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Comparison of Bayesian Model Selection Criteria and Conditional Kolmogorov Test

as Applied to Spot Asset Pricing Models

Xiangjin Shen and Hiroki Tsurumi 1

Rutgers University
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Abstract

We compare Bayesian and sample theory model specification criteria. For the Bayesian criteria we use

the deviance information criterion and the cumulative density of the mean squared errors of forecast. For

the sample theory criterion we use the conditional Kolmogorov test. We use Markov chain Monte Carlo

methods to obtain the Bayesian criteria and bootstrap sampling to obtain the conditional Kolmogorov

test. Two non-nested models we consider are the CIR and Vasicek models for spot asset prices. Monte

Carlo experiments show that the DIC performs better than the cumulative density of the mean squared

errors of forecast and the CKT. According to the DIC and the mean squared errors of forecast, the CIR

model explains the daily data on uncollateralized Japanese call rate from January 1 1990 to April 18

1996; but according to the CKT, neither the CIR nor Vasicek models explains the daily data.

Keywords: Deviance information criterion, Cumulative density of the mean squared errors of forecast,

Markov chain Monte Carlo algorithms, Block bootstrap, Generalized methods of moments, Conditional

Kolmogorov test, CIR and Vasicek models
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1 Introduction

Efforts to find an appropriate model with acceptable explanatory and predictive power have led

to many papers on model specification tests and model selection criteria. In this paper we compare

Bayesian and sample theory model specification criteria to choose an appropriate model. Although the

model specification criteria we consider can be applied to any non-nested models, we focus our attention

on two asset pricing models: the Cox-Ingersoll-Ross model or the CIR model (1995) and the Vasicek

model (1977).

Within Bayesian model selection criteria, Bayes factors and Bayesian modifications of the Akaike

information criterion (BAIC) have been frequently used. In this paper we use the deviance information

criterion (DIC) of Spiegelhalter et.al. (2002) and the cumulative density function (cdf) of the mean

squared errors of forecast (MSEF), since these model selection criteria are easily obtained by using

Markov chain Monte Carlo (MCMC)algorithms.

As a sample theory model specification test, we use the conditional Kolmogorov test (CKT). The

CKT is a hypothesis test whereas the Bayesian criteria are to choose the model that explains the data

best. Both the CKT and Bayesian criteria rely on random number generation: in the case of the CKT

bootstrap methods are used, and in the case of the Bayesian criteria Markov chain Monte Carlo algorithms

are used.

The organization of the paper is as follows. In Section 2.1 we present the DIC and the cumulative

density (cdf) of the mean squared errors of the forecast (MSEF). In Section 2.2 the CKT is discussed.

In Section 3 using a simulated data we present the DIC, and we explain how to use the cdf of the MSEF

as a model selection criterion. Also, we explain the CKT that is obtained by the in-sample prediction.

We demonstrate how the α% critical value (CV) is generated by bootstrap methods. In Section 4, we

conduct Monte Carlo experiments to see the performances of the Bayesian criteria and of the CKT. In

Section 5, we apply the Bayesian criteria and CKT to the real data: the daily data on uncollateralized

Japanese call rate during the period between January 1 1990 and April 18 1996. Concluding remarks are

given in Section 6.
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2 Bayesian Model Choice Criteria and Conditional Kolmogorov Test

of Model Selection

2.1 Bayesian Model Choice Criteria

The spot asset price model, discretized by the Euler-Maruyama scheme, is

rt = κ θ + (1− κ)rt−1 + σt ut

= α+ β rt−1 + σt ut, ut ∼ N(0, 1), (1)

where rt is the spot rate; α = κ θ, and β = 1− κ. If we set σt =
√
rt−1 σ we have the CIR model. If we

set σt = σ we have the Vasicek model. In both models, there are three unknown parameters: α, β, and

σ.

Let us derive the posterior probability density function (pdf) of the parameters assuming that the

prior pdf is given by

p(α, β, σ) ∝ σ−1. (2)

The posterior pdf’s of the CIR and Vasicek models are given by

p(α, β, σ|data) ∝ σ−(n+1)exp

{
− 1

2σ2

[
νs2 + (γ − γ̂)

′

X
′

D−1X(γ − γ̂)
]}

, (3)

where

γ = (α, β)
′

, γ̂ = (X
′

D−1X)−1X
′

D−1y, νs2 = (y −Xγ̂)
′

X
′

D−1X(y −Xγ̂)

y =




r1
...

rT


 , X =




1 r0
...

...

1 rT−1


 ,

and D is given by

D =





IT for the Vasicek model

Diag(r0, · · · , rT−1) for the CIR model .

Let us use the deviance information criterion (DIC) (Spiegelhalter et.al. (2002)) and the distribution

of the mean squared errors of forecast (MSEF) as the criteria to choose between equation (1) and (2).
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The DIC is given by

DIC = D̄ + pD, (4)

where θ = (γ
′

, σ)
′

, D(θ̄) = −2 ln L(y|θ̄), and L(y|θ̄) is the likelihood function evaluated at the posterior

mean of θ. D̄ is given by

D̄ = −2

∫
ln(L(y|θ) p(θ|data)dθ .

The parameter pD measures the model complexity and it is given by pD = D̄ − D(θ̄). In the MCMC

algorithm D̄ is evaluated by

−2

[
1

N

N∑

i=1

ln L(y|θ(i))
]
,

where θ(i) is the i-th MCMC draw of θ, and N is the number of MCMC draws. We choose the model

with the smaller DIC. DIC is a widely used statistic for comparing models, and it is a built-in procedure

in software packages such as WinBUGS. We draw θ(i) by the Gibbs sampler algorithm as well as by the

Metropolis-Hastings algorithm. These two MCMC algorithms yield quite similar draws of θ(i).

The distribution of the mean squared errors of forecast is obtained by the MCMC algorithms as

follows:

Let ỹ = (ỹT+1, ỹT+2, · · · , ỹT+m). The joint pdf of ỹ and θ is given by

h(ỹ, θ|data) = f(ỹ|θ)p(θ|data), (5)

where f(ỹ|θ) is the pdf of ỹ given θ and data=(y0, y1, · · · , yT ).

West (2006) discuss three ways to generate the sequences of regression estimates necessary to make

predictions: recursive scheme, rolling scheme, and fixed schemes. We use the fixed scheme that is to draw

ỹ(i), where ỹ(i) is the i-th draw of ỹ given the i-th draw of θ, θ(i), using data from 1 to T .

Since the CIR and Vasicek models follow AR(1) processes, we draw ỹT+1, ỹT+2, · · · , ỹT+m sequen-

tially:

h(ỹT+1|yT , θ(i))

h(ỹT+2|ỹT+1, θ
(i))

... (6)

h(ỹT+m|ỹT+m−1, θ
(i)) .
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After drawing ỹ(i) we transform it into the mean squared errors of forecast by

MSEF (i) =
1

m





1

N

m∑

j=1

N∑

i=1

(
yT+j − ỹ

(i)
T+j

)2


 , (7)

where yT+j is the actual realized value at time T + j, and ỹ
(i)
T+j is the i-th MCMC draw of the predicted

value at time T + j. The mean squared errors of forecast, MSEF, is a summary statistic popular both in

sample theory and Bayesian inference. By the MCMC algorithm we can obtain the distribution of this

popular statistic, and plot its pdf and cumulative density function (cdf). In comparing two models, we

may choose the model that has a pdf close to the origin or that has a dominating cdf.

2.2 Conditional Kolmogorov Test for Model Selection

The conditional Kolmogorov-Smirnov tests (CKT) have been used by Andrew (1997), Min and Hong

(1997), Whang (2000), Horowitz (2003), Bai (2003), Scaillet (2005), Corradi and Swanson (2005, 2006),

Bhardwaj, Corradi and Swanson (BCS) (2008), and Lee (2009), among others. BCS (2008) applied the

CKT for model selections, and among the models they tested is the CIR model. Since BCS proposes an

innovative CKT, let us follow their CKT. The hypotheses are

H0 : Fτ (u|rt, Θ) = Fτ (u|rt, Θ0)

H1 : Fτ (u|rt, Θ) 6= Fτ (u|rt, Θ0) , (8)

where Fτ (u|rt, Θ) = Pr(rΘt+τ ≤ u | rΘt = rt) is the cdf of the τ -step ahead in-sample prediction rΘt+τ given

rΘt = rt, and t = 1, 2, · · · , T − τ. The term in-sample prediction is explained later.

Unlike the Bayesian inference that is parametric, the CKT is based on semi-parametric inference

employing large sample (asymptotic) properties. First, the sample path, rΘt is obtained by the Milstein

scheme (Seydel (2009)):

rΘt = κ θ + (1− κ)rΘt−1 + σ(·)ǫt

− 1

2
σ2(·) + 1

2
σ(·)2ǫ2t (9)
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where σ(·) = σ
√
rΘt−1 if H0 is the CIR model and σ(·) = σ if H0 is the Vasicek model. ǫt is the

standardized normal: ǫt ∼ N(0, 1).

The test statistic VT (τ, u, u) is computed by

VT (τ, u, u) = sup
v ∈V

|VT (v|τ, u, u)| , (10)

where VT (v|τ, u, u) is

VT (v|τ, u, u) =

1√
T − τ

T−τ∑

t=1

(
1

S

S∑

s=1

I
{
u ≤ rΘ̂s,t+τ ≤ ū

}
− I (u ≤ rt+τ ≤ ū)

)
I(rt ≤ v),

(11)

and u, and ū are the lower and upper bounds of the prediction interval. Since u and ū are fixed,

the prediction interval is a fixed constant. The random sample path rΘ̂s,t+τ is obtained for given t, by

equation (9) using a consistent estimate of Θ, Θ̂, under the null hypothesis and replacing rΘt with rΘ̂s,t for

s = 1, 2, · · · , S; where S is the number of simulated sample paths and I(·) is the indicator function. The

value of S is chosen much larger than the sample size T and here set S = 5T . The random variable rΘ̂s,t+τ

is called the in-sample prediction because Θ̂ is estimated by using all the sample observations from 1 to

T : y1, · · · , yT

The critical value for the in-sample prediction interval is computed by generating

V ∗
T (τ, u, u) = sup

v ∈V

|V ∗
T (v|τ, u, u)| , (12)

where V ∗
T (v|τ, u, u) is

V ∗
T (v|τ, u, u) =

1√
T − τ

T−τ∑

t=1

(
1

S

S∑

s=1

I
{
u ≤ r∗ Θ̂

∗

s,t+τ ≤ ū
}
− I

(
u ≤ r∗t+τ ≤ ū

)
)
I(r∗t ≤ v)

− VT (v|τ, u, u), (13)

The standard block-bootstrap method (Hall (1986), Hall and Horowitz (1996), Horowitz (2003)) is used

to draw r∗t from the data r1, r2, · · · , rT , and Θ̂∗ is estimated by the generalized methods of moments

(GMM) or by the simulated generalized methods of moments (SGMM) given in Duffie and Singleton
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(1993) using the bootstrap sample. The sample path, r∗Θ̂
∗

s,t , is obtained using equation (9) under the null

hypothesis. The bootstrap test statistic V ∗
T (v|τ, u, u) of equation (13) is computed using the test statistic

VT (v|τ, u, u) of equation (11) and centering around VT (v|τ, u, u). The centering of the test bootstrap

test statistic is suggested by Hansen (2005). From the empirical distribution of V ∗
T (v|τ, u, u) the α-%

critical value is found.

There are three sets of moments to choose for the GMM: the unconditional, conditional, and simulated

moments. For the CIR model the unconditional moments are derived by Jiang and Knight (2002):

g(rt) =





E(rt) = θ

E(r2t ) = θ2 +
σ2

2κ
θ

E(r3t ) = θ3 +
3σ2

2κ
θ2 +

σ4

2κ2
θ .

(14)

The conditional moments are

g(rt) =





E(rt|r0) = r0e
−κ t + θ(1− e−κ t)

E(r2t |r0) = (E(rt|r0))2 +
θ σ2

rt
(1− e−κ t)2

2κ
+

σ2
rt
r0(e

−κ t − e−2κ t)

κ

V(rt|r0) =
θ σ2

rt
(1− e−κ t)2

2κ
+

σ2
rt
r0(e

−κ t − e−2κ t)

κ
.

(15)

The expressions for the unconditional and conditional moments for the Vasicek model are similarly

obtained. The simulated moments for SGMM are simulated from sample path

g(r∗t ) =





Er∗t =
1

N

N∑

t=1

r∗t

E(r∗2t ) =
1

N

N∑

t=1

r∗2t

E(r∗3t ) =
1

N

N∑

t=1

r∗3t ,

(16)

where N is the bootstrap sample length.

There are two schemes to obtain the covariance matrix WT . The first way is the heteroskedastic

autocorrelation (HAC) covariance matrix:

WT =
1

T

ℓT∑

v=−ℓT

wv

T=ℓT∑

t=v+1+ℓT





(
g(rt)−

1

T

T∑

t=1

g(rt)

)′ (
g(rt−v)−

1

T

T∑

t=1

g(rt)

)
 . (17)
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and ℓT is the lag length often set at ℓT = [T
1

6 ], where [·] denotes the integer value. The second scheme

is the regular GMM covariance matrix (or the covariance without HAC):

WT =
1

T

T∑

t=1





(
g(rt)−

1

T

T∑

t=1

g(rt)

)′ (
g(rt)−

1

T

T∑

t=1

g(rt)

)
 . (18)

In comparing the CIR and Vasicek models, the CKT is carried out as follows: Given the data

(r1, r2, · · · , rT ) first put the CIR model as the null hypothesis H0, and compute the test statistic

VT (τ, u, u). Then we compare it with the α-% critical value of the confidence interval, V ∗α
T (τ, u, u). If

VT (τ, u, u) < V ∗α
T (τ, u, u), we accept the null hypothesis. Otherwise, reject the null hypothesis conclud-

ing that the data is not from the CIR model. Now put the Vasicek model in the null hypothesis H0, and

obtain VT (τ, u, u) and V ∗α
T (τ, u, u). If VT (τ, u, u) < V ∗α

T (τ, u, u), we accept H0 that the data is from the

Vasicek model. Otherwise, reject the null hypothesis.

3 Example with a Simulated Data

Before we conduct Monte Carlo experiments, let us make a simulated data analysis to illustrate the

Bayesian model selection criteria as well as the conditional Kolmogorov test. We draw two samples of

size T : one drawn from the Vasicek model of equation (1) and the other drawn from the CIR model of

equation (2). We use the following parameter values:

κ = .3068

θ = .0558

σ = .1180

r0 = .0657

We generate 212 observations (T = 212) and use the first 200 observations to estimate the parameters

κ, θ, and σ. We use the additional 12 observations for the out-of-sample forecast. As the out-of-sample

forecast periods, m, we choose m = 1, 2, 4, 12. If data is monthly, then we are examining one month,

two months, 4 months and 12 months ahead predictions. If data is weekly, then we have one week, two
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weeks, 4 weeks (one month), and 12 weeks (one quarter) ahead predictions. Let us call this the m-step

ahead prediction.

Before we report the results of the model selection criteria, let us present the point estimates of

the parameters. Table 1 gives the posterior means, while Table 2 presents the GMM estimates. As

discussed in the previous section, for the GMM estimation, there are three ways to compute the moments

(unconditional moments, conditional moments, and simulated moments), and two residuals (with and

without HAC). Both the Bayesian and GMM point estimates of the parameters are reasonable.

Table 1 and Table 2 Here

Bayesian model selection criteria

First let us discuss the MSEF’s. Since we have the distributions of the MSEF’s, we examine the

probability density functions (pdf) and cumulative density functions (cdf) of the MSEF’s. Figure 1

presents the pdf’s and cdf’s of {1, 2, 4, 12}-step ahead predictions for the data generated by the Vasicek

model. All the pdf’s of the MSEF’s are skewed to the right. We see that the pdf’s of the MSEF’s of the

Vasicek model lie close to zero while the pdf’s of the MSEF’s of the CIR model spread out to the right.

The modes of the MSEF’s of the Vasicek model are closer to zero than the modes of the MSEF’s of the

CIR model. The cdf’s of the MSEF’s of the Vasicek model dominate the cdf’s of the MSEF’s of the CIR

model. Clearly we choose the Vasicek model over the CIR model for all of the {1, 2, 4, 12}-step ahead

prediction. Although the pdf’s and cdf’s of the MSEF’s for the sample generated by the CIR model are

not presented here to save space, we obtain the similar results: the pdf’s and cdf’s of the CIR model

dominate those of the Vasicek model.

Figure 1 Here.

In Table 3 we present the DIC, the means, medians, and modes of the MSEF’s for the data generated

by the CIR model as well as for the data generated by the Vasicek model. As discussed in the previous

section, we choose the model with a smaller DIC. For the data generated by the CIR model, the DIC of

the CIR model is −920.7102 that is smaller than the DIC of the Vasicek model that is −876.5910. Hence

we choose the CIR model. Similarly, when the data is generated by the Vasicek model, the DIC of the

Vasicek model is −384.6277 which is smaller than −315.5180, the DIC of the CIR model. To save space,

we only present the means, medians, and modes of the MSEF’s.
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Table 3 Here.

Conditional Kolmogorov test

Let us turn to the CKT proposed by BCS (2008). In the previous section we presented VT (τ, u, u) and

V ∗
T (τ, u, u) : VT (τ, u, u) in equation (11) is for computing the test statistic and V ∗

T (τ, u, u) in equation

(13) is for obtaining the critical values. Both VT (·) and V ∗
T (·) are computed given τ -ahead prediction

periods and the lower and upper bounds of the confidence intervals, u and u.

The CKT is formulated as hypothesis test. Since the CIR and Vasicek models are non-nested, the

CIR and Vasicek models are put as the null hypothesis one at a time:

H0 : CIR model vs H1 : Not CIR model

and

H0 : Vasicek model vs H1 : Not Vasicek model

Given τ and the predictive interval, we compute the test statistic VT and we find the α% critical value

V ∗α
T from the bootstrap distribution of V ∗

T . We accept the null hypothesis of H0: CIR model if VT < V ∗α
T .

Next we switch H0 to the Vasicek model and compute VT and V ∗α
T and accept Vasicek model if VT <

V ∗α
T . As we observe in Pesaran (1974), Pesaran and Hall (1988) and Davidson and MacKinnon (1988),

hypothesis test used for model selection sometimes yields the result that none of the models considered

is selected.

BCS (2008) consider two prediction intervals: (u, u) = (r̄ ± .5σR) and (u, u) = (r̄ ± σR), where r̄

is the sample mean of rt, and σR is the sample standard deviation of rt. As for α% BCS (2008) chooses

5%, 10%, 15% and 20%. Hence, given the null hypothesis H0, there are eight VT (τ, u, u)’s, and each

VT (τ, u, u) is compared against the α% critical value V ∗α
T (τ, u, u). In summary, given H0, we have 32

combinations of 4 τ ’s, 2 confidence intervals, and 4 α% critical values (V ∗α
T ’s) as shown in Table 4 that

gives the CKT results for data generated by the CIR model. In the table V ∗α
T is denoted as α%CV.

Table 4 Here.

The first half of Table 4 is for the CIR model as H0. The only cases where the test statistic VT (τ, u, u)

are less than the critical values are for the 12-step ahead in-sample prediction (τ = 12) by the CIR model.
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All other cases we see that VT ((τ, u, u)’s are greater than the critical values. Hence, eight out of thirty

two cases we accept the null hypothesis that the CIR model is the correct model. Now switching the H0

to the Vasicek model, we see that all the 32 cases H0 is rejected and H1 is accepted. Since the alternative

hypothesis H1 in equation (8) is presented as “not H0,” the acceptance of H1 does not mean that data

supports the CIR model. It is up to us, the decision makers, to choose between these two models. We

may say, for example, that since the CIR model is chosen 8 out of 32 cases while the Vasicek model is

chosen 0 out of 32 cases we choose the CIR model over the Vasicek model.

Table 5 presents the results for the data generated by the Vasicek model. When H0 is the CIR model,

all 32 cases VT (τ, u, u)’s are greater than the critical values, rejecting H0. If we switch H0 to the Vasicek

model, all 32 VT (τ, u, u)’s are greater than the critical values, rejecting that the data is generated by the

Vasicek model. Accordingly, we conclude that the CKT selects neither the CIR nor Vasicek model.

Table 5 Here.

4 Monte Carlo Experiments

Let us make Monte Carlo experiments assuming the error term ut is non-normal. We make 500 sample

replications. The parameters and the sample size are the same as those for the one sample replication.

The stylized fact about financial data is that their distributions are leptokurtic and slightly skewed. If we

make Monte Carlo experiments drawing ut from a leptokurtic and slightly skewed distribution, the CKT

test may perform better than the Bayesian criteria, since the CKT test is derived without assuming the

distribution of ut.

Let us assume that ut is generated from a leptokurtic and slightly skewed distribution:

N(0, 1) × IVG(µ, η) (19)

where IVG(µ, η) is the inverse Gaussian distribution with parameters µ and η. The algorithm for gen-

erating random numbers from IVG(µ, η) is given in Michael et.al. (1976) and Devroye (1986). We set

µ = 1.8 and η = .8. The skewness is −.687 and kurtosis is 24.6. Compared to the N(0,1) density the

distribution is sharply peaked with fat tails.
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The results of the Monte Carlo experiments with the non-normal distribution are given in Table 6

for the Bayesian model selection criteria and in Table 7 for the CKT. For the Bayesian model selection

criteria the DIC criterion chooses the correct models: 92% (98.5%) of the times when the CIR (Vasicek)

is the correct model. The medians of the {1, 2, 4, 12}-step ahead MSEF’s choose the CIR model 58.0%

to 64.0% of times when data are generated by the CIR model. When data are generated by the Vasicek

model it is chosen from 57.0% to 71.5% of times.

The results for the CKT are given in Table 7. The acceptance rates of both the CIR model and the

Vasicek model are very low, and this is due to the fact that the CKT test is sensitive to the non-normal

error term. The reason is due to the way the test statistic VT (v|τ, u, u) in equation (11) and the critical

value V ∗
T (τ, u, u) in equation (13) are computed using sample paths simulated by the Milstein scheme

with the normal error ǫt as given in equation (9).

Tables 6 and 7 Here.

5 Application to Japanese Call Rates

Let us apply the Bayesian model selection criteria and the conditional Kolmogorov test to the daily

uncollateralized call rate of Japan. The data is daily averages from January 1 1990 to April 18 1996 for

the total of 2,300 observations. This period corresponds to the beginning of the bursting of the Japanese

bubble economy to the early period of the zero interest rate.

The call rate kept increasing even after the Japanese bubble bursted in early January 1990. The call

rate peaked on March 14 1991 at 8.56%, and one year after the bubble bursted the call rate was still

around 5.8%. It took four and a half years more for the call rate to get down to .5% on September 15

1995 which is regarded as the beginning of the zero-interest rate period. Learning from the Japanese

experience, it took only one year for the Federal Reserve Board to cut the Federal Funds rate from 5.0%

in late December 2007 to less than 1% in late December 2009.

The sample mean, median, skewness and kurtosis of the daily change in the Japanese call rate are

mean median skewness kurtosis

−.0027 0.0 −1.064 190.61

and we see that the Japanese call rates exhibit the typical stylized fact of the return of the financial rates.
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We applied the Bayesian model selection criteria and the conditional Kolmogorov test to see which

model, the CIR or Vasicek, explains the Japanese call rate. Table 8 presents the DIC and the modes of

the MSEF’s and Table 9 presents the CKT test.

Tables 8, 9 and Figure 2 Here.

From Table 8 we see that the DIC and the modes of the MSEF’s all choose the CIR model over the

Vasicek model. The cdf’s of the MSEF’s of the CIR model uniformly dominate those of the Vasicek

model as shown in Figure 2. From Table 9 we see that the CKT’s, VT , are all greater than all the critical

values regardless of putting the CIR or Vasicek models in the null hypothesis. Accordingly we conclude

the Japanese call rate follows neither the CIR nor the Vasicek model.

6 Concluding Remarks

Using two non-nested models of spot asset pricing models, the CIR and Vasicek models, we compared

the Bayesian model choice criteria to the conditional Kolmogorov test (CKT). The Bayesian criteria are

designed to choose the model that explains the data best, while the CKT is a hypothesis test to accept the

null hypothesis that one model is true at a pre-specified significance level. We used two Bayesian criteria:

the deviance information criterion (DIC) of Spiegelhalter et.al. and the cumulative density function (cdf)

of the mean squared errors of forecast (MSEF).

Using a simulated data we demonstrated how to use the cdf of the MSEF as a model selection

criterion: by plotting the cdf’s of two MSEF’s of the non-nested models we choose the model with the

dominating cdf. If the two cdf’s cross, we may choose the model whose median MSEF is smaller. The

CKT is to obtain the in-sample prediction and compare it with the α % critical value that is generated by

bootstrapping. We conducted Monte Carlo experiments to see how the Bayesian model selection criteria

and the CKT perform. Among the DIC, the cdf of the MSEF, and the CKT the clear winner is the DIC.

Then we applied the DIC, the cdf of the MSEF, and the CKT to the daily data of the uncollateralized

Japanese call rate from January 1 1990 to April 18 1996 for the total of 2,300 observations. The sample

period begins at the inception of the bursting of the Japanese bubble and ends at the beginning of the

zero interest rate period. We find that the CIR model explains the data better than the Vasicek model

according to the DIC and the cdf’s of the MSEF. According to the CKT the data support neither the

CIR nor Vasicek model.
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Both the Bayesian model selection criteria and the CKT are based on random number generation.

The random number generation for the Bayesian model selection criteria is used to obtain the posterior

distributions of the log of the likelihood function to compute the DIC and of the mean squared errors

of the forecast. In the Bayesian inference, the parameters of the model are generated while the data are

treated as fixed. The random number generation for the CKT is used to generate bootstrap samples from

the data. Given the bootstrap samples the distributions of the CKT are generated.
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Table 1: Bayesian Posterior Means of the Parameters

Data Generated by CIR Model

κ θ σ

CIR Model .2866 .0591 .1084

Vasicek Model .3755 .0586 .0268

Data Generated by Vasicek Model

κ θ σ

CIR Model .6663 .1598 .3107

Vasicek Model .7335 .1579 .0918

Notes: The true parameters are κ = .3068, θ = .0558, σ = .1180.
Sample size is 200.
Metropolis-Hastings algorithm is used.

Table 2: Point Estimates of Parameters by GMM and SGMM

GMM with unconditional GMM with conditional SGMM
moments moments
κ θ σ κ θ σ κ θ σ

Estimates from Data Generated by CIR Model

CIR HAC .770 .059 .170 .830 .0775 .102 .538 .111 .248
Model w/o HAC .370 .055 .120 .512 .075 .111 .572 .088 .214

Vasicek HAC .550 .055 .03 .690 .0055 .050 .608 .071 .228
Model w/o HAC .570 .055 .03 .650 .045 .030 .514 .090 .209

Estimates from Data Generated by Vasicek Model

CIR HAC .150 .150 .120 .690 .195 .225 .692 .160 .289
Model w/o HAC .390 .155 .190 .552 .175 .337 .442 .105 .222

Vasicek HAC .590 .150 .090 .710 .005 .050 .614 .083 .222
Model w/o HAC .450 .155 .090 .590 .005 .030 .5470 .095 .184

Notes: True parameter values are κ = .3068, θ = .0558, σ = .0657
Sample size is 200.
w/o HAC = without HAC.
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Table 3: Bayesian Model Selection Criteria: Example with Simulated Data

Data Generated by CIR Model

CIR Model Vasicek Model

DIC −920.7102 −876.5910

MSEF

1-step-ahead .00021 .00051
2-step-ahead .00030 .00061

Mean 4-step-ahead .00051 .00074
12-step-ahead .00113 .00107

1-step-ahead .000107 .00025
2-step-ahead .000200 .00039

Median 4-step-ahead .000382 .000549
12-step-ahead .00080 .00090

1-step-ahead .000036 .000105
2-step-ahead .000087 .000227

Mode 4-step-ahead .000236 .000386
12-step-ahead .00069 .00075

Data Generated by Vasicek Model

CIR Model Vasicek Model

DIC −315.5180 −384.6227

1-step-ahead .02475 .00866
2-step-ahead .02637 .016334

Mean 4-step-ahead .02965 .015343
12-step-ahead .031529 .016426

1-step-ahead .011880 .004203
2-step-ahead .020591 .012972

Median 4-step-ahead .021904 .013573
12-step-ahead .024776 .015558

1-step-ahead .005156 .001531
2-step-ahead .008453 .005131

Mode 4-step-ahead .016925 .010492
12-step-ahead .017842 .014615

Notes: Metropolis-Hastings algorithm is used.
1-step-ahead means that the MSEF of 1 period out-of-sample prediction.
2-step-ahead means that the MSEF of 2 periods out-of-sample prediction.
4-step-ahead means that the MSEF of 4 periods out-of-sample prediction.
12-step-ahead means that the MSEF of 12 periods out-of-sample prediction.
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Table 4: Conditional Kolmogorov Test (Data generated by the CIR model)

τ u, u VT 5%CV 10%CV 15%CV 20%CV

H0 : CIR Model

1 R̄± .5σR 2.6101 1.0163 1.0163 .8812 .8812
R̄± σR 2.8640 1.0589 1.0589 .7675 .7675

2 R̄± .5σR 2.0429 1.0571 1.0163 .9071 ..8812
R̄± σR 2.4643 1.0589 .8929 .8143 .8071

4 R̄± .5σR 1.2052 1.0571 1.0163 .8812 .8805
R̄± σR 1.2413 1.1042 1.0589 .9526 .8929

12 R̄± .5σR .3090 1.1114∗ 1.0553∗ .9724∗ .8812∗

R̄± σR .9121 1.1114∗ 1.0589∗ .9526∗ .9219∗

H0: Vasicek Model

1 R̄± .5σR 5.7209 1.0447 1.0447 .9878 .9878
R̄± σR 4.2490 1.0447 1.0447 .8670 .8670

2 R̄± .5σR 7.1857 1.2286 1.1000 1.0447 .9878
R̄± σR 4.9929 1.4498 1.4286 1.0571 1.0447

4 R̄± .5σR 7.8592 1.2918 1.1286 1.0753 1.0447
R̄± σR 5.0518 1.4286 1.0825 1.0447 1.0000

12 R̄± .5σR 8.4423 1.2918 1.1000 1.0553 1.0031
R̄± σR 2.8640 .6893 .6893 .6680 .6680

Notes: The GMM with unconditional moments is used.
Two confidence intervals (u, ū) are R̄± .5σR
and R̄± σRare created for each of τ = 1, 2, 4, 12.
VT is the test statistic. CV ’s are the critical values at 5%, 10%, 15% and 20%.
A number with ∗ indicates that the test statistics VT ’s lead to the acceptance
of the null hypothesis.
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Table 5: Conditional Kolmogorov Test (Data generated by the Vasicek model)

τ u, u VT 5%CV 10%CV 15%CV 20%CV

H0 : CIR Model

1 R̄± .5σR 2.0467 .8559 .8559 .6183 .6183
R̄± σR 2.0325 .6965 .6965 .6325 .6325

2 R̄± .5σR 1.6714 .8599 .8599 .8000 ..7857
R̄± σR 1.1786 .7888 .7500 .7143 .6965

4 R̄± .5σR 1.3279 .8599 .8599 .7857 .6357
R̄± σR 1.4795 .8588 .7888 .7361 .7143

12 R̄± .5σR .9799 .8732 .8599 .7857 .6784
R̄± σR 1.6583 1.0553 .8857 .8216 .7500

H0 : Vasicek Model

1 R̄± .5σR 2.4447 .7817 .7817 .6680 .6680
R̄± σR 2.8640 .6893 .6893 .6680 .6680

2 R̄± .5σR 2.9786 .7817 .6714 .6680 .6538
R̄± σR 4.0429 .6893 .6680 .5970 .5143

4 R̄± .5σR 4.9003 .9598 .8083 .7145 .6714
R̄± σR 4.7054 .7178 .7073 .6680 .5970

12 R̄± .5σR 4.2965 1.0376 .9598 .7817 .6714
R̄± σR 4.2212 .7538 .7538 .7178 .6893

Notes: The GMM with unconditional moments is used.
Two confidence intervals (u, ū) are R̄± .5σR
and R̄± σRare created for each of τ = 1, 2, 4, 12.
VT is the test statistic. CV ’s are the critical values at 5%, 10%, 15% and 20%.
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Table 6: Results of Monte Carlo Experiments, Bayesian Model Selection Non-normal Error Term

% of Choosing CIR Model % of Choosing Vasicek Model

Data generated by the CIR Model

DIC 92% 8%

Median of MSEF

1-step-ahead 64% 36%
2-step-ahead 62% 38%
4-step-ahead 59.5% 40.5%
12-step-ahead 58% 42%

Data generated by the Vasicek Model

DIC 1.5% 98.5%

Median of MSEF

1-step-ahead 40% 60%
2-step-ahead 43% 57%
4-step-ahead 40.5% 59.5%
12-step-ahead 28.5% 71.5%

Notes: Non-normal error term is the Normal × Inverse Gaussian error term.
The median of the MSEF is used for the model selection
“#-step-ahead“ denotes the # periods out-of-sample prediction.
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Table 7: Results of Monte Carlo Experiments, CKT, Non-normal Error Term: Acceptance rates (%) of
H0

τ u, u 5%CV 10%CV 15%CV 20%CV

Data Generated by the CIR Model
H0 : CIR Model

1 R̄± .5σR 0.0% 0.0% 0.0% 0.0%
R̄± σR 0.0% 0.0% 0.0% 0.0%

2 R̄± .5σR 0.0% 0.0% 0.0% 0.0%
R̄± σR 0.0% 0.0% 0.0% 0.0%

4 R̄± .5σR 0.5% 0.5% 1.0% 1.0%
R̄± σR 0.0% 0.0% 0.0% 0.0%

12 R̄± .5σR 5.0% 5.0% 5.0% 4.5%
R̄± σR 1.0% 0.5% 1.0% 0.0%

Data Generated by the Vasicek Model
H0 : Vasicek Model

1 R̄± .5σR 0.0% 0.0% 0.0% 0.0%
R̄± σR 0.0% 0.0% 0.0% 0.0%

2 R̄± .5σR 0.0% 0.0% 0.0% 0.0%
R̄± σR 0.0% 0.0% 0.0% 0.0%

4 R̄± .5σR 0.0% 0.0% 0.0% 0.0%
R̄± σR 0.0% 0.0% 0.0% 0.0%

12 R̄± .5σR 0.0% 0.0% 0.0% 0.0%
R̄± σR 0.0% 0.0% 0.0% 0.0%

Notes: The GMM with unconditional moments is used.
Two confidence intervals (u, ū) are R̄± .5σR
and R̄± σRare created for each of τ = 1, 2, 4, 12.
Non-normal error term is the Normal× Inverse Gaussian error term.

Table 8: Bayesian Model Selection Criteria: Japanese Call Rates

Bayesian model selection

CIR Model Vasicek Model

DIC −6, 031.0344 −3, 168.2471

Mode of MSEF

1-step ahead .000307 .00250
2-step ahead .000721 .00562
4-step ahead .00141 .01062
12-step ahead .00378 .02790

Notes: The Metropolis-Hastings algorithms are used.
#-step ahead denotes the # periods out-of-sample prediction.
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Table 9: Conditional Kolmogorov Test of Model Specification: Japanese Call Rates

τ u, u VT 5%CV 10%CV 15%CV 20%CV

CIR Model

1 R̄± .5σR 2.8069 2.1137 2.1137 1.7575 1.7575
R̄± σR 7.2926 1.9943 1.9943 1.6807 1.6807

2 R̄± .5σR 4.0545 2.6022 2.3580 2.1552 2.1137
R̄± σR 9.9847 2.9896 2.4134 2.0464 1.9943

4 R̄± .5σR 4.7523 2.3986 2.3580 2.2811 2.2405
R̄± σR 12.7235 3.1717 2.9896 2.8257 2.8151

12 R̄± .5σR 5.8824 4.2445 3.2970 3.0719 2.6732
R̄± σR 16.2259 5.9308 3.5907 3.2306 3.1534

Vasicek Model

1 R̄± .5σR 2.8923 1.9687 1.9687 1.8108 1.8108
R̄± σR 7.4782 2.0412 2.0412 1.7106 1.7106

2 R̄± .5σR 4.1057 2.5958 2.3750 2.1894 1.9687
R̄± σR 10.1575 2.9512 2.4775 2.1963 2.0412

4 R̄± .5σR 4.7459 2.3750 2.3729 2.3409 2.1894
R̄± σR 12.8879 3.1632 3.0564 2.8001 2.6378

12 R̄± .5σR 5.9209 4.2896 3.3313 3.1641 2.6282
R̄± σR 16.4702 5.7194 3.5521 3.2091 3.1534

Notes: The simulated GMM (SGMM) is used.
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Figure 1: 1-,2-, 4-, and 12-period ahead MSEF’s: Data generated by the Vasicek model
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Figure 2: 1-, 2-, 4-, 12-period ahead MSEF’s: CKLS Model for the Japanese Call Rate
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