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Abstract

We prove the existence of strategically stable sets of pure-strategy
Nash equilibria (and hence the existence of pure-strategy trembling-
hand perfect equilibria) in potential games that admit an upper semi-
continuous potential, and we show that generic potential games pos-
sess pure-strategy strictly perfect and essential equilibria. In addition,
we provide a link between upper semicontinuity of a potential and con-
ditions defined directly on the payoff functions of a potential game.
Finally, we show that stable sets and (strictly) perfect equilibria are
related to the set of maximizers of a potential, which refines the set of
Nash equilibria. Specifically, the set of maximizers of a potential con-
tains a strategically stable set of pure-strategy Nash equilibria (and
hence a pure-strategy trembling-hand perfect equilibrium) and, for
generic games, any maximizer of a potential is a pure-strategy strictly
perfect and essential equilibrium.
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1 Introduction

This paper studies refinements of Nash equilibrium in potential games. A
strategic-form game is a potential game if the incentive of all players to
change their strategy can be expressed in one global function, called the
game’s potential. Potential games have many applications in Economics and
other disciplines (cf. Rosenthal [26], Monderer and Shapley [21], Ostrovsky
and Schwarz [24], Armstrong and Vickers [3], Myatt and Wallace [22], inter
alia). The contribution is twofold. First, we prove the existence of strate-
gically stable sets of pure-strategy Nash equilibria (and hence the existence
of pure-strategy trembling-hand perfect equilibria) in possibly discontinuous
potential games, and show that generic potential games possess pure-strategy
strictly perfect and essential equilibria. Second, stable sets and (strictly) per-
fect equilibria are related to the set of maximizers of a potential, which refines
the set of Nash equilibria (cf. Monderer and Shapley [21]). Specifically, the
set of maximizers of a potential contains a strategically stable set of pure-
strategy Nash equilibria (and hence a pure-strategy trembling-hand perfect
equilibrium) and, for generic games, any maximizer of a potential is a pure-
strategy strictly perfect and essential equilibrium. This justification of the
set of maximizers of a potential as a refinement specification is analogous to
that furnished in Ui [29], where it is shown that maximizers of a potential (in
finite potential games) are generically robust to the presence of incomplete
information in the sense of Kajii and Morris [17, 18]. We slightly perturb
games in terms of the actions that players can take, while Ui [29] considers
perturbations in terms of the information the players might have. Our anal-
ysis complements that of Ui [29] as well as alternative formal justifications
for global maximizers of a potential as an equilibrium selection device, such
as those in Blume [7, 8] and Hofbauer and Sorger [16].

By confining attention to the collection of potential games, elementary
machinery from variational analysis can be used to prove results under fairly
simple assumptions.1

Theorems 1 and 2 state that the set of maximizers of an upper semicontin-
uous potential contains a pure-strategy trembling-hand perfect equilibrium
and a stable set of pure strategies, according to notions of trembling-hand
perfection and stability that extend the standard equilibrium concepts for fi-

1The existence of pure-strategy trembling-hand perfect equilibria in general (possibly
discontinuous) strategic-form games requires more structure (cf. Carbonell-Nicolau [11]).

2



nite strategic-form games (cf. Selten [27] and Kohlberg and Mertens [19]) to
infinite strategic-form games (cf. Simon and Stinchcombe [28], Al-Najjar [2],
and Carbonell-Nicolau [9, 10, 11, 13]). Theorems 1 and 2 generalize the Nash
existence results of Monderer and Shapley [21]. Proposition 2 and Corollary 1
provide a link between upper semicontinuity of a potential and conditions de-
fined directly on the payoff functions of a potential game: it is shown that for
potential games, a subset of the standard conditions for existence of Nash
equilibrium based on Ky Fan inequalities gives a pure-strategy trembling-
hand perfect equilibrium or a stable set of pure strategies. Proposition 5
states that for generic games in the class of games that admit an upper semi-
continuous potential, maximizers of the potential are pure-strategy essential
and strictly perfect equilibria.

Finally, Example 1 shows that the main results are tight: assuming the
existence of a maximizer for the potential (rather than imposing upper semi-
continuity) need not imply even the existence of a trembling-hand perfect
equilibrium.

2 Preliminaries

A strategic-form game is a tuple G = (Xi, ui)
N
i=1, where N is a finite

number of players, Xi is a nonempty set of actions for player i, and ui is a
real-valued payoff function defined on X := ×Ni=1Xi. A game G = (Xi, ui)

N
i=1

is a compact metric game if it satisfies the following assumptions:

(i) Each Xi a compact metric space.

(ii) Each ui bounded and Borel measurable.

In this paper, we assume that all games are compact, metric games.
These games will be referred to simply as games. We will however make
further assumptions later regarding, e.g., continuity of the payoffs.

Throughout the paper, we will view a payoff profile u = (u1, .., u2) as an
element of the complete metric space (B(X)N , d), where B(X) denotes the
space of bounded real-valued functions on X and the metric d : B(X)N ×
B(X)N → R is defined by

d ((f1, ..., fN), (g1, ..., gN)) :=
N∑
i=1

sup
x∈X
|fi(x)− gi(x)|.
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Let X−i := ×j 6=iXj for each i. Given i and (xi, x−i) ∈ Xi × X−i, we
employ the standard convention and write (x1, ..., xN) in X as (xi, x−i). As
usual, X is endowed with the product metric toplogy. Subsection 2.1 defines
potential games.

Subsection 2.2 defines a trembling-hand perfect equilibrium and a strate-
gically stable set.

2.1 Potential games

Given G = (Xi, ui)
N
i=1, a map P : X → R is a potential for G if for each i

and every x−i ∈ X−i,

ui(xi, x−i)− ui(yi, x−i) = P (xi, x−i)− P (yi, x−i), for all {xi, yi} ⊆ Xi.

Definition 1. A game is a potential game if it admits a potential. A
game is an upper semicontinuous potential game if it admits an upper
semicontinuous potential.

Potential games possess an important and convenient feature: a maxi-
mizer of a potential function is a pure-strategy Nash equilibrium. Stability
of certain equilibria can now be defined in terms of stability of optimizers
and we will exploit this in our treatment of equilibrium refinements. We
conclude this section with the following lemma.

Lemma 1. If G = (Xi, ui)
N
i=1 is a potential game with potential P : X → R,

then P is bounded and Borel measurable.

Proof. Suppose G = (Xi, ui)
N
i=1 is potential game with potential P : X → R.

Fix x = (x1, .., xn) ∈ X. It is straightforward to verify that P ∗ : X → R
defined as

P ∗(x) := P (x)− P (x)

is also a potential for G. Writing

P ∗(x1, .., xN) =
N∑
i=1

[P (x1, .., xi, xi+1, .., xN)− P (x1, ..xi−1, xi, .., xN)]

=
N∑
i=1

[ui(x1, .., xi, xi+1, .., xN)− ui(x1, ..xi−1, xi, .., xN)] ,

it follows that P ∗ is bounded and measurable since each ui is bounded and
measurable. Consequently, P is bounded and measurable. �
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2.2 Perfect and strictly perfect equilibrium

If Xi is a compact, metric space, let ∆(Xi) represent the set of regular Borel
probability measures on Xi, endowed with the topology of weak convergence.
Since each Xi is a compact metric space, it follows that the topology of
weak convergence is metrizable and that ∆(Xi) is a compact metric space.
In particular, a sequence in ∆(Xi) is weakly convergent if and only if the
sequence is convergent with respect to the Prokhorov metric. Next, extend
ui to ∆(X) := ×Ni=1∆(Xi) in the usual manner by using Fubini’s Theorem
(recall that ui is bounded and Borel measurable) and defining

ui(µ) :=

∫
X

uid(µ1 ⊗ · · · ⊗ µN) =

∫
X1

· · ·
∫
XN

uidµ1 · · · dµN .

The usual mixed extension of G is the strategic form game

G = (∆(Xi), ui)
N
i=1 .

For notational simplicity, we will adopt a standard convention and will not
distinguish notationally between the pure strategy xi ∈ Xi and corresponding
Dirac measures in ∆(Xi).

For the remainder of this paper, we will treat each player as having a fixed
compact, metric strategy set Xi. However, we will treat payoff functions as
parameters in various places. Consequently, π(u) will denote the set of pure-
strategy Nash equilibria of a game G = (Xi, ui)

N
i=1 and ξ(u) will denote the

set of mixed-strategy Nash equilibria of G, i.e., the Nash equilibria of the
mixed extension G = (∆(Xi), ui)

N
i=1 .

Let Bε(x) denote the open ball centered at x ∈ X with radius ε > 0
(defined with respect to the product metric on X) and let Bε(σ) denote the
open ball of radius ε centered at σ ∈ ∆(X) (defined with respect to the
product Prokhorov metric on ∆(X)). We will also write Bε(x) for the open
ball of radius ε in ∆(X) when x ∈ X is identified with the associated profile
of Dirac measures in ∆(X). This will not cause confusion since the context
will be clear.

Let M+(Xi) denote the set of all regular measures defined on the Borel
sets in Xi. A measure µi ∈ M+(Xi) is strictly positive if µi(U) > 0 for
every nonempty open set U in Xi. Let M++(Xi) denote the set of all strictly

positive measures in M+(Xi), let ∆̂(Xi) denote the set of all strictly positive

probability measures in M+(Xi), and let ∆̂(X) := ×Ni=1∆̂(Xi). Given δ =
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(δ1, ..., δN) ∈ (0, 1)N and µ = (µ1, ..., µN) ∈ ∆̂(X), define u
(δ,µ)
i : X → R as

u
(δ,µ)
i (x) := ui ((1− δ1)x1 + δ1µ1, ..., (1− δN)xN + δNµN) .

Here, (1− δi)xi + δiµi denotes the probability measure σi ∈ ∆(Xi) for which
σi(B) := 1 − δi + δiµi(B) if xi ∈ B and σi(B) := δiµi(B) otherwise. Note

that u
(δ,µ)
i is bounded and Borel measurable as a consequence of Fubini’s

Theorem. Let G(δ,µ) denote the game defined as

G(δ,µ) := (Xi, u
(δ,µ)
i )Ni=1.

Using the notational convention established above, π(u(δ,µ)) denotes the set of

pure-strategy Nash equilibria of the game G(δ,µ) = (Xi, u
(δ,µ)
i )Ni=1 and ξ(u(δ,µ))

denotes the set of mixed-strategy Nash equilibria of G(δ,µ), i.e., the Nash

equilibria of the mixed extension G(δ,µ) = (∆(Xi), u
(δ,µ)
i )Ni=1.

Definition 2. A strategy profile σ ∈ ξ(u) is a trembling-hand perfect
(thp) equilibrium in G = (Xi, u)Ni=1 if there exist sequences (δn), (µn), and

(σn) such that (0, 1)N 3 δn → 0, µn ∈ ∆̂(X), σn → σ, and σn ∈ ξ(u(δ,µ)) for
each n.

Definition 3. A strategy profile σ ∈ ξ(u) is a strictly perfect equilibrium
in G = (Xi, u)Ni=1 if for all sequences (δn) and (µn) such that (0, 1)N 3 δn → 0

and µn ∈ ∆̂(X), there exists a sequence (σn) satisfying σn ∈ ξ(u(δn,µn)) for
each n and σn → σ.

Every strictly perfect equilibrium is a thp perfect equilibrium. Further-
more, this definition of trembling-hand perfection is equivalent to an alterna-
tive definition in terms of perturbed sets of mixed strategies. If ηi ∈M++(Xi)
and ηi(Xi) < 1, we define the perturbed mixed-strategy set of player i as

∆(Xi, ηi) := {νi ∈ ∆(Xi) : νi ≥ ηi}.

Given a profile η = (η1, ..., ηN) of perturbations, we define the associated
Selten perturbation of G to be the game

Gη = (∆(Xi, ηi), ui)
N
i=1 .

Lemma 2. Let G = (Xi, ui)
N
i=1 be a game and let σ ∈ ∆(X) be a strategy

profile. The following are equivalent:
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(i) The profile σ is a trembling-hand perfect equilibrium in G.

(ii) There exist sequences (ηn) and (σn) such that ηn → 0, σn → σ, and σn

is an equilibrium in the Selten perturbed game Gηn for each n.

Next we record a useful characterization of strict perfection.

Lemma 3. Let G = (Xi, ui)
N
i=1 be a game and let σ ∈ ∆(X) be a strategy

profile. The following are equivalent:

(i) The profile σ is a strictly perfect equilibrium in G.

(ii) For every ε > 0, there exists a κ > 0 such that the following holds: if

0 < δi < κ for each i and if µ ∈ ∆̂(X), then ξ(u(δ,µ)) ∩Bε(σ) 6= ∅.

3 Existence of pure-strategy perfect equilib-

rium

We begin by establishing that certain perturbations of upper semicontinuous
potential games are also upper semicontinuous potential games.

Lemma 4. Suppose that G = (Xi, ui)
N
i=1 is an upper semicontinuous poten-

tial game with upper semicontinuous potential P and suppose that (δ, µ) ∈
(0, 1)N × ∆̂(X). For each x = (x1, .., xN) ∈ X, define νxii ∈ ∆(Xi) as

νxii := (1− δi)xi + δiµi.

Then P (δ,µ) : X → R defined as

P (δ,µ)(x1, ..., xN) :=

∫
X

Pdνx11 · · · dν
xN
N

is an upper semicontinuous potential for G(δ,µ). Therefore, G(δ,µ) has a pure-
strategy Nash equilibrium, i.e., π(u(δ,µ)) 6= ∅.

Proof. Suppose that G = (Xi, ui)
N
i=1 is an upper semicontinuous poten-

tial game with upper semicontinuous potential P and suppose that (δ, µ) ∈
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(0, 1)N × ∆̂(X). Define νxii and P : X → R as in the statement of the lemma
and let ν

x−i

−i = (ν
xj
j )j 6=i. Given i, z−i ∈ X−i, and {xi, yi} ⊆ Xi, we have

ui((1− δi)xi + δiµi, z−i)− ui((1− δi)yi + δiµi, z−i)

= (1− δi)ui(xi, z−i) + δiui(µi, z−i)− (1− δi)ui(yi, z−i)− δiui(µi, z−i)
= (1− δi)(ui(xi, z−i)− ui(yi, z−i))
= (1− δi)(P (xi, z−i)− P (yi, z−i))

= (1− δi)(P (xi, z−i)− P (yi, z−i)) + δi

(∫
Xi

P (·, z−i)dµi −
∫
Xi

P (·, z−i)dµi
)

=

[
(1− δi)P (xi, z−i) + δi

∫
Xi

P (·, z−i)dµi
]

−
[
(1− δi)P (yi, z−i) + δi

∫
Xi

P (·, z−i)dµi
]

= P ((1− δi)xi + δiµi, z−i)− P ((1− δi)yi + δiµi, z−i).

Consequently,

u
(δ,µ)
i (xi, x−i)−u(δ,µ)i (yi, x−i)

=

∫
X−i

[ui((1− δi)xi + δiµi, ·)− ui((1− δi)yi + δiµi, ·)]dνx−i

−i

=

∫
X−i

[P ((1− δi)xi + δiµi, ·)− P ((1− δi)yi + δiµi, ·)] dνx−i

−i

= P (δ,µ)(xi, x−i)− P (δ,µ)(yi, x−i),

so P (δ,µ) is a potential for G(δ,µ).
To see that P (δ,µ) is upper semicontinuous, suppose that

xn = (xn1 , .., x
n
N)→ (x1, .., xN) = x.

Then ν
xni
i → νxii in the topology of weak convergence on ∆(Xi). Conse-

quently, (ν
xn1
1 , .., ν

xnN
N )→ (νx11 , .., ν

xN
N ) in the product topology on ∆(X). Ap-

plying Theorem 1 in Glycopantis and Muir [15] or Theorem 3.2 in Billingsley
[6] for example, we conclude that

ν
xn1
1 ⊗ · · · ⊗ ν

xnN
N → νx11 ⊗ · · · ⊗ ν

xN
N ,
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so applying Fubini’s Theorem and Theorem 14.5 in Aliprantis and Border
[1], we obtain

lim sup
n→∞

P (δ,µ)(xn1 , ..., x
n
N) = lim sup

n→∞

∫
X

Pdν
xn1
1 · · · dν

xnN
N

= lim sup
n→∞

∫
X

Pd(ν
xn1
1 ⊗ · · · ⊗ ν

xnN
N )

≤
∫
X

Pd(νx11 ⊗ · · · ⊗ ν
xN
N )

=

∫
X

Pdνx11 · · · dν
xN
N

= P (δ,µ)(x1, ..., xN).

Since P (δ,µ) is an upper semicontinuous potential for G(δ,µ), P
(δ,µ) attains

a maximum at a pure-strategy Nash equilibrium of G(δ,µ). �

To prove the existence of pure-strategy thp equilibria in upper semicontin-
uous potential games, we require a few basic results from variational analysis
that we record here.

Definition 4. Suppose that S is a metric space. A sequence (fn) of real-
valued functions on S is hypoconvergent with hypo-limit f if for each x ∈ S,
the following conditions hold:

(i) There exists a sequence (zn) such that zn → x and

f(x) = lim
n→∞

fn(zn).

(ii) For every sequence (xn) such that xn → x, we have

lim sup
n→∞

fn(xn) ≤ f(x).

The next lemma is proved for S ⊆ Rk in Rockafellar and Wets [25] (Propo-
sition 7.15) and we include a simple direct proof when S is a metric space
for the sake of completeness.

Lemma 5. Suppose that S is a metric space and suppose that (fn) is a
uniformly convergent sequence of upper semicontinuous real-valued functions
on S with uniform limit f . Then f is upper semicontinuous and (fn) is
hypoconvergent with hypo-limit f .
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Proof. Choose x ∈ S and suppose that (xn) is convergent in S with limit x
and choose ε > 0. Uniform convergence implies that there exists an m such
that

|fm(x)− f(x)| < ε
2

for all x ∈ X. Since fm is upper semicontinuous, there exists an n̂ such that

fm(xn) < f(x) + ε
2

whenever n > n̂. Therefore, n > n̂ implies that

f(xn)− f(x) = [f(xn)− fm(xn)] + [fm(xn)− f(x)] < ε

and we conclude that f is upper semicontinuous. Next, note that uniform
convergence implies that there exists an n̂ such that

|fn(xn)− f(xn)| < ε

for all n > n̂. Therefore,

fn(xn) < f(xn) + ε

whenever n > n̂. The upper semicontinuity of f implies that

lim sup
n→∞

fn(xn) ≤ lim sup
n→∞

f(xn) + ε ≤ f(x) + ε

and it follows that
lim sup
n→∞

fn(xn) ≤ f(x).

To show that condition (ii) is satisfied, define zn = x for all n. Noting that
uniform convergence implies pointwise convergence, it follows that

f(x) = lim fn(x) = lim fn(zn),

proving that (fn) is hypoconvergent with hypo-limit f . �

The next result is also well-known and follows immediately from Lemma
5, together with Theorems 5.3.5 and 5.3.6 in Beer [5].

Proposition 1. Suppose that S is a metric space and suppose that (fn) is a
uniformly convergent sequence of upper semicontinuous real-valued functions
on S with uniform limit f . If xn ∈ arg maxx∈X f

n(x) for each n and xn → x,
then x ∈ arg maxx∈X f(x).
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Lemma 6. Suppose that G = (Xi, ui)
N
i=1 is an upper semicontinuous poten-

tial game with upper semicontinuous potential P . For every ε > 0 there exists
a κ ∈ (0, 1) such that the following condition holds: for every (δ1, .., δN) with

0 < δi < κ for each i, and for every (µ1, .., µN) with µi ∈ ∆̂(Xi) for each i,

sup
x∈X
|P (x)− P (δ,µ)(x)| < ε.

Proof. Let N̂ = {1, ..., N}. Applying an induction argument, it follows that

P (δ,µ)(z) =
∑
I⊆N̂

∏
i∈I

(1− δi)
∏
i∈N̂\I

δi

P (zI , µN̂\I)

so that

P (δ,µ)(z) =

∏
i∈N̂

(1− δi)

P (z) +
∑
I⊆N̂
:I 6=N̂

∏
i∈I

(1− δi)
∏
i∈N̂\I

δi

P (zI , µN̂\I).

Let M = supx∈X |P (x)| (recall that P is bounded (Lemma 1)), choose ε > 0
and choose κ ∈ (0, 1) so that[[

1− (1− κ)N
]

+ κ(2N − 1)
]
M < ε.

If I 6= N̂ , then there exists a j ∈ N̂\I such that

∏
i∈I

(1− δi)
∏
i∈N̂\I

δi = δj

∏
i∈I

(1− δi)
∏

i∈N̂\(I∪{j})

δi


implying (since 0 < δi < κ < 1 for each i) that

∏
i∈I

(1− δi)
∏
i∈N̂\I

δi = δj

∏
i∈I

(1− δi)
∏

i∈N̂\(I∪{j})

δi

 < δj < κ.
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Then for each z ∈ X, it follows that

|P (z)− P (δ,µ)(z)|

≤

1−
∏
i∈N̂

(1− δi)

 |P (z)|+
∑
I⊆N̂
:I 6=N̂

∏
i∈I

(1− δi)
∏
i∈N̂\I

δi

 |P (zI , µN̂\I)|

≤


1−

∏
i∈N̂

(1− δi)

+
∑
I⊆N̂
:I 6=N̂

∏
i∈I

(1− δi)
∏
i∈N̂\I

δi


M

≤
[[

1− (1− κ)N
]

+ κ(2N − 1)
]
M < ε,

as desired. �

Lemma 6 asserts that an upper semicontinuous potential P can be uni-
formly approximated by an upper semicontinuous potential P (δ,µ) when δ is
close to zero. This property is crucial for the next result.

Theorem 1. Suppose that G = (Xi, ui)
N
i=1 is an upper semicontinuous po-

tential game with upper semicontinuous potential P . Then G possesses a
pure-strategy trembling-hand perfect equilibrium in arg maxx∈X P (x).

Proof. Suppose that P is an upper semicontinuous potential for the game
G = (Xi, ui)

N
i=1. Choose µ ∈ ∆̂(X) and a sequence δn = (δn1 , .., δ

n
N) ∈ (0, 1)N

with δn → 0. Applying Lemma 4, it follows that P (δn,µ) is an upper semi-
continuous potential for G(δ,µ). Applying Lemma 6, we conclude that P is
the uniform limit of the sequence (P (δn,µ)) so, applying Lemma 5, it follows
that (P (δn,µ)) is hypoconvergent with hypo-limit P . For each n, choose

xn ∈ arg max
x∈X

P (δn,µ)(x).

Then xn is a pure-strategy equilibrium in G(δn,µ), i.e., xn ∈ π(u(δ
n,µ)). Since

X is compact, there exists a subsequence (xnk) of (xn) and a pure-strategy
profile x ∈ X such that xnk → x. From Proposition 1, we conclude that

x ∈ arg max
x∈X

P (x),
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from which it follows that x is a pure-strategy equilibrium in G, i.e., x ∈ π(u).
Finally, note that since xnk ∈ π(u(δ

nk ,µ)) and δnk → 0, we conclude that x is
a pure-strategy thp equilibrium in G. �

It is of course helpful to identify conditions on the underlying payoffs of
a potential game that will guarantee that the potential is upper semicontin-
uous.

Proposition 2. Suppose that G = (Xi, ui)
N
i=1 is a compact, metric game and

suppose that for each i, the following conditions are satisfied:

(i) (x1, .., xN) 7→
∑N

i=1 ui(x1, .., xN) is upper semicontinuous on X.

(ii) There exists a strategy profile (x1, .., xN) ∈ X such that the map (x1, .., xN) 7→∑N
i=1 ui(xi, x−i) is lower semicontinuous on X.

If P is a potential for G, then P is upper semicontinuous.

Proof. Fix a strategy profile (x1, .., xN) ∈ X satisfying condition (ii). If
(x1, .., xN) ∈ X, then

P (x1, .., xN)

= P (x1, .., xN) +
N∑
i=1

[P (x1,..,xi, xi+1, .., xN)− P (x1,..,xi−1, xi, .., xN)]

= P (x1, .., xN) +
N∑
i=1

[ui(x1, .., xi, xi+1, .., xN)− ui(x1, ..xi−1, xi, .., xN)]

= P (x1, .., xN)

+

[
N∑
i=1

ui(x1, .., xi, xi+1, .., xN)

]
−

[
N∑
i=1

ui(x1, ..xi−1, xi, .., xN)

]
.

Condition (i) implies that the first bracketed term defines an upper semicon-
tinuous function while condition (ii) implies that the second bracketed term
defines a lower semicontinuous function. Therefore, P : X → R is upper
semicontinuous. �

Corollary 1. Suppose that G = (Xi, ui)
N
i=1 is a game satisfying the following

conditions:

13



(i) (x1, .., xN) 7→
∑N

i=1 ui(x1, .., xN) is upper semicontinuous on X.

(ii) For each i and for every xi ∈ Xi, the function ui(xi, ·) : X−i → R is
lower semicontinuous.

If P is a potential for G, then P is upper semicontinuous.

The conditions of the corollary are precisely those that appear in the
approach to equilibrium existence via Ky Fan inequalities. For a game G =
(Xi, ui)

N
i=1, define a function F : X ×X → R as follows:

F (x, y) =
N∑
i=1

[ui(yi, x−i)− ui(xi, x−i)].

The Ky Fan inequality problem for the pair (F,X) may be stated as follows:
find x ∈ X such that F (x, y) ≤ 0 for all y ∈ X. From this definition, it is
immediate that x solves the Ky Fan inequality problem for (F,X) if and only
if x ∈ π(u). The Ky Fan inequality associated with a strategic form game
was formulated by Nikaido and Isoda [23] and the following generalization of
their result follows from, e.g., Theorem 3.1.1 in Aubin and Frankowska [4].

Proposition 3. Suppose that G = (Xi, ui)
N
i=1 is game satisfying assumptions

(i) and (ii) of Corollary 1. In addition, suppose that each Xi is a compact
convex nonempty subset of a Hausdorff locally convex topological vector space,
and suppose that ui(·, x−i) : Xi → R is concave for each x−i ∈ X−i. Then
the Ky Fan inequality problem for (F,X) has a solution. That is, the game
G has an equilibrium.

If a game G satisfies conditions (i) and (ii) of Corollary 1, then G has
an equilibrium if G is a potential game or if the strategy sets and payoffs
satisfy the appropriate convexity and concavity assumptions of Proposition
3. Finally, note that, if P is a potential for G = (Xi, ui)

N
i=1, then

F (x, y) =
N∑
i−1

[ui(x−i, yi)− ui(x−i, xi)] =
N∑
i−1

[P (x−i, yi)− P (x−i, xi)]

and it follows that any maximizer of P on X will be a solution to the Ky
Fan inequality problem for (F,X).

A game G = (Xi, ui)
N
i=1 is continuous if each ui is continuous. Since a

continuous potential game is an upper semicontinuous potential game, the
following is an immediate corollary of Theorem 1.

14



Corollary 2. Suppose that G = (Xi, ui)
N
i=1 is a potential game with contin-

uous potential P . Then G possesses a pure-strategy trembling-hand perfect
equilibrium.

We conclude this section by noting that one cannot drop upper semicon-
tinuity of the potential in the hypothesis of Theorem 1. In fact, Example 1
below presents a potential game that lacks a pure-strategy thp equilibrium
(and hence, by Theorem 1, the game does not admit an upper semicontinuous
potential).

Assuming that the potential of G is upper semicontinuous ensures that
the corresponding potentials for perturbed games of the form G(δ,µ) are up-
per semicontinuous, and this, in turn, guarantees the existence of a global
maximizer for the potentials of the perturbations. Simply assuming that G
admits a potential that can be maximized will generally not be sufficient for
perturbations of the form G(δ,µ) to have potentials that attain a maximum.
In fact, while the game G in Example 1 (below) does not admit an upper
semicontinuous potential, the game does admit a potential that attains a
maximum in X. Nevertheless, no sequence (G(δn,µn)) of perturbations (with

(0, 1)N 3 δn → 0 and µn ∈ ∆̂(X)) can be obtained such that each G(δn,µn)

admits a potential that can be maximized.

Example 1. For each k ≥ 1, let α(k) = k+1
k+2

. Consider the game G =

(Xi, ui)
2
i=1 where X1 = {1} ∪ {αk : k ≥ 1}, X2 = [0, 1], and u1 = u2 = u

where

u(x1, x2) :=


1 if (x1, x2) = (1, 0),

0 if x1 = 1 and x2 6= 0,

αk if (x1, x2) = (αk, 0),
1
2

if x1 = αk and x2 6= 0,

Note that each Xi is compact in the Euclidean metric topology. Since
u1 = u2, it follows that G is a potential game with potential P = u. From
Lemma 2.7 in Monderer and Shapley [21], it follows that if P̂ is any other

potential for G, then P̂ = P + c = u + c for some constant c. The payoff
function u is not upper semicontinuous since (αn, 1)→ (1, 1) but

lim sup
n→∞

u(αn, 1) = 1
2
> 0 = u(1, 1).

Therefore, G has a potential but no potential for G is upper semicontinuous.
To see that no equilibrium in G is trembling-hand perfect, first observe that
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x2 = 0 is a (strictly) dominant strategy for player 2 in G implying that the
pure-strategy profile (x1, x2) = (1, 0) is the unique equilibrium in G. Fur-
thermore, (x1, x2) = (1, 0) is the unique maximizer of any potential function
for G. Next, choose sequences (δn) and (µn) with δn ∈ (0, 1)2 and δn → (0, 0)

and µn ∈ ∆̂(X). First, we claim that x2 = 0 is also the unique best response
(pure or mixed) of player 2 in the game G(δn,µn). To see this, note that:

If x1 = 1 and 0 < y2 ≤ 1, then u2(x1, y2) = 0 and 1
2
< αk for every k so

that

u2((1− δn1 )x1 + δn1µ
n
1 , 0)

= (1− δn1 )u2(1, 0) + δn1u2(µ
n
1 , 0)

= (1− δn1 ) + δn1

[∑
k

u2(α
k, 0)µn1 (αk) + u2(1, 0)µn1 (1)

]

= (1− δn1 ) + δn1

[∑
k

αkµn1 (αk) + µn1 (1)

]

> 0 + δn1

[∑
k

1
2
µn1 (αk) + 0

]

= (1− δn1 )u2(1, y2) + δn1

[∑
k

u2(α
k, y2)µ

n
1 (αk) + u2(1, y2)µ

n
1 (1)

]
= u2((1− δn1 )x1 + δn1µ

n
1 , y2).

If x1 = αm for some m and 0 < y2 ≤ 1, then u2(x1, y2) = 1
2
< αk for every k

so that

u2((1− δn1 )x1 + δn1µ
n
1 , 0)

= (1− δn1 )u2(α
m, 0) + δn1u2(µ

n
1 , 0)

= (1− δn1 )αm + δn1

[∑
k

u2(α
k, 0)µn1 (αk) + u2(1, 0)µn1 (1)

]

= (1− δn1 )αm + δn1

[∑
k

αkµn1 (αk) + µn1 (1)

]
> (1− δn1 )1

2
+ δn1

[∑
k

1
2
µn1 (αk) + 0

]
= (1− δn1 )u2(αk, y2) + δn1

[∑
k

u2(α
k, y2)µ

n
1 (αk) + u2(1, y2)µ

n
1 (1)

]
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= u2((1− δn1 )x1 + δn1µ
n
1 , y2).

From these observations, it follows that x2 = 0 is the unique best response
of player 2 in the game G(δn,µn). To complete the argument, we show that
player 1 has no best response (pure or mixed) to x2 = 0 in the game G(δn,µn)

implying that the game G(δn,µn) does not have an equilibrium. First, observe

that (0, 1] is open in X2 and µn2 ∈ ∆̂(X2) implying that µn2 ((0, 1]) > 0.
Therefore,

u1(1, µ
n
2 ) =

∫
{0}
u1(1, y2)dµ

n
2 +

∫
(0,1]

u1(1, y2)dµ
n
2 = u1(1, 0)µn2 ({0}) = µn2 ({0})

and

u1(α
m, µn2 ) =

∫
{0}
u1(α

m, y2)dµ
n
2 +

∫
(0,1]

u1(α
m, y2)dµ

n
2

= u1(α
m, 0)µn2 ({0}) +

∫
(0,1]

1
2
dµn2

= xαmµn2 ({0}) + 1
2
µn2 ((0, 1]).

As a result,
u1(α

m, µn2 ) < u1(α
m+1, µn2 )

for each m, implying that

u1((1−δn1 )αm+δn1µ
n
1 , (1−δn2 )0+δn1µ

n
2 ) < u1((1−δn1 )αm+1+δn1µ

n
1 , (1−δn2 )0+δn1µ

n
2 ).

Therefore, there does not exist an m such that αm is best response to x2 = 0
in G(δn,µn). In addition, there exists an m̂ such that

(1− αm̂)µn2 ({0}) < 1
2
µn2 ((0, 1])

implying that

u1(1, µ
n
2 ) = µn2 ({0}) < αm̂µn2 ({0}) + 1

2
µn2 ((0, 1]) = u1(α

m̂, µn2 )

and, consequently,

u1((1−δn1 )1+δn1µ
n
1 , (1−δn2 )0+δn1µ

n
2 ) < u1((1−δn1 )αm̂+δn1µ

n
1 , (1−δn2 )0+δn1µ

n
2 ).

Therefore, x1 = 1 is not best response to x2 = 0 in G(δn,µn). This proves
that the game G(δn,µn) has no Nash equilibrium and applying Lemma 2, we
conclude that G has no thp equilibrium.
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4 Stable sets of equilibria

If G is a potential game with potential P , let

arg max
X

P := arg max
x∈X

P (x)

Then arg maxX P ⊆ π(u), i.e., every maximizer of P is a pure-strategy Nash
equilibrium in G. Therefore, arg maxX P defines a refinement of the set of
equilibria. We have shown that arg maxX P contains a pure-strategy perfect
equlibrium and it is our goal to provide a relationship between arg maxX P
and strategically stable sets.

Definition 5. Suppose that G = (Xi, ui)
N
i=1 is a game. A subset E ⊆ ξ(u)

is KM prestable if E is closed and the following condition is satisfied: for
every open set U containing E, there exists a κ > 0 such that, for every
δ = (δ1, .., δN) with 0 < δi < κ and for every µ = (µ1, .., µN) with µi ∈ ∆̂(Xi)
for each i,

ξ(u(δ,µ)) ∩ U 6= ∅.

A subset E ⊆ ξ(u) is a KM stable set if E is a minimal (with respect to
set inclusion) KM prestable set.

Remark 1. As a consequence of Definition 3, an equilibrium σ ∈ ξ(u) is
strictly perfect if and only if the set E = {σ} is a KM stable set.

Theorem 2. Suppose that G = (Xi, ui)
N
i=1 is a game with upper semicontin-

uous potential P . Then arg maxX P contains a KM stable set for G.

Proof. First we show that arg maxX P is KM prestable. For each (δ, µ) ∈
(0, 1)N × ∆̂(X), let G(δ,µ) be the game defined in Section 2.2 as

G(δ,µ) = (Xi, u
(δ,µ)
i )Ni=1,

where u
(δ,µ)
i : X → R is given by

u
(δ,µ)
i (x) := ui ((1− δ1)x1 + δ1µ1, ..., (1− δN)xN + δNµN) .

Since arg maxX P
(δ,µ) ⊆ π(u(δ,µ)) ⊆ ξ(u(δ,µ)), it suffices to prove that, for

every open set U containing arg maxx∈X P, there exists a κ > 0 such that
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the following condition holds: for every (δ1, .., δN) with 0 < δi < κ for each i

and for every (µ1, .., µN) with µi ∈ ∆̂(Xi) for each i,(
arg max

x∈X
P (δ,µ)

)
∩ U 6= ∅.

To see this, suppose not. Then there exists an open set U containing arg maxX P

and for each n numbers 0 < δni <
1
n

and probability measures µni ∈ ∆̂(Xi)
such that arg maxX P

(δn,µn) ∩ U = ∅. Since P is the uniform limit of the se-
quence (P (δn,µn)) (apply Lemma 6) and X is compact, we can apply the same
argument as that used in the proof of Theorem 1 and conclude that there ex-
ists a subsequence (P (δnk ,µnk )) and a sequence xk ∈ arg maxX P

(δnk ,µnk ) such
that xk → x and x ∈ arg maxX P. This contradiction establishes the claim.
Since arg maxX P is closed (since P is upper semicontinuous), it follows that
arg maxX P is KM prestable.

To complete the proof, we show that arg maxX P contains a minimal KM
prestable set by applying Zorn’s Lemma in a standard way. Let F be defined
as the collection of sets of Nash equilibria of G satisfying (i) E ⊆ arg maxX P
and (ii) E is KM prestable in G. Next, suppose that F is ordered by set
inclusion and suppose that C is a totally ordered subcollection of F . The
collection C has the finite intersection property. Therefore, S = ∩{E :E ∈ C}
is compact and nonempty since each member of C is closed and arg maxX P
is compact. To show that S is KM prestable, suppose that U is open and
S ⊆ U. Then there exist E ′ ∈ C such that E ′ ⊆ U. Otherwise, {E\U :E ∈ C}
is a collection of closed subsets of arg maxX P satisfying the finite intersection
property. This implies that S\U = ∩{E\U :E ∈ C} 6= ∅, an impossibility.
Since E ′ is KM prestable, it follows that S is KM prestable. The existence of
a minimal KM prestable set in G contained in arg maxX P now follows from
Zorn’s Lemma. �

While arg maxX P contains a KM stable set, the next example shows that
arg maxX P itself need not be KM stable. This game is (trivially) continuous
and also demonstrates that a continuous potential game need not have a
strictly perfect equilibrium.

Example 2. Consider the finite two-player game G defined as

L C R
T 1, 1 1, 1 0, 0
B 1, 1 0, 0 1, 1

19



The game G is a potential game and the value of the potential P at each
strategy pair is indicated in the table below

L C R
T 1 1 0
B 1 0 1

In this example

arg max
X

P = {(T, L), (T,C), (B,L), (B,R)}.

However, the unique KM stable set for G is {(T, L), (B,L)}. Finally, we note
that G has no strictly perfect equilibria.

To complete the discussion of stategic stability, we show that a strategi-
cally stable set contained in arg maxX P consists of trembling-hand perfect
pure-strategy equilibria.

Theorem 3. Suppose that G = (Xi, ui)
N
i=1 is a game with upper semicontin-

uous potential P . If E ⊆ arg maxX P is a KM stable set, then each element
of E is a pure-strategy trembling-hand perfect equilibrium

Proof. If |E| = 1, then the one member of E is a strictly perfect equilibrium,
hence a trembling-hand perfect equilibrium. So suppose that |E| > 1. Choose
x ∈ E and choose ε > 0 so that E\Bε(x) 6= ∅. Since E is KM stable and
E\Bε(x) is closed and nonempty, it follows from minimality that E\Bε(x)
is not KM stable. Therefore, there exists an open set U containing E\Bε(x)

such that, for every k, there exist 0 < δki <
1
k

and µk ∈ ∆̂(X) such that

ξ(u(δ
k,µk)) ∩ U = ∅. Next, note that E ⊆ U ∪ Bε(x) and U ∪ Bε(x) is open.

Since E is prestable, it follows that ξ(u(δ
k,µk))∩[U∪Bε(x)] 6= ∅ for sufficiently

large k. In particular, ξ(u(δ
k,µk)) ∩ Bε(x) 6= ∅ for sufficiently large k and we

conclude that x is trembling-hand perfect. �

5 Essential equilibria

We conclude the paper with a discussion of essential equilibria in potential
games. For the fixed compact, metric strategy spaces Xi, let USC(X) denote
the space of upper semicontinuous real-valued functions onX = X1×· · ·×XN

and define P(X) to be the set of payoff profiles u = (u1, .., uN) such that

20



(Xi, ui)
N
i=1 is an upper semicontinuous potential game. If u = (u1, .., uN) ∈

P(X), then we will refer to u as an usc potential game and we will refer to an
usc potential for (Xi, ui)

N
i=1 as an usc potential for u. Furthermore, we view

P(X) as a subset of the metric space (B(X)N , d), as defined in Section 2.
Suppose that u = (u1, .., uN) ∈ P(X), let P be a potential for u and define

η(u) := arg max
x∈X

P (x).

This definition is unambiguous since two potentials for u give rise to the
same set of maximizers. Recalling that π(u) (resp. ξ(u)) denotes the set of
pure-strategy Nash equilibria (resp. mixed-strategy Nash equilibria) for u, it
is clear that η(u) ⊆ π(u) ⊆ ξ(u).

Definition 6. Suppose that u ∈ P(X). An equilibrium σ ∈ ξ(u) is essen-
tial if the following condition is satisfied: for every ε > 0 there exists a δ > 0
such that ξ(v) ∩Bε(σ) 6= ∅ whenever v ∈ P(X) and d(v, u) < δ.

In the case of finite games, it is well-known that essential equilibria are
strictly perfect and this result extends to upper semicontinuous potential
games.

Proposition 4. Suppose that u ∈ P(X). If σ ∈ ξ(u) is an essential equilib-
rium in G = (Xi, ui)

N
i=1, then σ is a strictly perfect equilibrium.

Proof. Suppose that σ ∈ ξ(u) is an essential equilibrium in G = (Xi, ui)
N
i=1.

Fix ε > 0. Then there exists a β > 0 such that ξ(v) ∩ Bε(σ) 6= ∅ whenever
v ∈ P(X) and d(v, u) < β. Next, we can duplicate the proof of Lemma 5 and
conclude that there exists a κ > 0 such that the following condition holds for
each player j: for every (δ1, .., δN) with 0 < δi < κ for each i, and for every

(µ1, .., µN) with µi ∈ ∆̂(Xi) for each i,

sup
x∈X
|uj(x)− u(δ,µ)j (x)| < β

n
.

Since u ∈ P(X) admits at least one upper semicontinuous potential P , it
follows that u(δ,µ) ∈ P(X) since P (δ,µ) is an upper semicontinuous potential
for u(δ,µ) as a consequence of Lemma 3. Consequently, u(δ,µ) ∈ P(X) and

d(u(δ,µ), u) < β whenever 0 < δi < κ for each i and µ ∈ ∆̂(X). Therefore,
ξ(u(δ,µ))∩Bε(σ) 6= ∅, and we deduce from Lemma 2 that σ is strictly perfect.
�
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Finally, it is our goal to show that, for “most” potential games u ∈ P(X)
the set η(u) consists of pure-strategy Nash equilibria for u, all of which are
essential, strictly perfect and KM stable as singleton sets. To accomplish
this, we need more notation and a few lemmas. Since a given potential game
can be identified with an equivalence class of potentials that only differ by
a constant, it will be convenient to specify a particular normalized potential
with each u ∈ P(X). Fix x ∈ X. For each u ∈ P(X), let F (u) ∈ USC(X)
denote the potential for u defined as

F (u)(x1, .., xN) =
N∑
i=1

[ui(x1, .., xi, xi+1, .., xN)− ui(x1, ..xi−1, xi, .., xN)] .

Consequently,
η(u) = arg max

X
F (u).

We will suppress the dependence of F on x to lighten the notation.

Lemma 7. The mapping F : P(X) → USC(X) is uniformly continuous.

Proof. Choose ε > 0, choose 0 < δ < ε
2

and suppose that {u, v} ⊆ P(X) and
d(v, u) < δ. Then for each (x1, .., xN) ∈ X, we have

|F (u)(x1, .., xN)− F (v)(x1, .., xN)|

≤
N∑
i=1

|ui(x1, .., xi, xi+1, .., xN)− vi(x1,..,xi, xi+1, .., xN)|

+
N∑
i=1

|vi(x1, .., xi−1, xi, .., xN)− ui(x1,..,xi−1, xi, .., xN)|

≤ 2δ

< ε,

so F is uniformly continuous. �

To show that all members of η(u) are essential for all u in a “topologically
large” subset of P(X), we first observe that all members of η(u) are essential
equilibria for any u ∈ P(X) at which the correspondence η : P(X) ⇒ X is
lower hemicontinuous. The key result for establishing our genericity theorem
is a classic result of Fort [14] which we now state.
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Theorem 4 (Fort’s Theorem). Suppose that S is a topological space and Y
is a metric space. If the correspondence ϕ : S ⇒ Y is nonempty-valued,
compact-valued and upper hemicontinuous, then ϕ is lower hemicontinuous
at all all points in a residual subset of S.

Fort’s theorem has been used is a number of papers to establish genericity
of essential equilibria and essential components of equilibria in strategic-form
games (e.g., Zhou et al. [30] and the references cited there, and Carbonell-
Nicolau [12]).

Proposition 5. There exists a dense, residual subset Z ⊆ P(X) such that
η : P(X) ⇒ X is lower hemicontinuous at each u ∈ Z. If u ∈ Z, then each
x ∈ η(u) is an essential equilibrium, hence a strictly perfect equilibrium and
{x} is a singleton stable set.

Proof. Obviously, η(x) = arg maxX F (u) is nonempty and compact for each
u ∈ P(X). Next, we claim that the correspondence η : P(X) ⇒ X is
upper hemicontinuous. Since X is compact, it suffices to show that η has
closed graph. To see this, suppose that un → u, xn → x and xn ∈ η(un) =
arg maxX F (un) for each n. Applying Lemma 7, it follows that F (un)→ F (u)
uniformly on X, so from Proposition 1 we conclude that x ∈ η(u). Apply-
ing Theorem 4 to the upper hemicontinuous correspondence η, there exists a
residual subset Z ⊆ P(X) such that η : P(X) ⇒ X is lower hemicontinuous
at each u ∈ Z. It follows that every member of η(Z) is an essential equilib-
rium, and hence a strictly perfect equilibrium (Proposition 4). To complete
the proof, we show that Z is dense. From Lemma 5, we conclude that P(X)
is a closed subset of the Banach space [B(X)]N implying that P(X) is a
complete metric space. Therefore, Z is dense as a consequence of the Baire
Category Theorem. �
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