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A skew and leptokurtic distribution with polynomial
tails and characterizing functions in closed form

Matthias Fischer
University of Erlangen-Nürnberg, Germany
Matthias.Fischer@wiso.uni-erlangen.de

summary

We introduce a new skewed and leptokurtic distribution derived from the hy-
perbolic secant distribution and Johnson’s S transformation. Properties of this
new distribution are given. Finally, we empirically demonstrate in the context
of financial return data that its flexibility is comparable to that of their most
advanced peers.

Keywords and phrases: hyperbolic secant distribution; SU -transformation; skew-
ness; leptokurtosis, polynomial tails

1 Introduction and motivation

There is empirical evidence that tails of financial return distributions are so heavy that mo-
ments exist only up to a certain order, see Blattberg & Gonedes [2]. Therefore, Student-t
distribution and its generalizations often come to application for both practical and theo-
retical reasons, see e.g. Zhu & Galbraith [32] or Rosco et al. [29]. Often, there are no simple
expressions in closed form for the cumulative distribution and quantile function available
(which might be useful, e.g. in the context of financial risk measure). The purpose of this
paper is to overcome this shortcoming by introducing the so-called S-transformed hyperbolic
secant (briefly SHS) distribution which has power tails, on the one hand, but also admits
simple expression for it density, cumulative distribution and quantile function, on the other
hand.

2 Skew and leptokurtic distributions by means of vari-
able transformation

Starting from a standard normal variable X (or, more generally, from an arbitrary symmet-
ric variable), Tukey [30] postulated requirements on a transformation function T , such that
the transformed variable T (X) allows for skewness and heavy tails. Examples are g and h
distributions (see Hoaglin [18]), g and k distributions (see Haynes et al. [17]) or the j distri-
bution family and its generalizations (see Klein & Fischer [21] or Fischer et al. [7]). All of
them are essentially special cases of so-called generalized Tukey-type distributions (GTTD)
which have been introduced and discussed by Fischer [8], [9]. Though being very flexible,
evaluation of characterizing functions of GTTD’s like density and cumulative distribution
function requires some numerical effort (concrete: solve non-linear equations).

In contrast, if Johnson’s S-transformation (see figure 1)

S(x) ≡ Sθ,β(x) = sinh(θ−1(x+ β)), β ∈ R, θ > 0 (2.1)



is applied to the normal distribution (see Choi & Nam [3], Hansen et al. [15] or Rieck and
Nedelmann [28]), a flexible distribution family results for which all moments exist. Instead
of the normal distribution we will focus on the hyperbolic secant distribution in the next
section. The hyperbolic secant distribution (HSD) has its origin in Fisher [13], Dodd [4],
Roa [27] and Perks [26]. It is bell-shaped like the Gaussian distribution but has slightly
heavier tails. However, in contrast, both probability density function, cumulative density
function and quantile function admit simple and closed-form expressions, which makes it
appealing from a practical and a theoretical point of view (see also see Fischer [9] and
[12]). More precise, a random variable X = ln(N1/N2), where N1, N2 are independent
standard normal variables, is said to follow a hyperbolic secant or inverse hyperbolic cosine
distribution. Applying standard techniques of variable transformation, the hyperbolic secant
density derives as

fX(x) =
1

π cosh(x)
=

2

π(e−x + ex)
, x ∈ R. (2.2)

Obviously, the density is symmetrical around zero, i.e. f(−x) = f(x) and has mode at zero
with fX(0) = 1/π. The corresponding cumulative distribution function of X is

FX(x) =
2

π
arctan(ex). Consequently, F−1

X (p) = ln
(

tan
(π

2
p
))

. (2.3)

All moments exist and it can be shown that the moment-generating function reads as

MX(t) = E(etX) =
1

cos(πt/2)
for |t| < 1.

In particular, the kurtosis coefficient m4 of a hyperbolic secant variable is 5 which means
that its tails are heavier than those of a normal (m4 = 3) or even a logistic distribution
(m4 = 4.2). Notice that there are already several generalizations that allow for skewness and
flexible kurtosis, all of them, however, only allow for semi-heavy tails: Examples are NEF-
GHS or Meixner distribution (see Morris [25]), BHS distribution (see Fischer & Vaughan
[10], SGSH1 and SGSH2 distribution (see Fischer [5] and [6]).

3 SHS distribution and its properties

First recall (see Mood et al. [24]), that for an arbitrary monotone transformation T : R→ R,
the cumulative distribution function of X = T(Z) is given by

FX(x) = P (X ≤ x) = P (T−1(X) ≤ T−1(x)) = P (Z ≤ T−1(x)) = FZ(T−1(x)).

From that, the corresponding density reads as

fX(x) = fZ(T−1(x))

∣∣∣∣dT−1(x)

dx

∣∣∣∣ (3.1)

and the quantile function as F−1
X (x) = T(F−1

Z (x)).

Before we introduce the new distribution family let us point out, that



Figure 1: SHS transformation: θ ∈ [0.2, 5], β = 0 (left panel) and θ = 1, β ∈ [0.2, 5] (right
panel).

• the S-transform is s.m. increasing because S′θ,β(x) = θ−1 cosh(θ−1(x+ β)) > 0.

• the inverse S-transform is S−1(x) = θasinh(x)− β and

asinh(x) = sinh−1(x) = ln(x+
√
x2 + 1) with asinh′(x) =

1√
x2 + 1

.

1. Definition and characterizing functions: Assuming then that T = S from (2.1),
and that X is hyperbolic secant with characterizing function (2.2) and (2.3), respectively,
the SHS density results:

f(x, β, θ) =
θ

π cosh (θ asinh(x)− β)
√
x2 + 1

, x ∈ R. (3.2)

Using the relationship

cosh (θ asinh(x)− β) =
1

2

{(
x+

√
x2 + 1

)θ
e−β +

(
x+

√
x2 + 1

)−θ
eβ
}

we can re-write (3.2) and obtain the simple form

f(x, β, θ) =
2θ/π((

x+
√
x2 + 1

)θ
e−β +

(
x+
√
x2 + 1

)−θ
eβ
)√

x2 + 1
. (3.3)

Figure 2 illustrates the effect of varying β and θ.

Figure 2 to be inserted here



Its corresponding cumulative distribution function reads as

F (x, β, θ) =
2

π
arctan [exp (θasinh(x)− β)] (3.4)

with inverse (quantile) function

F−1(u, β, θ) = sinh

(
ln (tan(πu/2) + β)

θ

)
. (3.5)

As it will be shown later β and θ governs both skewness and peakedness/kurtosis.

2. Tail behaviour, moments and ψ-function: For large (positive) x, the density (3.3)
can be approximately re-written

f(x, β, θ) ≈ 2θ/π(
(2x)

θ
e−β + (2x)

−θ
eβ
)
x
≈ C(θ, β)

xθ+1.

Hence, SHS tails are polynomial (like Student-t tails) and moments E(Xk) only exist up
order k which depends on the parameter θ. Details are proven in the following lemma.

Lemma 3.1 (Moments). The moments of a SHS distribution only exist up to order k ≤ θ.
In particular,

E(Xn) =
1

2n

n∑
i=0

(
n

i

)(
e
n−2i
θ β

)
(−1)iMZ

(
n− 2i

θ

)
,

where

MZ(t) =
1

cos(πt/2)
for |t| < 1

denotes the moment-generating function of a hyperbolic secant variable.

Proof: Provided its existence, the moments of the SHS family derive as follows: For n ∈ N
notice that

S(z)n =
1

2n

(
eθ

−1(z+β) − e−θ
−1(z+β)

)n
=

1

2n

n∑
i=0

(
n

i

)(
eθ

−1(z+β)(n−i)
)(

e−θ
−1(z+β)i

)
(−1)i

=
1

2n

n∑
i=0

(
n

i

)(
eθ

−1(z+β)(n−2i)
)

(−1)i

=
1

2n

n∑
i=0

(
n

i

)(
e
n−2i
θ (z+β)

)
(−1)i =

1

2n

n∑
i=0

(
n

i

)(
e
n−2i
θ β

)(
e
n−2i
θ z
)

(−1)i.

Replacing z by Z and taking expectations, we obtain

E(Xn) = E(S(Z)n) =
1

2n

n∑
i=0

(
n

i

)(
e
n−2i
θ β

)
(−1)iMZ

(
n− 2i

θ

)
�



Corollary 3.1. The first four power moments are given by

E(X) =
sinh(β/θ)

cos(0.5π/θ)
, θ > 1

E(X2) =
1

2

(
cosh(2β/θ)

cos(π/θ)
− 1

)
, θ > 2

E(X3) =
1

4

(
sinh(3β/θ)

cos(1.5π/θ)
− 3

sinh(β/θ)

cos(0.5π/θ)

)
, θ > 3

E(X4) =
1

8

(
cosh(4β/θ)

cos(2π/θ)
− 4

cosh(2β/θ)

cos(π/θ)
+ 3

)
, θ > 4.

From this, variance, skewness and kurtosis (measured by third and fourth standardized
moments) can be calculated in a straightforward manner. For instance, the variance reads
as

V ar(X) =

(
cosh

(
2b
t

) (
cos
(
π
2t

))2 − cos
(
π
t

) (
cos
(
π
2t

))2 − 2 cos
(
π
t

) (
cosh

(
b
t

))2
+ 2 cos

(
π
t

))
2 cos

(
π
t

) (
cos
(
π
2t

))2 .

The following tables 2 and 1 illustrate the range of skewness and kurtosis for different
parameter constellations:

Table 1 and 2 to be inserted here

Recall that ψ-functions form the basic element in the context of robust statistics, in par-
ticular of robust regression, which is an alternative to least squares regression when data
are contaminated with outliers or influential observations. Concrete, by means of its finite
limit, the weight of large observation is reduced. The following result can be deduced.

Lemma 3.2 (ψ-function). The ψ-function of a SHS variable (see figure 3) is given by

ψ(x;β, θ) =
x cosh (−θ asinh (x) + β)− θ sinh (−θ asinh (x) + β)

√
x2 + 1

(x2 + 1) cosh (−θ asinh (x) + β)
, x ∈ R

Figure 3 to be inserted here

3. Unimodality: Finally, the unimodality of SHS distributions will be established.

Lemma 3.3 (Unimodality). All SHS densities are unimodal.

Proof: Notice that

f ′(x) = −
(
x cosh (θ asinh (x)) + θ sinh (θ asinh (x))

√
x2 + 1

)
θ

(x2 + 1)
3/2

(cosh (θ asinh (x)))
2
π

.

Hence, we can focus only on the denominator which reads as

−
(
x cosh (θ asinh (x)− β) + θ sinh (θ asinh (x)− β)

√
x2 + 1

)
θ



and has first derivative

−

cosh (θ asinh (x)− β)︸ ︷︷ ︸
>0

+ 2
x sinh (θ asinh (x)− β) θ√

x2 + 1︸ ︷︷ ︸
>0

+θ2 cosh (θ asinh (x)− β)︸ ︷︷ ︸
>0

 θ

which is always negative, because of the positive parts and for θ > 0. Together with the
limit behaviour of f ′(x) the assertion follows. �

4 Fitting a SHS distribution

Assume that the underlying data are independent and identically distributed, i.e.

Rt = µ+ σUt with Ut ∼ fSHS(β, θ), t = 1, . . . , T,

with location parameter µ ∈ R and (constant) scale σ > 0. Define the vector of unknown
parameters as Θ = (µ, σ, β, θ) and suppose that N observations are r1, . . . , rN are given.
The corresponding log-likelihood function is defined as

LL(θ) =

N∑
i=1

ln (fSHS(r1, . . . , rN ; Θ)) .

Then, the maximum likelihood estimator (MLE) of Θ, indicated by ̂̀ML is the solution of
the following optimization problem:

̂̀
ML = argmaxΘLL(Θ).

This optimization problem is solved in the empirical part using the statistical software
package R, in particular using the constrained optimization function nlminb (see Gay [14]).

5 Application of SHS distributions to finance

1. Data set: To illustrate the flexibility of the new distribution, consider data from foreign
exchange markets (FX-markets) which are available from the PACIFIC Exchange Rate
Service1. This service offered by Prof. Werner Antweiler at UBC’s Sauder School of Business
provides access to current and historic daily exchange rates through an on-line database
retrieval and plotting system. In contrast to the volume notation, where values are expressed
in units of the target currency per unit of the base currency2, the so-called price notation is
used within this work which corresponds to the numerical inverse of the volume notation.
All values are expressed in units of the base currency per unit of the target currency. Many

1Download under the URL-link http://pacific.commerce.ubc.ca.
2This is commonly used in Northern America to quote exchange rates.



European countries quote exchange rates this way. Daily exchange rates for the EUR-
USD are available from Jan 1 2002 to Apr 30, 2012 (n = 2593). Figure 4 illustrates the
corresponding time series for both levels and returns.

Figure 4 to be inserted here

With reference to table 3, the log-returns EURUSD are slightly skewed but highly leptokurtic.

Table 3 to be inserted here

As there is evidence of GARCH effects (consider Ljung-Box and Lagrange-multiplier statis-
tic), we also focus on the GARCH residuals of the original time series, denoted EURUSDGARCH,
hence forth.

2. Distributions under consideration: The main purpose of this chapter is to compare
the flexibility of the SHS (or its symmtric subclass, denoted by sSHS) with that of the
Student-t distribution (T) and skew generalizations (ST, see Zhu and Galbraith [32]) where
moments exist only up to a certain order.

3. Measuring goodness-of-fit: Similar to Mittnik et al. [23], four criteria are employed
to compare the goodness-of-fit of the different candidate distributions. The first is the log-
Likelihood value (`N ) obtained from the Maximum-Likelihood estimation. The `N -value
can be considered as an ”overall measure of goodness-of-fit and allows us to judge which
candidate is more likely to have generated the data”. As distributions with different numbers
of parameters k are used, this is taken into account by calculating the Akaike criterion given
by

AIC = −2 · `N +
2N(k + 1)

N − k − 2
.

The third criterion is the Kolmogorov-Smirnov distance as a measure of the distance between
the estimated parametric cumulative distribution function, F̂ , and the empirical sample
distribution, Femp. It is usually defined by

K = 100 · sup
x∈R
|Femp(x)− F̂ (x)|. (5.1)

Finally, the Anderson-Darling statistic is calculated, which weights |Femp(x)− F̂ (x)| by the

reciprocal of the standard deviation of Femp, namely

√
F̂ (x)(1− F̂ (x)), that is

AD0 = sup
x∈R

|Femp(x)− F̂ (x)|√
F̂ (x)(1− F̂ (x))

. (5.2)

Instead of just the maximum discrepancy, the second and third largest value, which is com-
monly termed as AD1 and AD2, are also taken into consideration. Whereas K emphasizes
deviations around the median of the fitted distribution, AD0,AD1 and AD2 allow discrep-
ancies in the tails of the distribution to be appropriately weighted.



4. Empirical results: Table 4 summarizes the estimation results.

Table 4 to be inserted here

For the leptokurtic series EURUSD we observe that SHS distributions clearly outperform the
corresponding Student-t counterparts if we focus on `N, AIC and K, whereas the Student-
t’s Anderson Darling statistics are slight lower. Both families outperform the classical
Gaussian or normal distribution. In case of the GARCH residuals, which exhibit only
moderate kurtosis (m3 = 3.8534), the results detect the ”deficits” of the SHS family which
allows only for kurtosis larger than 5. In this case, Student-t or it skew version demonstrate
its superiority.

6 Conclusion

A new distribution family (so-called SHS distribution) is introduced whose properties are
very similar to that of (skew) Student-t distribution. In contrast to the latter, all charac-
terizing functions have a simple and closed form. As the empirical part illustrates, the SHS
distribution should be used (as alternative to Student-t versions) if the underlying data sets
is highly leptokurtic (m4 > 5) and skewed.
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Figure 2: SHS distribution: Different densities and log-densities with θ ∈ [2.5, 10], β = 0
(upper panels) and θ = 4, β ∈ [0, 10] (lower panels).



β ↓, θ → 4.1 4.2 4.5 5.0 5.5 6.0 8.0 8.5 9.0 9.5 10.0 15.0 20.0

0.0 78.28 41.19 18.96 11.59 9.16 7.96 6.23 6.05 5.91 5.80 5.71 5.28 5.15

0.5 84.07 43.79 19.75 11.86 9.29 8.04 6.25 6.06 5.92 5.80 5.71 5.28 5.15

1.0 100.60 51.25 22.02 12.64 9.67 8.25 6.30 6.10 5.95 5.82 5.73 5.29 5.16

1.5 125.66 62.63 25.53 13.86 10.27 8.60 6.37 6.15 5.99 5.86 5.75 5.29 5.16

2.0 156.29 76.62 29.93 15.43 11.06 9.06 6.47 6.23 6.05 5.90 5.79 5.30 5.16

2.5 189.42 91.89 34.83 17.23 11.97 9.60 6.60 6.32 6.12 5.96 5.83 5.31 5.16

3.0 222.50 107.27 39.89 19.15 12.98 10.20 6.74 6.43 6.20 6.03 5.89 5.32 5.16

3.5 253.65 121.90 44.84 21.08 14.02 10.84 6.90 6.56 6.30 6.10 5.95 5.33 5.17

4.0 281.76 135.23 49.46 22.96 15.05 11.49 7.07 6.69 6.40 6.19 6.02 5.34 5.17

4.5 306.31 146.99 53.65 24.73 16.06 12.14 7.25 6.83 6.51 6.27 6.09 5.35 5.18

5.0 327.23 157.11 57.35 26.34 17.00 12.76 7.44 6.97 6.63 6.37 6.16 5.37 5.18

Table 1: Range of kurtosis.

β ↓, θ → 4.1 4.2 4.5 5.0 5.5 6.0 8.0 8.5 9.0 9.5 10.0 15.0 20.0

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.5 0.56 0.51 0.40 0.28 0.21 0.17 0.08 0.07 0.06 0.06 0.05 0.02 0.01

1.0 1.11 1.01 0.78 0.56 0.43 0.34 0.17 0.15 0.13 0.11 0.10 0.04 0.02

1.5 1.61 1.47 1.15 0.82 0.63 0.50 0.25 0.22 0.19 0.17 0.15 0.07 0.04

2.0 2.07 1.89 1.48 1.07 0.82 0.65 0.33 0.29 0.25 0.23 0.20 0.09 0.05

2.5 2.47 2.26 1.78 1.30 1.00 0.80 0.41 0.36 0.32 0.28 0.25 0.11 0.06

3.0 2.82 2.58 2.05 1.50 1.16 0.94 0.48 0.42 0.37 0.33 0.30 0.13 0.07

3.5 3.11 2.85 2.28 1.68 1.31 1.06 0.56 0.49 0.43 0.38 0.35 0.15 0.08

4.0 3.35 3.08 2.47 1.84 1.45 1.18 0.62 0.55 0.49 0.43 0.39 0.17 0.09

4.5 3.54 3.26 2.64 1.98 1.57 1.28 0.69 0.60 0.54 0.48 0.43 0.19 0.11

5.0 3.70 3.42 2.77 2.10 1.67 1.37 0.75 0.66 0.59 0.53 0.47 0.21 0.12

Table 2: Range of skewness.

Data No. X S2 S K LB LM

EURUSD 2593 0.0147 0.4315 0.1012 5.4191 0.8940 0.0000

EURUSDGARCH 2591 0.0343 0.9857 -0.0116 3.8534 0.9174 0.1984

Table 3: : Descriptive and inductive data statistics.



Figure 3: SHS distribution: ψ-functions for θ ∈ [3, 10], β = 0.

Figure 4: EUR/USD exchange rate: level versus returns



Distr. k `N AIC K AD0 AD1 AD2

N 2 -2589.10 5184.15 4.895 7.846 0.409 0.409

T 3 -2512.22 5032.45 1.860 0.046 0.045 0.045

ST 4 -2511.70 5033.42 1.887 0.041 0.041 0.041

SHS 4 -2509.92 5029.86 1.133 0.054 0.052 0.051

sSHS 4 -2509.95 5029.92 1.141 0.056 0.054 0.053

NV 2 -3657.35 7320.71 3.360 0.083 0.074 0.072

T 3 -3640.83 7289.67 2.099 0.045 0.045 0.044

ST 4 -3640.93 7291.88 1.863 0.042 0.042 0.042

SHS 4 -3654.35 7318.73 2.005 0.080 0.079 0.079

sSHS 4 -3653.98 7317.99 2.011 0.079 0.078 0.077

Table 4: Goodness-of-fit for the unconditional and conditional case: Nikkei225.
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