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2 × 2 Delegation Games With Implementability In

Weakly Undominated SPNE

Junnosuke Shino ∗†

Abstract

In this paper we study delegation environments based on Fershtman, Judd, and Kalai

([3], hereafter FJK). By imposing a certain assumption on the notion of implementability,

called implementability with mutually rational agents, they show that every efficient outcome

can be fully implemented in subgame perfect Nash equilibrium (SPNE). For their analysis,

we first argue that FJK’s model can and should be interpreted as a problem in mechanism

design. With this in mind, we first modify their model so that agents’ participation decision

is explicitly built in. Then, we argue that FJK uses a non-standard solution concepts in the

mechanism design literature – in order to attain full implementability, they strengthen notion

of implementability, instead of using a refined equilibrium concept. In response, we follow

the standard mechanism design approach – employ a refined SPNE (weakly undominated

SPNE, U-SPNE) as the equilibrium concept, while keeping the notion of the implementability

unchanged. By applying U-SPNE, we show that in certain classes of 2 × 2 games – including

prisoners’ dilemma, coordination games, and battle of sexes – every efficient outcome is fully

implementable in U-SPNE.
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1 Introduction

Delegation is a frequently observed phenomenon in social, political and economic strategic

interactions. In interstate relations, it is typically a diplomat or embassy representative who

negotiates with another country’s diplomat to maximize one’s nation’s self-interest, rather

than the heads of ministries or politicians themselves. Similarly, a private firm’s manager or

CEO in competitions with rivals can be viewed as a delegated agent with task of maximizing

shareholders’ profit. The common structure underlying all such conflict situations can be

characterized as a principal-agents problem accompanied with strategic interactions between

agents.

It is therefore quite important to analyze delegation environments at a general level. Since

Shelling [8], a great deal of attention has been paid to analyzing strategic delegation by using

game-theoretic framework. Fershtman and Judd [2] studied a model of Cournot duopoly with

delegation and unobservable efforts by agents. Persson and Tabellini [7] analyzed international

monetary policy coordination by casting central banks as agents acting on behalf of the public.

Persson et al. [6] also examined public finance with a delegation setup. In this paper, following

the pioneering work of Fershtman, Judd, and Kalai ([3], hereafter FJK), we analyze a general

strategic delegation situation in which principals’ proposals of compensation schemes to their

agents are commonly observable before the agents’ interaction.

Specifically, the order of the play in the FJK delegation game is as follows: suppose two prin-

cipals face a conflict represented by a strategic form game (called an underlying game). First,

for the underlying game, each principal simultaneously proposes to her agent a compensation

scheme, which is contingent on payoffs in the underlying game. Next, commonly observing

the both schemes, each agent chooses one of actions from the strategy set in the underlying

game. Finally, depending on an outcome derived by their interactions, the compensation is

paid to each agent based on the scheme, and its principal gets the payoff in the underlying

game minus the compensation she pays to her agent.

Here it is worth noting that this delegation game described above can be viewed through

the lens of mechanism design or implementation theory. First, for each underlying game, we

may specify a socially efficient outcome. Such a specification can be regarded as a (social)
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choice function. Second, by applying a certain equilibrium concept to the second stage game

induced by a compensation scheme, we can assign a predicted action profile to each underlying

game. Lastly, an outcome function can be defined as a function from such a predicted action

profile to an outcome in the underlying game.

Therefore, the delegation game thus lends itself naturally and aptly to the tools of mech-

anism design. With this in mind, we first slightly modify the FJK’s delegation game so that

agents’ participation decision is explicitly built in. Next, we examine their methodology to deal

with the delegation game. In the mechanism design literature, two building blocks (solution

concepts) in considering whether an efficient outcome can be attained are equilibrium and

implementation. Given a certain equilibrium, we say that a profile of compensation schemes

proposed by principals implements an outcome in the equilibrium, when there exists an equi-

librium in which the proposed compensation scheme attains the outcome via an agents’ action.

Furthermore, if there is a compensation scheme that always attains the outcome in the equi-

librium, irrespective of the agents’ actions, then principals can attain the optimal outcome for

sure, by using such a scheme. In this case we say the scheme fully implements the outcome in

the equilibrium concept.

FJK, however, do not use this standard definition of implementation. Instead, they impose

a certain assumption on implementability, which they call implementability with mutually

rational agents, and show that every socially efficient outcome can be fully implemented with

mutually rational agents in SPNE. A reason why they adopt such an unorthodox approach is

because, in delegation games, few significant results can be derived by using these relatively

weak solution concepts – SPNE and (standard definition of) implementability. In particular, in

deriving SPNE, multiple equilibria often emerge in an induced game among agents, and some

of them may not be socially optimal. As such, it could be reasonable to use “stronger solution

concepts”to obtain full implementability.

Yet despite the challenges to obtain full implementability, the modern mechanism design

approach advocates the use of refined equilibrium concept, opposed to directly strengthening

the notion of implementability. To this end, our objective in this paper is to reformulate FJK’s

analysis within the framework of mechanism design and to derive full implementability. In

particular, we employ a modification of SPNE, called (weakly) undominated SPNE in Austen-
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Smith and Banks [1] 1, as a refined equilibrium concept, while keeping the notion of the

implementation unchanged.

Under this setup, we show that, in certain classes of 2 × 2 game – including prisoners’

dilemma, general coordination games, and battle of sexes – every socially efficient outcome

is fully implementable by using these standard solution concepts. We also show that, by

using an example of 3 × 3 coordination game, not only does our standard procedure attain

full implementability, our solution concepts could also solve problem of multiple equilibria, an

issue where FJK’s solution concepts fall short.

Finally, it may worth noting here that depending on how one defines fullness of the im-

plementability, different approach could be considered. For example, we could alternatively

take uniqueness of (weakly undominated) SPNE into consideration, instead of uniqueness of

an outcome. In this case, in addition to induced games among agents, even game among

principals should have a unique equilibrium. However, if principals can communicate each

other, they would coordinate on best equilibrium. Therefore, our weaker notion is reasonable

to be scrutinized.

The organization of the rest of this paper is as follows. In Section 2, we give formal definition

of the delegation game and the implementability by weakly undominated SPNE. Main results

are shown in the next two sections. Section 3 examines 2× 2 game. An example of the multiple

equilibria problem in 3×3 is shown in Section 4. Some concluding remarks are made in Section

5.

2 The Model and The Solution Concept

2.1 The Model

We consider a situation where two principals face a conflict represented by a strategic form

game G = (P, {Si}i=1,2, {ui}i=1,2). P = {p1, p2} is the set of players, and pi is called principal i. Si is

the set of strategies of pi, and ui is pi’s utility function, where ui : S ≡ S1 × S2 −→ R. We call G

1In the context of mechanism design, Yu [10] applied this concept to public goods provision environment. Also,
note that this is an extension of implmentation using undominated strategies,which was initially proposed in Palfrey
and Srivastava [5] and applied in Jackson et al [4], Sjostrom [9] and many others, to extensive form games.
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an underlying game. Denote u ≡ (u1, u2) : S −→ R2.

For an underlying game G, suppose principal i could delegate agent i and consider the

following three-stage strategic delegation environment. At the first stage, each principal si-

multaneously proposes to her agent a “compensation scheme”. Principal i’s compensation

scheme gives a monetary reward to agent i, depending on which payoff in G is realized by

agents’ interaction in the last stage. Next, in the second stage, each agent simultaneously de-

cides whether to participate the game or not, after observing not only his own contract but also

his opponent’s. If (at least) one of agents decides not to participate, the game ends at this stage.

In this case, agents obtain (common) reservation wage, ϵ > 0, while principals get a constant

payoff normalized to zero by, for example, exerting “outside option.”This setup is natural to

describe a situation where considerable expertise – any knowledge or experiences – is needed

to enter the underlying game and only agents have such expertise. If, on the other hand, both

of agents decides to participate, the game moves on to the final stage. In this stage, agent i

chooses an action si ∈ Si in the underlying game. Then “total payoff ”of ui(s1, s2) is realized and

depending on this, monetary rewards are paid to agent i based on the compensation scheme

proposed at the first stage. What principal i obtains is the total payoff, ui(s1, s2), minus the

reward for agent i.

Formally, for a underlying game G, its delegation game, denoted by D(G), is defined as

D(G) ≡ (N, {Ci,Li}i=1,2, {Up
i ,U

a
i }i=1,2, ϵ). (1)

• N ≡ P ∪ A is the set of players where P = {p1, p2} is the set of principals and A = {a1, a2} is

the set of agents.

• Ci is the set of strategies of pi where Ci = {ci | ci : R −→ R+,non − decreasing f unction} 2.

ci ∈ Ci is called a compensation function of pi. Define C ≡ C1 × C2.

• Li is the set of strategies of ai defined as follows. First, let P and NP be an agent choice

of “Participate ”and “Not Participate ”respectively. Then agent i’s participate function is

defined as Di = {di | di : C −→ {P,NP}}. di specifies agent i’s choice of participating or

2Throughout this study, we preserve the FJK’s assumption of non-decreasing compensation function. This as-
sumption can be justified by, following FJK, “Besides being intuitively appealing, · · · subgame perfection cannot be
obtained without the weak monotonicity assumption.”on page 553 of [3]
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not, contingent on his observation about C. Next, we define response function Ri where

Ri = {ri | ri : C −→ Si}, which specifies agent i’s an action in the last stage. Finally, agent

i’s strategy set Li is defined as Li ≡ Di × Ri, that is, i’s strategy set is the set of the profile

of the participation function and the response function.

• Up
i and Ua

i are principal and agent i’s utility functions in D(G) defined as:

Up
i (c1, c2, l1, l2) =


ui(r1(c), r2(c)) − ci(ui(r1(c), r2(c))) if d1(c) = d2(c) = P

0 otherwise
(2)

Ua
i (c1, c2, l1, l2) =


ci(ui(r1(c), r2(c))) if d1(c) = d2(c) = P

ϵ otherwise.
(3)

For the following analysis, we denote a strategy profile of all players (agents and principals)

by (c, l) ≡ (c1, c2, l1, l2) ≡ (c1, c2, (d1, r1), (d2, r2)) .

For a compensation scheme profile c ∈ C, its subsequent game played at the last stage in the

case where both agents participate can be specified. We call it induced game by c and denote by

G(c). For c ∈ C, we say (s∗1, s
∗
2) ∈ S is a Nash equilibrium (NE) in G(c) iff ci(ui(s∗i , s

∗
j)) ≥ ci(ui(si, s∗j))

for all si ∈ Si and for i ∈ {1, 2}.

The following example may be useful to understand the model.

Example 2.1 (Coordination Game)

Suppose the underlying game G is a coordination game given by Fig.1.

G s21 s22

s11 2, 2 0, 0
s12 0, 0 1, 1

Figure 1: Coordination Game

and consider the following two kinds of compensation profiles, ĉ ≡ (ĉ1, ĉ2) and c̃ ≡ (c̃1, c̃2).

ĉi(0) = ĉi(1) = 0, ĉi(2) = 2ϵ c̃i(0) = c̃i(1) = 0, c̃i(2) = ϵ (i = 1, 2) (4)

Then for each compensation profile, its induced game, G(ĉ) or G(c̃), is described by the follow-

ings:
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G(ĉ) s21 s22

s11 2ϵ, 2ϵ 0, 0
s12 0, 0 0, 0

G(c̃) s21 s22

s11 ϵ, ϵ 0, 0
s12 0, 0 0, 0

Figure 2: (Left) induced game G(ĉ) (Right) induced game G(c̃)

NEs in G(ĉ) or G(c̃) are (s11, s21) and (s12, s22).

Our model builds on FJK, but differs in that an agent’s decision of participating is explicitly

considered. With this setup, we can explicitly examine Participate Constraint (PC).

2.2 The Solution Concept

In this section, we define the solution concept applied to the delegation game. As we will define,

the solution concept, called undominated subgame perfect Nash equilibrium (U-SPNE), is a

strategy profile (c∗1, c
∗
2, l
∗
1, l
∗
2) satisfying the conditions of (7), (8), and (9).

To begin with, note that the delegation game D(G) is an extensive form game with complete

information. Therefore, it is natural to use “backward induction”. As a first step, consider the

last stage game played among agents. For a given compensation profile c, denote set of NEs in

G(c) by

EA(c) = {(s1, s2) ∈ S | (s1, s2) is an NE in G(c)}. (5)

The notion of the “subgame perfect Nash equilibrium ”(SPNE) requires that response function

r satisfies [r(c) ∈ EA(c)∀c]. However, as stated in FJK, this condition does not work in the

delegation game setup. Especially, unique implementation (defined later) is hard to obtain. To

see this, here consider Example 2.1 and the compensation scheme c̃ in Fig.2. Roughly speaking,

we look for a compensation scheme such that (s11, s21) is uniquely attained as an “equilibrium”

because u(s11, s21) is Pareto efficient in the underlying game. However, to employ the notion of

EA(c) can not exclude agents playing (s12, s22) in G(c̃).

Now we define UEA(c) as the set of weakly undominated Nash equilibria in G(c):

UEA(c) = {(s1, s2) ∈ S | (s1, s2) is a N.E. in G(c) and

si ∈ Si (i = 1, 2) is not weakly dominated strategy in G(c)
} (6)
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where si is a weakly dominated strategy in G(c) if there is a strategy s̃i ∈ Si such that ci(ui(s̃i, s j)) ≥

ci(ui(si, s j)) for all s j ∈ S j and ci(ui(s̃i, s j)) > ci(ui(si, s j)) for some s j ∈ S j. We employ (6) as the

first condition of our solution concept, instead of (5). Noting that UEA(c) can take empty set

for some c, the first condition of U-SPNE is defined as the following:

r∗(c) ∈ UEA(c) ∀c ∈ C with UEA(c) , ϕ

r∗(c) ∈ EA(c) ∀c ∈ C with UEA(c) = ϕ
(7)

Next, given the action profile played at the last stage, we consider agents’ simultaneous partic-

ipation choices at the second stage. Recall that the last stage game will be reached only when

both agents decide to participate. Therefore, for a given strategy profile of (c1, c2, l1, l2), the

payoffmatrix at the second stage can be described as follows:

G P NP
P c1(u1(r1(c), r2(c))), c2(u2(r1(c), r2(c))) ϵ, ϵ

NP ϵ, ϵ ϵ, ϵ

Figure 3: Agents’ payoffmatrix at the second stage by backward induction

Depending on the magnitudes of ci(u1(r1(c), r2(c))) and ϵ, three cases could happen: (A) P

is weakly dominant strategy, (B) NP is weakly dominant strategy, and (C) P and NP are

completely indifferent. For case (A) and (B), it is totally natural to assume that the weakly

dominant strategy would be played. For simplicity, we make the standard assumption that if

the agent is indifferent between participating and not participating, he chooses to participate.

Thus, in the case of (C), agent i is assumed to choose P. Putting it all together, we introduce the

following as the second condition of U-SPNE:

For every c ∈ C, d∗i (c) = P i f f ci(ui(r∗1(c), r∗2(c))) ≥ ϵ. (8)

The last step is to consider the first stage in which principals propose compensation schemes.

The last condition on U-SPNE is the standard one:

Up
1(c∗1, c

∗
2, l
∗
1, l
∗
2) ≥ Up

1(c1, c∗2, l
∗
1, l
∗
2) ∀ c1 ∈ C1 and same f or principal 2. (9)
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As a result, our solution concept applied to the delegation game is expressed as the following

definition:

Definition 2.1

(c∗1, c
∗
2, l
∗
1, l
∗
2) is U-SPNE if it satisfies the conditions of (7), (8), and (9)

Then we define implementation and full implementation.

Definition 2.2

c∗ implements ω ∈ R2 in U-SPNE via l∗ ∈ L iff (c∗, l∗) is a U-SPNE of D(G) with (1) u(r∗(c∗)) = ω

and (2) d∗1(c∗) = d∗2(c∗) = P.

Definition 2.3

c∗ fully implements ω ∈ R2 in U-SPNE via l∗ ∈ L iff c∗ implements ω via l∗ in U-SPNE and the

following holds:

i f c∗ also implements ω̃ ∈ R2 in U − SPNE via some l̃, then ω̃ = ω. (10)

A fully implementations compensation scheme is attractive for principals in the sense that

payoff vector ω is realized for sure, without depending on a specific choice of equilibrium

by their agents. Thus, once we require full implementation, the problem of multiplicity is

resolved. There still might be multiple equilibria in the agents’ game, but all these equilibria

yield the same payoffs.

3 Results in 2 × 2 Games

In this section, we consider the case where an underlying game G is 2 × 2 game, described in

Fig.4.

G s21 s22

s11 α1, α2 β1, γ2

s12 γ1, β2 δ1, δ2

Figure 4: 2 × 2 Underlying Game G

9



All payoffs are assumed to be non-negative and the following three cases will be examined.

Case 1 αi > γi, δi ≥ βi, αi > δi (i = 1, 2) (11)

Case 2 αi > γi, δi ≥ βi, [δi < αi and δ j ≥ α j] (i = 1, 2, i , j) (12)

Case 3 αi < γi, βi < δi, δi < αi (i = 1, 2) (13)

In Case 1 and Case 2, first two conditions are identical: (s11, s21) is a strict Nash equilibrium

and (s12, s22) is a (not necessarily strict) Nash equilibrium. The difference between these cases is

the third condition. In Case 1, (α1, α2) is strictly preferred to both parties, while Case 2 exhibits

conflicts between (α1, α2) and (δ1, δ2). Therefore, Case 1 includes coordination game, and Case 2

includes battle of sex as a typical case, respectively. In the last case, si2 is the dominant strategy,

thus socially optimal outcome (α1, α2) is not a Nash equilibrium in G. Prisoners’ dilemma is

included in this case.

For each case, we will prove that every socially efficient outcome (say ω ∈ R2) can be fully

implemented in U-SPNE. The way to prove all the theorems below – Theorem 3.1, 3.2 and 3.3

– can be summarized under the same structure;
Step 1 Construct (c∗, l∗) ≡ (c∗1, c

∗
2, (d

∗
1, r
∗
1), (d∗2, r

∗
2))

Step 2 Check u(r∗(c∗)) = ω and d∗1(c∗) = d∗2(c∗) = P
Step 3 Check the condition of (7) to (9).
Step 4 Prove the fullness of (c∗, l∗)

With this setup, we obtain the following results.

Theorem 3.1

Under the condition of (11), there exists a strategy profile (c∗, l∗) such that c∗ fully implements

(α1, α2) in U-SPNE via l∗ if the following is satisfied:

0 < ϵ ≤ min{α1 − γ1, α2 − γ2}.
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Proof. Step 1. Construct the following (c∗, l∗) = (c∗1, c
∗
2, (d

∗
1, r
∗
1), (d∗2, r

∗
2)) such that:

c∗i (αi) = ϵ, c∗i (βi) = c∗i (γi) = c∗i (δi) = 03 (i = 1, 2) (14)

d∗i (c) satis f ying (8) (i = 1, 2). (15)

r∗1(c) =


sd

1 such that sd
1 is weakly dominant strategy (w.d.s) if there exists such sd

1

s̃1 such that arg maxs1 c1(u1(s1, sd
2)) if @ w.d.s sd

1 and ∃ w.d.s sd
2

s12 otherwise
(16)

and same for agent 2.

Step 2. Note that G(c∗) is described as Fig.5.

G(c∗) s21 s22

s11 ϵ, ϵ 0, 0
s12 0, 0 0, 0

Figure 5: Induced Game G(c∗)

Since si1 is weakly dominant strategy in G(c∗) and from the construction of r∗i (c), u(r∗(c∗)) =

u(s11, s21) = (α1, α2). Furthermore, di(c∗) = P since c∗i (ui(r∗1(c∗), r∗2(c∗))) = c∗i (ui(s11, s21)) = ϵ.

Step 3. We check (7) First. For each c ∈ C, its induced game G(c) can be divided into the

following three cases of (A) to (C). (A) If both agents have weakly dominant strategies in G(c),

sd
1 and sd

2, then each of them uses this strategy and (sd
1, s

d
2) ∈ UEA(c). (B) W.l.o.g. suppose that

a1 has no weakly dominant strategy and that a2 has a weakly dominant strategy sd
2. Then a2

chooses sd
2 and, from the construction of r∗1, a1 chooses his best response to sd

2, denoted by s̃1.

Note that s̃1 is not weakly dominated since a1 has only two strategies and none of them is

assumed to be a weakly dominant strategy. Therefore, (s̃1, sd
2) ∈ UEA(c). (C) If none of the

players has weakly dominant strategy, then they uses si2. Since c is non-decreasing and (s12, s22)

is N.E in the underlying game, (s12, s22) ∈ UEA(c).

Next we check (8) but it is obvious from (15).
3In FJK’s paper, c∗ is named a target compensation function, characterized by “Target compensation functions pay

nothing unless a minimal level of utility is obtained for the principal and pay ϵ if that target level is obtained or
exceeded.”
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Finally, we check (9). W.l.o.g, consider p1’s deviation from (c∗1, c
∗
2, l
∗
1, l
∗
2) to (c̃1, c∗2, l

∗
1, l
∗
2). Note

that Up
i (c∗1, c

∗
2, l
∗
1, l
∗
2) = α1 − ϵ, and for all G(c̃1, c∗2), one of the following two cases, (A) and (B),

must hold. (A) Suppose there exists no a1’s weakly dominant strategy in G(c̃1, c∗2). Since s21 is

a2’s weakly dominant strategy in G(c̃1, c∗2), r∗2(c̃1, c∗2) = s21 and a1 uses s̃1 in (16), that is, a best

response to s21. Since α1 − ϵ ≥ γ1, the only possibility for the deviation to c̃1 to be strictly

better for p1 than c∗1 given (c∗2, l
∗
1, l
∗
2) is r∗1(c̃1, c∗2) = s11 and c̃1(α1) = δ with δ < ϵ. However,

this implies d1(c̃1, c∗2) = NP by (15), which results in zero payoff to p1. Therefore, c̃1 cannot

be a strictly preferable deviation. (B) For (c̃1, c∗2), suppose there exists a1’s weakly dominant

strategy, sd
1. From the non-decreasing property of the compensation function, sd

1 = s11, thus

r∗(c̃1, c∗2) = (s11, s21). Similarly, for c̃1 to be strictly better than c∗1, the only possibility is that

c̃1(α1) = δ with δ < ϵ. However, this implies d1(c̃1, c∗2) = NP by (15), which results in zero

payoff to p1. Therefore, c̃1 cannot be a strictly preferable deviation. Note that the assumption

of 0 < ϵ ≤ min{α1 − γ1, α2 − γ2} guarantees that the same argument holds for principal 2’s

deviation from (c∗1, c
∗
2, r
∗
1, r
∗
2).

Step 4. Suppose there exists l̃ such that c∗ implements ω̃ ∈ R2 in U-SPNE via l̃. Since si2 is

weakly dominated strategy in G(c∗), si1 has to be played in G(c∗). Therefore, ω̃ = (α1, α2).

Theorem 3.1 implies that the socially optimal outcome can be fully implemented in U-SPNE.

To compare our result with FJK, consider the following example.

Example 3.1

Suppose that the underlying game G is the following coordination game:

G s21 s22

s11 2, 2 0, 0
s12 0, 0 1, 1

Figure 6: Underlying Game G : Coordination Game

For this underlying game, our equilibrium compensation scheme, c∗ in (14), and FJK’s com-

pensation function constructed in their proof (See Fershtman, Judd, and Kalai [3]) generate the

same induced game which is shown in Fig.7.
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G(c∗) s21 s22

s11 ϵ, ϵ 0, 0
s12 0, 0 0, 0

Figure 7: Induced Game G(c∗)

In Fig.7, Nash equilibria in the induced game among agents are (s11, s21) and (s12, s22). If

we employ SPNE as the solution concept to this game, (s12, s22) cannot be excluded thus the

problem of multiple equilibria would remain. Both of our solution concept of U-SPNE and

FJK’s implementability with MRA, on the other hand, succeeds to exclude (s12, s22). However,

the underlying logic is different: In U-SPNE, (s12, s22) is excluded because they are weakly

dominated strategy. On the other hand, in FJK’s arguments, SPNE, which they employed as the

equilibrium concept, imposes no restriction on each agent’s behavior about which equilibrium is

chosen. Instead of employing refined equilibrium concept, FJK used refined implementability.

Specifically, MRF requires agent i to play si1 because (s11, s21) gives ϵ to BOTH agents. They

argued that;

“The mutual rationality condition is an assumption on the agents’ selection among

multiple Nash equilibria. Agents will coordinate their actions in order to avoid zero

payoffs if possible. Once the agent’s equilibrium payoff is less than ϵ he does not

participate, which implies that the principal has to make his choice of action.”

Two remarks should be made. First, if we take the basic approach of mechanism design

into account, such refinement should be imposed not on implementability side but on the

equilibrium concept. Second, within the notion of SPNE, there is no reason why agent 1 is sure

that agent 2 does attend and takes s21. In our notions, on the other hand, agent i thinks that j

takes s j1 for sure because s j1 is the only undominated strategy.

Next, we turn to the second case of (12).

Theorem 3.2

Under the condition of (12), there exists a strategy profile (c∗, l∗) such that c∗ fully implements

(α1, α2) in U-SPNE via r∗ if the following is satisfied:

ϵ ≤ min{αi − γi, α j − γ j} and ϵ ≤ αi − δi.

13



Proof. Here we prove the case where i = 1 and j = 2.

Step 1. From the assumption, we can construct the following c∗1:

c∗1(α1) = ϵ, c∗1(β1) = c∗1(γ1) = c∗1(δ1) = 0. (17)

On the other hand, assumptions regarding p2’s utility can be summarized;

γ2 < α2 ≤ δ2 and β2 ≤ δ2. (18)

Now depending on magnitude between α2 and β2, consider the following c∗2. 4

c∗2 :


c∗2(α2) = c∗2(δ2) = ϵ, c∗2(β2) = c∗2(γ2) = 0 if β2 < α2

c∗2(α2) = c∗2(δ2) = c∗2(β2) = ϵ, c∗2(γ2) = 0 if β2 ≥ α2

(19)

and ai’s strategy is same as (15) and (16).

Note that the induced game for each case is the following.

G(c∗) s21 s22

s11 ϵ, ϵ 0, 0
s12 0, 0 0, ϵ

G(c∗) s21 s22

s11 ϵ, ϵ 0, 0
s12 0, ϵ 0, ϵ

Figure 8: (Left) First case of (19) (Right) Second case of (19)

Step 2. In the left case of Fig.8, a1 chooses s11 since this is the weakly dominant strategy, while

a2 chooses s21 since a2 has no weekly dominant strategy and s21 is the best response to s11.

Therefore, (s11, s21) is played. In the right case, (s11, s21) is also played since both of these are

the weakly dominant strategies. Thus u(r∗(c∗)) = u(s11, s21) = (α1, α2) is true for both cases and

di(c∗) = P holds.

Step 3. The condition (7) holds by the exactly same reason as Theorem 3.1 (Recall that r∗i is same

as case 1 and the argument does not depend on the compensation scheme.). The condition (8)

is also obviously satisfied.
4Such construction is necessary so as not to violate non-decreasing assumption of c∗2. For example, β2 < α2

together with (18) does not guarantee γ2 < β2, which implies under this condition, the second line of (19) violates
non-decreasing assumption.
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Then we check the condition (9) by considering each case of Fig.8 separately.

Left case of Fig.8. First, pick p1’s deviation from (c∗1, c
∗
2, r
∗
1, r
∗
2) to (c̃1, c∗2, r

∗
1, r
∗
2), and note that Up

1

(c∗1, c
∗
2, r
∗
1, r
∗
2) = α1 − ϵ. One of the following two cases of (A) or (B) must hold. (A) For (c̃1, c∗2),

suppose there exists no a1’s weakly dominant strategy in G(c̃1, c∗2). Since both players have

no weakly dominant strategy and from (16), (s12, s22) is played. Therefore p1 gets at most δ1.

However, since ϵ ≤ α1 − δ1, such deviation cannot be strictly preferable to p1. (B) For (c̃1, c∗2),

suppose there exists a1’s weakly dominant strategy, sd
1. From the non-decreasing property of

the compensation function, sd
1 = s11. On the other hand, from s̃2 in (16), a2 takes s21, which is

the unique best response to s11 under c∗2. Thus (s11, s21) is played. For c̃1 to be strictly better

than c∗1, the only possibility is that c̃1(α1) = δ with δ < ϵ. However, from (8), d∗1(c̃1, c∗2) = NP for

such (c̃1, c∗2) since c̃1(u1(r∗1(c̃1, c∗2), r∗2(c̃1, c∗2))) = c̃1(u1(s11, s21)) = δ < ϵ. This results in zero payoff

to p1. Therefore, c̃1 cannot be a strictly preferable deviation. Next, consider p2’s deviation from

(c∗1, c
∗
2, r
∗
1, r
∗
2) to (c∗1, c̃2, r∗1, r

∗
2). Note that Up

2(c∗1, c
∗
2, r
∗
1, r
∗
2) = α2 − ϵ and for every G(c∗1, c̃2), a1 takes

s11 because this is weakly dominant strategy under c∗1. (A) For (c∗1, c̃2), suppose there exists

no a2’s weakly dominant strategy in G(c∗1, c̃2). (1) Suppose a2 takes s21, then (s11, s21) is played

thus c̃2(α2) = δ with δ < ϵ has to be satisfied for c̃2 to be a strictly preferable deviation for p2.

However, this implies d2(c∗1, c̃2) = NP by (15), which results in zero payoff to p2. Therefore, c̃2

cannot be a strictly preferable deviation. (2) If a2 takes s22, then (s11, s22) is played thus c̃2(γ2) = δ

with α2 − ϵ < γ2 − δ has to be satisfied for c̃2 to be strictly preferable. Again, however, this

implies δ < ϵ− (α2−γ2) < ϵ. (B) For (c∗1, c̃2), suppose there exists a2’s weakly dominant strategy,

sd
2. (1) If sd

2 = s21, then (s11, s21) is played. Thus c̃2(α2) = δ with δ < ϵ is required for c̃2 to be a

strictly better deviation. However, from (8), d∗2(c∗1, c̃2) = NP by (15), which results in zero payoff

to p2. Therefore, c̃2 cannot be a strictly preferable deviation. (2) Suppose sd
2 = s22, then (s11, s22)

is played. Thus, c̃2(γ2) = δwith α2 − ϵ < γ2 − δ has to be satisfied for c̃2 to be strictly preferable.

Again, however, this implies δ < ϵ − (α2 − γ2) < ϵ.

Right case of Fig.8. Again, first pick p1’s deviation from (c∗1, c
∗
2, r
∗
1, r
∗
2) to (c̃1, c∗2, r

∗
1, r
∗
2), and note

that Up
1(c∗1, c

∗
2, r
∗
1, r
∗
2) = α1− ϵ. Furthermore, for every G(c̃1, c∗2), a2 takes s21 because this is weakly

dominant strategy. (A) For (c̃1, c∗2), suppose there exists no a1’s weakly dominant strategy in

G(c̃1, c∗2). (1) Suppose a1 takes s11, then (s11, s21) is played thus c̃1(α1) = δ with δ < ϵ has to be

satisfied for c̃1 to be a strictly preferable deviation for p1. However, this implies d1(c̃1, c∗2) = NP
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by (15), which results in zero payoff to p1. Therefore, c̃2 cannot be a strictly preferable deviation.

(2) If a1 takes s12, then (s12, s21) is played thus c̃1(γ1) = δwith α1 − ϵ < γ1 − δ has to hold. Again,

however, this implies δ < ϵ − (α1 − γ1) < ϵ. (B) For (c̃1, c∗2), suppose there exists a1’s weakly

dominant strategy, sd
1. In both cases of sd

1 = s11 and sd
1 = s12, exactly same arguments as (1)

and (2) above hold, respectively. Next, consider p2’s deviation from (c∗1, c
∗
2, r
∗
1, r
∗
2) to (c∗1, c̃2, r∗1, r

∗
2)

and note that Up
2(c∗1, c

∗
2, r
∗
1, r
∗
2) = α2 − ϵ. Furthermore, for every G(c∗1, c̃2), a1 takes s11 because

this is weakly dominant strategy. (A) For (c∗1, c̃2), suppose there exists no a2’s weakly dominant

strategy in G(c∗1, c̃2). (1) Suppose a2 takes s21, then (s11, s21) is played thus c̃2(α2) = δ with

δ < ϵ has to be satisfied for c̃2 to be a strictly preferable deviation for p2. However, this

implies d2(c∗1, c̃2) = NP by (15), which results in zero payoff to p2. Therefore, c̃2 cannot be a

strictly preferable deviation. (2) If a2 takes s22, then (s11, s22) is played thus c̃2(γ2) = δ with

α2 − ϵ < γ2 − δ has to be satisfied for c̃2 to be strictly preferable. Again, however, this implies

δ < ϵ − (α2 − γ2) < ϵ. (B) For (c∗1, c̃2), suppose there exists a2’s weakly dominant strategy, sd
2. (1)

If sd
2 = s21, then (s11, s21) is played. Thus c̃2(α2) = δ with δ < ϵ is required for c̃2 to be a strictly

better deviation. However, from (8), d∗2(c∗1, c̃2) = NP by (15), which results in zero payoff to p2.

Therefore, c̃2 cannot be a strictly preferable deviation. (2) Suppose sd
2 = s22, then (s11, s22) is

played. Thus, c̃2(γ2) = δ with α2 − ϵ < γ2 − δ has to be satisfied for c̃2 to be strictly preferable.

Again, however, this implies δ < ϵ − (α2 − γ2) < ϵ.

Step 4. The fullness of implementability is obvious because, in both cases, the only element of

UEA(c∗) is (s11, s21).

Example 3.2

Suppose that the underlying game G is the following “battle of sexes ”:

G s21 s22

s11 2, 1 0, 0
s12 0, 0 1, 2

Figure 9: Underlying Game G : Battle of sexes

For this underlying game, our equilibrium compensation scheme and FJK’s compensation

scheme generate the same induced game which is shown in Fig.10.
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G(c∗) s21 s22

s11 ϵ, ϵ 0, 0
s12 0, 0 0, ϵ

Figure 10: Induced Game G(c∗)

Again, Nash equilibria in G(c∗) are (s11, s21) and (s12, s22). Agent 1 has weakly dominant

strategy s11, while no weakly dominant strategy for Agent 2. U-SPNE advocate that Agent 2

thinks Agent 1 plays s11 for sure. Given this, Agent 2 chooses the best response to s11.

Note that, exactly same argument holds for the full implementability of (1, 2). In order

to investigate which outcome is more likely to be implemented, we need to examine the

uniqueness of U-SPNE. In this paper, as well as FJK’s original argument, the issue of uniqueness

of equilibrium in the whole game is out of focus and put for further research.

Next, we turn to the final case of (13).

Theorem 3.3

Under the condition of (13), there exists a strategy profile (c∗, l∗) such that c∗ fully implements

(α1, α2) in U-SPNE via r∗ if the following is satisfied:

0 < ϵ ≤ min{α1 − δ1, α2 − δ2}. (20)

Proof. Step 1. Construct the following (c∗, l∗) = (c∗1, c
∗
2, (d

∗
1, r
∗
1), (d∗2, r

∗
2)) such that:

c∗i (αi) = c∗i (γi) = ϵ, c∗i (βi) = c∗i (δi) = 0 (i = 1, 2) (21)

d∗i (c) satis f ying (8) (i = 1, 2). (22)

r∗1(c) =


s11 if c = c∗

s12 if otherwise.
(23)

and same for agent 2.

Step 2. Note that G(c∗) is described as Fig.11.
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G(c∗) s21 s22

s11 ϵ, ϵ 0, ϵ
s12 ϵ, 0 0, 0

Figure 11: Induced Game G(c∗)

From the construction of r∗i (c), u(r∗(c∗)) = u(s11, s21) = (α1, α2). Furthermore, di(c∗) = P since

c∗i (ui(r∗1(c∗), r∗2(c∗))) = c∗i (ui(s11, s21)) = ϵ.

Step 3. In G(c∗), (s11, s21) ∈ UEA(c∗). Furthermore, for every c, (s12, s22) ∈ UEA(c) is true since

si2 is the dominant strategy in the underlying game. Thus (7) holds. (8) also holds from (22).

Finally we check (9). Note that Up
i (c∗1, c

∗
2, l
∗
1, l
∗
2) = αi−ϵ. For pi’s any deviation, (s12, s22) is played,

thus pi’s payoff is at most δi. However, δi ≤ αi − ϵ holds from (20) thus there exists no strictly

preferable deviation from (c∗1, c
∗
2, l
∗
1, l
∗
2) for pi.

Step 4. Suppose, in negation, that c∗ also implements ω̃ = (ω̃1, ω̃2) ∈ {(β1, γ2), (γ1, β2), (δ1, δ2)} in

U-SPNE via some l̃ = ((d̃1, r̃1), (d̃2, r̃2)). Then, from the first condition of Definition 2.2, u(r̃(c∗)) =

ω̃. However, for any ω̃, there exists i ∈ {1, 2} such that ci(ui(r̃1(c∗), r̃2(c∗))) = ci(ω̃i) = 0 < ϵ. From

(8), this implies d̃i(c∗) = NP, which contradicts to the second condition of Definition 2.2.

Example 3.3

Suppose that the underlying game G is the following “prisoners’ dilemma ”:

G s21 s22

s11 4, 4 0, 5
s12 5, 0 1, 1

Figure 12: Underlying Game G : Prisoners’ Dilemma

For this underlying game, our equilibrium compensation scheme and FJK’s compensation

scheme generate the same induced game which is shown in Fig.13.

G(c∗) s21 s22

s11 ϵ, ϵ 0, ϵ
s12 ϵ, 0 0, 0

Figure 13: Induced Game G(c∗)

In G(c∗), UEA(c∗) = S1 × S2, that is, all outcomes are in weakly undominated Nash equilib-

rium. Compensation scheme c∗ succeed to make (s11, s21) be a undominated Nash equilibrium.
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On the other hand, if we would want to derive unique equilibrium in an induced game,

“stronger ”equilibrium concept may be needed. However, it should be noted that if principals

directly plays the underling game G, there always an incentive for agent i to deviate from si1

to si2. By introducing agents, such deviation is deterred because it triggers agents’ further

deviation to play (s12, s22).

4 An Example of 3 × 3 Games - The Problem of Multiple

Equilibria

In this section, we show that, by using an example of 3×3 coordination game, not only does our

standard procedure attain full implementability, our solution concepts can also solve problem

of multiple equilibria, an issue where FJK’s solution concepts fall short. Consider the following

example:

Example 4.1

Suppose the underlying game is the following:

G s21 s22 s23

s11 k1, k2 k1, 0 0, 0
s12 0, k2 k1, k2 0, 0
s13 0, 0 0, 0 0, 0

Figure 14: Underlying Game G : 3 × 3 Coordination Game

For this underlying game, we establish the following result.

Remark 4.1

For the underling game of Fig.14, there exists a strategy profile (c∗, l∗) such that c∗ fully imple-

ments (k1, k2) in U-SPNE via l∗ if the following is satisfied:

0 < ϵ ≤ min{k1, k2} (24)

Before proving the theorem, we first show the strategy profile (c∗, l∗) in order to explain why

our approach works in this game compared to FJK’s solution concepts.
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Construct the following (c∗, l∗) = (c∗1, c
∗
2, (d

∗
1, r
∗
1), (d∗2, r

∗
2)) such that:

c∗i (ki) = ϵ, c∗i (0) = 0 (i = 1, 2) (25)

d∗i (c) satis f ying (8) (i = 1, 2). (26)

r∗1(c) =


sd

1 such that sd
1 is weakly dominant strategy (w.d.s) if there exists such sd

1

s̃1 such that arg maxs1 c1(u1(s1, sd
2)) if @ w.d.s sd

1 and ∃ w.d.s sd
2

s13 otherwise
(27)

and same for agent 2.

Note that G(c∗) is described as Fig.15.

s21 s22 s23

s11 ϵ, ϵ ϵ, 0 0, 0
s12 0, ϵ ϵ, ϵ 0, 0
s13 0, 0 0, 0 0, 0

Figure 15: Induced Game G(c∗)

In FJK’s argument, either (s11, s21) or (s12, s22) is assumed to be played, but there’s no

justification which outcome is more likely to be played. In other words, “coordination failure

”could happen and thus the difficultly of multiple equilibrium remains under the assumption

of mutually rational agents. On the other hand, since si2 is a weakly dominated strategy, these

are never played under U-SPNE. Thus our solution concepts can justify to play (s11, s21) and

exclude the possibility of playing (s12, s22), since UEA(c∗) = {(s11, s21)} is singleton.

Such difference comes from the characteristics of our solution concepts. In FJK, the assump-

tion of mutually rational players is imposed on payoff profiles or on agents’ collective action.

On the other hand, U-SPNE is a refinement based on individual behaviors: weakly dominated

strategy.

Now we complete the proof.

Proof of Remark4.1 Step 1. See (25) to (27).

Step 2. Since si1 is weakly dominant strategy in G(c∗) and from the construction of r∗i (c),

u(r∗(c∗)) = u(s11, s21) = (k1, k2). Furthermore, di(c∗) = P since c∗i (ui(r∗1(c∗), r∗2(c∗))) = c∗i (ki) = ϵ.
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Step 3. We check (7) First. For each c ∈ C, its induced game G(c) can be divided into the

following three cases of (A) to (C). (A) If both agents have weakly dominant strategies in G(c),

sd
1 and sd

2, then each of them uses this strategy and (sd
1, s

d
2) ∈ UEA(c). (B) W.l.o.g. suppose that

a1 has no weakly dominant strategy and that a2 has a weakly dominant strategy sd
2. Then a2

chooses sd
2 and, from the construction of r∗1, a1 chooses his best response to sd

2, denoted by s̃1.

Note that s̃1 is not weakly dominated since a1 has only two strategies and none of them is

assumed to be a weakly dominant strategy. Therefore, (s̃1, sd
2) ∈ UEA(c). (C) If none of the

players has weakly dominant strategy, then they uses si2. Since c is non-decreasing and (s12, s22)

is N.E in the underlying game, (s12, s22) ∈ UEA(c). Next we check (8) but it is obvious from (26).

Finally, we check (9). W.l.o.g, consider p1’s deviation from (c∗1, c
∗
2, l
∗
1, l
∗
2) to (c̃1, c∗2, l

∗
1, l
∗
2). Note

that Up
1(c∗1, c

∗
2, l∗1, l

∗
2) = k1 − ϵ, and for all G(c̃1, c∗2), one of the following two cases, (A) and (B),

must hold. (A) Suppose there exists no a1’s weakly dominant strategy in G(c̃1, c∗2). Since s21

is a2’s weakly dominant strategy in G(c̃1, c∗2), r∗2(c̃1, c∗2) = s21 and a1 uses s̃1 in (27), that is, a

best response to s21. Since k1 − ϵ ≥ 0, the only possibility for the deviation to c̃1 to be strictly

better for p1 than c∗1 given (c∗2, l
∗
1, l
∗
2) is r∗1(c̃1, c∗2) = s11 and c̃1(k1) = δ with δ < ϵ. However,

this implies d1(c̃1, c∗2) = NP by (15), which results in zero payoff to p1. Therefore, c̃1 cannot

be a strictly preferable deviation. (B) For (c̃1, c∗2), suppose there exists a1’s weakly dominant

strategy, sd
1. From the non-decreasing property of the compensation function, sd

1 = s11, thus

r∗(c̃1, c∗2) = (s11, s21). Similarly, for c̃1 to be strictly better than c∗1, the only possibility is that

c̃1(k1) = δ with δ < ϵ. However, this implies d1(c̃1, c∗2) = NP by (15), which results in zero

payoff to p1. Therefore, c̃1 cannot be a strictly preferable deviation. Note that the assumption

of 0 < ϵ ≤ min{k1, k2} guarantees that the same argument holds for principal 2’s deviation from

(c∗1, c
∗
2, r
∗
1, r
∗
2).

Step 4. Suppose there exists l̃ such that c∗ implements ω̃ ∈ R2 in U-SPNE via l̃. Since si2 and si3

is weakly dominated strategy in G(c∗), si1 has to be played in G(c∗). Therefore, ω̃ = (k1, k2).

5 Conclusion

In this paper, we studied delegation games. First, we reviewed the model and solution concepts

employed in FJK’s analysis, then modified these in line with mechanism design methodology.

21



That is, we first constructed the delegation game where agents’ participation decision is ex-

plicitly built in, then employed the weakly undominated subgame perfect Nash equilibrium

(U-SPNE) as a refined equilibrium, while making the basic notion of the implementability

unchanged. Given this, we showed that in certain classes of 2 × 2 game - including prisoners’

dilemma, general coordination games, and battle of sexes - every socially optimal outcome is

fully implementable in U-SPNE. We also argued that, by using an example of 3×3 coordination

game, not only does our standard procedure attain full implementability, our solution com-

cepts could also solve problem of multiple equilibria, an issue where FJK’s solution concepts

fall short.

We conclude this paper by pointing out several issues for further research. First, our

delegation framework can obviously be extended to any strategic form games. A delegation

game where its underlying game is Bertrand price competition or Cournot duopoly could be

intriguing. Next, in this paper, we assume that, if either of agents chooses not to participate the

underlying game, principals get a constant payoff by exerting an outside option. This setup is

natural to describe a situation where considerable expertise – any knowledge or experiences

– is needed to enter the underlying game and only agents have such expertise. On the other

hand, an alternative story, for example, a principal enters the game instead of its agent would

be intriguing for further research. Finally, as discussed in Introduction and Example 3.2, we

could alternatively take uniqueness of (U-) SPNE into consideration, instead of uniqueness of

an outcome. Whether such uniqueness of the equilibrium can be obtained in our setting could

be an interesting question.
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