
Duong, Diep; Swanson, Norman

Working Paper

Volatility in discrete and continuous time models: A survey
with new evidence on large and small jumps

Working Paper, No. 2011-17

Provided in Cooperation with:
Department of Economics, Rutgers University

Suggested Citation: Duong, Diep; Swanson, Norman (2011) : Volatility in discrete and continuous
time models: A survey with new evidence on large and small jumps, Working Paper, No. 2011-17,
Rutgers University, Department of Economics, New Brunswick, NJ

This Version is available at:
https://hdl.handle.net/10419/59488

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/59488
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Volatility in Discrete and Continuous Time Models: A
Survey with New Evidence on Large and Small Jumps�

Diep Duong and Norman R. Swanson�
Rutgers University

October 2010

The topic of volatility measurement and estimation is central to �nancial and more generally time series econo-
metrics. In this paper, we begin by surveying models of volatility, both discrete and continuous, and then we
summarize some selected empirical �ndings from the literature. In particular, in the �rst sections of this paper, we
discuss important developments in volatility models, with focus on time varying and stochastic volatility as well as
nonparametric volatility estimation. The models discussed share the common feature that volatilities are unobserved,
and belong to the class of missing variables. We then provide empirical evidence on "small" and "large" jumps from
the perspective of their contribution to overall realized variation, using high frequency price return data on 25 stocks
in the DOW 30. Our "small" and "large" jump variations are constructed at three truncation levels, using extant
methodology of Barndor¤-Nielsen and Shephard (2006), Andersen, Bollerslev and Diebold (2007) and Aït-Sahalia
and Jacod (2009a,b,c). Evidence of jumps is found in around 22.8% of the days during the 1993-2000 period, much
higher than the corresponding �gure of 9.4% during the 2001-2008 period. While the overall role of jumps is lessening,
the role of large jumps has not decreased, and indeed, the relative role of large jumps, as a proportion of overall
jumps has actually increased in the 2000s.
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1 Introduction

In this paper, we begin by surveying models of volatility, both discrete and continuous, and then we

summarize some selected empirical �ndings from the literature. In particular, in the �rst sections

of this paper, we discuss important developments in volatility models, with focus on time varying

and stochastic volatility as well as the nonparametric volatility estimation. The models discussed

share the common feature that volatilities are unobserved, and belong to the class of missing

variables. We begin by looking at the key ARCH class of models, followed by a discussion of the

class of continuous time processes frequently used in �nance and the link between discrete time and

continuous time models. We then discuss the construction of implied volatility in the Black-Scholes

framework, and generalizations thereof. and it�s extensions. Finally, we discuss recent research in

the area of "model free" estimation of integrated volatility via use of so-called realized volatility, and

variants thereof called realized measures. In our empirical investigation, we use realized measures

to investigate the role of jumps in the realized variation of stock price returns.

The importance of realized volatility to econometric modelling is now obvious. For example,

future realized volatilities are often used in the so-called variance swap, an important product in

the volatility derivative market. Other products that use realized volatility such as caps on the

variance swap, corridor variance swaps, and options on realized volatility have also been introduced

into the class of volatility related �nancial instruments traded in �nancial markets. The key here

is that investors worry about future volatility risk, and hence often choose to opt for this type

of contract in order to hedge against it.1 Realized volatility is also needed for calculation of the

variance risk premium, a new �nancial variable that has interesting implications in asset pricing.

For example, Bollerslev, Tauchen and Zhou (2009) �nd that the variance risk premium is able to

explain time-series variation in post-1990 aggregate stock market returns with high (low) premia

predicting high (low) future returns. Finally, note that in the context of realized volatility, jumps

have a signi�cant impact on modeling and forecasting volatility and it�s realized measures. For

example, when jumps are present, realized volatility is a biased estimator of integrated volatility.

Thus, practitioners who are interested in modeling risks associated with continuous components

1Volatility and variance swaps are newer hedging instruments, adding to the traditional volatility "Vega", which

is derived from options data. See Hull and White (1997, pp. 328) for a de�nition of Vega. For example, as noted in

Carr and Lee (2008), the UBS book was short many millions of vega in 1993, and they were the �rst to use variance

swaps and options on realized volatility to hedge against volatility risk.
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of return processes, or integrated volatility, should use carefully designed realized measures that

take jumps e¤ects into account.2 Careful analysis of jumps and realized measures in the presence of

jumps are crucial elements to any reasonable quanti�cation of risk. Moreover, several authors3 have

found that separation of continuous components from jump components can improve forecasts of

future realized volatility. This �nding should be of great interest to practitioners, especially when

their objective is hedging. In summary, risk, or volatility plays an important role in many areas of

econometrics used in the �nance industry. However, as volatility is generally unmeasured, it poses

a standard sort of "missing variable" problem.

Turning back to our discussion of jumps, note that evidence of jumps in �nancial markets is

plentiful. In an important paper, Huang and Tauchen (2005) �nd evidence of jumps for S&P cash

and future (log) returns from 1997 to 2002, in approximately 7% of the trading days. Their test for

jumps requires the jump component to be a compound Poisson process. Several authors, including

Cont and Mancini (2007), Tauchen and Todorov (2008) and Aït-Sahalia and Jacod (2009c) have

taken the analysis of jumps one step further by developing tests to ascertain whether the process

describing an asset contains "in�nite activity jumps" - those jumps that are tiny and look similar

to continuous movements, but whose contribution to the jump risk of the process is not negligible.

Cont and Mancini (2007) implement their method of testing for the existence of in�nite activity

jumps using foreign exchange rate data, and �nd no evidence in�nite activity jumps. Aït-Sahalia

and Jacod (2009c) estimate that the degree of activity of jumps in Intel and Microsoft log returns

is approximately 1.6, which implies evidence of in�nite activity jumps for these, and possibly many

other stocks. Andersen, Bollerslev and Diebold (ABD: 2007) �nd that separating out the volatility

jump component results in improved out-of-sample volatility forecasting, and �nd that jumps are

closely related to macroeconomic announcements. In summary, it is now generally accepted that

many return processes contain jumps.

In the part of this paper that present empirical �ndings relevant to the topic discussed in

previous sections, we examine high frequency data for 25 stocks in the DOW 30, using 5 minute

interval observations, and for the sample period from 1993 to 2008. Some of the stocks in our data

set, (e.g. Microsoft and Intel) have been found to be characterized by in�nite activity jumps by

Aït-Sahalia and Jacod (2009b,c), and therefore do not belong to the class of �nite activity jump

2See Corradi, Distaso and Swanson (2009, 2010) for discussion of prediction of integrated volatility.
3For instance, see Andersen, Bollerslev and Andersen (2007).
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processes that Barndor¤-Nielsen and Shephard (BNS: 2006) has often been applied to. This fact

underscores the importance of the recent papers by Jacod (2008), Tauchen and Todorov (2008)

and Aït-Sahalia and Jacod (2009a,b,c), where new limit theory applicable to in�nite activity is

implemented and developed; and underscores why the results of these papers are used in our

empirical investigation. In summary, we �nd evidence of jumps in around 22.8% of the days in the

1993-2000 period, and 9.4% in the 2001-2008 period. This degree of jump activity implies more

(jump induced) turbulence in �nancial markets in the previous decade than the current decade.

However, and as expected, the prevalence of "large" jumps varies across these periods. (Note

that we examine large jumps by picking 3 di¤erent �xed  levels, corresponding to 50th; 75th

and 90th percentiles of samples of the monthly maximum return increments, i.e. our monthly

�abnormal event" samples.) In particular, large jump activity increases markedly during the 2001-

2008 period, with respect to its contribution to the realized variation of jumps and with respect to

the contribution of large jumps to the total variation of the (log) price process. This suggests that

while the overall role of jumps is lessening, the role of large jumps has not decreased, and indeed,

the relative role of large jumps, as a proportion of overall jumps has actually increased in the 2000s.

Note that this result holds on average across all 25 stocks examined. In summary, it appears that

frequent �small" jumps of the 1990s have been replaced with relatively infrequent "large" jumps in

recent years. Interestingly, this result holds for all of the stocks that we examine, supporting the

notion that their is strong co-movement across jump components for a wide variety of stocks, as

discussed in Bollerslev, Law and Tauchen (2008).

The rest of the paper is organized as follows: Section 2 discusses volatility models in discrete

time. Section 3 discusses volatility models in continuous time, and outlines various measures used

to estimate (and forecast) volatility. Section 4 summarizes results from the extant testing and

prediction literatures that are often used in the study of volatility, and in particular that are used

in our empirical investigation that is presented in Section 5. Concluding remarks are contained

Section 6.

2 Volatility Models in Discrete Time

Though the focus in this paper mainly involves continuous time models, we start by highlighting

stylized facts and some key discrete time volatility models. The rationale for these highlights is not
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only because discrete time models have a pivotal role in volatility research, but also because their

set-up is intuitive and gives us interesting insights into the way econometricians build empirical

facts into their models. We summarize some key results for the ARCH, GARCH and EARCH

models of Engle (1982), Bollerslev (1986) and Nelson (1991). We �nish by outlining the work of

by Nelson (1990) and Corradi (2000)4 that clari�es the link between discrete time and continuous

time models. For a complete survey of conditional heteroskedasticity models, refer to Bollerslev,

Chou and Kronner (1992) and Bollerslev, Engle and Nelson (1994).

2.1 Stylized Facts in Financial Market - Directions for Volatility Models

It is well-known in empirical �nance that asset returns share various regularities, all of which guide

�nancial economists and econometricians in their choice of models. These stylized facts have been

discussed by many authors. Here, we highlight some of them that pertain to stock returns.

Leptorkurtosis: Asset returns have been noted by Mandelbrot (1963) and Farma (1965) to have

fat tails and one therefore should use non-normal distributions to model their dynamics. Farma

(1965) shows evidence of excess kurtosis in the distribution of stock returns. According to Clark

(1973), a stochastic process is fat tailed if it is conditionally normal with a randomly changing

conditional variance. Engle and González-Rivera (1991) introduce a semi-parametric volatility

model, which allows for generic return distributions.

Volatility Clustering and Persistence: By observing cotton prices, Mandelbrot (1963) stressed

that �.... large changes tend to be followed by large changes, of either sign, and small changes tend

to be followed by small changes...�. The persistence of shocks to the conditional variance of stock

returns seems to be clear. The interpretation of this persistence as well as how long the shocks

persist are crucial in specifying the �correct�dynamics. Porterba and Summers (1986) note that

volatility shocks may a¤ect the entire term structure, associated risk premia, and investment in

long-lived capital goods.

Volatility persistence is an important feature that pertains to models with time varying and

codependent variance. Black and Scholes (1973) wrote that �...there is evidence of non-stationary

in the variance. More work must be done to predict variances using the information available.�.

Since their paper, numerous autoregressive conditional heteroskedasticity, volatility and stochastic

4There are several other papers in this line of research. For instance see Fornari and Mele (2006), among others.
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volatility models have been developed.

Leverage E¤ects: Black (1976) observes that changes in stock prices seem to be negatively

correlated with changes in stock volatility. Volatility seems to increase after bad news and de-

crease after good news. Schwert (1989, 1990) presents empirical evidence that stock volatility is

higher during recessions and �nancial crises. Christie (1982) discusses economic mechanisms that

explain this e¤ect. Speci�cally, reductions in equity value raise the riskiness of �rms, as implied

by debt to equity ratios, and therefore lead to increases in future volatility. For modeling, Nelson

(1991) suggests a new model that captures the asymmetric relation between returns and changes

in volatility.

Co-movement in Volatilities. This is also �rst commented on by Black (1976). He pointsout

the commonality in volatility changes across stocks. When stock volatilities change, they all tend

to change in the same direction. This suggests that (few) common (unobserved or missing) factors

might be speci�ed when modelling individual asset return volatility.

2.2 ARCH and GARCH Models

Modeling and forecasting �nancial asset return volatility constitutes two of the cornerstones in

modern econometric research. Much of the impetus for these lines of research owes to the seminal

work of Engle (1982), in which he makes a key contribution to literature by introducing the autore-

gressive conditional heteroskedasticity (ARCH) model. Later, the Generalized ARCH (GARCH)

model is developed by Bollerslev (1986), and these two models are broadly considered as the �rst

to successfully capture the dependency of conditional variance on past information. In the ARCH

model, conditional variances are simply modeled as a linear function of past squared error terms.

Uncovering the correct conditional volatility speci�cation turns out to be important, especially

in �nance, where the central idea is the risk return trade-o¤. For investment decision-making, risk

averse investors take into account not only expected return but also the level of risk. Investors

demand risk premia for risk. This risk premium may include premia due to changes in volatility.

In risk neutral pricing, volatility is needed for the derivation of the market price of risk. ARCH

models and its relatives o¤er convenient parametric speci�cations of the heterogeneous volatility

process that is needed in this context. As pointed out in Engle (1982), the idea of time varying

volatility had already been discussed in the early work of Granger and Andersen (1978), in the

context of their so-called bilinear model. However, little evidence of these bilinear models has been
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found in the data.

Turning now to our discussion of ARCH type models, let Xt be a �nancial asset return, say,

and Ft�1 denotes a �ltration of all information through time t� 1. The prototypical autoregressive

conditional heteroskedasticity (ARCH) model has:

Xt = "t�t

"t � i:i:d with

E("t) = 0 and V ar("t) = 1

�2t = �0 + �1X
2
t�1

and in the more general case:

XtjFt�1 � N(Zt�; �2t )

�2t = h("t�1; "t�2;:::;"t�p; �)

"t = Xt � Zt�

where Zt may contain lags of Xt: If the function h contains current and lagged X 0s, then

�2t = h("t�1; "t�2;:::;"t�p; xt; xt�1;:::;xt�p; �)

In this class of models, ARCH(p) is the most popular where

XtjFt�1 � N(Zt�; �2t )

�2t = �0 + �1"
2
t�1 + �2"

2
t�2 + : : : �p"

2
t�p

Engle (1982) proposes a convenient estimation and testing methodology for the model using

maximum likelihood. He shows that � and � could be estimated separately under some regularity

conditions5. To capture the trade-o¤ between risk and expected return, Engle, Lilien and Robins

(1987) introduce ARCH in mean, or ARCH-M models. Let

Xt = g(Zt�1; �
2
t ; b) + "t

The appealing feature of this model is that the conditional mean, �t; is a function of the variance, i.e.

�t = g(Zt�1; �2t ; b): This helps us to model directly the risk-return relationship, and has important

5For details, see Sections 4 and 5 in Engle (1982).
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implications for predicting the conditional mean function, since the conditional volatility enters

therein. The parametric choice for the function g depends on the modeler. In practice, many

papers set g to be a linear or logarithmic function.

An important improvement to these models is made by Bollerslev (1986), where the ARCH

model is generalized to the Generalized ARCH (GARCH) model. As noted in Bollerslev (1986),

the extension from ARCH to GARCH is similar to the extension in time series modelling of an AR

to an ARMA model. Speci�cally, as in the case of the ARCH model, let "t be the innovation in a

linear regression

"t = Xt � Z 0t�

Then the GARCH (p,q) speci�cation is given by

"tjFt�1 � N(0; �2t )

�2t = �0 +

qX
i=1

�i"
2
t�i +

pX
i=1

�i�
2
t�i

"t = Xt � Zt�

where p and q denote lag orders, and

p � 0; q > 0

�0 > 0; �i � 0; i = 1; :::; q

�i � 0; i = 1; :::; p

It is clear that the di¤erence between the above set up and the ARCH model is the linear lagged

conditional variances. Conditional volatility today not only depends on the lagged innovations but

also on lagged conditional volatilities.

Bollerslev (1986) presents a complete set of results on the conditions under which the model is

appropriate, as well as maximum likelihood and testing procedures for implementing the general

GARCH (p,q) model. The most successful model, empirically, is the GARCH(1,1) model. Engle

and Bollerslev (1986) discussthe so-called Integrated GARCH or IGARCH model. Under this

speci�cation,
Pq
i=1 �i +

Pp
i=1 �i = 1; and this leads to a unit root in the volatility equation.

In other key papers, Nelson (1990, 1991) discusses the use of EARCH (i.e., exponential ARCH)

to approximate continuous time processes. Nelson (1991) points out that the GARCH model has
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several limitations in empirical applications to �nancial markets. For instance, in the GARCH

model, volatility responds symmetrically to positive and negative residuals and therefore does not

explain the stylized leverage e¤ect. In lieu of this, Nelson (1991) proposes the Exponential ARCH,

or EARCH in which the volatility function is constructed as follows:

Xt = �t"t

"t � i:i:d with

E("t) = 0 and V ar("t) = 1

and

ln(�2t ) = �t +

1X
k=1

�kg("t�k); �1 � 1

where f�tgt=�1;1 and f�kgk=1;1 are parameters.

The choice for the functional form of g is

g("t) = �"t + (j"tj � Ej"tj)

This set-up allows the conditional variance process to respond asymmetrically to rises and falls

in stock prices. It is straightforward to verify this as when "t is positive g("t) = (�+)"t�E(j"tj)

and when "t is negative g("t) = (� � )"t � E(j"tj): In each case, the g("t) is linear function with

a di¤erent slope.

In addition, Nelson (1991) points out, while in GARCH, it is di¢ cult to verify the persistence the

shocks to the variance, in the EARCH model, the stationarity and ergodicity of the logarithm of the

variance process are easily checked. He states conditions for the ergodicity and strict stationarity of

fexp(��t�2t )g and fexp(��t=2Xt)g.6 Other modi�cations of the GARCH (1,1) model include the

GJR model proposed by Glosten, Jaganathan and Runkle (1993). This model imposes structure

that induces asymmetry in shocks to returns in a di¤erent way. Namely, they de�ne

�2t = ! + �"
2
t + "

2
t 1f"t�0g + ��

2
t�1

Note that when  < 0; positive return shocks increase volatility less than negative shocks.

The above discussion summarizes a very few of the important models in class of discrete ARCH

models.7 In addition to these models, there have been many modi�cations and improvements. For
6See Theorem 2.1 in Nelson (1991).
7We also present the work of Heson and Nandi (2000) and Barone-Adesi, Engle, Mancini (2008) which use modi-

�cations of ARCH models for option pricing in Section 3.2.2.
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a complete list and discussion, see Bollerslev (2008), where he provides a Glossary to ARCH. For

models with multivariate speci�cations (see Bollerslev, Engle and Wooldbridge (1988)). In the next

section, we will highlight some links between discrete time models and continuous time models in

the framework of modeling volatility.

2.3 From ARCH and GARCH to Continuous Time Models

An interesting aspect of the volatility literature is the connection between discrete time and con-

tinuous time models. In the case of constant volatility, the classical result by Cox and Ross (1976)

shows that the limiting form of the jump process

dXt = �Xtdt+ cXtdNt(�)

as � ! 0 is the di¤usion process

dXt = �Xtdt+ �XtdWt

where � is a function of c. Nt(�) is a continuous time Poisson process with intensity �; (i.e.,

dNt is the number of jumps of Xt during dt and is Poisson-distributed with parameter �dt). cXt

is the jump amplitude and Wt is a standard Brownian motion. In another important research,

Nelson (1990) bridges the gap between discrete and continuous time stochastic volatility models

by using AR(1) Exponential ARCH and GARCH (1,1) models as approximations for continuous

time processes. It should be noted that in this approximation framework, only the discrete models

with one lag are relevant due to the characteristics of continuous time models. GARCH models

with two more lags as explanatory variables are not relevant. Under certain assumptions 8, Nelson

(1990) at �rst looks at the GARCH (1,1) - M process of Engle and Bollerslev (1986)

Xt = Xt�1 + c�
2
t + �t"t;

�2t = ! + �
2
t [� + �"

2
t ];

If time is partitioned more �nely, one can write the above di¤erence equation as

Xkh = X(k�1)h + hc�
2
kh + �kh"kh

�2(k+1)h = !h + �
2
kh[�h + h

�1�h"
2
kh];

8For details, see Section 2 in Nelson (1990).

9



where h is the time increment and "kh � i:i:d N(0; h): He shows that if h goes to 0 in the limit,

this system converges weakly in distribution9 to a di¤usion process of the form

dXt = c�
2
t dt+ �tdW1t

d�2t = (! � ��2t )dt+ ��2t dW2t

whereW1t andW2t are linearly independent standard Brownian motions, independent of the initial

values (X0; �20).

In another important paper in this line of research, Corradi (2000) considers the limit when

h! 0; of the GARCH (1,1) process

Xkh �X(k�1)h = �(k�1)h"kh;

�2kh � �2(k�1)h = !h + (!1h � 1)�
2
(k�1)h + h

�1!2h�
2
(k�1)h"kh

She shows that in the limit, this system converges to either one of the following continuous time

processes, depending on the parameters !1h and w2h 10

dYt = �tdWt

d�2t = (!0 + ��
2
t )dt

or

dYt = �tdW1t

d�2t = (!0 + ��
2
t )dt+ ��

2
t dW2t

where (W1t;W2t) are two standard independent Brownian motions.

Nelson (1990) also introduces a class of ARCH models which can approximate a wide range

of stochastic di¤erential equations. He investigates the approximations of the system of stochastic

di¤erential equations de�ned as follows:

dXt = fdt+ gdW1t

dYt = Fdt+GdW2t�
dW1;t

dW2;t

�
[dW1;t 2;t] = 
dt

9For a de�nition of weak convergence for stochastic processes, see Billingsley (1978).
10For details, see Proposition 2.1 in the Corradi (2000).
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where the �rst equation is univariate, Yt is vector of latent state variables, W1t can be correlated

with elements in W2t:, and F;G; f; g are functions of Xt; Yt; and t: He shows that the above system

is the limit of the following ARCH type discrete time system of di¤erence equations

X(k+1)h = Xkh + fh+ g"kh

Y(k+1)h = Ykh + Fh+G"
�
kh

where "�kh corresponds to W2t and is constructed on the basis of "kh � N(0; h) and 
:11

3 Volatility in Continuous Time

3.1 Continuous Time Models

Continuous time models are a natural choice for describing the evolution of term structures, stock

prices and other �nancial variables, and are integral for the pricing of �nancial instruments that

depend on such variables. In this class of models, the choice of volatility function is a key issue in

model selection. This choice is generally both theoretically and empirically driven. As an example

of their importance, note that over the last 20 years, continuous time models have taken on a central

role in option pricing, risk management and volatility forecasting. One key advantage of this class

of models is that it lends itself naturally to the use of recently made available high frequency data.

In principle, �nancial managers can update their dynamic trading strategies every second. For

econometrician, the use of high frequency data has interesting implications for both estimation and

prediction.

In previous section, under the framework of time varying and stochastic volatility, we already

mentioned some results that use discrete time ARCH and GARCH models as inputs to approximate

di¤usion processes in continuous time. In this section we summarize some standard continuous time

models that have been used in asset pricing as well as term structure modelling.

Though this is not meant to be an exhaustive list, we outline various standard continuous time

models, from simple to more complicated. Note that we �rst focus on the speci�cation of the single

equation (solution) models12. Also note that, in each speci�cation, volatility is modeled di¤erently:

11For details on the construction of "�kh; see Section 3.2 in Nelson (1990)
12For a de�nition of di¤usion processes and stochastic di¤erential equations, see Karlin and Taylor (1981) pp. 157

and 373, respectively.
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Di¤usion Processes:
Brownian Motion with Drift :

dXt = �dt+ �dWt

This speci�cation has been used a lot in early work in economics and �nance due to its simplicity.

It is obvious that Xt is normally distributed with mean �t and variance �2t:

Geometric Brownian Motion (Log Normal Model):

dXt = �Xtdt+ �tXtdWt

This model has been very popular for asset prices. It has been extensively used in the Black and

Scholes (1973) option pricing framework and in structured corporate �nance. The main drawback

of this model is that the (log) return process has constant volatility. To see this, apply Itô�Lemma13

to the function f(x) = log(x); yielding

d log(Xt) = (��
�2

2
)dt+ �dWt:

Ornstein-Uhlenbeck Process (sometimes referred to as the Vasicek (1977) model, and often used

to model interest rates):

dXt = (�+ �Xt)dt+ �dWt:

Cox, Ingersoll and Ross (1985) analyze the following square root process, also known as the

CIR model, again for modelling the term structure of interest rates, although this model, unlike

the Vasicek model, ensures positivity of rates.

dXt = (�+ �Xt)dt+ �
p
XtdWt:

Brennan and Schwartz (1979) and Courtadon (1982) analyze the process:

dXt = (�+ �Xt)dt+ �X
2
t dWt:

13 Itô�Lemma formula is presented at the end of this section.
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Constant Elasticity of Variance (CEV):

dXt = �Xtdt+ �X
�=2
t dWt

Note that the interpretation of this model depends on �: In particular, in the case using this

process to model stock price, if � = 2, the price process Xt follows geometric Brownian motion and

therefore the volatility of the (log) stock return process is constant. If � < 2, this model captures

the leverage e¤ects discussed above. Among other authors, Beckers (1980) uses this CEV model

for stocks. Marsh and Rosenfeld (1983) apply the CEV model to interest rates and Emanuel and

Macbeth (1982) use this set-up for option pricing.

Generalized Constant Elasticity of Variance:

dXt = (�X
�(1�!)
t + �Xt)dt+ �X

�=2
t dWt

This process nests the log di¤usion when � = 2; and square root process when � = 1:

Chan, Karolyi, Longsta¤, and Sanders (1992) study the case of linear drift and CEV di¤usion

with � � 2

dXt = (�+ �Xt)dt+ �X
�=2
t dWt:

Du¢ e and Kan (1996) specify a mean reversion and square root structure in volatility for

modelling of interest rates. In the univariate case:

dXt = (��Xt)dt+
p
�0 + �1XtdWt:

Aït-Sahalia (1996) looks at more the general case of di¤usions with general drift and CEV:

dXt = (�+ �Xt + X
2
t + �=Xt)dt+ �X

�=2
t dWt:

Needless to say, model selection is important issue when specifying di¤usion models. Note that

in the general setting, the di¤usion process is written as

dXt = �(Xt; t; �)dt+ �(Xt; t; �)dWt
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Also, it is known that the drift and di¤usion terms �(Xt; t) and �(Xt; t) respectively uniquely

determine the stationary density, say f(x; �0); associated with the invariant probability measure of

the above di¤usion process 14. In particular,

f(x; �0) =
c(�0)

�2(x; �0)
exp

�
2�(u; �0)

�2(u; �0)
du

�
In a seminal paper, Aït-Sahalia (1996) constructs a nonparametric test for interest rate models

on the basis of the comparison of such stationary densities. In his empirical application to spot

interest rates, he �nds that the misspeci�cation of the models in the literature on spot interest

rates is mainly due to the linearity of the drift function in such models. In addition, his proposed

model (general drift and CEV) could not be rejected. In this same line of research, Corradi and

Swanson (2005, 2010) develop bootstrap speci�cation tests for univariate and multifactor di¤usion

process that do not require knowledge of the transition density. Instead of comparing of densities,

their method is based on a comparison of cumulative distribution functions. They also extend their

methods to di¤usion process with jumps and stochastic volatility.

Jump Di¤usions:
De�ne a jump di¤usion process as the combination of two components. The �rst component

is the continuous process which is speci�ed by a di¤usion process and the second component is

speci�ed by a jumps process, speci�cally

dXt = �(Xt; t; �)dt+ �(Xt; t; �)dW + dJt

where Jt is pure jump process which jointly depend on two source of randomness; namely the

magnitude of the jump, say with distribution �; and jump intensity, say �(Xt): One pioneering

work which incorporates jumps into continuous time processes is Merton (1976), where he models

the continuous component of the log price process to be Gaussian as in the case of geometric

Brownian motion. The magnitude of jumps also follows a Gaussian distribution, and jumps follow

Poison distribution in his paper. Newer developments in this area do not �append�a �discrete�

jump process onto the di¤usion, but instead specify the jumps using other means, such as via the

use of Levy processes.

A¢ ne Jump Di¤usion Model : This class of models is widely studied in the empirical �nance

literature, especially in term structure modelling. The family of a¢ ne processes Xt including jumps
14See Karlin and Taylor (1981), pp. 241.
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is parametrized as follow

dXt = �(��Xt)dt+

p
DtdW + dJt

where Wt is an N�dimensional independent standard Brownian motion, � and 
 are square N �

N matrices. Dt is a diagonal matrix with ith diagonal element given by

dii;t = �i + �
0
iXt

The jump intensity is assumed to be a positive, a¢ ne function of Xt and the jump size distribu-

tion is assumed to be determined by its conditional characteristic function. As shown by transform

analysis in Du¢ e, Pan and Singleton (2000), the attractive feature of this class of a¢ ne jump

di¤usions is that the exponential a¢ ne structure characteristics function is known in closed form.

Namely

�t(Xt) = exp(at + b
0
tXt)

where functions at and bt can be derived from Riccati equations.15 With known characteristics

function, one can use either GMM to estimate the parameters of this system of this jump di¤usion,

and can use quasi-maximum likelihood (QML), once the �rst two moments are obtained. In the

univariate case without jumps, as a special case, this corresponds to the above general CIR model

with jumps.

Stochastic Volatility Models:
Stochastic volatility models are popular, particularly for modelling asset prices and interest

rates. They are �rst introduced by Harvey, Ruiz and Shephard (1994) in discrete time. Stochastic

volatility implies that unobserved volatility follows another stochastic process. For example, one

speci�cation could be

dXt = (�+ �Xt)dt+ �tdW1t;

and the volatility process follows:

d�2t = �(#� �2t )dt+ ��tdW2t;

where Cov(dW1t; dW2t) = �dt:

Andersen and Lund (1997) estimate the generalized CIR model with stochastic volatility:

dXt = �1(��Xt)dt+ �tX�
t dW1t;

15For details, see Singleton (2006), pp. 102.
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d log �2t = �1(�� log �2t )dt+ �dW2t:

Mixed Stochastic Volatility, Jump Di¤usion Models. An example of these models comes from

the application of spectral GMM in Chacko and Viceira (2003) where the return process is speci�ed

as:

dXt = (��
�2t
2
)dt+ �tdW1t + [exp(Ju)� 1]dNu(�u) + [exp(�Jd)� 1]dNd(�d)

d�2t = �(�� �2t )dt+ ��tdW2t;

where �u; �d are jump intensity parameters and are constant, and where. Ju and Jd >0 are

stochastic jump magnitudes that follow an exponential distribution, i.e.

f(Ju) =
1

�u
exp(

�Ju
�u

);

f(Ju) =
1

�d
exp(

�Jd
�d
):

In addition, in the option pricing literature, many models are nested in the following data generating

process which allows for jumps in both equations

dXt = �tdt+ �tXtdW1t + dJ1t

d�2t = �(�� �2t )dt+ ��t(�dW1t +
p
1� �2dW2t) + dJ2t

where W1t and W2t are two independent Brownian motions process, and J1t and J2t are two jump

processes. Popular models that are nested in this class include Heston (1993) with no jumps in

either price or volatility, Bates (2000), Chernov and Ghysels (2000) and Pan (2002)16.

Itô�s Lemma Formula and Stochastic Calculus:
Earlier, we made use of this lemma. For completeness, then, we now provide a short summary

of this key result in stochastic calculus. Itô�Lemma formula is crucial because it is essential for

pricing �nancial derivatives. We will state a version of this lemma with respect to semi-martingale

processes and will apply it to di¤usion processes. For details see Protter (1990, p.71).

16For a more detailed discussion, see Singleton (2006), chapter 15.
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Itô�s Lemma: LetX be a semimartingale and let f be a continuous, twice di¤erentiable function.

Then f(X) is a semimartingale, and the following formula holds

f(Xt)� f(X0) =
Z t

0
f 0(Xs�)dXs +

1

2

Z t

0
f 00(Xs�)d[X;X]

c
s

+
X
0�s�t

�
f(Xs)� f(Xs�)� f 0(Xs�)�Xs

	
where [X;X]cs is the quadratic variation process of the continuous component of Xt and �Xs is

the size of the jump at the jump time s: Note that the �rst part of the formula is the standard

result for continuous processes. The second part is the e¤ect of jumps. Without jumps, the lemma

applies to the process

dXt = �(Xt; t)dt+ �(Xt; t)dWt

Therefore d [X;X]cs = �
2(Xt; t)dt and the formula can be written as

f(Xt)� f(X0) =
Z t

0
(f 0�+

1

2
f 00�2)dt+

Z t

0
f 0�dWt

This is a standard and well-known formula used in describing continuous processes.

Finally, note that another fundamental tool in the �nance literature is the change of measure,

or Girsanov�s theorem. Under risk neutral pricing, one needs to transform the models from the

statistical measure P to risk neutral measure Q. Girsanov theorem provides the link between the

two. For further details on the topic, refer to Du¢ e (2003, chapter 6).

3.2 Implied Volatility from Option Pricing

3.2.1 Black-Scholes Framework as an Illustration

Implied volatility is considered to be the market prediction of future volatility, used in the context of

option pricing. In this section, we �rstly provide a standard method to show how econometricians

can construct implied volatility from Black-Scholes option prices. Though stochastic volatility

better captures the dynamics of asset returns, BS is still considered to be an important element of

option pricing theory and practice. However, that said, after the current discussion we turn to a

discussion of �model free�measures of implied volatility, and the so-called VIX volatility index.

Within the Black-Scholes framework, we restate the derivation of the European call price. In this

model, stock prices are assumed to be log-normally distributed. A nice feature of this assumption

is that option prices can then be derived in closed form, i.e. using the Black-Scholes (BS) formula.
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Once an option pricing function is known, implied volatility can in turn be backed out using stock,

option and interest rate data. Note that one can also derive the price of any derivative whose payo¤

is a function of stock prices. Also, even under more complicated assumptions about the stock price

process, the risk neutral pricing methodology presented below can still be applied.

Let�s assume that we are interested in an asset market which has 3 assets: a riskless bond,

a stock, and a derivative whose payo¤ is a function of the stock price. Also, say that under the

physical probability measure, P; the price of a non-dividend paying stock, Xt, follows a geometric

Brownian motion, i.e.

dXs = �Xsds+ �XsdWs

and the interest rate, r;associated with riskless bond (i.e. the short rate) is assumed to be

constant. For simplicity, we analyze the dynamics of the process Xs = Xs
ers : Using Itô�Lemma, Xs

follows:

dXs = (�� r)Xsds+ �XsdWs

Say that the call option on the stock has strike price K and maturity date T: It�s payo¤ at time

T is

CT = (XT �K)+ = max(XT �K; 0)

Option pricing means we look for the price of the derivative ct whose payo¤ at maturity is

CT . With the no arbitrage assumption, there must exist a risk neutral measure Q: Under this risk

neutral measure, the discount process Xs; Cs = Cs
esr has no drift term, or is a martingale:

dXs = �XsdWs

ct = E
Q[
CT
ert
jXt] = e�rTEQ[((XT �K)+)jXt]

where Ws is a Brownian motion under measure Q. The expectation above is taken under the

probability measure Q: Recall that probability measures P and Q can be transformed back and

forth though Girsanov�s Theorem. In particular XT =Xt is log-normally distributed with mean

�(�2=2)(T � t) and variance �2(T � t): Or, given that the asset Cs has no drift term, one can easily

verify that the ct process is the solution to the following partial di¤erential equation

�rf + ft + rSfX + 1=2�2fXX = 0

with the boundary condition at the expiration date f(S; T ) = Payo¤ at time T = max(XT �K; 0):

Note that one can use this derivation approach for any asset, with a change in payo¤ function. In
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more complicated settings with more complicated price process dynamics, the same PDE approach

can be applied.

However, in such cases, to solve the PDE, a numerical algorithm is needed as there may not

be a closed form solution for the option price. Turning again to our closed form BS solution, note

that it takes the form

ct = �(z)� e�r(T�t)�(z � �
p
T � t)

where � is the cumulative normal cdf and,

z =
log(Xt=K) + (r + �

2=2(T � t))
�
p
T � t

From the BS formula, one can invert the unobservable �. In particular, � is function of current

time t variables, Xt; r; � = T � t;K and ct which are all observed and available in the data. This is

useful in the framework of no-arbitrage pricing, and this option pricing tool is the key to backing

out implied volatility. Generally, one can write

ct = z(Xt; r;K; �; �� )

and the volatility process can be inferred once the nonlinear function z is known. If it is not known

in closed form, we still can back out implied volatility via numerical analysis.

3.2.2 Deviation from Black-Scholes

The main drawback of Black-Scholes is that it is not consistent with empirical evidence that implied

volatility varies across di¤erent maturities and strike price. Dumas, Flemning and Wahley (1998)

propose an ad hoc Black-Scholes model in which volatility is not constant. This measure is now

widely used by practitioners. Ad hoc BS allows for di¤erent implied volatilities to price options

di¤erently. In particular, implied volatilities are modeled as follows:

�(�;K) = �0 + �1K + �2K
2 + �0� + �1�

2 + �2�K

where �(�;K) is the Black-Scholes implied volatility for and option with strike K and time to

maturity �: This method has been shown by Dumas et al. (1998) to be better than the constant

volatility approach. Option pricing with varying volatility, such as a square root di¤usion model,

are also proposed by many researchers (for example, see the work of Bates (1996, 2000), Bakshi,
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Cao and Chen (1997) and Scott (1997)). Heston (1993) provides a parametric stochastic volatility

model, i.e. square root process for volatility, and solves for closed-form prices. Chernov and Ghysels

(2000) and Pan (2002) introduces a more general pricing framework, i.e. stochastic volatility with

jumps. For a survey of this option pricing literature, see Bates (2003), and for a discussion of the

econometrics of option pricing see Garcia, Ghysels and Renault (2010). In an interesting discrete-

time set-up, Heston and Nandi (2000) proposes a closed form GARCH option price model in which

they present an option formula for a stochastic volatility model with GARCH. This discrete-time

set-up is close to the Heston (1993) continuous time stochastic volatility model, but is easier to

implement. They specify the following dynamics for asset returns

log(X(t) = log(Xt�h) + r + ��
2
t + �t"t

�2t = ! + �1�
2
t�h + �1("t�h � 1�t�h)2

where �1 determines the kurtosis of the distribution and 1 allows for asymmetric e¤ects of shocks.

Speci�cally

Covt�h(�
2(t+ h); log(Xt)) = �2�11�2(t):

In testing the empirical implications of this GARCH option pricing model, they �nd that the

model produces smaller valuation errors compared to the ad hoc BS model mentioned above. In

di¤erent work, Barone-Adesi, Engle and Mancini (2008) propose a new option pricing method

with �ltered historical innovations. The new feature in their methodology is that it �ts in an

incomplete markets framework and is not based on the speci�cation of the change of measure, i.e.

from physical measure to risk neutral measure and state price density 17. Instead, they estimate

separate GARCH parameters in the risk neutral world. They show that their pricing outperforms

other discrete GARCH models.

In recent papers in the semi-parametric literature, as opposed to Black-Scholes, Carr and Madan

(1998), Demeter� et al. (1999), Britten-Jones and Neuberger (2000), Lynch and Panigirtzoglou

(2003), Jiang and Tian (2005), Car and Wu (2009) develop variants of so called �model-free�implied

volatility. These estimators are referred to as semiparametric measures, as volatility is implied from

option prices via risk neutral pricing without many of the usual parametric assumptions on the

dynamics of asset returns. In addition, these volatility measures provide ex ante risk neutral

17For further discussion on risk neutral pricing and change of measures, see Du¢ e (2003), chapter 6.
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expectations of future volatilities, which is an important input to calculate variance risk premia.

Variance risk premia are de�ned as the di¤erence between implied volatility and realized volatility.

When (log) stock prices follow a continuous process, the implied volatility between time t and t+h

can be derived by the formula.

IMVt;t+h = 2

1Z
0

C(t+ h;K)� C(t;K)
K2

dK = EQt (�
2
t+h)

where C(t;K) is the price of European call option written on strike price K and maturing at time

t: Here, EQt (�
2
t+h) is the expectation of the variation of the log price process, or of the realized

volatility. An advantage to using the above model free implied volatility in equity markets is that

one now can rely on a published volatility index (usually the VIX) as a standard measure of implied

volatility on the S&P 500 index. VIX is considered a key measure of market expectations of near-

term volatility implied from S&P 500 stock index option prices. VIX was �rst introduced by the

Chicago Board of Exchange (CBOE) in 1993, and often referred to by many as a �fear�index. In

2003, CBOE updated the calculation of VIX and the general formula is as follows:

IMV =
2

T

X
i

�Ki
K2
i

er�Q(Ki)�
1

�

�
F

K0
� 1
�2

where V IX = IMV � 100; � is time to expiration, F is the forward index level derived from index

option prices, K0 is the �rst strike price below F; Ki is the strike price of ith out of the money

option, r is risk free rate, �Ki = (Ki+1 �Ki�1)=2; Q(Ki) is the mid point bid-ask spread for each

option with strike price Ki:18

3.3 Realized Volatility - Nonparametric Measures

The latest developments in the volatility literature largely center on the use of so called realized

volatility (RV) as a �model-free� estimator of latent variance of stock returns or other �nancial

variables. Daily realized volatility is simply the sum squared returns from high-frequency data

over short time interval within any given day. As noted in the key early works of Andersen and

Bollerslev (1998), Banrdor¤-Nielsen and Shephard (2002) and Medahhi (2002), RV and it�s variants

yield much more accurate ex post observations of volatility than the traditional sample variances

18For details, see �CBOE Volatility Index - VIX� at the link http://www.cboe.com/micro/vix/vixwhite.pdf and

Demeter� et al. (1999)
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which used daily or lower frequency data. Many papers have been written on this topic since these

�rst papers. In practice, RV has been an important variable in the volatility derivatives market.

For instance, trading of forward contracts on future realized volatility was sporadically seen in

�nancial market as early as 1993. This type of product is now common, and is often referred to

as the variance swap. One important feature of this product is that it�s payo¤ is a linear function

of RV and therefore is simple to use as a hedging tool, compared to traditional vega hedging.

Moreover, there is much market demand for this product as practitioners prefer implied volatility

to variance and they need additional instruments to hedge against future volatility risk. Other

products that used realized volatility such as caps on variance swaps, corridor variance swaps, and

options on realized volatility are also available in �nancial markets. 19 In research, several authors

have developed the concept of variance risk premia which directly depend on RV and they argue

that this variable is useful in asset pricing. Variance risk premium (VRP) is de�ned as

V RPt = IMVt �RVt

where IMVt is implied volatility de�ned under the risk neutral measure Q as

IMVt = E
Q[Return variation between t� 1 and t]

Bollerslev, Tauchen and Zhou (2009) use this premium to predict stock market returns and they

�nd that the premium is able to explain time-series variation in post-1990 aggregate stock market

returns with high (low) premia predicting high (low) future returns.

RV non-parametrically measures the variation of return processes, and the dynamics of RV

can be driven by components other than those directly involved with returns. When the return

process is continuous, it�s variation is due to the continuous component, and is known as the

integrated volatility (IV ). Realized volatility is a proxy for IV20. Several authors (for example,

Huang and Tauchen (2005) and Aït-Sahalia and Jacod (2009a,b,c)) �nd important evidence of

active jumps in equity markets. If jumps occur, variation of the return process is greeater than

integrated volatility as it contains a jump variation component. Realized volatility therefore is not

an estimator of integrated volatility. ABD (2007) construct a simple measure of the variation of this

19For a discussion of volatility and variance swaps, see for instance, Carr and Lee (2009).
20For instance, under the assumption that the return process is continuous, Kristensen (2010) develops a kernel

based approach to estimate integrated and spot volatilty using realized volatility.
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jump component and then show that incorporation of jumps can a¤ect estimation and volatility

prediction. (Our empirical application discussed below �ts within this strand of the literature. In

particular, we provide evidence of jumps and large jumps as well as providing a measure of large

jump variation in equity markets.)

Following the general set-up of Aït-Sahalia and Jacod (2009b), consider the �ltered probability

space (
; F; (Ft)t�0; P ) ; in which (Ft)t�0 is denoted as a �ltration (i.e., a family of sub-sigma

algebras Ft of F; being increasing t : Fs � Ft if s � t). The log price process, Xt= log(Pt); is

assumed to be an Itô semimartingale process that can be written as:

Xt = X0 +

Z t

0
bsds+

Z t

0
�sdBs +

X
s�t

�Xs; (1)

where X0+
R t
0 �sds+

R t
0 �sdBs is the continuous semimartingale component of the process, which is

the sum of a local martingale plus an adapted process with �nite variation component. Additionally,

�Xs is a jump at time s, de�ned as:

�Xs = Xs � lim
�<s;�!s

X� :

Given this de�nition, the jump part of Xt in the time interval [0; t] is de�ned to be
P
s�t�Xs.

Note that when the jump is a Compound Poisson Process (CPP) - i.e. a �nite activity jump process

- then it can be expressed as:

Jt =
X
s�t

�Xs =

NtX
i=1

Yi;

where Nt is number of jumps in [0; t]; Nt follows a Poisson process, and the Yi�s are i.i.d. and are

the sizes of the jumps. The CCP assumption has been widely used in the literature on modeling,

forecasting, and testing for jumps. However, as discussed above, recent evidence suggests that

processes may contain in�nite activity jumps - i.e. in�nite tiny jumps that look similar to continuous

movements. In such cases, the CCP assumption is clearly violated, and hence we draw in such cases

on the theory of Jacod (2008) and Aït-Sahalia and Jacod (2009b,c) when applying standard BNS

(2006) type jump tests in the sequel. The empirical evidence discussed in this paper involves

examining the structure of the jump component of the log return process, Xt; using one historically

observed price sample path fX0; X�n ; X2�n :::Xn�ng; where �n is deterministic. The increment of

the process at time i�n is denoted by:

�ni X = Xi�n �X(i�1)�n :
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For convenience, we consider the case t = n�n in the sequel.21. In general, integrated volatility

and quadratic variation are formally de�ned as:

IVt =

Z t

0
�2sds = [variation due to continuous component]t

QVt = [X;X]t =

Z t

0
�2sds+

X
t�1�s<t

�X2
s = IVt + [variation due to jump component]t

Volatility processes QVt and IVt are not observable. However, one could exploit high or ultra

high frequency data in �nancial markets to estimate these variables. If the process is continuous,

IVt = QVt and their noisy estimators, hereby referred to as realized measures (RM) could be

written as

RMt;n = IVt +Nt;n

where Nt;n denotes the measurement error associated with the realized measure RMt;n: There are

two sources of measurement errors. One is due to the so-called microstructure noise e¤ect of high

frequency data, and the second is due to standard noise. There are a few realized measures and

methods proposed to alleviate the e¤ect of the contaminated high frequency noise. For example,

Corradi, Distaso and Swanson (2009, 2010) derive consistent estimators of predictive conditional

densities of integrated volatility using these noisy realized measures. They show that by choosing

an appropriate realized measure, one can achieve consistent estimation, even in the presence of

jumps and microstructure noise in prices. They thereby construct conditional predictive densities

and con�dence intervals for integrated volatility using realized measures, which may be of interest

to volatility derivatives traders. Note that as microstructure noise is not the focus of our paper, we

will focus mainly on three key realized measures that are commonly used, i.e. realized volatility,

bipower, and tripower variation (many papers in the extant literature now look also at multipower

variation). For a list of other realized measures that are robust to microstructure noise, see for

instance Corradi, Distaso and Swanson (2009, 2010). The realized volatility of equity return process

X is de�ned as follows:

RVt;n =
nX
i=1

(�ni X)
2

It has been shown that when n is large, realized volatility converges almost surely to the

21See Jacod (2008) for further details.

24



quadratic variation of the process22. If we measure volatility within a day then,

RVt;n =
nX
i=1

(�ni X)
2 '

Z t

t�1
�2sds+[variation due to jump component between day day t�1 and t]t

were n here is used to denote the number of incremental returns within a day or any other �xed

time period. Multipower variations are constructed on the basis of

Vr1;r2:::;rj =

nX
i=j+1

j�ni Xjr1 j�ni�1Xjr2 ::::j�ni�jXjrj :

where r1;r2;:::; rj are positive, such that
Pj
1 ri = k: Bipower (BV ) and tripower variation (TP ) are

special cases of multipower variations. Speci�cally, Bipower variation is given by

BVt;n = (�1)
�1

nX
i=2

V1;1 '
Z t

t�1
�2sds

where �1 = EjZj = 21=2�(1)=�(1=2) and Z is a standard normal random variable; and tripower

variation is given by

TVt;n = V 2
3
; 2
3
; 2
3
��32
3

'
Z t

t�1
�2sds

where �r = E(jZjr)and Z is a N(0; 1) random variable. Finally, to illustrate the nuts and bolts of

microstructure robust realized measures, we include the formula for a commonly used subsample

based realized volatility measure, dRV t;l;M , suggested by Zhang, Mykland and Ait-Sahalia (2005),
and de�ned as dRV t;l;n = RV avgt;l;n � 2lbvt;n;
where bvt;n = RVt;l;n

2n
=
1

2n

nX
j=1

(�ni X)
2

and

RV avgt;l;n =
1

B

BX
b=1

RV bt;l =
1

B

BX
b=1

t�1X
j=1

(X
t+ jB+b

n
�X

t+
(j�1)B+b

n

)2

Here, Bl �= n; l = O(n1=3)

Forecasting Realized Volatility With the availability of high frequency data in recent years,

much e¤ort has been dedicated to building good models to forecast realized volatility, a �model

free�estimator of ex post variance. To see the link of this type of forecast to the volatility forecasting

22See Barndor¤-Nielsen and Shephard (2002).
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in discrete time models, note that the daily volatility implied by a discrete time model, let�s say

GARCH, is equivalent to
p
QVt or

p
IVt (without jumps) in continuous time23, which are proxied

by
p
RVt;n or

p
BVt;n or

p
TVt;n. The link justi�es the rationale of this type of forecast in the

literature. We highlight several important papers in this area of research. In a key paper is

Andersen, Bollerslev, Diebold, Laby (2003), who show empirically that a long memory Gaussian

VAR can capture the dynamics of volatility. They apply a simple trivariate VAR (VAR-RV) to

model the dynamics of volatilities of logarithmic exchange rates, i.e. DM/$, Yen/$ and Yen/DM.

In particular, denote yt as the vector of the the exchange rates, and de�ne the forecasting equation

as

�(L)(1� L)d(yt � �) = "t

where "t is a vector white noise process. The authors point out that this simple framework performs

better than many alternative models that have been used in this literature. In the same regression

model, Corsi (2003) proposes the so called HAR - RV model in which realized volatility is speci�ed

as a linear sum of the lagged realized volatilities over di¤erent horizons, i.e.

RVt;t+h = �0 + �dRVt + �wRVt;t�5 + �mRVt;t�22 + �t+h

where h is the forecasting horizon, i.e. h = 1; 5; 22: and RVt;t+h = h�1[RVt+1+RVt+2+ :::+RVt+h]:

ABD (2007) generalizes HAR - RV to linear and nonlinear HAR-RV, HAR-RV-J and HAR-RV-CJ.

In particular, the new feature of the model that they propose involves incorporating the variation

of jump components of the log price process into their forecasts. The advantage of these models is

that they are rather simple to implement via least squares estimation and they take advantage of

recent developments in the construction of robust jump tests. In the next section, we summarize

robust jump testing and discuss the quanti�cation of large jumps and small jumps, a departure

that can potentially help improve the model�s forecasting performance.

23To see this, in the case of continuous process, V ar(Xt �Xt�1) = E(
R t
t�1 �sdBs)

2 =
R t
t�1 �

2
sds: In addition, for

convenience in notation, in this section,
p
QVt or

p
IVt are refered to as volatilities in a day.

.
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4 Volatility and Jumps

Thus far, we have summarized important developments in volatility models, with focus on time

varying and stochastic volatility as well as nonparametric volatility estimators. All of our models

share the same feature that volatilities are unobserved, or belong to class of missing variables. We

now turn to a discussion of jumps, testing for jumps, and disentangling the e¤ects of jumps from

measures of volatility. This section also contains the results of our empirical analysis of jumps and

volatility. Much of the discussion in this section is taken from Duong and Swanson (2010).

4.1 Testing for Jumps

In this section, we review some theoretical results relating to testing for jumps, namely testing

whether Jt =
P
s�t�Xs 6= 0. In pioneering work, BNS (2006) proposes a robust and simple

test for a class of Brownian Itô Semimartingales plus Compound Poisson jumps. In recent work,

Aït-Sahalia and Jacod (2009b) among others develop a di¤erent test which applies to a large class

of Itô-semimartingales, and allows the log price process to contain in�nite activity jumps - small

jumps with in�nite concentrations around 0. In this paper, we follow the jump test methodology

of Huang and Tauchen (2005) as well as Barndor¤-Nielsen and Shephard (2006), which looks at

the di¤erence between the continuous component and total quadratic variation in order to test

for jumps. However, we make use of the limit theorems developed and used by Jacod (2008) and

Aït-Sahalia and Jacod (2009b) in order to implement the Barndor¤ -Nielsen and Shephard (2006)

type test under the presence of both in�nite activity and �nite activity jumps (see Section 4 for

further discussion). A simpli�ed version of the results of the above authors applied to (1) for the

one-dimensional case is as follows. If the process X is continuous, let f(x) = xn (exponential

growth), let ��s be the law N(0; �
2
s); and let ��s(f) be the integral of f with respect to this law.

Then: r
1

�n

 
�n

nX
i=1

f(
�ni Xp
�n
)2 �

Z t

0
��s(f)ds

!
L�S�!

Z t

0

q
��s(f

2)� �2�s(f)dBs (2)

Here, L� S denotes stable convergence in law, which also implies convergence in distribution.

For n = 2; the above result is the same as BNS (2006). More generally:r
1

�n

 
nX
i=1

(�ni X)
2 �

Z t

0
�2sds

!
D�! N(0;

Z t

0
#�4sds) (3)
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or q
1
�n

�Pn
i=1(�

n
i X)

2 �
R t
0 �

2
sds
�

qR t
0 #�

4
sds

D�! N(0; 1); (4)

where # is constant and where
R t
0 �

2
sdt is known as the integrated volatility or the variation of the

continuous component of the model and
R t
0 �

2
sdt is integrated quarticity. From the above result,

notice that if the process does not have jumps, then
Pn
i=1(�

n
i X)

2;which is an approximation of

quadratic variation of the process, should be "close" to the integrated volatility. This is the key

idea underlying the BNS (2006) jump test. For appropriate central limit theorems, in tests with

both �nite and in�nite activity jumps, refer to Barndor¤-Nielsen, Graverson, Jacod, Podolskij, and

Shephard (2006), in the case of continuous semimartingales and Barndor¤-Nielsen, Shephard, and

Winkel (2006) for discontinuous process wih Lévy jumps. A �nal crucial issue in this jump test is

the estimation of
R t
0 �

2
sdt and

R t
0 �

4
sdt in the presence of both �nite and in�nite activity jumps. As

remarked in BNS (2006), in order to ensure that tests have power under the alternative, integrated

volatility and integrated quarticity estimators should be consistent under the presence of jumps.

The authors note that robustness to jumps is straightforward so long as there are a �nite number

of jumps, or in cases where the jump component model is a Lévy or non-Gaussian OU model

(Barndor¤-Nielsen, Shephard, and Winkel (2006)). Moreover, under in�nite activity jumps, note

that as pointed out in Jacod (2007), there are available limit results for volatility and quarticity

estimators for the case of semimartingales with jumps.

Turning again to our discussion of volatility and quarticity, note that in a continuation of

work initiated by Barndor¤-Nielsen and Shephard (2004), Barndor¤-Nielsen, Graverson, Jacod,

Podolskij, and Shephard (2006) and Jacod (2007) develop general so-called multipower variation

estimators of
R t
0 �

k
sds; in the case of continuous semimartingales and semimartingales with jumps,

respectively, which are based on

Vr1;r2:::;rj =
nX

i=j+1

j�ni Xjr1 j�ni�1Xjr2 ::::j�ni�jXjrj :

where r1;r2;:::; rj are positive, such that
Pj
1 ri = k: For cases where k = 2 and k = 4, BNS (2006)

use V1;1 (bipower variation) and V1;1;1;1. In our jump test implementation, we use V 2
3
; 2
3
; 2
3
(tripower

variation) and V 4
5
; 4
5
; 4
5
: The reason we use tripower variation, V 2

3
; 2
3
; 2
3
; instead of bipower variation,

V1;1; is that it is more robust to clustered jumps. Denote the estimators of
R t
0 �

2
sds and

R t
0 �

4
sds to
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be cIV and cIQ, and note that: cIV = V 2
3
; 2
3
; 2
3
��32
3

'
Z t

0
�2sds (5)

and

cIQ = ��1n V 4
3
; 4
3
; 4
3
��54
5

'
Z t

0
�4sds; (6)

where �r = E(jZjr)and Z is a N(0; 1) random variable.

Regardless of the estimator that is used, the appropriate test hypotheses are:

H0 : Xt is a continuous process

H1 : the negation of H0 (there are jumps)

If we use multi-power variation, under the null hypothesis the test statistic which directly follows

from the CLT mentioned above is:

LSjump =

q
1
�n

�Pn
i=1(�

n
i X)

2 � cIV �q
#cIQ D�! N(0; 1)

and the so-called jump ratio test statistic is:

RSjump =

q
1
�nq

#cIQ=(cIV )2
 
1�

cIVPn
i=1(�

n
i X)

2

!
D�! N(0; 1):

Of note is that an adjusted jump ratio statistic has been shown by extensive Monte Carlo

experimentation in Huang and Tauchen (2005), in the case of CCP jumps, to perform better than

the two above statistics, being more robust to jump over-detection. This adjusted jump ratio

statistic is:

AJjump =

q
1
�nq

#max(t�1; cIQ=(cIV )2)
 
1�

cIVPn
i=1(�

n
i X)

2

!
L�! N(0; 1) (7)

In general if we denote the daily test statistics to be Zt;n(�);where n is the number of observa-

tions per day and � is the test signi�cance level 24, then we reject the null hypothesis if Zt;n(�) is

in excess of the critical value ��; leading to a conclusion that there are jumps. The converse holds

if Zt;n(�) is less than ��. In our empirical application, Zt;n(�) is the adjusted jump ratio statistic,

24 i.e., �n = 1=n
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and we calculate the percentage of days that have jumps, for the period from 1993 to 2008. We

now turn to a discussion of large jumps and constructing measures of the daily variation due to

continuous and jump components.

4.2 Large Jumps and Small Jumps

There is now clear evidence that jumps are prevalent in equity market. For example, Huang and

Tauchen (2005) construct the above jump test statistics, and �nd that jumps contribute about 7%

to the total variation of daily stock returns. Aït-Sahalia and Jacod (2009b) not only �nd jumps

but given the existence of jumps, they look more deeply into the structure of the jumps, and for

Intel and Microsoft returns they �nd evidence of the existence of in�nite activity jumps.

An important focus in our paper is to the decomposition of jumps into "large" and "small"

components so that we may assess their contributions to the overall variation of the price process.

In particular, for some �xed level ; de�ne large and small jump components as follows, respectively:

LJt() =
X
s�t

�XsIj�Xsj� :

and

SJt() =
X
s�t

�XsIj�Xsj< :

The choice of  may be data driven, but in this paper we are more concerned with scenarios

where there is some prior knowledge concerning the magnitude of . For example, under various

regulatory settings, capital reserving and allocation decisions may be based to a large extent on the

probability of jumps or shocks occurring that are of a magnitude greater than some known value,

: In such cases, planners may be interested not only in knowledge of jumps of magnitude greater

than , but also in characterizing the nature of the variation associated with such large jumps. The

procedure discussed in this section can readily be applied to uncover this sort of information.

4.3 Realized measures of daily jump variation

The partitioning of variation due to continuous and jump components can be done, for example,

using truncation based estimators which have been developed by Mancini (2001,2004,2009) and
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Jacod (2008). One can also simply split quadratic variation into continuous and jump components

by combining various measures of integrated volatility, such as bipower or tripower variation and

realized volatility. Andersen, Bollerslev, and Diebold (2007) do this, and construct measures of the

variation of the daily jump component as well as the continuous component. In this paper we use

their method, but apply it to both small and large jumps. In particular, once jumps are detected,

the following risk measures introduced by Andersen et al. (2007) are constructed:

V Jt =Variation of the jump component = maxf0; RVt � cIVtg � Ijump;t
V Ct =Variation of continuous component = RVt � V Jt;

where RVt =
Pn
i=1(�

n
i X)

2 is the daily realized volatility (i.e. a measure of the variation of the

entire (log) stock return process), Ijump is an indicator taking the value 0 if there are no jumps and

1 otherwise, and n is the number of intra-daily observations. One can then calculate daily jump

risk. Note that in these formulae, the variation of the continuous component has been adjusted

(i.e. the variation of the continuous component equals realized volatility if there are no jumps and

equals cIVt if there are jumps). In addition, note that Pn
i=1(�

n
i X)

2Ij�ni Xj�converges uniformly in

probability to
P
s�t(�Xs)

2Ij�Xsj� ;as n goes to in�nity
25 Thus, the contribution of the variation

of jumps with magnitude larger than  and smaller than  are denoted and calculated as follows:

Realized measure of large jump variation: V LJt;=minfV Jt; (
Pn
i=1(�

n
i X)

2Ij�ni Xj� � Ijump;t)g,

Realized measure of small jump variation: V SJt; = V Jt �V LJt; ;

where Ijump is de�ned above and Ijump; is an indicator taking the value 1 if there are large jumps

and 0 otherwise. This condition simply implies that large jump risk is positive if the process has

jumps and has jumps with magnitude greater than :

Now we can write the relative contribution of the variation of the di¤erent jump components

to total variation in a variety of ways:

Relative contribution of continuous component = V Ct
RVt

Relative contribution of jump component = V Jt
RVt

Relative contribution of large jump component = V LJt;
RVt

Relative contribution of small jump component = V LSt;
RVt

Relative contribution of large jumps to jump variation = V LJt;
V Jt

Relative contribution of small jumps to jump variation = V LSt;
V Jt

25See Jacod (2008), Aït-Sahalia and Jacod (2009a) for further details.
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We are now ready to discuss some empirical �ndings based on the application of the tools

discussed in this section.

5 Empirical Findings

5.1 Data description

We use a large tick by tick data set of 25 DOW 30 stocks available for the period 1993-2008. The

data source is the TAQ database. We use only 25 stocks because we purge our data set of those

stocks that not frequently traded or are not available across the entire sample period. For the

market index, we follow several other papers and look at S&P futures. We also follow the common

practice in the literature of eliminating from the sample those days with infrequent trades (less

than 60 transactions at our 5 minute frequency).

One problem in data handling involves determining the method to �lter out an evenly-spaced

sample. In the literature, two methods are often applied - previous tick �ltering and interpolation

(Dacorogna, Gencay, Müller, Olsen, and Pictet (2001)). As shown in Hansen and Lund (2006),

in applications using quadratic variation, the interpolation method should not be used, as it leads

to realized volatility with value 0 (see Lemma 3 in their paper). Therefore, we use the previous

tick method (i.e. choosing the last price observed during any interval). We restrict our dataset to

regular time (i.e. 9:30am to 4:00pm) and ignore ad hoc transactions outside of this time interval. To

reduce microstructure e¤ects, the suggested sampling frequency in the literature is from 5 minutes

to 30 minutes26. As mentioned above, we choose the 5 minute frequency, yielding a maximum of

78 observations per day.

5.2 Jump and Large Jump Results

We implement our analysis in two stages. In the �rst stage we test for jumps and in second stage we

examine large jump properties, in cases where evidence of jumps is found. The list of the companies

for which we examine asset returns is given in Table 1, along with a summary of our jump test

�ndings. The rest of the tables and �gures summarize the results of our empirical investigation.

Before discussing our �ndings, however, we brie�y provide some details about the calculations that

26See Aït-Sahalia, Y., Mykland, P. A., and Zhang, L. (2005)
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we have carried out.

All daily statistics are calculated using the formulae in Section 4 with:

�n =
1

n
=

1

# of 5 minute transactions / day

Therefore, �n = 1=78 for most of the stocks in the sample, except during various shortened

and otherwise nonstandard days, and except for some infrequently traded stocks. This also implies

the choice of time to be the interval [0; 1], where the time from [0; 1] represents the standardizing

time with beginning (9 am) set to 0 and end (4.30 pm) set to 1: In our calculations of estimates of

integrated volatility and integrated quarticity, we use multipower variation, as given in (5) and (6).

Recall also that �ni X = Xi�n�X(i�1)�n is simply the incremental return of Xi�n : For any trading

day, X0 and X1 correspond to the �rst and the last observations of the day. Denote T as the number

of days in the sample. We construct the time series fZt;n(�)gTt=0 and
n
V Ct
RVt

; V JtRVt
;
V LJt;
RVt

;
V SJt;
RVt

oT
t=0
:

The number of days and proportion of days identi�ed as containing jumps can easily be calculated

as:

Number of days identi�ed as jumps =
PT
i=0 I(Zi;n(�) > ��):

Proportion of days identi�ed as jumps =
PT
i=0 I(Zt;n(�)>��)

T :

In addition, we construct the following monthly time series

Proportion of days identi�ed as jumps in a month=
Pm+h
i=m I(Zt;n(�)>��)

h

Monthly average relative contribution of jump component =
Pm+h
i=m

V Ji
RV i

h

Monthly average relative contribution of large jump component truncated at level  =
Pm+h
i=m

VLJi;
RVt

h ;

where m is the starting date and h is the number of days in each month. On average, there are 22

business days per month. Note that there are 12 statistics each year for each time series.

Here, I(�) denotes the indicator function. The average relative contribution of continuous, jump,

and large jump components to the variation of the process is reported using the mean of the sample

(i.e. we report the means of V CtRVt
; V JtRVt

;
V LJt;
RVt

; andV SJt;RVt
):

In addition to reporting �ndings based on examination of the entire sample period, we also split

the sample into two periods. The �rst period is from 1993 to 2000 and the second period is from

2001 to 2008. The reason for doing this is that we would like to see whether jump activity changes

over time. Moreover, these subsamples correspond roughly to break dates for �nancial data found

in Cai and Swanson (2010).
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In the sequel, we provide �gures for representative individual stocks in our sample (i.e. Walmart,

IBM, Bank of America and Citigroup). These stocks are chosen on the basis of their market

systematic risk beta. Namely, Walmart has low beta of around 0.3, IBM has a beta close to 0.7,

and Bank of America and Citigroup are more risky stocks with betas of around 2.6 and 2.8.

Turning now to our results, a �rst sense of the prevalence of jumps can be formulated by

inspecting Panels A,B, C and D of Figure 1, where statistics higher than 3.09 (i.e. the 0.001

signi�cance level critical value) are presented for the entire sample from 1993 to 2008. It is obvious

that jumps are prevalent. Additionally, it should be noted that there is a marked di¤erence in jump

frequency between 1993-2000 and 2001-2008, where the �rst period is much more densely populated

with jumps than the latter period. The highest statistic values are around 11, for Walmart in 1997,

11 for IBM in 1994, 10 for Bank of America in 1996 and 7 for Citigroup from 1996 to 1998. Post

2000, the highest statistics are consistently located in 2002 and 2006-2008. Moreover, a simple

visual check of the statistic magnitudes in this �gure suggests that jumps are more prevalent in the

earlier sample period, with respect to both frequency and signi�cance level (more will be said on

this later).

Regarding our choice of the large jumps, an important step is to choose truncation levels, : If

we choose arbitrarily large truncation levels, then clearly we will not �nd evidence of large jumps.

Also one may easily proceed by just picking the truncation level based on the percentiles of the

entire historical sample of the 5 minute log return. However, results could then turn out to be

di¢ cult to interpret, as in one case the usual choice of 90th or 75th percentiles leads to virtually no

large jumps while the choice 25th or 10th percentiles leads to a very large number of large jumps.

In addition, "large" jumps are often thought of as abnormal events that arise at a frequency of one

in several months or even years. Therefore, a reasonable way to proceed is to pick the truncation

level on the basis of the sample of the monthly maximum increments - monthly based abnormal

events. Speci�cally, we set three levels  = 1; 2; 3 to be the 50th; 75th; and 90th percentiles of

the entire sample from 1993 to 2008. Panels A,B,C, and D of Figure 2 depict the monthly largest

absolute increments and the jump truncation levels used in our calculations of the variation of large

and small jump components. Again, it is quite obvious that the monthly maximum increments are

dominant in the previous decade. The larger monthly increments in current decades are mostly

located in 2006-2008 and 2002-2004. As a result, the �xed truncation levels which are chosen across

the entire sample result in more "hits" in previous decade than in the current one. The truncation
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level of Citigroup is the largest of the four stocks depicted (for example at  = 3 the level is

approximately 0.04 for Citigroup and 0.025 for IBM).

Notice that the graphs in Figures 3A and 3B depict magnitudes of the variation of continuous,

jump, and truncated jump components of returns for our 4 sample stocks. Namely, the plots are of

daily realized volatility, and realized variance of continuous, jump and large jump components at

di¤erent truncation levels. As might be expected, inspection of the graphs suggests a close linkage

between the greater number of jumps in the �rst decade of the sample and the and large jump

risk over the same period. For example, in the case of IBM, the variation of the jump components

is clearly dominant in the earlier decade. The highest daily jump risk occurs in late 1998, and is

above 0.018. Indeed, at jump truncation level 3, we only see large jump risk for the years 1994,

1996, 1998, 2000 and 2008. Combined with the results of Figure 1, this again strongly suggests

that there was much more turbulence in the earlier decade.

Turning now to our tabulated results, �rst recall that Table 1 reports the proportion of days

identi�ed as having jumps, at 6 di¤erent signi�cant levels, � = f0:1; 0:05; 0:01; 0:005; 0:001; 0:0001g:

Again, there is clear evidence of jumps in both periods. However, the jump frequency in the

1993-2000 sample is signi�cantly higher than that in the 2001-2008 sample, across all stocks and

test signi�cance levels. For example, at the � = 0:005 and 0:001 levels, the average daily jump

frequencies are 46.9% and 22.8% during the 1993-2000 period, as compared with 16.8% and 9.4%

during the 2001-2008 period, respectively. When considering individual stocks, the story is much

the same. As illustrated in Figures 1, and tabulated in Table 1, the proportion of "jump-days"

for IBM and for the Bank of America are 5.9% and 8.8% during the 2000s, which is much smaller

than the value of 19.2% and 21.3% for the two stocks during the 1990s, based on tests implemented

using a signi�cance level of � = 0:001.

Of course, when calculating jump frequencies, we ignore the magnitudes of the jumps. Table

2 addresses this issue by summarizing another measure of jumps - namely the average percentage

contribution of jumps to daily realized variance. Details of the measures reported are given above

and in Section 4. In support of our earlier �ndings, it turns out that jumps account for about 15.6%

and 8.1% of total variation at signi�cance levels � = 0:005 and 0:001, respectively, when considering

the entire sample period from 1993-2008: Moreover, analogous statistics for the period 1993-2000

are 25.1% and 12.7%, while those for the 2001-2008 period are 7% and 5%. The statistics for IBM

and Bank of America are 25.3% and 10.7% for the period 1993-2000 and 3.5% and 2.3% for the
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period 2001-2008 while those for the entire samples are 7.9% and 6.6%. This result is consistent

with our earlier �ndings through �gure analysis.

In summary, without examining the impact of large jumps, we already have evidence that: (i)

There is clear evidence that jumps characterize the structure of the returns of all of the stocks that

we examine. (ii) The 1990s are characterized by the occurrence of more jumps than the 2000s. (iii)

The contribution of jumps to daily realized variance is substantively higher during the 1990s than

the 2000s. (iv) Our results are consistent across all stocks, suggesting the importance of jump risk

comovement during turbulence periods.

In our empirical analysis of large jumps, we carry out the same steps as those employed above

when examining overall jump activity. Results are reported in Tables 3A-C are for truncation levels

 = 1; 2; 3 at 6 di¤erent signi�cant levels, � = f0:1; 0:05; 0:01; 0:005; 0:001; 0:0001g: As mentioned

earlier, Figures 1 and 3 contain plots of jump test statistics and realized variation not only for

overall jump activity, as discussed above, but also for large jumps. Examination of these tables

suggest a number of conclusions.

Across the entire sample, there is evidence of large jumps at all levels by measure of variation.

Table 3A reports the proportion of days identi�ed as having large jumps for truncation level  = 1.

It can be seen that the proportion of variation due to large jumps at truncation level  = 1 accounts

for about 0:9% and 0:6% of total variation (regardless of stock), at signi�cance levels � = 0:005

and 0:001, respectively. Values at signi�cance level 0.001 for the periods 1993-2000 and 2001-2008

are around 0:8% and 0:4%, respectively. For  = 2; values are 0.4% and 0.3% at signi�cant levels

� = 0:005 and 0:001; respectively, when considering the entire sample. Values at signi�cance level

0.001 for the periods 1993-2000 and 2001-2008 are around 0.4% and 0.2% for period 1993-2000 and

2001-2008, respectively. A similar result obtains for  = 3, suggesting that large jump variability

is around twice as big (as a proportion of total variability) for the latter sub-sample, regardless

of truncation level. As previously, these results are surprisingly stable across stocks. Although

not included here, our analysis of the market index data discussed above yielded a similar result.

Further examination of the statistics in the Tables 3A-C also yields another interesting �nding.

In particular, though proportions of jumps and large jumps at truncation level  = 1; 2; 3 are all

larger in the previous decade, the di¤erence is smaller and increasingly narrows as higher truncation

levels are considered, when examining large jumps. This result, which is true for many of our

stocks, suggests an increased role of large jumps in explaining daily realized variance during the
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latter sub-sample. To illustrate this point, which is apparent upon inspection of average statistics

constructed for all 25 stocks, we investigate the case of of ExxonMobil, where we look at all statistics

at signi�cance level � = 0:001: The proportion of variation of jumps to total variation is 17% for

the period 1993-2000 (as shown in Table 2), almost 3 times as much as the corresponding value

of 6.2% in 2001-2008. However for large jumps at truncation level  = 1 , the analogous value is

0.6% for 1993-2008, which is just 1.5 times as much as the 0.4% value during 2001-2008. Similarly

at truncation level  = 2; the value is 0.4% for 1993-2008 and 0.2% for 2001-2008. Interestingly,

at truncation level  = 3; the proportion of variation of jumps is 0 for period 1993-2000 while

it is 0.1% for period 2001-2008. Therefore, with respect to large jump we �nd that: (i) Large

jumps incidence and magnitudes are consistent with our earlier �nding that the 1990s are much

more turbulent than the 2000s. (ii) However, for higher truncation levels, the contribution of jump

risk during the two periods becomes much closer, and indeed the contribution during the latter

period can actually become marginally greater. This suggests that while the overall role of jumps

is lessening, the role of large jumps has not decreased, and indeed, the relative role of large jumps,

as a proportion of overall jumps has actually increased in the 2000s.

6 Concluding Remarks

In this paper we review some of the recent literature on volatility modelling and jumps, with

emphasis on the notion that these variables are unobserved latent variables, and thus can be viewed

in some sense as �missing data�. Many estimators of volatility, both continuous and discrete, as

well as both parametric and nonparameteric are also reviewed..

In an empirical investigation, we provide new evidence of jumps in individual log price processes,

and note that there are clearly comovements during turbulent times, for all stocks. More notice-

ably, jump incidence is greater during the 1990s than during the 2000s, although the incidence of

"very large" jumps is similar across both decades, and the relative importance of large jumps has

increased.
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Figure 1: Jump Test Statistics of Days Identi�ed as Having Jumps of (Log) Stock

Prices: Sample Period 1993-2008 *
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� Panel A, B, C, D depict daily test statistics of days identi�ed as having jumps for Walmart, IBM, Bank of America,

Citigroup (Log) Stock Price using 0.001 signi�cant level. Speci�cally, all statistics in the �gure are larger than 3.09. See section

5 for further details.
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Figure 2: Monthly Largest Increments and Truncation Levels  = 1; 2; 3: Sample

Period 1993-2008 �
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� Panel A,B,C,D depict the monthly largest absolute increments and the jump truncation levels used as thresholds in
our calculations of the variations of large and small jump components, where level =1 corresponds to the median of monthly
maximum increments , level =2 corresponds to 75th percentile of monthly maximum increments, and level =3 corresponds
to 90th percentile monthly maximum increments of(log) stock prices of Walmart, IBM, Bank of America and Citigroup for the
sample period is from 1993 to 2008.
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Figure 3A: Daily Realized Volatility (RV) and Realized Variation of Continuous,

Jump and Truncated Jump Components (Log) Stock Prices for Truncation Levels

 = 1; 2; 3 �
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� See Figure 2 for details about the jump truncation levels. The above panels plot daily realized volatility, realized
measures of the variation of continuous, jump and large jump components at truncation levels  = 1; 2; 3, which are shortly
referred to as jump 1, jump 2 and jump 3 for the period 1993-2008. The realized measures of variations are calculated as
discussed in Section 4 and 5.
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Figure 3B: Daily Realized Volatility (RV) and Realized Variation of Continuous,

Jump and Truncated Jump Components of (Log) Stock Prices for Truncation Levels

 = 1; 2; 3 �
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� See notes in Figure 3A.

48



Table 1: Percentage of Days Identi�ed as Having Jumps Using Daily Statistics �

Stock Name Panel A: Sample Period 1993-2000 (T ' 2000) Panel B: Sample Period 2001-2008 (T ' 1900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 88 80.9 62.1 52 26.3 8.7 49.2 39.3 21.4 16.5 9.7 4.3
American Express 82.9 76.2 56.4 46.6 19.3 4.6 47.4 36.8 20.2 14.7 8.0 4.0
Bank of America 81.8 75.6 56.7 46.4 21.3 5.0 45.1 34.1 20.1 15.7 8.8 3.1

Citigroup 86.3 80.5 63.3 51.9 23.3 4.9 43.6 32.9 17.9 14.6 7.1 2.6
Caterpillar 87.2 81.5 61.8 51 25.9 7.3 46 35.3 19.9 16.3 9.5 4.3
Dupont 83.8 76.5 57.2 48.3 24.2 5.6 49.5 38.8 21.8 17.1 9.5 3.9

Walt Disney 89.3 83.9 65.9 56.0 27.3 5.3 55.6 43.9 23.9 17.6 10.1 3.9
General Electric 79.6 73.5 54.5 45.5 22.3 4.5 49.2 39.3 21.8 16.2 9.4 3.9

GM 88.1 83.1 65.4 54 25.4 6.2 51.8 40.4 22.8 17.8 10.5 4.7
Home Depot 87.7 81 62.1 51.4 24.6 5.1 49.5 38.5 22.1 16.8 10 4.3

IBM 73.8 65 47.3 39.6 19.2 5.9 39.9 30.1 15.1 11.7 5.9 2.8
Intel 69.2 58.9 39.5 33.0 18.0 6.3 51.7 41.4 23.6 18.7 11.3 4.7

Johnson & Johnson 86.7 81.2 62.8 52.5 25.2 5.7 47.5 37.7 22.1 18.0 10.9 4.6
JPM 79.5 73.2 55.7 47.6 21.4 5.0 47.9 35.9 20.8 16.1 9.0 3.3

Coca Cola 86.4 80.8 63.3 54.2 23.9 4.8 52.5 41.9 23.3 18.5 10.2 4.6
McDonald�s 90.5 85 66.1 55.9 25.8 4.9 51.3 40.8 24.6 19.8 11.5 4.8

3M 85.7 78.8 59.2 49.9 25.6 6.9 43.1 33.1 18.8 14.2 7.9 3.6
Microsoft 68.5 58.7 38.6 30.5 16.4 7.0 56.3 44.8 25.7 21.5 11.1 4.4
P�zer 82.6 75.4 56.6 49.1 26.3 6.5 50 40 23.5 17.7 9.4 4.1

Procter & Gamble 80.1 72.4 55.6 46.4 25.5 6.4 46.9 35.6 18.5 14.4 7.2 2.8
AT & T 89.3 83.3 65.8 54.7 23.1 4.4 58.8 48.4 29 22.8 13.8 6.1

United Tech.Corp. 84.2 77.1 54.3 43.9 22.8 8.2 46.3 36.3 20.5 16.0 9.1 3.6
Verizon 81.5 67.7 46 39.5 24.2 8.1 51.4 40.9 24.5 19.4 11.2 5.0
Walmart 86.7 81.5 59.8 46.9 15.5 5.1 44.7 34.3 18.7 14.0 7.4 2.6

ExxonMobil 61.3 49.8 32.8 26.2 17 5.2 44.2 33.6 17.5 12.9 6.2 2.9
Average 82.4 75.3 56.4 46.9 22.8 5.9 48.8 38.2 21.5 16.8 9.4 4.0
� See notes to Figure 1. Entries denote the percentage of days identi�ed as having jumps based on the calculation of daily

statistics. Statistics are the adjusted ratio jump statistics of Barndor¤-Nielsen and Shephard (2006) and Huang and Tauchen
(2005), as discussed in Section 4. Test results are summarized in Panel A for the sample period from 1993-2000 and for the
sample period 2001-2008 in Panel B. These sample periods have approximately 2000 and 1900 daily statistics, respectively.
Statistics are reported for six di¤erent signi�cance levels, � =0:1; 0:05; 0:01; 0:005; 0:001; 0:0001.
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Table 2: Daily Realized Variation: Ratio of Jump to Total Variation �

Stock Name Panel A: Sample Period 1993-2000 (T ' 2000) Panel B: Sample Period 2001-2008 (T ' 1900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 41.2 39.5 32.6 28.4 14.8 5.2 13.6 11.8 7.7 6.4 4.1 2.1
American Express 39.5 38.1 30.5 26.2 10.8 2.6 12.7 10.9 7.1 5.7 3.5 1.9
Bank of America 37.2 36.0 29.7 25.3 12.1 2.9 11.6 9.8 6.8 5.6 3.5 1.5

Citigroup 41.5 40.3 34.1 29.2 13.7 3.0 11.0 9.3 6.0 5.1 2.8 1.2
Caterpillar 40.0 38.6 32.0 27.5 14.7 4.5 12.3 10.5 7.1 6.2 4.0 2.0
Dupont 36.8 35.4 29.1 25.8 13.3 3.2 13.3 11.5 7.6 6.4 4.0 1.8

Walt Disney 42.0 40.8 34.9 30.7 15.8 3.4 15.3 13.2 8.6 6.9 4.2 1.8
General Electric 34.0 32.8 27.1 23.8 12.3 2.5 13.2 11.6 7.7 6.1 3.8 1.8

GM 42.5 41.4 35.2 30.2 14.7 3.9 14.6 12.5 8.3 6.9 4.4 2.2
Home Depot 40.0 38.6 32.3 27.9 14.1 3.1 13.3 11.5 7.8 6.3 4.1 2.0

IBM 30.1 28.3 23.1 20.4 10.7 3.5 9.8 8.2 5.1 4.2 2.3 1.3
Intel 24.0 22.0 16.8 14.7 8.9 3.5 13.9 12.2 8.3 6.9 4.6 2.2

Johnson &Johnson 39.2 38.1 32.3 28.3 14.2 3.4 13.0 11.3 7.8 6.7 4.4 2.1
JPM 36.0 34.7 29.2 25.6 12.0 2.8 12.6 10.6 7.2 5.9 3.7 1.6

Coca Cola 39.9 38.8 33.1 29.4 13.7 2.8 14.0 12.3 8.2 6.8 4.2 2.1
McDonald�s 43.9 42.8 36.0 31.5 15.1 3.1 14.9 13.1 9.2 7.8 5.0 2.3

3M 39.0 37.5 30.9 27.2 14.4 4.1 11.0 9.4 6.2 5.1 3.2 1.6
Microsoft 23.2 21.4 16.1 13.5 8.0 3.7 15.1 13.2 9.0 7.8 4.5 2.0
P�zer 35.5 34.1 28.2 25.4 14.7 3.9 13.8 12.1 8.3 6.7 3.9 1.9

Procter &Gamble 33.9 32.4 27.8 24.5 14.2 3.7 11.9 10.1 6.3 5.2 3.0 1.4
AT &T 43.8 42.6 36.0 31.1 13.5 2.8 17.7 15.9 11.1 9.3 6.1 3.0

United Tech.Corp. 37.1 35.5 27.6 23.0 12.4 4.8 12.2 10.5 7.0 5.8 3.6 1.6
Verizon 29.4 26.8 21.0 18.8 12.0 4.4 14.4 12.6 8.7 7.4 4.7 2.4
Walmart 44.4 43.2 33.8 27.4 9.1 3.4 11.5 9.8 6.3 5.1 3.0 1.2

ExxonMobil 19.3 17.1 12.7 10.9 7.6 2.6 10.8 9.1 5.7 4.6 2.5 1.3
Average 36.5 35.1 28.9 25.1 12.7 3.5 13.1 11.3 7.6 6.3 3.9 1.9

Panel C: Sample Period 1993-2008 (T ' 3900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 26.7 25.0 19.5 16.9 9.2 3.6
American Express 26.4 24.8 19.1 16.2 7.2 2.3
Bank of America 24.7 23.2 18.5 15.7 7.9 2.2

Citigroup 26.6 25.1 20.3 17.4 8.3 2.1
Caterpillar 26.2 24.7 19.6 16.9 9.4 3.3
Dupont 25.4 23.7 18.6 16.3 8.8 2.5

Walt Disney 29.0 27.3 22.0 19.1 10.2 2.6
General Electric 23.8 22.5 17.6 15.1 8.2 2.2

GM 28.9 27.3 22.1 18.8 9.7 3.1
Home Depot 27.0 25.3 20.3 17.4 9.2 2.5

IBM 20.2 18.5 14.3 12.5 6.6 2.4
Intel 19.0 17.2 12.6 10.9 6.8 2.9

Johnson &Johnson 26.4 25.0 20.3 17.7 9.4 2.8
JPM 24.6 23.0 18.4 16.0 7.9 2.2

Coca Cola 27.3 25.9 20.9 18.4 9.0 2.5
McDonald�s 30.4 29.0 23.5 20.5 10.4 2.7

3M 26.0 24.4 19.4 16.9 9.2 2.9
Microsoft 19.4 17.6 12.8 10.8 6.3 2.9
P�zer 24.9 23.3 18.5 16.3 9.4 2.9

Procter &Gamble 23.2 21.5 17.3 15.1 8.7 2.6
AT &T 31.2 29.6 23.9 20.5 9.9 2.9

United Tech.Corp. 23.7 22.1 16.5 13.8 7.7 3.1
Verizon 15.3 13.5 9.5 8.1 5.1 2.5
Walmart 28.3 26.9 20.4 16.5 6.1 2.3

ExxonMobil 11.9 10.1 6.6 5.4 3.1 1.5
Average 24.7 23.1 18.1 15.6 8.1 2.6

� See notes to Figure 2. The entries in the table denote the average percentage of daily variation of the jump com-
ponent relative to daily realized variance for the sample periods 1993-2000, 2001-2008 and 1993-2008. The realized measure
of variation of the jump component is calculated as discussed in Section 4. In addition to frequency of jumps, realized mea-
sures of variations also take the magintude of jumps into account. Entries are caculcated accross 6 di¤erent signi�cant levels,
� =0:1; 0:05; 0:01; 0:005; 0:001; 0:0001.
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Table 3A: Daily Realized Variation: Ratio of Large Jump to Total Variation, Jump

Truncation Level  = 1 �

Stock Name Panel A: Sample Period 1993-2000 (T ' 2000) Panel B: Sample Period 2001-2008 (T ' 1900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 1.8 1.7 1.2 1.1 0.9 0.6 1.3 1.2 0.9 0.8 0.5 0.4
American Express 1.5 1.3 1.0 0.8 0.6 0.4 1.2 1.1 0.8 0.6 0.5 0.3
Bank of America 3.0 2.7 1.8 1.5 1.0 0.7 1.0 0.9 0.8 0.6 0.4 0.2

Citigroup 2.1 1.9 1.2 1.0 0.6 0.4 0.8 0.7 0.5 0.4 0.3 0.1
Caterpillar 2.3 2.2 1.6 1.5 1.0 0.6 0.7 0.6 0.5 0.5 0.3 0.2
Dupont 2.1 1.9 1.2 1.0 0.7 0.3 0.9 0.9 0.6 0.5 0.4 0.2

Walt Disney 2.1 1.8 1.1 0.9 0.6 0.4 1.6 1.4 1.0 0.9 0.6 0.3
General Electric 1.5 1.4 0.8 0.7 0.4 0.2 1.3 1.2 0.9 0.6 0.3 0.2

GM 1.5 1.4 1.0 0.8 0.6 0.4 1.3 1.2 0.8 0.7 0.5 0.2
Home Depot 1.9 1.7 1.3 1.1 0.6 0.3 0.7 0.6 0.5 0.3 0.2 0.1

IBM 2.3 2.1 1.7 1.6 1.0 0.7 0.5 0.5 0.4 0.4 0.2 0.1
Intel 2.3 2.1 1.6 1.2 0.8 0.5 0.7 0.7 0.4 0.4 0.3 0.2

Johnson &Johnson 2.2 2.0 1.5 1.3 0.9 0.6 0.6 0.6 0.4 0.3 0.2 0.1
JPM 1.3 1.1 0.7 0.6 0.3 0.2 1.7 1.5 1.0 0.8 0.6 0.3

Coca Cola 2.3 2.1 1.3 1.2 0.8 0.5 0.8 0.8 0.6 0.5 0.4 0.3
McDonald�s 1.8 1.6 1.2 0.9 0.7 0.4 1.0 1.0 0.7 0.6 0.4 0.2

3M 2.1 2.0 1.3 1.1 0.7 0.5 0.6 0.6 0.4 0.4 0.4 0.3
Microsoft 2.9 2.7 2.0 1.7 1.0 0.5 0.6 0.6 0.5 0.4 0.2 0.1
P�zer 2.0 1.9 1.3 1.1 0.8 0.5 0.7 0.6 0.5 0.4 0.3 0.2

Procter &Gamble 2.4 2.2 1.7 1.4 0.9 0.5 0.8 0.7 0.5 0.4 0.3 0.2
AT &T 2.3 2.2 1.6 1.3 0.9 0.7 1.7 1.5 1.2 1.1 0.7 0.4

United Tech.Corp. 3.2 2.9 2.1 1.9 1.2 0.6 1.3 1.1 0.8 0.7 0.5 0.2
Verizon 6.9 6.3 5.0 4.4 2.7 1.1 1.5 1.3 1.0 0.9 0.6 0.4
Walmart 2.7 2.4 1.4 1.2 0.9 0.6 0.6 0.6 0.4 0.4 0.3 0.1

ExxonMobil 2.1 1.8 1.3 1.0 0.6 0.4 1.1 0.9 0.7 0.6 0.4 0.2
Average 2.3 2.1 1.5 1.3 0.8 0.5 1.0 0.9 0.7 0.6 0.4 0.2

Panel C: Sample Period 1993-2008 (T ' 3900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 1.6 1.4 1.0 0.9 0.7 0.5
American Express 1.3 1.2 0.9 0.7 0.5 0.4
Bank of America 2.0 1.9 1.3 1.1 0.7 0.5

Citigroup 1.4 1.3 0.8 0.7 0.5 0.3
Caterpillar 1.5 1.4 1.1 1.0 0.7 0.4
Dupont 1.5 1.4 0.9 0.8 0.5 0.2

Walt Disney 1.8 1.6 1.1 0.9 0.6 0.4
General Electric 1.4 1.3 0.8 0.7 0.4 0.2

GM 1.4 1.3 0.9 0.8 0.5 0.3
Home Depot 1.3 1.2 0.9 0.7 0.4 0.2

IBM 1.4 1.3 1.0 1.0 0.6 0.4
Intel 1.5 1.4 1.0 0.8 0.6 0.3

Johnson &Johnson 1.4 1.3 1.0 0.8 0.6 0.4
JPM 1.5 1.3 0.9 0.7 0.5 0.3

Coca Cola 1.6 1.5 1.0 0.8 0.6 0.4
McDonald�s 1.4 1.3 1.0 0.8 0.5 0.3

3M 1.4 1.3 0.9 0.8 0.6 0.4
Microsoft 1.8 1.7 1.3 1.1 0.6 0.3
P�zer 1.3 1.2 0.9 0.8 0.6 0.4

Procter &Gamble 1.6 1.5 1.1 0.9 0.6 0.3
AT &T 2.0 1.9 1.4 1.2 0.8 0.5

United Tech.Corp. 2.1 2.0 1.4 1.3 0.8 0.4
Verizon 1.8 1.6 1.2 1.1 0.7 0.4
Walmart 1.7 1.5 0.9 0.8 0.6 0.3

ExxonMobil 1.2 1.1 0.7 0.6 0.4 0.2
Average 1.6 1.4 1.0 0.9 0.6 0.3

� See notes to Figure 2. Entries in the table denote the average percentage of daily variation due to jumps constructed
using truncation level  = 1, relative to the daily realized variance, for the sample periods 1993-2000, 2001-2008 and 1993-2008.
The realized measure of variation of the jump component is calculated as discussed in Section 4. Entries are caculcated accross
6 di¤erent signi�cance levels (� =0:1; 0:05; 0:01; 0:005; 0:001; 0:0001).
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Table 3B: Daily Realized Variation: Ratio of Large Jump to Total Variation, Jump

Truncation Level  = 2 �

Stock Name Panel A: Sample Period 1993-2000 (T ' 2000) Panel B: Sample Period 2001-2008 (T ' 1900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 0.8 0.8 0.6 0.5 0.5 0.3 0.5 0.5 0.4 0.4 0.2 0.1
American Express 0.8 0.7 0.6 0.5 0.3 0.3 0.5 0.4 0.3 0.2 0.2 0.1
Bank of America 0.9 0.9 0.5 0.4 0.3 0.2 0.4 0.4 0.3 0.3 0.2 0.1

Citigroup 1.0 1.0 0.7 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1
Caterpillar 1.0 1.0 0.8 0.8 0.5 0.3 0.3 0.3 0.3 0.3 0.2 0.2
Dupont 0.9 0.8 0.4 0.3 0.2 0.1 0.4 0.4 0.2 0.2 0.1 0.0

Walt Disney 1.0 0.9 0.4 0.3 0.3 0.2 0.5 0.5 0.3 0.3 0.2 0.1
General Electric 0.7 0.7 0.4 0.4 0.2 0.1 0.6 0.6 0.5 0.3 0.1 0.1

GM 0.7 0.7 0.4 0.3 0.2 0.2 0.7 0.6 0.4 0.4 0.3 0.1
Home Depot 1.0 0.9 0.7 0.6 0.3 0.2 0.2 0.2 0.2 0.1 0.0 0.0

IBM 1.0 0.9 0.8 0.7 0.5 0.3 0.2 0.2 0.2 0.2 0.1 0.1
Intel 0.9 0.9 0.7 0.6 0.4 0.2 0.2 0.2 0.1 0.1 0.1 0.0

Johnson &Johnson 0.9 0.8 0.6 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1
JPM 0.4 0.4 0.2 0.2 0.1 0.0 0.7 0.7 0.5 0.4 0.3 0.2

Coca Cola 0.9 0.9 0.4 0.4 0.2 0.2 0.4 0.4 0.2 0.2 0.2 0.2
McDonald�s 0.8 0.7 0.5 0.4 0.3 0.3 0.5 0.5 0.4 0.2 0.2 0.0

3M 1.0 0.9 0.5 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1
Microsoft 1.1 1.0 0.8 0.6 0.3 0.1 0.2 0.2 0.2 0.2 0.1 0.0
P�zer 0.8 0.8 0.6 0.6 0.4 0.3 0.3 0.3 0.2 0.2 0.1 0.1

Procter &Gamble 1.1 1.0 0.8 0.6 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.1
AT &T 1.1 1.0 0.7 0.6 0.4 0.4 0.7 0.6 0.6 0.5 0.3 0.1

United Tech.Corp. 1.1 1.0 0.7 0.6 0.5 0.3 0.4 0.4 0.3 0.3 0.2 0.1
Verizon 2.8 2.6 2.2 1.9 0.7 0.2 0.5 0.5 0.4 0.4 0.3 0.2
Walmart 1.2 1.1 0.6 0.5 0.5 0.4 0.2 0.2 0.2 0.2 0.1 0.0

ExxonMobil 0.8 0.6 0.5 0.4 0.4 0.2 0.5 0.5 0.4 0.3 0.2 0.1
Average 1.0 0.9 0.6 0.5 0.4 0.2 0.4 0.4 0.3 0.3 0.2 0.1

Panel C: Sample Period 1993-2008 (T ' 3900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 0.6 0.6 0.5 0.4 0.3 0.2
American Express 0.7 0.6 0.4 0.3 0.3 0.2
Bank of America 0.7 0.6 0.4 0.4 0.3 0.2

Citigroup 0.7 0.7 0.5 0.4 0.3 0.2
Caterpillar 0.7 0.6 0.5 0.5 0.4 0.3
Dupont 0.7 0.6 0.3 0.3 0.2 0.1

Walt Disney 0.8 0.7 0.4 0.3 0.2 0.2
General Electric 0.7 0.6 0.5 0.3 0.1 0.1

GM 0.7 0.7 0.4 0.3 0.2 0.2
Home Depot 0.6 0.6 0.4 0.3 0.2 0.1

IBM 0.6 0.6 0.5 0.5 0.3 0.2
Intel 0.6 0.5 0.4 0.3 0.2 0.1

Johnson &Johnson 0.6 0.6 0.4 0.4 0.3 0.2
JPM 0.6 0.5 0.4 0.3 0.2 0.1

Coca Cola 0.6 0.6 0.3 0.3 0.2 0.2
McDonald�s 0.7 0.6 0.5 0.3 0.3 0.2

3M 0.6 0.6 0.3 0.3 0.2 0.2
Microsoft 0.6 0.6 0.5 0.4 0.2 0.0
P�zer 0.6 0.5 0.4 0.4 0.3 0.2

Procter &Gamble 0.7 0.6 0.5 0.4 0.3 0.2
AT &T 0.9 0.8 0.6 0.6 0.4 0.3

United Tech.Corp. 0.7 0.7 0.5 0.4 0.3 0.2
Verizon 0.7 0.6 0.5 0.4 0.3 0.2
Walmart 0.7 0.6 0.4 0.3 0.3 0.2

ExxonMobil 0.6 0.5 0.4 0.3 0.2 0.1
Average 0.7 0.6 0.4 0.4 0.3 0.2

� See notes to Table 3A.
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Table 3C: Daily Realized Variation: Ratio of Large Jump to Total Variation, Jump

Truncation Level  = 3 �

Stock Name Panel A: Sample Period 1993-2000 (T ' 2000) Panel B: Sample Period 2001-2008 (T ' 1900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 0.3 0.3 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.0
American Express 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.0
Bank of America 0.5 0.5 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1

Citigroup 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.0
Caterpillar 0.5 0.5 0.4 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1
Dupont 0.4 0.4 0.2 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0

Walt Disney 0.5 0.5 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.1 0.0
General Electric 0.3 0.3 0.2 0.1 0.0 0.0 0.3 0.3 0.3 0.2 0.0 0.0

GM 0.3 0.3 0.2 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.0
Home Depot 0.4 0.4 0.3 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

IBM 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Intel 0.4 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0

Johnson &Johnson 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.0
JPM 0.2 0.2 0.1 0.1 0.0 0.0 0.2 0.2 0.2 0.2 0.1 0.1

Coca Cola 0.5 0.5 0.2 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1
McDonald�s 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.0

3M 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0
Microsoft 0.4 0.4 0.2 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0
P�zer 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0

Procter &Gamble 0.3 0.3 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.1
AT &T 0.6 0.5 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.0

United Tech.Corp. 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.0
Verizon 0.7 0.7 0.7 0.7 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.0
Walmart 0.5 0.5 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0

ExxonMobil 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.1 0.0
Average 0.4 0.4 0.3 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.0

Panel C: Sample Period 1993-2008 (T ' 3900)
Signi�cant Level � 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 0.3 0.3 0.2 0.2 0.1 0.1
American Express 0.3 0.2 0.2 0.1 0.1 0.1
Bank of America 0.3 0.3 0.2 0.2 0.1 0.1

Citigroup 0.3 0.3 0.2 0.2 0.2 0.1
Caterpillar 0.3 0.3 0.3 0.2 0.2 0.1
Dupont 0.3 0.3 0.1 0.0 0.0 0.0

Walt Disney 0.4 0.4 0.2 0.2 0.1 0.1
General Electric 0.3 0.3 0.2 0.2 0.0 0.0

GM 0.3 0.3 0.1 0.1 0.1 0.1
Home Depot 0.2 0.2 0.2 0.1 0.0 0.0

IBM 0.2 0.2 0.2 0.2 0.1 0.1
Intel 0.2 0.2 0.2 0.1 0.1 0.0

Johnson &Johnson 0.3 0.3 0.2 0.2 0.2 0.1
JPM 0.2 0.2 0.1 0.1 0.0 0.0

Coca Cola 0.3 0.3 0.1 0.1 0.1 0.1
McDonald�s 0.3 0.3 0.2 0.1 0.1 0.1

3M 0.2 0.2 0.1 0.1 0.1 0.1
Microsoft 0.2 0.2 0.2 0.1 0.1 0.0
P�zer 0.2 0.2 0.2 0.1 0.1 0.1

Procter &Gamble 0.2 0.2 0.2 0.2 0.1 0.1
AT &T 0.4 0.4 0.2 0.2 0.2 0.1

United Tech.Corp. 0.2 0.2 0.2 0.2 0.1 0.1
Verizon 0.2 0.2 0.1 0.1 0.1 0.0
Walmart 0.3 0.3 0.2 0.2 0.1 0.1

ExxonMobil 0.2 0.2 0.2 0.2 0.1 0.0
Average 0.3 0.3 0.2 0.1 0.1 0.1

� See notes to Table 3A.
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