that, when N = 1, ~ht1 is a deterministic function of ~�
t
1. The result in (30) is thus

always true when the allocation rule is deterministic. We conclude that, when N = 1; the result in

part (ii) holds even if assumption DNOT is dispensed with.

Proof of Proposition 5. Parts (i) and (ii) follow directly from Lemma 2. As for part (iii),

note that, from the perspective of each single agent, a randomized mechanism is equivalent to a

mechanism that conditions on the types of some �ctitious agent N + 1. The characterization of

the necessary conditions for incentive compatibility in a stochastic mechanism thus parallels that

for deterministic ones. Because the principal�s payo¤ under a stochastic mechanisms can always

be expressed as a convex combination of her payo¤s under di¤erent deterministic mechanisms, it

is then immediate that stochastic mechanisms cannot raise the principal�s expected payo¤. (This

point was made in static mechanism design by Strausz, 2006).

Proof of Proposition 6. De�ne g : X � f�1; 0g ! R as

g (�; z) � E�
"
NX
i=0

ui(~�; �(~�)) + z
NX
i=1

1

�i1(
~�i1)

TX
t=1

J ti1(
~�
t
i)
@ui(~�; �(~�))

@�it

#
:
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Then g (�; 0) is the expected total surplus and g (�;�1) is the expected virtual surplus. Assumption
DNOT ensures that the stochastic process � [�] doesn�t depend on � and that each J ti1

�
�ti; x

t�1
i

�
does not depend on xt�1i , which is re�ected in the formula. The assumption of FOSD ensures

that each J ti1
�
~�
t
i

�
� 0. Together with SCP, this ensures that g has increasing di¤erences in (�; z).

Together with (i) and (ii), this ensures that g is supermodular in �. The result then follows from

Topkis�s Theorem (see, e.g., Topkis, 1998).

Proof of Proposition 7. Under the assumptions in the proposition, J ti1
�
�ti; x

t�1
i

�
� 0 and

@ui (�; x) =@�it � 0 all i; t; all (�; x) ; hence, by (6), V 
i[�; ] (�i1) is nondecreasing.

Proof of Lemma 3. Fix i = 1; :::; N: By construction, at any truthful feasible private histories

hi;t�1 = (�
t�1
i ; �t�1i ; xt�1i ) 2 Hi;t�1(�):

E�i[�; ̂]j(�it;hi;t�1)[ui(~�; ~x)� ~pi] = E�
T
i [�]j(�

t
i;�

t
i;x

t�1
i )[ui(~�; ~x)�  i(~�)]

�E�Ti [�]j(�ti;�ti;x
t�1
i )

h
�i(�

t
i; �

t�1
i (~�

t�1
))
i

=

Z �it

�̂it

D
[�]
i ((�

t�1
i ; z); (�t�1i ; z); xt�1i )dz;

The �rst equality follows from the fact that hi;t�1 is truthful and the fact that �Ti [�] corresponds to

the distribution over �T ��Ti �X under truthtelling (by all agents). The second equality follows

directly from the de�nition of �i
�
�ti; x

t�1
i

�
. Note that the function D[�]

��
�t�1i ; �

�
;
�
�t�1i ; �

�
; xt�1i

�
is measurable and bounded and therefore integrable. Thus at any truthful feasible private history

hi;t�1 = (�t�1i ; �t�1i ; xt�1i ) 2 Hi;t�1(�), in period t, under the beliefs �i[�;  ̂]j(�); the mechanism
h�;  ̂i satis�es Condition (13).

Proof of Proposition 8. Let  ̂ be the payment rule that is obtained from h�;  i and h�[�;  ]j(�)iNi=1
using the construction indicated in the proof of Lemma 3. Take any system of beliefs h�[h�;  ̂i; �]j(�)iNi=1
such that, for any i, any �i, any hit, the marginal distribution of �i[

D
�;  ̂

E
; �i]jhit over �T��Ti �X

is the same as that of �i[h�;  i ; �i]jhit: By construction, under such beliefs, the following are true,
for any i. (a) The mechanism h�;  ̂i is IC at any period-� ; � � t+1 feasible private history; hence

the mechanism
D
�;  ̂

E
satis�es Condition (iii) of Proposition 3. (b) After any truthful feasible

private history hi;t�1 =
�
�t�1i ; �t�1i ; xt�1i

�
; Condition (13) in period t is satis�ed; This establishes

Condition (i) of Proposition 3 for period t. (c) D[�]
i (�

t
i; (�

t�1
i ;mit); x

t�1
i ) is nondecreasing in mit;

This implies that Condition (ii) of Proposition 3 is also veri�ed. The result then follows from

Proposition 3.

Proof of Proposition 9. Under assumption DNOT, the stochastic process � [�] over � does

not depend on the allocation rule � and hence can be written as �. Furthermore, because types

are independent, � is the product of each agent i�s stochastic process over �Ti , which henceforth
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we denote by �i. For any �ti; we then denote by �ij�ti the distribution over �Ti given �ti:
The payment rule  ̂ is obtained by adapting the construction of Lemma 3 to the situation

where agent i is shown �T�i in period t and faces a stochastic process �i over his own types (which

is essentially a single-agent situation):32

 ̂i (�) =  i (�) + �i
�
�ti; �

T
�i
�
, where

�i
�
�ti; �

T
�i
�
� E�ij�

t
i

h
ui(~�

T
i ; �
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�i; �

�
~�
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i ; �
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)�  i

�
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T
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T
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�i
�
Z �it

�̂it

D
[�]
i

�
(�t�1i ; z); (�t�1i ; z); �T�i

�
dz;

where �̂it � �it is any arbitrary �nite value in the closure of �it; and where

D
[�]
i (�

t
i; (�

t�1
i ;mit); �

T
�i) � E�ij�

t
i

24 TX
�=t

J�it(
~�
�
i )
@ui((~�

T
i ; �

T
�i); �((mit; ~�

T
i;�t); �

T
�i))

@�i�

35 :
Note that, under assumption DNOT, J�it

�
��i ; x

��1
i

�
does not depend on x�i . By FOSD, J

�
it (�

�
i ) � 0.

By SCP, PDPD, and (15), @ui
�
�; �

��
mit; �

T
i;�t
�
; �T�i

��
=@�i� is nondecreasing in mit for all �T�i.

This implies that D[�]
i (�

t
i; (�

t�1
i ;mit); ��i) is nondecreasing in mit for all �ti and all �

T
�i. The result

then follows from Proposition 8 applied to this setting.

Proof of Proposition 11. As argued in the main text before the statement of the proposition,

that handicapped cut-o¤ rules are implementable in a mechanism that is IC at all histories, follows

from Proposition 9 . Hence it su¢ ces to show that the expected dynamic virtual surplus in (18)

is maximized by such a rule. It is immediate that the optimal policy depends on �t only through

�1 and �t. What remains to show is that, for any t any �t such that
Pt�1

s=1 �s(�
s) = 0, the optimal

period-t allocation �t(�
t) is non-decreasing in (�1; �t) (when �1 ��t is endowed with the product

order).

Fix a history �t such that the good has not been sold in periods 1; : : : ; t�1. Let "�t � ("� )T�=t+1
denote the realizations of the shocks in periods � = t+ 1; : : : ; T in the AR(1) process determining

the types. Consider an arbitrary continuation policy to be followed in periods � = t + 1; :::; T;

conditional on not selling the good in period t. Since we are �xing �t, such a policy can always

be described as a function of the shocks "�t. That is, let �̂� (("s)
�
s=t+1) be the allocation in period

� > t. The principal�s continuation payo¤ from not selling at t and following �̂ in the future, given

32The speci�c moment in period t at which each agent i is shown �T�i is irrelevant for the result.
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"�t, is denoted by

b
�
�t; "�t; �̂

�
�

TX
�=t+1

�̂� (("s)
�
s=t+1)

 
���t�t +

�X
s=t+1

���s"s � ���1��11 (�1)� c�

!
:

Now let �t and
�
�0
�t be any two type histories such that �1 � �01 and �t � �0t. Fix "

�t. For any

continuation strategy �̂,
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;

where the last expression is the di¤erence in the expected payo¤s from selling at t given �t and

selling at t given
�
�0
�t. Taking expectations over "�t on both sides and re-arranging gives

TX
�=t

�
���t�0t � ���1��11 (�01)

�
� E

�
b((�0)t;~"�t; �̂)

�
�

TX
�=t

�
���t�t � ���1��11 (�1)

�
� E

�
b(�t;~"�t; �̂)

�
:

Hence for any continuation strategy �̂, the payo¤ di¤erential between selling in period t and not

selling is higher for �t than for
�
�0
�t. Taking the in�mum of both sides over all possible continuation

policies, we then have that

TX
�=t

�
���t�0t � ���1��11 (�01)

�
�sup

�̂
E
�
b((�0)t;~"�t; �̂)

�
�

TX
�=t

�
���t�t � ���1��11 (�1)

�
�sup

�̂
E
�
b(�t;~"�t; �̂)

�
:

This implies that the optimal allocation rule takes the form of a handicapped cuto¤ rule.

Proof of Proposition 12. We �rst show that, under conditions (1)�(4), any allocation rule �

that is part of a pro�t-maximizing mechanism must satisfy condition (19) in the proposition for all

t, �-almost all �t.

To this purpose, �rst note that, by Proposition 7, assumption (2) and (4) guarantee that the
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participation constraints for all types other than the lowest ones can be ignored.

Next note that, because payo¤s and decisions are time-separable, then an allocation rule maxi-

mizes the expected dynamic virtual surplus (9) if and only if, for all t, �-almost all �t, �t(�) satis�es
condition (19). To prove the result it then su¢ ces to show that any allocation rule that satis�es

condition (19) is implementable in an OEP-IC mechanism that gives zero expected surplus to the

lowest types. The result in Proposition 5 then implies that any allocation rule that is part of a

pro�t-maximizing mechanism must necessarily satisfy condition (19) for all t, �-almost all �t.

As a preliminary step, note that, by inspection, the allocation rule that solves the relaxed

program has the property that, in each period t; the period-t allocation �t(�) depends only on the
period-t types �t and the �rst period types �1. Assumptions (1), (3) and (4) then imply that the

period-t-state-�t virtual surplus has increasing di¤erences in (�i1; xit) and in (�it; xit) (for any �xed

values of the other arguments). Thus any allocation rule that maximizes the expected dynamic

virtual surplus has the property that �it(�) is increasing in �ti (in the product order) implying that
� is strongly monotone.

Assume now that all agents other than i are truthful. Suppose further that at each period t,

before sending his message mit, agent i is shown xdit = �T�i. Because the other agents are assumed

to be truthful, then necessarily �T�i is consistent with x
t�1
i ; in the sense of De�nition 11; that is,

given mt�1
i ; xt�1i = �t�1i (mt�1

i ; �t�1�1 ):

Now consider the allocation rule �Ti (�; �T�i) that is obtained from � by �xing the type pro�le for

all agents other than i to �T�i: For all �
T
�i, we �rst construct payments of the form  i(m

T
i ; �

T
�i) =PT

t=2  it(mi1;mit; ��i;1; ��i;t) that make truthtelling optimal for agent i in all periods t � 2 and

for any period-t history.

Thus consider an arbitrary period t � 2. The property that at any period � > t both �i� (�; �T�i)
and  i� (�) do not depend on agent i�s message mit in period t, together with the fact that payo¤s

are time-separable and independent of other agents�types and that assumptions DNOT, and PDPD

hold in this environment, then implies that the agent�s incentives separate over time. In particular,

at any feasible history (�ti;m
t�1
i ; xt�1i ); given xit = �T�i; the choice of the optimal message mit de-

pends on (�ti;m
t�1
i ; xt�1i ; �T�i) only through (�it;mi1; ��i;1; ��i;t). Or, equivalently, agent i�s period-t

problem is a static problem indexed by (mi1; ��i;1; ��i;t). Now think of �it(�;mi1; ��i;1; ��i;t) as a

static allocation rule indexed by (mi1; ��i;1; ��i;t). By strong monotonicity this allocation rule is

nondecreasing in mit. Standard results from static mechanism design then guarantee that, when

assumption (1) holds, for each (mi1; ��i;1; ��i;t) � k; truthtelling can be made optimal for agent i

using payments of the form

 it(�it; k) � uit(�it; �it(�it; k))�
Z �it

�it

@uit(r; �it(r; k))

@�it
dr:
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Repeating these steps for each period t � 2 and each agent i, then gives a mechanism h�;  i, with
 constructed as above, that is OEP-IC at any feasible period-t private history, for any t � 2:

Next, consider period 1. We proved above that there exists a payment scheme  such that the

mechanism h�;  i that is OEP-IC at any period � � t + 1. Because assumptions DNOT, FOSD,

SCP and PDPD hold in this environment, and because � is strongly monotone, then Proposition

9 implies that there exists a payment rule  ̂ such that
D
�;  ̂

E
is OEP-IC at any history. The

construction of the payments  ̂ then follows from the proof of that proposition and leads to the

remaining terms  i1(�i1; �
T
�i):
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