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Lender of Last Resort Policy in a Global Game and the Role

of Depositors’ Aggregate Behavior as Signaling

Junnosuke Shino ∗

Abstract

Recent funding problems experienced by European sovereigns and the subsequent policy actions

taken by European authorities have renewed interest in the international Lender of Last Resort (LLR).

This paper constructs a global game LLR model applicable to both domestic and international con-

texts, and revisits Bagehot’s classical statements about the LLR. Compared with the existing literature,

our model can be characterized by the following assumptions: (1) the (domestic or international)

LLR authority is an explicit player whose preference is based on the soundness of its own balance

sheet as well as on whether commercial banks fail, (2) the authority cannot distinguish solvency

and insolvency of the LLR user ex ante, (3) LLR lending rates are endogenously determined, and

(4) the authority’s decision making is set after observing depositors’ aggregate behaviors. With this

setup, we show that: (1) depositors’ aggregate behavior of withdrawing their deposits operates as a

perfect signal to the LLR authority about solvency, (2) the authority’s optimal policy is to help only

illiquid but solvent banks, (3) whenever the LLR facility is utilized, optimal lending rates are strictly

positive, and (4) this optimal lending rates are punitive in the sense that they take the highest level

possible under the restriction that the rates enable solvent but illiquid banks to survive. These results

generally support Bagehot’s statements as well as historical and current operations of LLR taken by

international institutions and central banks.

JEL classifications: C72, G28

∗I thank Prof. M. Bordo for providing historical perspectives on LLR through his lectures on economic history during
spring 2009, and Prof. D. Okada for helping me with numerous suggestions about the global game. I am also grateful to
Prof. T. Sjostrom, Prof. J-C. Rochet and several colleagues in the Bank of Japan for very useful comments.
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1 Introduction: An Historical Overview and the Existing Lit-

erature on International and Domestic LLR

Historically, most central banks (CBs) and international institutions such as the International Mon-

etary Fund (IMF) have realized the importance and played the role of domestic or international

Lender of Last Resort (LLR). The evidence on the LLR mechanism points unambiguously to the con-

clusion that it has helped to avoid bank panics and global financial crises. For example, Miron [22]

investigates the effects of the founding of the Federal Reserve Bank (the Fed) in the United States on

bank panics and shows that, after it was founded in 1914, the frequency of financial panics declined

substantially. In particular, between 1915 and 1928, the banking system experienced no financial

panics, in spite of severe recessions during that period. Bordo [6] examines the changes that occurred

in the United States and the United Kingdom before and after the creation of an LLR function. In the

United Kingdom case, for instance, he shows that the Bank of England’s action as an LLR prevented

rudimentary financial crises in 1878, 1890 and 1914 from becoming more severe panics. Eichengreen

and Portes [12], among others, also support this view.

Recent economic and financial situations have greatly renewed interest in the LLR in both domestic

and international contexts. On the domestic side, a bank run on the Northern Rock in the United

Kingdom and the New York Fed’s emergent lending to Bear Stearns through JPMorgan in the United

States are typical examples that have provoked lively discussions on the role of the domestic LLR.

Turning to the international context, the importance of the LLR function as an international crisis

manager, examined in such works as Kindleberger [21] and Fischer [13], has also attracted attention

since the recent funding problems experienced by European sovereigns and the subsequent policy

actions taken by European authorities 1. See the Bank for International Settlements [4] for example.

After Thornton [28], who was the first advocate of the LLR and identified the Bank of England’s

characteristics as an LLR 2, the theory of the LLR received its most influential exposition in Bage-

hot’s statement [3] during the nineteenth century. The essentials of the concept can be succinctly

summarized as follows.

1In the autumn of 2009, the emergence of the fiscal deficit problem in Greece triggered global concern about sovereign
risks. As regards recent developments of sovereign risks in European and other countries, see Shino and Takahashi [27] for
instance.

2According to Humphrey [20], the term “lender of last resort ”was initially established by Francis Baring’s Observations
on the Establishment of the Bank of England (1797).
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• The LLR should aim to prevent illiquid but solvent banks from failing.

• Lending should be provided without limit but at a penalty rate (“very large loans at very high

rates are the best remedy”).

• Lending must be open to any solvent banks provided that they have good collateral.

• It should be made clear in advance that the LLR authority is ready to lend freely.

While this “classical view”on the LLR has been widely supported by many empirical works, referred

to above, Bagehot’s argument has also been subject to some criticisms. Essentially, according to Bordo

[6] and Freixas and Rochet [14], all of the criticisms can be divided into the following categories.

• Goodhart [16] [17] [18] argues that it is impossible for an LLR authority to distinguish solvent

from insolvent banks and, taking the contagious nature of bank runs into account, any banks,

including insolvent ones, should be rescued.

• Goodfriend and King [15] argue that with a well-developed money market, open market oper-

ations are sufficient in providing liquidity to solvent banks and, thus, LLR is not needed.

• Proponents of free banking argue that legal restrictions (prohibition of free currency issues, for

example) are the only source of banking panics, and emphasize the need to establish free market

mechanisms, rather any active interventions by government, including the LLR.

For those criticisms, the pioneering work of Rochet and Vives [26], hereafter R&V, revisits and

revives Bagehot’s assertion. Using a modern methodological framework of a “global game, 3 ”

R&V establish a theoretical foundation regarding the need for the LLR and provide a rationale for

Bagehot’s doctrine of helping illiquid but solvent banks.

Specifically, their bank-run model is as follows. There is a market with three dates in which two

types of players exist: (a continuum of) depositors and a commercial bank (hereafter PB). At the

first stage, the return on the PB’s investments or loans on the assets side of its balance sheet, which

is assumed to be normally distributed, is realized. The returns on these assets are collected at the

end of the game. At the second stage, observing the realization of the return, each agent decides to

withdraw his or her deposit. If the amount of cash needed for the repayment at this interim stage

3A global game is one of the pioneering fields for “incomplete information games”. Other applications include currency
crises (Morris and Shin [23]), debt crises (Corsetti, Guimaraes, and Roubini [9]), investment (Chamley [8]; Dasgupta [10]),
liquidity crashes (Morris and Shin [25]), and sociopolitical change (Atkeson [2]; Edmond [11]). See also Carlsson and van
Damme [7] for their pioneering contribution on global games and Morris and Shin [24] for recent developments.
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exceeds the amount of cash that the PB initially has, the bank has to sell some of its (noncash) assets

in an asset market. Therefore, even if the return is high enough for the bank to be solvent, it could

experience a liquidity shortage. If the PB cannot obtain enough cash even when all its assets are sold,

it fails at the second stage. At the last stage, all remaining depositors are assumed to withdraw their

deposits. If the amount of cash needed for the repayment exceeds the sum of cash (if the bank has

any) and the return collected, then the PB fails.

If each agent can observe the realization of the return perfectly (without noise) before their

decision making, multiple equilibria could exist: for a certain range of realizations of the return,

both outcomes “all agents withdraw ”and “all agents do not withdraw ”are equilibria. To avoid

such a multiplicity or coordination problem, the global game elaborates to introduce a small noise

associated with the depositors’ observation. Following this procedure, R&V show that there exists

a unique Bayesian equilibrium where the probability that a solvent bank fails due to a liquidity

shortage is strictly positive. They further implement a comparative statics analysis for the unique

equilibrium and show that LLR policy effectively works in decreasing the probability of failure of

such solvent banks experiencing liquidity shortages to arbitrarily close to zero. In other words, they

succeed in rejuvenating Bagehot’s doctrine of helping illiquid but solvent banks.

Our paper builds on their model, but it diverges in several key aspects. Furthermore, our results

support not only the above statement about solvency but also Bagehot’s other assertions, which

are also valid in terms of historical records and the current LLR operations taken by international

institutions or CBs. The main points are as follows.

First, in R&V, the LLR authority’s behavior is treated in terms of comparative statics and it is

not taken as an explicit player engaged in interactions between PBs or depositors. In the existing

literature on global games, however, the importance of endogenizing the policy maker’s action is

emphasized, as seen in Angeletos et al. [1]. In that model, a policy maker’s action is taken before the

agents’ interaction and, thus, the policy choice works as a signal to agents. In contrast to Angeletos

et al., we construct a model in which agents move first and, then, after observing their aggregate

behaviors, the policy maker takes action. Such a construction is especially appropriate for analyzing

LLR policy because the authority usually provides an LLR scheme after depositors rush into a PB to

withdraw their deposits. Here, it is worth noting that while the order of the play is the same as the

currency attack model of Morris and Shin [23], our model crucially differs in that the policy maker
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cannot observe the true realization of the return (the fundamentals). Therefore, in our model, agents’

aggregate action could work as a signal to the policy maker about the fundamentals. Specifically, we

will examine the situation where the CB has no information about the return but can observe the exact

proportion of depositors who withdraw. In such a case, we will see that the depositors’ aggregate

behavior works perfectly as a signal so that the LLR authority can predict the true realization of

returns.

Next, by introducing the LLR authority as an explicit player, two related issues emerge: the

strategy set and the utility function of the authority. In regard to the strategy set, we assume that

not only is there a choice regarding whether to provide the LLR facility, but the lending rate is also

a choice variable of the authority. This contrasts with, for example, Corsetti et al. [9], in which the

authority’s choice is assumed to be the binary one—provide the LLR or not—with a (normalized)

fixed rate. Our model in which the lending rate is endogenously determined as the authority’s

optimal behavior is especially powerful in examining the validity of Bagehot’s statement regarding

“penalty rate”lending.

As for the authority’s utility function, we assume that it has two components: the financial

stability term and the authority’s balance sheet soundness term. The former is simply to specify that

the authority prefers the PB’s survival to its failure. The latter presents the costs or benefits in terms

of the authority’s financial soundness. For example, if the authority lends to a bank and it eventually

fails, the authority incurs a financial cost because the fund would not be repaid.

With this setup, our main results support Bagehot’s classical statements of the LLR and provides

some observations on how the facility works. First, we show that the LLR authority’s optimal policy

is to help only illiquid but solvent banks. While R&V assume that the authority, which is treated as

an implicit unity in the comparative statics, can distinguish solvent from insolvent banks ex ante, our

model clarifies the mechanism through which the signaling role of depositors’ behavior enables the

LLR authority to distinguish these and to implement optimal policy.

Second, it is shown that the optimal lending rates are always strictly positive whenever the LLR

facility is utilized by PBs. Furthermore, the optimal lending rates can be seen as “punitive ”ones in

the sense that they take the highest level possible under the restriction that the rates enable solvent

but illiquid banks to survive. Such a punitive rate is attained via the LLR authority’s balance sheet

soundness term, while the restriction comes from the financial stability term, both of which are
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embedded in its utility function. These results provide new insights 4 and seem to be consistent with

actual policy operations that have been taken by most CBs since the nineteenth century, as well as

with Bagehot’s assertion to “Lend, but at a penalty rate”. For example, recent LLR operations by the

Bank of Japan suggest that lending rates are never zero (see Fig. 1). It may also be worth mentioning

that Humphrey [20] points out several advantages of lending at relatively high (not zero) rates.

To this end, in this paper, we construct a global game model so that these issues are appropriately

taken into consideration, and derive an equilibrium that supports Bagehot’s classical statements and

the actual operations of (international or domestic) LLRs. The organization of the rest of the paper

is as follows. In Section 2, we explain the formal model. Section 3 shows the main results. Some

concluding remarks are made in Section 4.

Date Name of Bank Lending Rate

12/24/2003 Asikaga Bank The basic loan rate +0.25%

06/20/2003 Resona Bank The basic loan rate +0.50%

04/16/2002 Chubu Bank The basic loan rate +0.50%

01/18/2002 Ishikawa Bank The basic loan rate +0.25%

01/16/2001 Chosen-Kinki Credit Co. The basic loan rate +0.25%

01/16/2001 Kansai-Kogin Credit Co. The basic loan rate +0.25%

11/12/1999 Niigata Chuo Bank The basic loan rate +0.25%

09/14/1999 Namihaya Bank The basic loan rate +0.25%

07/13/1999 Tokyo Sowa Bank The official bank rate +0.25%

06/16/1999 Kofuku Bank The official bank rate +0.25%

05/18/1999 Kokumin Bank The official bank rate +0.25%

06/12/1998 Midori Bank The official bank rate ±0%

12/12/1997 Tokuyo City Bank The official bank rate ±0%

12/12/1997 Yamaichi Security Co. The official bank rate ±0%

12/12/1997 Hokkaido Takushoku Bank The official bank rate ±0%

11/13/1997 Kyoto Kyoei Bank The official bank rate ±0%

12/06/1996 Hanwa Bank The official bank rate ±0%

11/15/1996 Cosmo Credit Co. 0.50%

(source) Bank of Japan

Figure 1: Lending Rates in Recent LLR Operations by the Bank of Japan

2 The Model

This section formally constructs a global game LLR model. While the model is applicable to both

domestic and international contexts, for simplicity we explain the model in line with the domestic

context. The model will be reinterpreted in an international setting later in this section.

4Existing theoretical results show that “this type of intervention will be fully effective only when r (the lending rate) is
arbitrarily close to zero ”, as in Rochet and Vives [26] on page 1135.
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Our model builds on R&V, but differs in several aspects that can be characterized by the following

assumptions: (1) the (domestic or international) LLR authority is an explicit player whose preference

is based on the soundness of its own balance sheet as well as whether PBs fail, (2) the authority

cannot distinguish the solvency and insolvency of LLR users ex ante, (3) LLR lending rates are

endogenously determined, and (4) the authority’s decision making is set after observing depositors’

aggregate behaviors.

Consider a market with five dates (τ = 0, 1, 2, 3, 4). There are three types of players: the LLR

authority, or CB, a PB and a continuum of depositors (agents) of measure one, indexed by i and

uniformly distributed over [0, 1]. Initially, the PB possesses its own funds E and collects uninsured

deposits for some amount D0 that is normalized to one. These funds are used in part to finance some

investment I in risky loans, the rest being held in cash reserves M. M < D0 is assumed throughout

this paper and the PB’s balance sheet is represented as follows.

Assets Liabilities

M
(Reserves) D 0 =1

(Deposits)

I
(Investments) E

(Equity)

Figure 2: The PB’s Initial Balance Sheet

The nominal value of deposits on withdrawal is D ≥ D0, independent of the withdrawal date.

Thus, early withdrawal entails no cost for the depositors themselves. For simplicity, M
D < 1

2 is

assumed, which does not obviously violate the cash–deposit ratios in actual banking operations (see

Fig. 3).

In the last period (τ = 4), the returns on the investment RI are collected, the deposits are repaid and

the stockholders of the bank receive the difference when this is possible. However, early withdrawals

may occur at τ = 1, following private observations on the realization of R. Specifically, the precise

timeline of the game is described as follows.
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Notes:  1. M/D ratio (Japan) = (Cash and Due from Banks) / Deposits
2. M/D ratio (US) = (Fed funds and reverse + Cash Assets) / Deposits
3. Trust subsidiaries and foreign trust banks are excluded for the data before 1993.

Sources: Bank of Japan, "Financial Institutions Accounts,"  FRB,  "Assets and Liabilities of Commercial Banks in the United States. "

0.0

0.1

0.2

0.3

0.4

0.5

0.6

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09

M/D ratio (Japan, all domestically licensed banks)

M/D ratio (US, all commercial banks)

M/D ratio (US, all domestic chartered banks)

Figure 3: Cash/Deposit Ratio of PBs in Japan and the US

τ = 0 R ∼ N(R̄, 1/α) (a normal distribution with the mean R̄ and the variance 1/α) is realized. The

distribution is the common prior belief among the CB and all agents.

τ = 1 Observing si = R + ϵi, where ϵi ∼ N(0, 1/β), agent i decides whether to withdraw his or her

deposit (W) or not (NW). Thus, i’s strategy is defined as Ai : Si −→ {W,NW}, where Si is defined as

all possible observations. Let x be the proportion of agents that choose W.

τ = 2 Observing x and with no information about R5, the CB decides whether to provide an LLR

scheme of lending money at a rate r6 without limit (r), or not to provide the scheme (NL). Thus, the

CB’s strategy is defined as ACB : X −→ {NL ∪ℜ+}.

τ = 3

(1) If xD ≤ M, the PB has enough cash for repayments at τ = 1 and, thus, the PB only uses the

amount of xD of its own cash. In this case, the PB never fails at τ = 3.

(2) Suppose xD > M. In the case of such a liquidity shortage, the PB may sell some of its assets

in a secondary market. Following R&V, this secondary market for bank assets is assumed to

be informationally efficient in the sense that the secondary price aggregates the decentralized

information of investors about the quality of the PB’s assets. This means that the resale value

5Here, we impose the extreme assumption that the CB observes no information about R. However, as we shall show, as
long as the CB can observe the true x, the CB can predict the true realization of R through x. In other words, a depositors’
aggregate behavior expressed as x works perfectly as a signal about R. Thus, no matter which assumption is imposed on
the CB’s observation about R, all of the results derived later hold.

6In Corsetti [9], the lending rate is fixed and normalized to zero. By assuming the lending rate is a choice variable of the
CB, we can analyze whether a positive (penalty) rate can be justified as the CB’s optimal behavior.
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of the bank’s assets depends on R. However, the bank cannot obtain the full value of its assets,

but only a fraction 1
1+λ of this value, with λ > 0. Accordingly, the volume of sales needed in the

face of withdrawals x is given by:

y(x) ≡ (1 + λ)
xD −M

R
. (1)

Thus, all possible cases depending on the CB’s actions are described as follows.

(a) If the LLR policy is not provided at τ = 2, the PB sells some of its assets y(x). The PB fails

at this period when y(x) > I.

(b) Suppose that the LLR policy is provided. In this case, failure never occurs at τ = 3.

Furthermore, the following apply.

i. If the policy is costless7, rather than selling its assets, the PB borrows xD−M at the rate

r.

ii. If the policy is more costly than selling its assets and y(x) ≤ I, the PB only sells y(x).

iii. If the policy is more costly than selling its assets and y(x) > I, the PB sells all its assets

and borrows
(
xD −M − IR

1+λ

)
from the CB at the rate r.

τ = 4 For each case, in the previous period, the PB fails when the following apply.

(1) RI + (M − xD) < (1 − x)D.

(2)-(a) y(x) ≤ I and R(I − y(x)) < (1 − x)D.

(2)-(b) i. RI − (1 + r)(xD −M) < (1 − x)D.

ii. R(I − y(x)) < (1 − x)D.

iii. Always.

Finally, we need to specify an agent’s and the CB’s payoff structures. The former is identical to R&V,

as depicted in Fig. 4.

7Suppose the CB provides the LLR scheme and xD > M. Then, the PB faces a liquidity shortage and has two choices:
borrowing from the CB at the rate r, or selling y(x) of its own assets. We say that the LLR rate is “costless ”for the PB if
borrowing from the CB is strictly profitable in terms of the PB’s total assets at the final period, that is,

RI − (1 + r)(xD −M) > R(I − y(x))⇔ r < λ.

Thus, the PB uses the LLR scheme only when the lending rate is less than the liquidity premium.
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Failure No Failure
W Ba −Ca

NW 0 0

Figure 4: An Agent’s Payoff

Here, Ba > 0 and Ca > 0. This means that when the PB fails, the (normalized) payoff from withdrawing

is Ba, whereas the payoff from withdrawing when the bank does not fail is −Ca. The underlying

situation behind the setup is that an agent’s payoff depends on whether he or she makes the “right

decision ”(see [26]).

In contrast to R&V, we need to specify the CB’s payoff structure because the CB is taken as an

explicit player in the game. First, note that given the LLR scheme provided, the amount of lending

money depends on x (and parameters). We denote the money by b(x).

Now, we assume that the payoff structure of the CB consists of two terms: the financial stability

term and the CB’s balance sheet soundness term. The financial stability term represents the fact that

the CB prefers the PB’s survival to its failure, and is depicted in Fig. 5.

Failure No Failure
L 0 BCB

NL 0 BCB

Figure 5: Financial Stability Term

Here, BCB > 0. This means that when the PB survives, the CB gets benefit BCB whereas the loss of

failure is normalized to zero.

The CB’s balance sheet soundness term, on the other hand, is defined as in Fig. 6.

Failure No Failure
L −b(x) rb(x)

NL 0 0

Figure 6: The CB’s Balance Sheet Soundness Term

If the PB borrows b(x) at τ = 3 and fails at τ = 4, the loss of the CB’s balance sheet is b(x). On the

other hand, if the CB lends b(x) with the rate r and the money is repaid, the “soundness ”of the CB’s

balance sheet improves by the amount of rb(x). This specification is quite natural in terms of the
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actual operations of LLR policies taken by major CBs. For example, the Bank of Japan announces the

basic principles of its LLR policies in each of its annual reports.

Four Principles about LLR (Bank of Japan [5])� �
1. There must be a strong likelihood that systemic risk will materialize.

2. There must be no alternative to the provision of central bank money.

3. All relevant parties are required to take clear responsibility to avoid moral hazard.

4. The financial soundness of the Bank of Japan itself must not be impaired.� �
The additional cost of −b(x) and the benefit of rb(x) can be interpreted as an embodiment of the

fourth principle of the Bank of Japan’s announcement.

Finally, we assume that these two terms are additive and, thus, the CB’s payoff structure is given

as in Fig. 7.

Failure No Failure
L −b(x) BCB + rb(x)

NL 0 BCB

Figure 7: The CB’s Payoff Structure

Note that such a construction of the LLR authority’s payoff function is possible because the lending

rate is a choice variable of the authority. This contrasts with, for example, Corsetti et al. [9], in

which the authority’s choice is binary. A variable lending rate is an appropriate setting, especially in

examining the validity of Bagehot’s statement of the “penalty rate ”for lending.

Finally, we reinterpret the model in an international setting and provide a potential rationale for

an international LLR a la Bagehot. Suppose now that the balance sheet of Fig. 2 corresponds to a

small open economy where D0 is the foreign denominated short-term debt, M is the amount of foreign

reserves, I is the investment in risky local entrepreneurial projects, E is equity and long-term debt (or

local resources available for investment) and D is the face value of the foreign denominated short-

term debt. The depositors in the domestic setting are now international fund managers operating

in the international interbank market. The liquidity ratio m = M
D is now the ratio of foreign reserves

to foreign short-term debt, which is a crucial ratio, according to empirical work, in determining the
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probability of a crisis in a country. The parameter λ now represents the fire sales premium associated

with early sales of domestic bank assets in the secondary market. With the international setting, the

financial stability term depicted in Fig. 5 means that an international LLR authority such as the IMF

prefers the small economy’s survival to its failure.

3 Main Results

3.1 The PB’s States on the (R, x) Plane

For each CB’s choice at τ = 2, we can plot different PBs’ states on the (R, x) plane. To do so, it is

convenient to divide all of the CBs’ actions into three cases: (1) not providing the LLR scheme, (2)

providing the scheme at a low rate (r < λ), and (3) providing the scheme at a high rate (r ≥ λ).

(1) If the CB does not provide the LLR scheme, our results are no different from those of R&V.

Lines (A) and (B) in Fig. 8 8 are given by the following:

Line(A) : R = (1 + λ)
(xD −M

I

)
(⇔ y(x) = I) (2)

Line(B) : R = Rs + λ
(xD −M

I

)
, (3)

where Rs ≡ D−M
I .

In the case of (2) and (3), if xD ≤ M, the shape of the figures is identical to (1) because the PB has

enough cash for early withdrawals (the PB never uses the scheme even when it is available). Now,

suppose that xD > M (the liquidity shortage case). First, if the LLR lending rate is low, failure at τ = 3

never occurs and the PB fails at τ = 4 if and only if RI − (1 + r)(xD −M) < (1 − x)D. By arrangement,

we get the following Line (C) in Fig. 9:

Line(C) : R = Rs + r
(xD −M

I

)
. (4)

Note that failure occurs when R is strictly less than the right-hand side (RHS) of (4) and Lines (B) and

(C) differ only in slopes. Next, suppose that xD > M and the LLR rate is high. In this case, if y(x) ≤ I,

then the PB does not use the LLR scheme. Thus, the shape of the chart is identical to (1) (right to

8Fig. 8 is identical to Fig. 2 in Rochet and Vives [26].
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Line (A)). On the other hand, if y(x) > I, then the PB uses the scheme after selling all its assets and it

always fails at τ = 4.

Here, it is worth explaining the notions of “solvency ”and “illiquidity ”in our model. Suppose

that no early withdrawal occurs at τ = 1, so that x = 0. In our setup, the PB is solvent if and only

if R ≥ Rs. Therefore, Rs can be regarded as the minimum rate of return at which the PB is solvent,

conditional on no liquidity drain occurring in the interim period. Furthermore, suppose that R ≥ Rs

(and x is not necessarily zero). If, in Fig. 8, x is located above Line (B) (R < Rs + λ
(

xD−M
I

)
), the PB

would fail because of illiquidity although its solvency is retained. We will show that such a solvent

but illiquid PB is always rescued with the LLR at a strictly positive lending rate in every equilibrium.

Finally, for the following analysis, let x̂ be the solution for Rs = (1 + λ)
(

xD−M
I

)
, that is:

x̂ =
D + λM
(1 + λ)D

. (5)

Note that x̂ > M
D .

Failure at t=4 No borrowing

Failure at t=3 No borrowing

Failure at t=4
No borrowing

No Failure
M/D

1

R

x

Rs

Line (A)

Line (B)
x̂

<No LLR>

Figure 8: States of the PB on the (R, x) Plane (No LLR Scheme)

Failure at t=4 No borrowing

Failure at t=4 borrowing
No Failure

M/D

1

R

x

Rs

Line (C)

Line (B)

<LLR with Low Rate>

Failure at t=4 No borrowing

Failure at t=4 borrowing

No Failure
M/D

1

R

x

Rs

Line (A)

Line (B)

Failure at t=4
No borrowing

x̂

<LLR with High Rate>

Figure 9: States of the PB on the (R, x) Plane (Left: LLR with a Low Rate; Right: LLR with a High Rate)
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3.2 Agents’ Strategy and Aggregate Behavior

Now, we derive a symmetric perfect Bayesian equilibria. Following the basic procedure in global

game analysis, we focus on an equilibrium in which each agent uses a threshold strategy:

Ai(si) =


W if si < t

NW if si ≥ t,
(6)

which means that agent i withdraws if and only if his or her signal is below some threshold t. Suppose

that all agents use the same threshold strategy with t, denoted by A(si). Then, the probability of agent

i choosing W conditional on R is given by:

P(withdraw | R) = P(si < t|R) = P(ϵi < t − R|R) = Gϵ(t − R), (7)

where Gϵ is c.d.f. of ϵ ∼ N(0, 1/β). From the law of large numbers, this probability is identical to the

proportion of agents that withdraw under t conditional on R. Furthermore, because Gϵ is a strictly

increasing function and thus one to one correspondence, we can define its inverse function G−1
ϵ . As

a result, given t, the CB can compute the true R by:

R(x, t) = t − G−1
ϵ (x). (8)

Note that R(x, t) is strictly decreasing in x and increasing in t. Figs. 10 and 11 exhibit visual images

of Gϵ(·), G−1
ϵ (x), −G−1

ϵ (x) and R(x, t̃) = t̃ − G−1
ϵ (x) for a given t̃ and two different β, where β < β.

ββx=Gε(・・・・)
1

0

1/2

Gε-1(x)

x1

1/2

β β
Figure 10: Shapes of x = Gϵ(·) (left) and G−1

ϵ (x) (right)
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1/2 1

t

x

R(x,t)=t-Gε-1(x)

-Gε-1(x)

x11/2ββ β β
x~

~
R

~ ~

~

Figure 11: Shapes of −G−1
ϵ (x) (left) and R(x, t) = t − G−1

ϵ (x) (right)

Now, we provide a brief interpretation of R(x, t) by using the right-hand graph of Fig. 11.

First, suppose that the CB observes x̃ with x̃ < 1
2 . As less than half of the agents withdraw their

deposits, the CB predicts, assuming that t = t̃, that more than half the signals are greater than the

threshold t̃. Therefore, R is predicted to be greater than t̃. Thus, R(x, t̃) > t̃ when x̃ < 1
2 . Similarly,

R(x, t̃) < t̃ when x̃ > 1
2 . Note that this observation is true, independent of β.

Next, consider the effects of different values of β
(
β < β

)
on R(x, t̃). For a given R̃ with R̃ < t̃, the

proportion of agents who do not withdraw their deposits when β = β is greater than when β = β (see

Fig. 12). Therefore, denoting Rβ(x, t) ≡ R(x, t; β), this means that the line Rβ(x, t̃) is located to the left

of Rβ(x, t̃) when x > 1
2 . Similarly, when x < 1

2 , the line Rβ(x, t̃) locates to the right of Rβ(x, t̃) (see Fig.

11).

It might be worth noting here that the CB needs to know which t is adopted by the agents in

order to infer the true R. We will see in Section 3.5 that the CB can actually compute the optimal t,

depending on the parameters.
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R
~

ββ
t

not withdraw

si = ε+R | R

~

~
~~

gεεεε(t-R)

Figure 12: The Proportion of Agents that do (not) Withdraw for Different β

3.3 The CB’s Best Responses

For a given t, the CB can compute the best response at every observation of x. As an example, see Fig.

13 and suppose that the agents’ threshold is t̃ and that the CB observes x̃. Then, the CB can correctly

predict that R̃ by R̃ = R(x̃, t̃) = t̃ − G−1
ϵ (x̃). If the CB does not provide an LLR regime or does so with

a “high rate”, the PB fails and, thus, the CB obtains 0 (no LLR) or −b(x̃) (LLR with a high rate). On

the other hand, if the CB proposes an LLR regime with a low rate, so that the intersection of Line

(C) and R(x, t̃) is to the left of R̃ (see the bottom of Fig. 13), then the PB survives by using the LLR

scheme and, thus, the CB gets the positive benefit of BCB + rb(x̃). Furthermore, from the CB’s balance

sheet soundness term, it is obvious that placing Line(C∗) such that (R̃, x̃) lies on it is CB’s unique best

response for a given t̃ and x̃ (recall that (4): the “No failure ”region includes Line(C∗) and the “failure

at τ = 4 borrowing ”region does not). Note that, in this case, the lending rate is strictly positive and

the “solvent but illiquid ”bank is rescued.
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Failure at t=4 No borrowing

Failure at t=3 No borrowing

Failure at t=4
No borrowing

No Failure
M/D

R

x

Rs

Failure at t=4 No borrowing

Failure at t=4 borrowing

No Failure
M/D

R

x

Rs

Failure at t=4 borrowing

No Failure
M/D

R

x

Rs

<No LLR>

<LLR with High Rate>

<LLR with Low Rate>

~

~
t

t

t

~

~

R

R

R

~

~

~

~

~

x

x

R(x,t)~

1/2

1/2
Failure at t=4
No borrowing

Line(A)

Line(B)

Failure at t=4 No borrowing

1/2

Line( C ) Line(C*)

Figure 13: The CB’s Best Response for a Given t̃ and x̃

Now, we formally derive the CB’s best response. First, we divide all ts into the following four cases

(see Fig. 14).
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line(A)

R
Rsta tb

1/2

line(B)
Case (a)

Case (b)

1

M/D

x̂

line(A)

R
Rs

1/2

td

line(B)

Case (d)

1

Case (c)

M/D

x̂

tc

Figure 14: Four Cases of Threshold t

Case (a) : R
(

M
D , t

)
< 0 Case (c) : R

(
M
D , t

)
≥ Rs and R(x̂, t) < Rs

Case (b) : 0 ≤ R
(

M
D , t

)
< Rs Case (d) : R

(
M
D , t

)
≥ Rs and R(x̂, t) ≥ Rs.

Each case is identical to: (a) t < G−1
ϵ

(
M
D

)
, (b) G−1

ϵ

(
M
D

)
≤ t < G−1

ϵ

(
M
D

)
+ Rs, (c) G−1

ϵ

(
M
D

)
+ Rs ≤ t <

G−1
ϵ (x̂) + Rs and (d) G−1

ϵ (x̂) + Rs ≤ t (see Fig.15).

^

t○○○○Gε-1(M/D) Gε-1(M/D)+RS○○○○●●●● ●●●●
Case (a) Case (b) Case (d)

○○○○●●●●Gε-1(x)+RS

Case (c)

Figure 15: Four Cases of Threshold t

Case (a).(i) If x ≤ M
D , then there is no difference between states for every (R, x), regardless of whether

the LLR is provided at any rates or not provided at all, because the PB has enough cash for early

withdrawal. Therefore, any actions of the CB are best responses. (ii) Suppose that x > M
D (i.e., the

liquidity shortage case). As R
(

M
D , t

)
< 0 and R(x, t) is strictly decreasing in x, R(x, t) < 0. Therefore,

the CB receives a payoff of zero if it provides no LLR support, whereas if it provides LLR support

with any rates, its payoff is strictly negative.

From the above derivation, we establish the following remark.
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Remark 3.1

Suppose that t < G−1
ϵ

(
M
D

)
. Then, the CB’s best response function is:

ACB(x) =


any if x ≤ M

D

NL if x > M
D .

(9)

Fig. 16 also illustrates the CB’s best response function in (9).

x●●●● ○○○○●●●● 1M/D

Any Actions ●●●●NL

0

Figure 16: The CB’s Best Response Function for Case (a)

Recall that if x ≤ M
D , the PB never uses the LLR facility. Combining this observation with the second

condition in (9), we conclude that in any equilibrium in which the agents’ threshold strategy is of

type (a), the PB never uses the LLR facility, no matter what the depositors’ aggregate behavior is.

Case (b). (i) If x ≤ M
D , any actions of the CB are best responses.

(ii) Suppose that x > M
D and (1 + λ)

(
xD−M

I

)
≤ R(x, t). The latter condition is that the R(x, t) line

is to the right of Line (A) in Fig. 14. Furthermore, as R
(

M
D , t

)
< Rs and R(x, t) is strictly decreasing,

R(x, t) < Rs. This means that no matter how low a lending rate r is, the PB always fails at τ = 4.

Therefore, while choosing NL or r with r ≥ λ gives the CB a payoff of 0, choosing r with r < λ entails

an additional loss of −b(x) = −(xD −M) < 0. Thus, NL and r ≥ λ are best responses.

(iii) Suppose that x > M
D and (1 + λ)

(
xD−M

I

)
> R(x, t). This is the case in which the PB always fails

(at τ = 3 with no LLR and at τ = 4 with LLR at any rates). Thus the CB’s unique best response in this

case is NL.

Now, we rearrange the conditions of (i)∼(iii) in terms of x. Note that (1 + λ)
(

xD−M
I

)
≤ R(x, t) ⇔

(1 + λ)Dx + IG−1
ϵ (x) ≤ It + (1 + λ)M and we provide the following definition:

ψ(x) = (1 + λ)Dx + IG−1
ϵ (x). (10)

Noting that limx→0 ψ(x) = −∞, limx→1 ψ(x) = ∞, dψ
dx > 0 andψ

(
M
D

)
= (1+λ)M+IG−1

ϵ

(
M
D

)
≤ (1+λ)M+It

(the last term comes from R
(

M
D , t

)
≥ 0), we obtain the following remark.
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Remark 3.2

Suppose that G−1
ϵ

(
M
D

)
≤ t < G−1

ϵ

(
M
D

)
+ Rs. Then, the CB’s best response function is:

ACB(x) =


any if x ≤ M

D

NL or r with r ≥ λ if x > M
D and ψ(x) ≤ (1 + λ)M + It

NL if ψ(x) > (1 + λ)M + It.

(11)

Fig. 17 illustrates the CB’s best response function in Case (b). ψψψψ(x)

x
M/D●●●●●●●● ○○○○ ●●●●○○○○ ●●●●

Any Actions NL or r≧≧≧≧λ NL

1

It+(1+λ)M

Figure 17: The CB’s Best Response Function for Case (b)

Note that in the second condition of (11), the PB does not use the LLR facility (see also Fig. 9), as

also occurs in the first and the last condition. Therefore, as in the previous case, it is clear that the PB

never uses the LLR in any equilibrium of type (b).

Case (c). (i) Suppose that Rs + λ
(

xD−M
I

)
≤ R(x, t), which implies that the R(x, t) curve is to the right of

Line (B) in Fig. 14. In such a “solvent and liquid ”case, any actions by the CB are best responses.

(ii) Suppose the following:

x >
M
D

and Rs < R(x, t) < Rs + λ
(xD −M

I

)
. (12)

This is the case where the R(x, t) line lies between the vertical line of R = Rs and Line (B) in Fig. 14.

If the CB provides no LLR or an LLR with a high rate, the PB fails at τ = 4. On the other hand, if the
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CB provides an LLR scheme with a rate r such that:

Rs + r
(xD −M

I

)
≤ R(x, t), (13)

then the PB uses the LLR facility and survives (note that the left-hand side of (13) is the expression of

Line (C) in Fig. 9). Note that the amount of the lending money in this case is b(x) = xD −M > 0 and,

thus, the unique maximum value of rb(x), subject to (13), is attained at r
(

xD−M
I

)
= R(x, t). That is, the

unique optimal behavior is to provide an LLR scheme with the rate of r∗(x) such that:

r∗(x) ≡ IR(x, t) − (D −M)
xD −M

. (14)

Note that the lending rate r∗(x) in (14) is strictly positive for every x satisfying (12) because xD−M > 0

and the sign of the numerator is identical to that of R(x, t) − Rs(> 0).

(iii) Suppose that x > M
D and (1+λ)

(
xD−M

I

)
≤ R(x, t) ≤ Rs. This is the case in which R on the R(x, t)

line lies between Line (A) and the vertical line of R = Rs (see Fig. 14). Thus, the CB’s best response is

NL or L with a high rate.

(iv) Suppose that x > M
D and that R(x, t) < (1 + λ)

(
xD−M

I

)
. Similarly to (iii) in Case (b), the CB’s

unique best response is NL.

Now, we summarize (i)∼(iv) in terms of x (see the Appendix). Note that Rs+λ
(

xD−M
I

)
≤ R(x, t)⇐⇒

λDx + IG−1
ϵ (x) ≤ It + (1 + λ)M −D and define φ as:

φ(x) = λDx + IG−1
ϵ (x). (15)

From the arrangement in the Appendix, we establish the following remark.

Remark 3.3

Suppose that G−1
ϵ

(
M
D

)
+ Rs ≤ t < G−1

ϵ (x̂) + Rs. Then, the CB’s best response function is:

ACB(x) =



any if φ(x) ≤ It + (1 + λ)M −D

r∗(x) (> 0) satisfying (14) if φ(x) > It + (1 + λ)M −D and R(x, t) > Rs

NL or r with r ≥ λ if R(x, t) ≤ Rs and ψ(x) ≤ It + (1 + λ)M

NL if ψ(x) > It + (1 + λ)M.

(16)
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Fig. 18 illustrates the CB’s best response function in Case (c).

It+(1+λ)M

ψψψψ(x)

x●●●● ○○○○ ○○○○●●●●
LLR at a
low rate

1

φ(x)

It+(1+λ)M-D

M/D ●●●●
<line-(1)>

<line-(2)>

Any Actions
○○○○●●●● ●●●●NL or LLR at
a high rate

NL

x*

x* with
R(x*,t)=Rs

Figure 18: The CB’s Best Response Function for Case (c)

Here, some remarks should be made. First, from (16), it is clear that the PB uses the LLR facility if

and only if the second condition holds, that is, when the PB is “solvent but illiquid.” Next, in this

case, the lending rate is r∗(x). This means that whenever the LLR facility is utilized, the optimal

lending rates are strictly positive. Finally, recall that r∗ is the solution to the maximization problem of

rb(x) subject to (13). This means that the optimal lending rate takes the highest level possible, under

the restriction that the rate is low enough for solvent but illiquid banks to survive. Thus, from the

PB’s viewpoint, r∗ can be seen as (restricted) “punitive” lending rates. It should be noted that such

a punitive rate is attained via the LLR authority’s balance sheet soundness term rb(x), whereas the

restriction comes from the financial stability term. Both terms are embedded in the utility function

of the LLR authority. To examine the evolution of r∗(x) further, we take the derivative of r∗(x), as
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follows:

dr∗(x)
dx

=
d
dx

[( I
xD −M

) {
t − G−1

ϵ (x) − Rs
}]

(17)

=
−G−1

ϵ (x)′[xD −M] − [t − G−1
ϵ (x) − Rs]D

{xD −M}2 (18)

< 0, (19)

because G−1
ϵ (·) > 0, x > M

D and t − G−1
ϵ (x) − Rs > t − G−1

ϵ (Gϵ(t − Rs)) = 0. Therefore, r∗(x) is described

as in Fig. 19.

r(x)

r(x)

x○○○○ ○○○○λ
Solution for φ(x)=It+(1+λ)M-D Gε(t-Rs)

10

Figure 19: The Evolution of r∗(x)

Intuitively, as x increases, the seriousness of the “liquidity problem ”faced by a solvent bank becomes

greater. In such a case, the CB adjusts the punitive optimal rate so that it will not bankrupt the bank.

Thus, r(x) is decreasing in x.

Case (d). The only difference from Case (c) is that there is no x satisfying the condition of (iii). Thus,

the following remark is immediately established.

Remark 3.4

Suppose that G−1
ϵ (x̂) + Rs ≤ t. Then, the CB’s best response function is:

ACB(x) =


any if φ(x) ≤ It + (1 + λ)M −D

r∗(x) (> 0) satisfying (14) if φ(x) > It + (1 + λ)M −D and R(x, t) > Rs

NL if R(x, t) ≤ Rs.

(20)

Fig. 20 illustrates the CB’s best response function in Case (d).
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M/D

Any Actions ○○○○●●●● ●●●●
NL

x*

x* with
R(x*,t)=Rs

Figure 20: The CB’s Best Response Function for Case (d)

Again, in this case, the LLR would be utilized iff the PB is solvent but illiquid, and the lending rate

is strictly positive.

Now, we obtain the precise expression of the CB’s best responses for all t —Remark 3.1 to Remark

3.4—and establish the following.

Theorem 3.1

In all Bayesian equilibria:

1. whenever the PB uses the LLR scheme, the lending rate is strictly positive, and

2. the PB is rescued by the LLR scheme if and only if the PB is solvent but illiquid.

Theorem 3.1 implies that if there exists an equilibrium categorized into Case (c) or Case (d), then

providing liquidity to solvent but illiquid banks at a positive rate is described as an equilibrium (in

Case (a) or Case (b), the LLR facility is never used).

In the following analysis, we will actually show that all equilibria are of either type (c) or (d) when

β is sufficiently large. We will also examine the case where β goes to zero.

3.4 Equilibrium in the Agents’ Game

Given the CB’s best responses derived in the previous section, now we search for a whole equilibrium

in which agents use the same threshold strategy t∗. However, before doing this, we introduce some

notations and show the properties that will be used in the following analysis.
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First, let RF(t) be the critical R below which the PB fails, provided that all agents use the same

threshold strategy t and the CB uses the best response function to such a t, derived in the previous

section. This notation is borrowed from R&V and, in their model, RF(t) is increasing in t for large ts,

whereas it is equal to Rs for small ts.

In our model, on the other hand, the following remark holds and, as we will see, this substantially

simplifies the whole analysis.

Remark 3.5

RF(t) = Rs∀t. (21)

In order to understand the difference, first recall that, in R&V, the shape of the (R, x) plane is always

as in Fig. 8 because the CB is not an explicit player. In this case, if t is large enough to satisfy the

condition of Cases (c) or (d), RF(t) lies in the intersection between Line (B) and R(x, t). Therefore, for

such a t, RF(t) is increasing in t (see Fig. 21).

Failure at t=4 No borrowing

Failure at t=3
 No borrowing

Failure at t=4
No borrowing

No Failure

M/D

1

R

x

Rs

x̂

<No LLR>

R(x,t+ΔΔΔΔt)

RF(t) RF(t+ΔΔΔΔt)

R(x,t)

ΔΔΔΔt①①①①②②②②
Figure 21: RF(t) in R&V: Increasing in t

On the other hand, in our model, in which the CB behaves optimally so that solvent but illiquid

banks are rescued, suppose, for instance, that we have Case (c) (see also Fig. 22). Consider a fixed

t = t̃ that satisfies Case (c). (1) Pick an R satisfying Gϵ(t̃ − R) < 1
λD {IR −D + (1 + λ)M}. This means

that Gϵ(t̃−R) is below Line (B) (R3 in Fig. 22). In this case, no matter which action is taken by the CB,

the PB never fails. Therefore, RF(t) < R. (2) Pick an R satisfying Gϵ(t̃ − R) ≥ 1
λD {IR −D + (1 + λ)M}

and R < Rs. In this case, LLR policy is provided so that the PB survives. Therefore, RF(t) < R. (3) If

R > Rs, then the PB always fails. Therefore, RF(t) > R and we can conclude that RF(t̃) = Rs.
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x
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Line (B)

Figure 22: Derivation of RF(t) in Case (c)

This observation, together with the facts that: (1) the same argument holds for Case (d) and (2)

RF(t) = Rs is obviously true for Cases (a) and (b), shows that Remark 3.5 is true.

Second, let P(si, t) be the (i’s subjective) probability of failure, conditional on si and t. That is:

P(si, t) ≡ P(Failure|si, t) = P(R < RF(t)|si) = P(R < Rs|si) (22)

= GR|si(Rs), (23)

where GR|si(Rs) is c.d.f. of R|si. Note that:

R|si ∼ N

αR + βsi

α + β
,

1
α + β

 , (24)

so P(si, t) is strictly decreasing in si (and independent of t).

Finally, we establish the following remark.

Remark 3.6

The following holds for every t:

t is an equilibrium in the agents’ game⇐⇒ P(t, t) =
Ca

Ba + Ca
.

Proof9

(=⇒) Suppose that t is an equilibrium threshold. Then, for si = t (i’s observation is equal to the

threshold), the PB does not withdraw, so the expected payoff is zero. On the other hand, if the PB did

withdraw, its expected payoff is P(t, t)[Ba + Ca] − Ca. As t is an equilibrium, P(t, t) ≤ Ca
Ba+Ca

must hold.

9The proof is basically identical to that provided by Rochet and Vives [26].
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If P(t, t) < Ca
Ba+Ca

, then, from the continuity of P(·), there exists an s such that s < t and P(s, t) < Ca
Ba+Ca

.

For such an s, because t is assumed to be an equilibrium, W has to be a best response, which implies

that P(s, t) ≥ Ca
Ba+Ca

. Thus, we have a contradiction.

(⇐=) Suppose that t < G−1
ϵ

(
M
D

)
and that P(t, t) = Ca

Ba+Ca
. For a given si and t, if i chooses W, the

expected payoff is:

P(si, t)Ba −
(
1 − P(si, t)

)
Ca, (25)

whereas i gets zero if he or she chooses NW. (1) Suppose that si < t. In this case, i uses W and its

expected payoff is:

P(si, t)(Ba + Ca) − Ca > P(t, t)(Ba + Ca) − Ca = 0.

Thus, for si < t, W is the best response. (2) Suppose si ≥ t. Then, i uses NW and, thus, its payoff is

zero. On the other hand, for such an si, if i uses W, the expected payoff is P(si, t)(Ba + Ca) − Ca ≤ 0.

Thus, NW is i’s best response. Therefore, if P(t, t) = Ca
Ba+Ca

, the strategy profile in which all players use

the threshold strategy with t is an equilibrium in the simultaneous game among agents.

We define η(s) ≡ P(s, s). Then, from (22) and (24):

η(s) = Φ

√α + βRs −
αR + βs√
α + β

 , (26)

where Φ is c.d.f. of the standard normal distribution. From Remark 3.6, t constitutes an equilibrium

if and only if η(t) = Ca
Ba+Ca

. Recall that η(·) is continuous and strictly decreasing and that 0 < Ca
Ba+Ca

< 1.

The strictly decreasing property of η implies that if equilibria exist among the agents, then the number

of the equilibria is at least one.

Now, we check the existence of an equilibrium in each case from (a) to (d).

Case (a). Suppose that t < G−1
ϵ ( M

D ). Note that:

lim
s→−∞

η(s) = lim
k→∞
Φ(k) = 1, (27)

and

lim
s→G−1

ϵ ( M
D )
η(s) = Φ

√α + βRs −
αR + βG−1

ϵ

(
M
D

)
√
α + β

 . (28)
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Therefore, there exists an equilibrium in the agents’ game if the following condition is satisfied (see

Fig. 23):

Φ

√α + βRs −
αR + βG−1

ϵ

(
M
D

)
√
α + β

 < Ca

Ba + Ca
. (29)

Now, we consider the situation where β→∞. The limitation of the RHS of (28) is:

lim
β→∞
Φ

√α + βRs −
αR + βG−1

ϵ

(
M
D

)
√
α + β

 = lim
β→∞
Φ

√α + βRs −
βG−1

ϵ

(
M
D

)
√
α + β

− αR√
α + β

 = 1. (30)

Therefore, when β→∞, (29) cannot be satisfied (see also Fig. 23).

s

η(s)

Gε-1(M/D)

β→∞→∞→∞→∞
Ca/(Ba+Ca)

t* (equilibrium)
0

1

Figure 23: Existence of Equilibrium in the Agents’ Game for Case (a)

Next, we consider the situation where β→ 0. The limitation of the RHS of (28) is:

lim
β→0
Φ

√α + βRs −
αR + βG−1

ϵ

(
M
D

)
√
α + β

 = Φ
(√
αRs −

αR√
α

)
= Φ

(√
α(Rs − R)

)
. (31)

Now, we establish the following theorem in Case (a).

Theorem 3.2

1. There exists β such that, for every β with β > β, there is no Bayesian Nash equilibrium in the

whole game in which t < G−1
ϵ

(
M
D

)
.

2. There exists β such that, for every β with β < β, if Φ
(√
α(Rs − R)

)
< Ca

Ca+Ba
, then there exists a

Bayesian Nash equilibrium in which:

(a) agents use a threshold strategy in which t < G−1
ϵ

(
M
D

)
, and

(b) the CB uses a strategy satisfying (9).
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Case (b). Suppose the following:

G−1
ϵ

(M
D

)
≤ t < G−1

ϵ

(M
D

)
+ Rs. (32)

Note that:

η
(
G−1
ϵ

(M
D

))
= Φ

√α + βRs −
αR + βG−1

ϵ

(
M
D

)
√
α + β

 (33)

lim
s→G−1

ϵ ( M
D )+Rs

η (s) = Φ

√α + βRs −
αR + β

(
G−1
ϵ

(
M
D

)
+ Rs

)
√
α + β

 . (34)

Thus, there exists an equilibrium in the agents’ game if the following is satisfied:

Φ

√α + βRs −
αR + β

(
G−1
ϵ

(
M
D

)
+ Rs

)
√
α + β

 < Ca

Ba + Ca
< Φ

√α + βRs −
αR + βG−1

ϵ

(
M
D

)
√
α + β

 . (35)

Now, we consider the situation where β→∞. Similarly to the previous case:

lim
β→∞
Φ

√α + βRs −
αR + βG−1

ϵ

(
M
D

)
√
α + β

 = 1. (36)

On the other hand:

lim
β→∞
Φ

√α + βRs −
αR + β

(
G−1
ϵ

(
M
D

)
+ Rs

)
√
α + β

 = lim
β→∞
Φ

 α√
α + β

Rs −
βG−1

ϵ

(
M
D

)
√
α + β

− αR√
α + β

 = 1. (37)

Therefore, similarly to Case (a), we establish the first part of Theorem 3.3 below.

Next, we consider the situation where β→ 0:

lim
β→0
Φ

√α + βRs −
αR + βG−1

ϵ

(
M
D

)
√
α + β

 = Φ
(√
αRs −

αR√
α

)
= Φ

(√
α(Rs − R)

)
. (38)

On the other hand:

lim
β→0
Φ

√α + βRs −
αR + β

(
G−1
ϵ

(
M
D

)
+ Rs

)
√
α + β

 = Φ
(√
αRs −

αR√
α

)
= Φ

(√
α(Rs − R)

)
. (39)
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As both limitations take the same value, the line of η(s) never intersects with Ca
Ba+Ca

in this case.

Now, we establish the following theorem in Case (b).

Theorem 3.3

1. There exists β such that, for every β where β > β, there is no Bayesian Nash equilibrium in the

whole game in which G−1
ϵ

(
M
D

)
≤ t < G−1

ϵ

(
M
D

)
+ Rs.

2. There exists β such that, for every β where β < β, there is no Bayesian Nash equilibrium in the

whole game in which G−1
ϵ

(
M
D

)
≤ t < G−1

ϵ

(
M
D

)
+ Rs.

Case (c). As for the third case, we have the following t:

G−1
ϵ

(M
D

)
+ Rs ≤ t < G−1

ϵ (x̂) + Rs (40)

(recall that x̂ = D+λM
(1+λ)D ). Note that:

η
(
G−1
ϵ

(M
D

)
+ Rs

)
= Φ

√α + βRs −
αR + β

[
G−1
ϵ

(
M
D

)
+ Rs

]
√
α + β

 (41)

lim
s→G−1

ϵ (x̂)+Rs

η (s) = Φ

√α + βRs −
αR + β

(
G−1
ϵ (x̂) + Rs

)
√
α + β

 . (42)

Thus, there exists an equilibrium in the agents’ game if the following is satisfied:

Φ

√α + βRs −
αR + β

(
G−1
ϵ (x̂) + Rs

)
√
α + β

 < Ca

Ba + Ca
< Φ

√α + βRs −
αR + β

[
G−1
ϵ

(
M
D

)
+ Rs

]
√
α + β

 . (43)

Now, we consider the situation where β goes to∞ and 0. First, suppose that β→ ∞. First, note that

(43) is identical to the following (see the Appendix):

G−1
ϵ (x̂) >

α
β

(Rs − R) −
√
α + β

β
Φ−1

( Ca

Ba + Ca

)
> G−1

ϵ

(M
D

)
, (44)

and note that:

lim
β→∞

αβ (Rs − R) −
√
α + β

β
Φ−1

( Ca

Ba + Ca

) = 0. (45)

Therefore, as β goes to infinity, an equilibrium among agents exists if and only if G−1
ϵ (x̂) > 0 > G−1

ϵ

(
M
D

)
.
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As 0 > G−1
ϵ

(
M
D

)
holds from the assumption, the first part of Theorem 3.4 below is derived.

Next, suppose that β→ 0. Note that the limitations of the left and right terms in (43) are:

lim
β→0
Φ

√α + βRs −
αR + β

(
G−1
ϵ (x̂) + Rs

)
√
α + β

 = Φ

(√
αRs −

αR√
α

)
(46)

lim
β→0
Φ

√α + βRs −
αR + β

[
G−1
ϵ

(
M
D

)
+ Rs

]
√
α + β

 = Φ

(√
αRs −

αR√
α

)
. (47)

In other words, both limitations take the same value. Therefore, the line of η(s) never intersects with

Ca
Ba+Ca

, which implies that no equilibrium exists.

Consequently, we establish the following theorem.

Theorem 3.4

1. There exists β such that for every βwhere β > β, if G−1
ϵ (x̂) > 0, then there exists a Bayesian Nash

equilibrium in which:

(a) agents use a threshold strategy with G−1
ϵ

(
M
D

)
+ Rs ≤ t < G−1

ϵ (x̂) + Rs, and

(b) the CB uses a strategy satisfying (16).

2. There exists β such that for every βwhere β < β, there is no Bayesian Nash equilibrium in which

G−1
ϵ

(
M
D

)
+ Rs ≤ t < G−1

ϵ (x̂) + Rs.

Case (d). Now, we investigate the final case. Suppose we have the following t:

G−1
ϵ (x̂) + Rs ≤ t. (48)

Note that:

η
(
G−1
ϵ (x̂) + Rs

)
= Φ

√α + βRs −
αR + β

[
G−1
ϵ (x̂) + Rs

]
√
α + β

 (49)

lim
s→∞

η (s) = lim
k→−∞

Φ(k) = 0. (50)

Thus, there exists an equilibrium in the agents’ game if the following is satisfied:

0 <
Ca

Ba + Ca
≤ Φ

√α + βRs −
αR + β

[
G−1
ϵ (x̂) + Rs

]
√
α + β

 . (51)
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Suppose first that β→∞. Noting that 0 < Ca
Ba+Ca

is always true from the assumption, similarly to the

previous case, (51) is identical to the following:

G−1
ϵ (x̂) ≤ α

β
(Rs − R) −

√
α + β

β
Φ−1

( Ca

Ba + Ca

)
, (52)

and limβ→∞

[
α
β (Rs − R) −

√
α+β

β Φ
−1

(
Ca

Ba+Ca

)]
= 0. This establishes the first part of Theorem 3.5.

Next, suppose that β→ 0. Note that:

lim
β→0
Φ

√α + βRs −
αR + β

(
G−1
ϵ (x̂) + Rs

)
√
α + β

 = Φ
(√
αRs −

αR√
α

)
= Φ

(√
α(Rs − R)

)
. (53)

Consequently, we establish the following theorem.

Theorem 3.5

1. There exists β such that, for every βwhere β > β, if G−1
ϵ (x̂) ≤ 0, then there exists a Bayesian Nash

equilibrium in which:

(a) agents use a threshold strategy with G−1
ϵ (x̂) + Rs ≤ t, and

(b) the CB uses a strategy satisfying (20).

2. There exists β such that, for every β where β < β, if Φ
(√
α(Rs − R)

)
≥ Ca

Ba+Ca
, then there exists a

Bayesian Nash equilibrium in which:

(a) agents use a threshold strategy with G−1
ϵ (x̂) + Rs ≤ t, and

(b) the CB uses a strategy satisfying (20).

3.5 Discussions and Implications

We can summarize all the results in the following table.

β→∞ β→ 0

Case (a) No eq. Eq. when Φ
(√
α(Rs − R)

)
< Ca

Ca+Ba
.

Case (b) No eq. No eq.

Case (c) Eq. when Gϵ−1(x̂) > 0 No eq.

Case (d) Eq. when Gϵ−1(x̂) ≤ 0 Eq. when Φ
(√
α(Rs − R)

)
≥ Ca

Ca+Ba
.
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Consider β → ∞ first. This is the case where the noise regarding the agents’ information about

a realized return is very small and every standard global game analysis takes this situation into

consideration. In this case, an equilibrium of either Case (c) or Case (d) is realized, depending

on the parameters of x̂, whereas Case (a) and Case (b) never occur as an equilibrium. As we

discussed, in both cases, the authority’s optimal policy is to help only illiquid but solvent banks, and

the lending rates are strictly positive whenever the facility is utilized by banks experiencing such

liquidity shortages. Furthermore, the rates are punitive, in the sense that they take the highest level

possible, under the restriction that the rate is low enough for these banks to survive. These results

succeed in describing the authority’s optimal behavior as being in line with Bagehot’s claims, as well

as with the historical records and current operations of LLRs. Here, it may be worth noting that, in

every equilibrium, the strictly positive lending rate never exceeds the fire sale premium λ. This fact

may appear inconsistent with the “penalty ”rate. However, it should be recalled that λ is defined as

a fire sale premium and, thus, λ can be interpreted as one that is realized during panics. The term

“penalty ”rate should be compared with rates in noncrisis periods (see Fischer [13]). Therefore, the

fact that r never exceeds λ is not necessarily inconsistent with Bagehot’s claim.

Another intriguing case is β → 0. Such a limiting case has rarely been analyzed in the existing

literature on global games but, interestingly, our model succeeds in obtaining plausible results. In this

case, depending on parameters, an equilibrium of either Case (a) or Case (d) is realized. In particular,

to derive implications for this case, it is convenient to focus on the magnitude of Ca and Ba. Consider

Case (a) first. Note that the inequality of Φ
(√
α(Rs − R)

)
< Ca

Ca+Ba
is satisfied if Ca is sufficiently large

compared with Ba. If an agent has no information on R and Ca is large, then it implies that the

expected payoff from withdrawing is very small compared with that from not withdrawing. If so, an

agent would not be likely to withdraw even if a signal is very small, which means that t is very low.

Obviously, an exactly symmetric argument holds for Case (d): if the benefit of withdrawing is very

high and no posterior information about R is available, an agent would be likely to withdraw, which

implies that the optimal t is very high. In both cases, such an agent’s optimal behavior is obviously

quite intuitive.

Here, we can completely explain how the signaling role of agents’ aggregate behavior works in

an equilibrium and the CB infers true fundamentals. First, note that for a certain set of parameters,

which is common knowledge among players, the CB can compute the equilibrium associated with
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it. Suppose, for instance, β→ ∞ and the set of parameters satisfies the condition Gϵ−1(x̂) > 0. In this

case, the CB can compute the agents’ optimal threshold strategy t∗ as the solution of the following

(see (26)):

η(s) = Φ

√α + βRs −
αR + βs√
α + β

 = Ca

Ba + Ca
. (54)

From the strictly decreasing property of η(·) and Theorem 3.4, such a t∗ is uniquely determined. Given

this derived t∗, the CB can compute the true fundamentals R by (8) for every observation of x.

4 Concluding Remarks

In this paper, we constructed a global game bank run model in which the (international or domestic)

LLR authority is an explicit player whose preference is based on the soundness of its own balance sheet

as well as the states of PBs. Furthermore, it was assumed that the LLR authority cannot distinguish

solvent from insolvent banks ex ante and that the authority’s decision making occurs after observing

depositors’ aggregate behavior. With this setup, we showed that depositors’ aggregate behavior of

withdrawing their deposits work as a perfect signal to the LLR authority about banks’ solvency.

Then, it was shown that: (1) the authority’s optimal policy is to help only illiquid but solvent banks,

and (2) whenever the LLR facility is utilized, optimal lending rates are strictly positive. These optimal

lending rates were shown to be punitive in the sense that they take the highest level possible under the

restriction that the rates enable solvent but illiquid banks to survive. Such punitive rates are attained

via the LLR authority’s balance sheet channel, embedded in its utility function. These results support

Bagehot’s statements, as well as both historical and current operations of LLRs taken by international

institutions or CBs as a whole.

To conclude our analysis, we point out an intriguing extension for further research. Our model

assumed that the proportion of agents who withdraw their deposits is completely observable to the

LLR authority. However, it might also be reasonable to assume that such an observation entails some

noise. This assumption could be plausible because, in some circumstances, the CB has to make the

decision regarding whether to provide an LLR facility within such a very short timeline that it cannot

collect sufficient information about depositors’ exact behaviors or the PB’s daily balance sheet. For

example, instead of assuming that the CB observes the true x, we can alternatively assume that z is
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an observable signal to the CB such that:

z = x + ξCB, (55)

where ξCB is RV with, for example, ξCB ∼ N(0, 1/γ). Recall that when x entails no noise, the CB

can predict the true realization of R by the law of large numbers. Thus, assumptions regarding the

CB’s knowledge about R do not matter. On the other hand, once we introduce noise around x, we

need to impose an assumption about how precise the CB can directly observe the realization of R.

In other words, if x does not work as a perfect signal about R to the CB, the CB would try to obtain

information about R by, for example, monitoring the PB.

Appendix

Derivation of (16)

Now, we summarize (i)∼(iv) in terms of x. Note that Rs + λ
(

xD−M
I

)
≤ R(x, t) ⇐⇒ λDx + IG−1

ϵ (x) ≤

It + (1 + λ)M −D. We define φ as:

φ(x) = λDx + IG−1
ϵ (x). (56)

Then limx→0 φ(x) = −∞, limx→1 φ(x) = ∞, dφ
dx > 0.

Then, we show some observations. First, ψ(x) − φ(x) = Dx ≥ 0 (the ψ(x) curve is always above

the φ(x) curve in Fig. 18). Second, φ
(

M
D

)
= λM + IG−1

ϵ

(
M
D

)
≤ λM + I(t − Rs) = It + (1 + λ)M − D

(the φ(x) curve is below line-(2) at M
D ). Third, ψ

(
M
D

)
= (1 + λ)M + IG−1

ϵ

(
M
D

)
≤ (1 + λ)M + I(t − Rs) =

(1+λ)M+It−(D−M) < It+(1+λ)M andψ
(

M
D

)
−[It+(1+λ)M−D] = I

(
G−1
ϵ

(
M
D

)
− t

)
+D ≤ I(−Rs)+D =

M > 0 (the φ(x) curve is between lines-(1) and -(2) at M
D ). The fifth observation is the solution for

φ(x) = It+ (1+λ)M−D, which is less than the solution forψ(x) = It+ (1+λ)M. Let the former solution

be x∗. As ψ(x) is strictly increasing, it suffices to show that ψ(x∗) < It + (1 + λ)M. This is true because

ψ(x∗) = (1 + λ)Dx∗ + IG−1
ϵ (x∗) = Dx∗ + [It + (1 + λ)M −D] = It + (1 + λ)M − (1 − x∗)D < It + (1 + λ)M.

The final observation is that the solution for Rs = t−G−1
ϵ (x) (equivalently, R(x, t) = Rs) is: (a) greater

than the solution forφ(x) = It+ (1+λ)M−D, and (b) smaller than the solution forψ(x) = It+ (1+λ)M.

Let x∗ be R(x∗, t) = Rs. From the assumption of Case (c), M
D < x∗ < x̂ (see also Fig. 14) 10. Similarly to

10From the assumption of Case (b), G−1
ϵ

(
M
D

)
≤ t − Rs. On the other hand, R(x∗, t) = Rs implies G−1

ϵ (x∗) = t − Rs. Thus,
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the above argument, it suffices to show that φ(x∗) > It+ (1+λ)M−D for (a) and ψ(x∗) < It+ (1+λ)M

for (b). Both are true because:

φ(x∗) = λDx∗ + IG−1
ϵ (x∗) = λDx∗ + I(t − Rs) = It + λDx∗ −D +M

> It + λD
(M

D

)
−D +M = It + (1 + λ)M −D

φ(x∗) = (1 + λ)Dx∗ + IG−1
ϵ (x∗) = (1 + λ)Dx∗ + I(t − Rs) = It + (1 + λ)Dx∗ −D +M

< It + (1 + λ)Dx̂ −D +M = It + (1 + λ)D
(

D + λM
(1 + λ)D

)
−D +M = It + (1 + λ)M.

This implies (16).

Derivation of (44)

(43) is identical to:

√
α + βRs −

αR + β
(
G−1
ϵ (x̂) + Rs

)
√
α + β

< Φ−1
( Ca

Ba + Ca

)
<

√
α + βRs −

αR + β
[
G−1
ϵ

(
M
D

)
+ Rs

]
√
α + β

(57)

⇐⇒
αR + β

(
G−1
ϵ (x̂) + Rs

)
√
α + β

>
√
α + βRs −Φ−1

( Ca

Ba + Ca

)
>
αR + β

[
G−1
ϵ

(
M
D

)
+ Rs

]
√
α + β

(58)

⇐⇒ αR + β
(
G−1
ϵ (x̂) + Rs

)
> (α + β)Rs −

√
α + βΦ−1

( Ca

Ba + Ca

)
> αR + β

[
G−1
ϵ

(M
D

)
+ Rs

]
(59)

⇐⇒ βG−1
ϵ (x̂) > (α + β)Rs −

√
α + βΦ−1

( Ca

Ba + Ca

)
− αR − βRs > βG−1

ϵ

(M
D

)
(60)

⇐⇒ G−1
ϵ (x̂) >

α + β

β
Rs −

√
α + β

β
Φ−1

( Ca

Ba + Ca

)
− α
β

R − Rs > G−1
ϵ

(M
D

)
(61)

⇐⇒ G−1
ϵ (x̂) >

α
β

(Rs − R) −
√
α + β

β
Φ−1

( Ca

Ba + Ca

)
> G−1

ϵ

(M
D

)
. (62)
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