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Abstract

This paper introduces heterogeneous households into an otherwise standard sticky-price

model with industry-speci�c labor markets. Households di¤er in labor incomes and asset markets

are incomplete. I show that household heterogeneity a¤ects equilibrium dynamics nontrivially

by amplifying price stickiness endogenously through wealth e¤ects on labor supply. To quan-

tify the importance of household heterogeneity in amplifying stickiness, I estimate and compare

representative and heterogeneous household models. The quantitative exercise shows the het-

erogenous household model performs better than its representative counterpart in accounting for

aggregate and sectoral dynamics in the U.S., while being more consistent with empirical evidence

on nominal rigidity at the aggregate and sectoral levels, thanks to the stickiness endogenously

generated by the model. (JEL C51, E13, E31, E32, E44, J20 )

Keywords: heterogeneity, price stickiness, multiple sectors, DSGE model, Bayesian estimation, real

rigidities
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1 Introduction

The �rst generation of dynamic stochastic general equilibrium (DSGE) models, best exempli�ed by

Kydland and Prescott (1982) and King, Plosser and Rebelo (1988), assumed away heterogeneity

among households. Over the past two decades, a large body of literature has investigated how

heterogeneous households can a¤ect the aggregate dynamics of equilibrium prices and quantities.1

However, most important works in this literature assume that prices are fully �exible, precluding

consideration of the aggregate e¤ects of household heterogeneity via nominal rigidity. To address

this, I take an otherwise prototype sticky-price DSGE model, one of the workhorse models for

the analysis of monetary policy and business cycles2, and introduce heterogeneous households.

Households di¤er because each possesses a labor skill specialized exclusively for a certain industry,

and asset markets are incomplete. I show that household heterogeneity through interactions with

nominal rigidity, a¤ects the equilibrium dynamics of key macroeconomic variables quantitatively

as well as qualitatively. The main �nding is that household heterogeneity ampli�es price stickiness

endogenously3: prices adjust more slowly in response to economic shocks.

In principle, "endogenous stickiness" generated by household heterogeneity can reconcile a long-

standing inconsistency between macro-model speci�cations and micro-level empirical evidence. At

the macro level, sticky-price DSGE models often require a large degree of nominal rigidity to

generate persistent real e¤ects and inertial in�ation. In contrast, micro level data indicate that

nominal rigidity is weak.4 For example, Bils and Klenow (2004) and Nakamura and Steinsson

(2008) (henceforth BK and NS respectively) document that �rms update their prices less than

every 2 quarters,5 while the estimated frequency of price changes is often greater than one year

using standard sticky-price models. Whether this inconsistency will be fully resolved depends on

quantitative importance of household heterogeneity.

To highlight the quantitative importance, I �t two versions of a sticky-price DSGE model, one

with and one without household heterogeneity, to the U.S. time series data employing a Bayesian

estimation method. I refer to these models as the heterogeneous household and representative

1This research agenda is relatively young, but is growing rapidly, partly due to the development of faster computing
machines. Important early contributions include Huggett (1993), Aiyagari (1994), Krusell and Smith (1998), and
many other articles cited in the review paper by Heathcote et al.(2009).

2The standard sticky-price models (or New Keynesian models) are extensively discussed in many graduate level
textbooks such as Woodford (2003), Walsh (2003), and Gali (2008), and also in an earlier paper by Goodfriend and
King (1997). Aoki (2001), Benigno (2004), Clarida, Gali, and Gertler (1999, 2002), Erceg, Henderson, and Levin
(2000), Benigno and Woodford (2007) and others document various issues in monetary policies in New Keynesian
framework. See Christiano et al. (2005) and Smet and Wouters (2003, 2007) for leading examples of medium-scale
sticky-price DSGE models. In this paper, I use the two terms, "sticky-price models" and "New Keynesian (NK)
models" interchangeably.

3Endogenously ampli�ed price stickiness is often referred to as "real rigidity" or "endogenous stickiness" in the
literature to distinguish it from exogenous nominal rigidity in sticky-price models (Ball and Romer, 1990 and Chari
et al., 2000).

4The inconsistency is perhaps summarized best by Altig et al. (2004): "Macroeconomic and microeconomic data
paint con�icting pictures of price behavior. Macroeconomic data suggest that in�ation is inertial. Microeconomic
data indicate that �rms change prices frequently."

5This empirical �nding was obtained without excluding temporary sales.

2



household models respectively (or the HH and RH models for short). The quantitative exercise

shows that household heterogeneity improves the match with empirical evidence on price adjust-

ments at the aggregate and sector levels.

As a benchmark, I �rst estimate the models under the assumption that every �rm in the economy

has the same degree of nominal rigidity (i.e. same frequency of price changes), the conventional

approach in the literature. The estimation results indicate that in the RH model, �rms update

their prices every 4.65 quarters, while in contrast, with the HH model the average duration of

a price contract is between 1.51 and 3.81 quarters depending on the degree of �nancial market

friction. Therefore, in the benchmark case, the heterogeneous household model appears to match

better the empirical evidence on nominal rigidity.

I subsequently relax the assumption of identical nominal rigidity and consider the more general

case in which the model economy consists of multiple sectors with potentially di¤erent frequencies

of price changes as in Carvalho (2006), Benigno (2004), and Aoki (2001). I do this for several

reasons. First, empirical studies, such as BK and NS, show that nominal rigidities are di¤erent

across sectors. Using a multiple-sector model, I can investigate whether the model-implied price

adjustment frequencies match both the average or "aggregate frequency" and sector level frequencies

suggested by the empirical studies. Second, even when focusing on the average frequency of price

changes, the estimated average with multiple sectors and di¤erent frequencies is generally di¤erent

from the average estimated imposing identical nominal rigidity for every �rm. The empirical papers,

such as BK and NS, �rst consider sector frequencies and then use these to calculate an aggregate

frequency. Therefore, estimating the models with multiple sectors better mimics the estimation

procedure employed in these empirical papers. Third, there is a growing interest in price dynamics

with distinct aggregate and sector-speci�c shocks (e.g. Boivin et al., 2009). Therefore, "multiple-

sector-sticky-price DSGE models" are interesting in their own right.

Allowing di¤erent degrees of nominal rigidity across sectors has non-trivial e¤ects on the es-

timated aggregate frequency. The average duration of price contracts implied by the weighted

average of the estimated sector frequencies is 1.74 quarters in the RH model and 1.39 quarters in

the HH model. Thus with multiple sectors, even the RH model is characterized by frequent price

changes. This result is mainly driven by the fact that di¤erences in nominal rigidity across sectors

can themselves generate real rigidity. Nevertheless, the HH model still comes closer to matching

the empirical frequencies at both the aggregate and sector levels.6

These results are obtained because the more generalized structure of the model allows for in-

teractions between household heterogeneity, incomplete asset markets and multiple sectors with

di¤erent price stickiness. To see this, �rst consider household heterogeneity and incomplete as-

set markets. The standard sticky-price model posits monopolistic competition with di¤erentiated

goods, each good requiring a distinct labor skill for production (Woodford 2003). Labor markets are

thus segmented, and households face di¤erent real wage rates and generate di¤erent labor incomes.

6The HH model is less successful in matching the empirical evidence on price changes in the durable goods
sectors. This is primarily due to the fact that the model treats all goods equally, as if they were all non-durable
goods.
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With a representative household model, this household heterogeneity becomes irrelevant because

household consumption levels are equalized through costless trading of state-contingent assets.

Consequently variations in the household�s real wage do not a¤ect that household�s consumption

choices. In contrast, when risk-sharing is imperfect due to asset market frictions, household�s labor

income (and hence the wage) a¤ects the household�s consumption levels, which in turn in�uences

that household�s incentive to supply labor through wealth e¤ect. Furthermore, households�labor

supply decisions a¤ect �rms�pricing decisions. In particular, household heterogeneity, with incom-

plete asset markets, endogenously ampli�es price stickiness through two types of wealth e¤ects: (i)

a within-sector wealth e¤ect and (ii) a cross-sector wealth e¤ect.

The within-sector wealth e¤ect leads to a smaller wage elasticity of each household labor supply:

other things being equal, a rise in the real wage (and thus in labor income) increases household�s

consumption level, and consequently the household has less incentive to supply labor. The less-

elastic labor supply (steeper labor supply curve) in turn makes each �rm�s marginal cost more

sensitive to a change in the �rm�s price and output. Thus the within-sector wealth e¤ect ampli�es

price stickiness universally for every �rm in all sectors, and results in slower aggregate price ad-

justments. Consider a �rm that contemplates lowering its price. A lower price would induce more

demand for its product. However to meet the increased product demand the �rm requires more

labor hours, which would shift the labor demand curve to the right. This would raise the equilib-

rium wage rate on its own, but in addition the �rm faces a steeper labor supply curve because of

incomplete asset markets, which would further raise the wage rate, and thus marginal cost of the

�rm. Therefore, to protect its pro�t margin the �rm reduces its price by a smaller amount than it

would if the asset markets were perfect.

The cross-sector wealth e¤ect creates strategic complementarity in pricing decisions across sec-

tors. However, unlike the within-sector wealth e¤ect, it a¤ects sectors di¤erently. It decreases price

rigidity in low-frequency sectors, the sectors with a relatively high degree of nominal rigidity, and

increases price stickiness in high-frequency sectors. Because at any given time the number of �rms

adjusting prices in the high-frequency sectors outnumber those in the low-frequency sectors, the

high-frequency sectors dominate the process of aggregate price adjustment. Therefore the net e¤ect

of the cross-sector wealth e¤ect is to generate slower aggregate price adjustments.

Consider an example. In response to an economy-wide positive productivity shock, a typical

high-frequency sector price would decrease more than a low-frequency sector price, that is, a relative

price of high-frequency to low-frequency sector decreases. This in turn leads to: a high relative

demand for high-frequency sector�s good; a high relative demand for high-frequency sector labor;

a high relative wage in high-frequency sector; a high relative consumption level in high-frequency

sector; and thus an increase in marginal cost due to wealth e¤ect. Therefore �rms in high-frequency

sectors would decrease their prices by less than the amount they would if the asset markets were

complete.7 The exact opposite process happens in low-frequency sectors: households, due to a

7 If the asset markets were complete, relative consumption would be constant (since it is not a¤ected by a change
in relative price), and consequently there would be no such wealth e¤ect.

4



lower consumption level, would be willing to provide more labor hours, which would further reduce

marginal cost of the �rms. Consequently these �rms would decrease their prices by more than the

amount they would if the asset markets were complete. Because high-frequency �rms dominate

aggregate price dynamics, the end result is a slower decline in aggregate price level than with

complete asset markets.

It is important to note that, even though household heterogeneity at the �rm level (or at

industry level, as in Woodford 2003) is necessary for a within-sector wealth e¤ect, it is not necessary

for endogenous stickiness (or real rigidity). The cross-sector wealth e¤ect continues to provide a

separate channel for real rigidity when households are heterogeneous only at the sector level (i.e.

labor markets are segmented at the sector level). Thus we have endogenous price stickiness even

with this �weaker�form of household heterogeneity.

This paper �ts well into the growing literature on the aggregate implications of including het-

erogeneous households in quantitative macroeconomic models and the literature on real rigidity.8

This paper builds a bridge between these two active research areas by showing household hetero-

geneity can be a source of real rigidity, through its impact on the household labor supply, and thus

can signi�cantly a¤ect aggregate dynamics. Some authors recently examined the consequences of

various sources of real rigidity for model-implied nominal rigidity. Some important works include

Altig et al. (2004), Eichenbaum and Fisher (2007), and Woodford (2005). This paper is di¤erent

both because of the speci�c source of real rigidity in the model, and the estimation method used.

I employ the likelihood-based Bayesian method,9 an important innovation because of the value of

incorporating the entire set of predictions from the general equilibrium of the models. Instead of

using the whole set of equilibrium conditions, Eichenbaum and Fisher (2007) focus on the aggregate

supply equation (i.e. Phillips curve), and estimate the frequency of price changes using a general-

ized method of moments. Altig et al. (2004), choose the parameters that minimize the distance

between the model and VAR based impulse responses. Another key di¤erence is that this paper

allows for multiple sectors with potentially di¤erent degrees of nominal rigidity, which as reported

above, has non-trivial consequences for estimation.

The rest of the paper is organized as follows. In the next section, I present a simple static

model to present the main theoretical results in the most explicit way. Section 3 introduces the

full-blown DSGE models with Calvo-style sticky prices. The DSGE models developed here will be

the basis for the quantitative exercises in following sections. Section 4 presents a generalized New

Keynesian (NK) Phillips curve and details the mechanism through which household heterogeneity

in�uences equilibrium dynamics. In section 5, I estimate the representative and heterogeneous

household models and compare the two based on the estimation results match with empirical

8Some of the earlier works on real rigidity include Ball and Romer (1990), Kimball (1995), Basu (1995), and
Bergin and Feenstra (2000). These papers have identi�ed various sources that can amplify monetary non-neutrality.
Chari et al. (2000) also have stressed importance of endogenous stickiness. They argue that sticky-price models
need to amplify price stickiness endogenously to explain persistent aggregate dynamics with a reasonable degree of
nominal rigidity.

9For recent contributions, see Smet and Wouters (2003, 2007), Rabanal and Rubio-Ramirez (2005), Lubik and
Schorfheide (2005), and many other papers cited in An and Schorfheide (2006).
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evidence. Section 6 summarizes the results and concludes.

2 Static Model

The key motivation for presenting the static model is that I can show my results analytically.

However, the model is too simple for serious quantitative analysis. A full-blown DSGE model for

that purpose is presented in the next section.10

The economy is composed of a continuum of industries indexed by i 2 [0; 1]. Each industry
i produces a distinct type of product Y (i). In each industry i, there is a representative �rm

which I refer to as "type-i �rm." The di¤erentiated goods, fY (i)g are aggregated to produce �nal
consumption good Y , through a Dixit-Stiglitz aggregator:

Y =

�Z 1

0
Y (i)

��1
� di

� �
��1

; (1)

where � is the elasticity of substitution between two products and is assumed to be greater than

one. The corresponding price index, P for the �nal consumption good is

P =

�Z 1

0
P (i)1��di

� 1
1��

; (2)

where P (i) is the price of the type-i good. The optimal demand for each type of good minimizes

total expenditure PY :

Y (i) =

�
P (i)

P

���
Y: (3)

Each �rm has linear production technology:

Y (i) = H(i); (4)

where H(i) denotes type-i labor hours. Type-i labor can produce only type-i goods and cannot

produce any other type of goods: labor markets are industry-speci�c. Type-i �rm chooses its price

P (i) to maximize pro�t:

�(i) = P (i)Y (i)�W (i)H(i);

subject to the demand function, (3). I let W (i) denote the competitive wage rate in industry i.

The optimality condition then can be obtained as

P (i)

P
= #

W (i)

P
; (5)

where # = �= (� � 1) is the �rm�s desired mark-up.

10Those who have little interest in analytical results can skip this section and go to section 3 without loss of
continuity.
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For each industry i, there is a representative household which I refer to as "type-i household."

Type-i household possesses a labor skill specialized exclusively for industry i. Households choose

their consumption level, C(i) and labor hours, H(i) to maximize utility:

logC(i)�H(i);

subject to their budget constraint which equates consumption with income:

PC(i) =W (i)H(i) + �(i) +K(i); where K(i) � �
Z
z 6=i
P (z)Y (z)dz; � 2 [0; 1]: (6)

In addition to labor income W (i)H(i), type-i household receives pro�t �(i) from industry i.11 In

the budget constraint, I include another term, K(i), which is exogenously given, to denote a pre-

arranged �nancial portfolio. Introducing K(i) provides a convenient way to nest both complete

and incomplete asset market economies within a single framework. Although there are no state-

contingent assets, the pre-arranged �nancial contracts when � = 1, guarantee that households have

the same amount of income they would have if the asset markets were complete. The economy

is, therefore, e¤ectively under complete markets when � = 1, and the asset markets are e¤ectively

incomplete when � < 1: A household�s �rst order condition is given by

C(i) =
W (i)

P
; (7)

which characterizes the household�s labor supply.

The model is completed by imposing the quantity equation:

PY =M; (8)

where M denotes exogenous money supply. The quantity equation can be rationalized by intro-

ducing a cash-in-advance constraint which is omitted here for simplicity.

Given M , the equilibrium is characterized by allocations of quantities and prices at indus-

try level, fC(i); Y (i);H(i); P (i);W (i)gi2[0;1], and two aggregate variables, output and price level,
fY; Pg that satisfy the followings: (i) de�nitions of the aggregates, (1) and (2); (ii) �rms�optimal-
ity conditions and production functions, (3), (4) and (5); (iii) households�budget constraints and

optimality conditions, (6) and (7); (iv) quantity equation, (8); and (v) market clearing condition,R 1
0 C(i)di = Y:

For a benchmark, I �rst consider an economy where prices are fully �exible in that �rms

observe money supply M , before setting prices. It turns out that asset market completeness (or

household heterogeneity) does not a¤ect the equilibrium outcome: there exists a unique symmetric

equilibrium regardless of asset market completeness. The two main reasons for this result are

11This assumption is not necessary to show the results. But it makes the exposition simpler. In the next section,
I consider a more general case.
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the symmetric nature of the model and the absence of idiosyncratic shocks. In the absence of

idiosyncratic shocks, ex-ante symmetric �rms choose the same price and produce the same amount

of goods. Consequently, households�incomes are symmetric and there is no need for state-contingent

asset markets.

Proposition 1 (Irrelevance of heterogeneous households under �exible prices) If prices
are �exible in response to changes in the exogenous variable, M , then there exists a unique sym-

metric equilibrium in which P (i) = P and Y (i) = C(i) = Y for all i 2 [0; 1]. Moreover, money is
neutral: the equilibrium output, Y is determined independently from M . The output and price level

are explicitly given by

Y =
1

#
and P = #M:

See the appendix for the proof of this (and all other propositions). In what follows I show this

"irrelevance result" no longer holds under sticky prices.

Let us consider the simplest case. Suppose that the government announces a certain level of

M = �M . Some �rms, called sticky-price �rms, believe the announcement and set their prices

accordingly, while the other �rms, called �exible-price �rms, wait until they observe actual M .12

The common price set by sticky-price �rms, which believe M is equal to �M with probability one,

must be # �M as shown in Proposition 1. If the government indeed keeps its promise, the remaining

�rms also set the price to # �M and the equilibrium output would be equal to #�1. That is, with no

surprise in monetary policy, aggregate output would be equal to the �exible-price level of output.

When the government deviates from its announcement, however, money is no longer neutral.

The degree of non-neutrality depends on how much the �exible-price �rms would respond to a

change in M . I show below that responsiveness is smaller, and thus monetary non-neutrality is

larger, when asset markets are incomplete.

To see �rst the impact of wealth e¤ects on a �rm�s pricing decision, it is useful to combine (7)

with (5) and then to express type-i household consumption C(i) in terms of type-i �rm�s price

P (i), employing the household budget constraint, the de�nition of nominal pro�t and the demand

function for Y (i):

P (i) = #W (i) = #PC(i) = #

�
P (i)Y (i) + �

Z
z 6=i
P (z)Y (z)dz

�
= # f(1� �)P (i)Y (i) + �PY g = #

(
(1� �)

�
P (i)

P

�1��
PY + �PY

)
| {z }

PC(i)

(9)

Note that type-i �rm�s real marginal cost is equal to type-i household�s consumption. From the

second line in (9), when asset markets are incomplete (i.e. when � < 1) , a change in a �rm�s price

12This amounts to assume that the �rms, which set the prices before realization ofM , form a subjective probability
distribution ofM that places entire mass on �M after the announcement. It is may not be the most realistic or elegant
way to model �rms�belief. The assumption however helps us to see the main results explicitly
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a¤ects its employees�consumption, which in turn in�uences the �rm�s marginal cost (i.e. the wage

W (i)), through the wealth e¤ects on labor supply, in such a way as to discourage the �rm from

changing its price. In contrast, a household�s consumption would not be a¤ected by a �rm�s price if

asset markets were complete,13 and thus wealth e¤ects on �rms�pricing decisions would not arise.

To study how the optimal price P �, commonly chosen by �exible-price �rms, responds to M , I

simply replace P (i) with P � and PY with M in (9), which leads to

P � = (1� �)#
�
P �

P

�1��
| {z }

(i)

M + �#|{z}
(ii)

M: (10)

Equation (10) implicitly determines the equilibrium level of P � given fM;Pg. A response of P � to
a change in M can be characterized by the sum of the two coe¢ cients, (i) and (ii) on M . The �rst

coe¢ cient (i) is however decreasing in P � given P since � > 1, which dampens a response of P �

to a change in M . This dampening e¤ect disappears when asset markets are e¤ectively complete

since the �rst coe¢ cient becomes zero when � = 1. Thus, with e¤ectively complete markets, prices

respond more to a change in monetary policy.

Finally the price level can be obtained by aggregating the price set by sticky-price �rms, # �M

and the price set by �exible-price �rms shown in (10), through the price index, (2). Under complete

asset markets (i.e. when � = 1), (10) implies P � = #M , and the price level PC is consequently

given by

PC =
�
n [#M ]1�� + (1� n)

�
# �M

�1��� 1
1��

;

where n denotes the fraction of �exible-price �rms. Under incomplete markets, however, � is less

than 1: Let us consider a special case in which � = 0 (i.e. �nancial autarky). Then the price level

PIC under incomplete markets is

PIC =

 
n

�
[#M ]

1
� P

��1
�

IC

�1��
+ (1� n)

�
# �M

�1��! 1
1��

:

Unlike PC , it is hard to obtain an explicit solution for PIC in terms of the exogenous variables M

and �M only. Nevertheless it can be shown that the price level under incomplete markets does not

adjust as much as when asset markets are complete.

Proposition 2 (Stronger Non-neutralities) Let PF and YF denote the price level and output
that would be realized when prices are completely �exible (i.e. YF = 1=# and PF = #M as shown

in Proposition 1). Also let YC and YIC denote aggregate output under complete markets and under

incomplete markets respectively. If M > �M , then PIC < PC < PF and YIC > YC > YF , and vice

versa.

As mentioned, the "stronger non-neutralities" result is driven by smaller response of P �to a
13When � = 1, C(i) = #Y , as can be seen on the second line in (9).
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change in M . This implies that wealth e¤ect also has a distributional implication. Proposition 3

in particular suggests that a model with heterogeneous households and incomplete asset markets

can generate stronger comovement among sectors.14

Proposition 3 (Stronger Comovements) Let Y1 and Y2 denote a common level of output pro-
duced by sticky-price and �exible-price �rms respectively. Then the di¤erence between the two sector

outputs, jY1 � Y2j is smaller under incomplete markets than under complete markets.

Nakamura and Steinsson (2009) have documented that a model with intermediate inputs is

more successful, relative to a standard model without intermediate input, in accounting for strong

comovement, which is a key feature of business cycles (Lucas, 1977; Stock and Watson, 1999).

Household heterogeneity plays the same role here.

The results in the propositions are not limited to the case of a monetary policy shock. For

instance, the same arguments could be made for aggregate productivity shock if an exogenous

productivity shock were added to the model. In the next section, I investigate how much the

theoretical results obtained here in�uence aggregate and sector dynamics.

3 Sticky-Price DSGE Model

In this section, I incorporate the ideas explored in the previous section into a prototype DSGE

model. Some of the model settings are the same as those in the static model. I however describe

every detail for completeness.

There is a continuum of industries indexed by i 2 [0; 1], in which there is a representative

�rm referred to as "type-i �rm". Firms produce di¤erentiated goods that are aggregated into

�nal consumption goods. Labor markets are industry-speci�c: a distinct labor skill is required

to produce each type of good. Households are heterogeneous in labor skills: "type-i household"

possesses labor skill specialized for industry i, and thus the household supplies labor to type-i �rm.

The economy is divided into a �nite number of mutually exclusive sectors indexed by j 2
f1; 2; � � � ; Jg, and sectors are characterized by potentially di¤erent degrees of nominal rigidity,
f�jgJj=1. I use Ij to denote the set that contains the industries that belong to sector j. The length
of the interval Ij , denoted by nj , gives the size of the sector.15 When the degrees of nominal rigidity
are identical across sectors (i.e. �j = � 8j), the model becomes the standard single-sector model.

14As shown above, �exible-price �rms�price P �, due to wealth e¤ects, does not deviate much from sticky-price
�rms�price. Consequently, productions, between the two groups, tend to be closer.

15Since the sectors are mutually exclusive, it must follow that
JS
j=1

Ij = [0; 1]; where Ij , j = 1; :::; J , are disjoint

sets, and that
PJ

j=1 nj = 1.
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3.1 Households

Type-i household seeks to maximize a discounted sum of utilities of the form

E0

 1X
t=0

�t�t

�
logCj;t(i)� ��'t

Hj;t(i)
1+'

1 + '

�!
;

where Cj;t(i) denotes type-i household�s consumption and Hj;t(i) denotes the hours of labor services

supplied to industry i in sector j. There are two aggregate preference shocks denoted by �t and

�t. They serve as aggregate demand and aggregate supply shocks respectively. The parameter �

is the discount factor, and ' is the inverse of the Frisch elasticity of labor supply.

The �ow budget constraint of the household is given by

Cj;t(i) +
Bj;t(i)

Pt
+~�

�
Bj;t(i)

PtYt

�2
=
Rt�1Bj;t�1(i)

Pt
+ � t +

Wj;t(i)Hj;t(i)

Pt
+
Kj;t(i)

Pt
; (11)

where � t denotes a government net transfer, Rt denotes the gross nominal interest, Wj;t(i) is the

competitive nominal wage rate in industry i, and Pt is the aggregate price level to be de�ned below.

Households do not trade state-contingent assets. Instead, they borrow and lend through trading

riskless nominal bonds (IOUs). I use Bj;t(i) to denote a household�s bond holdings at time t. A

convex cost, ~�
�
Bj;t(i)
PtYt

�2
, which I refer to as a "participation cost", is introduced in the budget

constraint for two reasons. First, I wish to allow for the possibility of frictions in the private

bond market.16 Heathcote and Perri (2002) considered several distinct speci�cations including a

frictionless bond market and �nancial autarky. By parametrizing the bond market environment, the

participation cost introduced here provides a convenient way for me to study a range of bond market

conditions. Thus I interpret the "participation cost" as a reduced form that as ~� increases, makes the

bond market less ideal.17 If ~� were close to zero, a household would borrow and lend frictionlessly

against its future income to smooth consumption. Conversely, if ~� were su¢ ciently large, households

would decide not to trade bonds. Alternative ways to model asset market incompleteness would

not change the main insight of this paper as long as a household�s consumption depended positively

on its labor income because of imperfect asset markets. Second, the cost term, when ~� > 0, makes

the model stationary and induces a unique steady state equilibrium around which to linearize.18 I

specify the participation cost in such a way that the ex-ante symmetric households hold zero net

borrowing in the steady state.

In addition to labor income, Wj;t(i)Hj;t(i), each household earns capital income, Kj;t(i). The

16As extensively discussed in Heaton and Lucas (1996), frictions occur even in the supposedly riskless bond markets.
For instance, a substantial spread exists between lending and borrowing rates, re�ecting the fact that lenders are
paying monitoring costs.

17The "participation cost" should be distinguished from a "trading cost" which might occur where there is a
change in bond holding, �Bj;t(i). As noted in Heaton and Lucas, while trading cost is more important in the stock
markets (for instance one has to pay commissions to a �nancial agent when buying or selling stocks), the participation
cost is more relevant in bond markets.

18See Schmitt-Grohe and Uribe (2003) for further discussions.
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monopolistically competitive �rms make positive pro�ts which are distributed to households. It is

useful to consider two extreme cases. At one extreme, type-i household owns entirely the �rms in

industry i, but owns zero shares in any other industry. Although this case may not be far from

reality for some households, it may be too extreme to capture reality. In the other extreme case,

households own the same share of every �rm in the economy, so that the economy�s entire pro�t

is equally distributed among households. This case is also unrealistic. Shareholders, in the real

world, often own a disproportionately larger amount of shares in the industry in which they are

employed, but do own some shares in other industries. With this in mind, I specify Kj;t(i) in such

way as to allow for intermediate cases:

Kj;t(i) � �
 

JX
k=1

Z
Ik
�k;t(z)dz

!
+ (1� �)�j;t(i), 0 � � � 1;

where �k;t(z) denotes nominal pro�t of type-z �rm in sector k. The parameter, � controls the

degree of concentration of a household�s portfolio in its own industry: � = 1 when a household�s

capital income is perfectly diversi�ed over the di¤erent industries. The parameter � should be

di¤erent across households in principle, however a single value is assumed for simplicity. I use 1 as

a benchmark value in a calibration exercise, and in a later section, the parameter � is estimated

along with the other model parameters.

The wage in each industry is fully �exible, and both the households and �rms in the given

industry take the wage as given. A household�s �rst order conditions are then given by

1 + 2~�
Bj;t(i)

(PtYt)
2 = �RtEt

��
�t+1
�t

��
Cj;t(i)

Cj;t+1(i)

��
Pt
Pt+1

��
; (12)

�
Hj;t(i)

�t

�'
Cj;t(i) =

Wj;t(i)

Pt
. (13)

In contrast to the HH model discussed so far, a representative household supplies every type of

labor in the RH model.19 The representative household maximizes the discounted sum of utilities:

E0

0@ 1X
t=0

�t�t

24logCt � ��'t JX
j=1

Z
Ij

Hj;t(i)
1+'

1 + '
di

351A ;
subject to the budget constraint:

Ct +
Bt
Pt
=
Rt�1Bt�1

Pt
+ � t +

JX
j=1

Z
Ij

Wj;t(i)Hj;t(i)

Pt
di+

JX
j=1

Z
Ij

�j;t(i)

Pt
di:

19Alternatively, the RH model can have di¤erent types of households as in the HH model, but with complete
asset markets. The resulting equilibrium would be identical.
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After imposing the market clearing condition, Ct = Yt, the �rst order conditions are given by

1 = �(1 + it)Et

��
�t+1
�t

��
Yt
Yt+1

��
Pt
Pt+1

��
;

�
Hj;t(i)

�t

�'
Yt =

Wj;t(i)

Pt
. (14)

It is helpful to compare (14) to (13) in developing an intuition on how household heterogeneity

leads to a greater degree of real rigidity. In the HH model, type-i household�s consumption Cj;t(i)

depends positively on its labor income due to imperfect risk-sharing. Thus Cj;t(i) depends positively

on real wage, Wj;t(i)
Pt

as well as labor hours, Hj;t(i), which makes the wage elasticity of labor supply

smaller. As a consequence, type-i �rm�s marginal cost becomes more sensitive to a change in its

price and production. There is no such channel in the RH model since each industry is so small

that the industry wage rate Wj;t(i)
Pt

or labor hours Hj;t(i) do not a¤ect directly aggregate output,

Yt.

3.2 Firms

Aggregate output, Yt is produced by perfectly competitive �rms using sector outputs, fYj;tgJj=1
with a Dixit-Stiglitz production technology:

Yt =

0@ JX
j=1

�
njD

R
j;t

�1=�
Yj;t

(��1)=�

1A�=(��1) ; (15)

where � is the elasticity of substitution among sector outputs, and DRj;t is given by D
R
j;t � Dj;t=Dt,

which can be interpreted as a sector-speci�c demand shock relative to overall strength of demand,

Dt �
PJ
j=1 njDj;t. The appropriate price index for the �nal consumption good is the minimum

cost that the �rms should pay for producing one unit of the consumption good and is given by

Pt =

0@ JX
j=1

�
njD

R
j;t

�
P 1��j;t

1A1=(1��) : (16)

Given the aggregate consumption good Yt, and the price levels, Pj;t and Pt, the optimal demand

for a sector good would minimize total expenditure PtYt:

Yj;t = njD
R
j;t

�
Pj;t
Pt

���
Yt 8j: (17)

Similar to the �nal consumption good, each sector good, Yj;t is also an aggregate of the goods
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fYj;t(i)gi2Ij that are produced by the �rms in sector j, and is given by

Yj;t =

 �
1

nj

�1=� Z
Ij
Yj;t(i)

(��1)=�di

!�=(��1)
8j; (18)

where � is the elasticity of substitution between di¤erent types of goods and is larger than one.

The corresponding price indexes for a sector good is given by

Pj;t =

 
1

nj

Z
Ij
Pj;t(i)

1��di

!1=(1��)
;8j: (19)

Given Yj;t; the optimal demand for type-i good Yj;t(i) would be

Yj;t(i) =
1

nj

�
Pj;t(i)

Pj;t

���
Yj;t: (20)

Firms in industry i (i.e. type-i �rm) employ labor supplied by type-i household. A �rm�s

production function is given by

Yj;t(i) = Aj;tHj;t(i); (21)

where Aj;t is exogenous sector-speci�c productivity.

Prices are sticky as in Calvo (1983). A �rm in sector j adjust its price with probability 1� �j
each period. Since only the fraction 1 � �j of all the prices in that sector is set anew while the
remaining fraction �j of prices is carried over from the previous period, the sector price level Pj;t
evolves as:

Pj;t =

"
1

nj

Z
I�j
P �j;t(i)

1��di+
1

nj

Z
Ij�I�j

Pj;t�1(i)
1��di

# 1
1��

=

"
1

nj

Z
I�j
P �j;t(i)

1��di+ �jP
1��
j;t�1

# 1
1��

;

(22)

where P �j;t(i) is an optimal price chosen by type-i �rm when i 2 I�j : The set I�j � Ij , with measure
nj (1� �j), is a randomly chosen subset in which �rms can update their prices.

Firms that adjust their prices at time t set the optimal piece, P �j;t(i) maximizing expected

discounted pro�ts:

max
P �j;t(i)

Et

1X
k=0

�kj qj;t;t+k(i)
~�j;t+k(i)

Pt+k
;

where qj;t;t+k(i) is a type-i �rm�s real stochastic discount factor between time t and t + k, and

�j;t+k(i) is the �rm�s nominal pro�t at time t+k given that the price chosen at time t is still being

charged:

�j;t+k(i) = Pj;t(i)Yj;t+k(i)�Wj;t+k(i)Hj;t+k(i):

When asset markets are incomplete and a �rm is owned by more than one household, there is

no obvious unique stochastic discount factor for a given �rm. Each shareholder would want to use
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their own stochastic discount factor in maximizing expected discounted pro�ts. Therefore there is

a con�ict of interests among the shareholders. I assume that a �rm maximizes the weighted average

of the di¤erent objective functions of its shareholders.20 Then type-i �rm�s discount factor can be

expressed as21

qj;t;t+k(i) = �
k

"
(1� �)

�
�tCj;t(i)

�t+kCj;t+k(i)

�
+ �

 
JX
l=1

Z
Il

�
�tCl;t(z)

�t+kCl;t+k(z)

�
dz

!#
:

The �rst order condition of type-i �rm is given by

0 = Et

1X
k=0

�kj qj;t;t+k(i)D
R
j;t+kYt+k

�
P �j;t(i)

Pj;t+k

��� �
Pj;t+k
Pt+k

��� ��P �j;t(i)
Pt+k

�
�
�

�

� � 1

�
MCj;t+k(i)

�
;

(23)

where MCj;t+k(i) =
Wj;t+k(i)
Aj;t+kPt+k

is type-i �rm�s real marginal cost at time t+ k. The optimal prices

chosen at time t,
n
P �j;t(i)

o
i2I�j

that satisfy the �rst order condition (23) determine the equilibrium

dynamics of the sector price level Pj;t through (22). The aggregate price dynamic is then determined

by aggregating these sector prices through (16).

3.3 Government

The government budget constraint is

Bt �Rt�1Bt�1
Pt

+

JX
j=1

Z
Ij

~�

�
Bj;t(i)

PtYt

�2
di = � t +Gt; (24)

where Bt is the supply of government bonds and Gt is government expenditure at time t. The

government collects participation costs and redistributes them to households as a transfer.

Monetary policy is characterized by a Taylor rule:

Rt = �
�1R

�m
t�1

"�
Pt
Pt�1

��� �Yt
Y

��y#(1��m)
exp(�t): (25)

20Alternatively one could assume that the household with the largest voting right chooses the �rm�s discount factor.

Under this assumption, the discount factor of type-i �rm would be given by �k
�

�tCj;t(i)

�t+kCj;t+k(i)

�
. Another alternative

assumption would be for the �rm to use the real interest rate to discount its pro�ts. In that case, qj;t;t+k(i) would

no longer be �rm-speci�c and be instead given by qj;t;t+k(i) =
kY
l=0

Rt+l
�1 Pt+l+1

Pt+l
: However, alternative choices of the

discount factor do not make any di¤erence quantitatively since only the steady state value of the discount factors
enters the equilibrium conditions in the �rst order approximation. The steady state level of the shadow value of a
dollar is identical across households and it is equal to the steady state value of the risk free real interest rate. Pescatori
(2006) has also made the same argument.

21Looking at type-i �rm�s stochastic discount factor, one might think that the �rm can manipulate its discount
factor by in�uencing Cj;t(i). But it is not the case in this model. Just as each �rm takes the industry wage as given,
it also takes the discount factor as given. Recall that type-i �rm and type-i household only represent respectively the
in�nitely many �rms and households that participate in the same labor market. Therefore type-i �rm�s stochastic
discount factor should in fact be interpreted as "industry-i stochastic discount factor."
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I assume a simple Ricardian �scal policy:

Gt = 0 and Bt = 0: (26)

Although Ricardian �scal policy is a nontrivial assumption for equilibrium as pointed out by Leeper

(1992) and Sims (1994), I assume it for a direct comparison with many existing papers on sticky-

price models as well as for simplicity.

3.4 Equilibrium

The equilibrium of the economy is characterized by quantities and prices at the micro level:n
fCj;t(i); Yj;t(i);Hj;t(i); Bj;t(i); Pj;t(i);Wj;t(i)gi;j

o1
t=0
;

outputs and prices at the sector level: n
fYj;t; Pj;tgj

o1
t=0
;

and the three aggregate variables: output, price level, and nominal interest rate:

fYt; Pt; Rtg1t=0

that satisfy the household optimality conditions, (12) and (13), the household budget constraint,

(11), the �rm optimality conditions, (17), (20), and (23), the government budget constraint (24),

monetary and �scal policies (25) and (26), the aggregators (15), (16), (18), and (19), and �nally the

market clearing conditions,
PJ
j=1

R
Ij Cj;t(i)di = Yt and

PJ
j=1

R
Ij Bj;t(i)di = 0, given Bj;�1(i) = 0,

8i 2 [0; 1].
Let me introduce some additional notation useful for studying equilibrium dynamics. I de�ne

an aggregate hour index as the sum of hours worked by all the households in the economy:

Ht �
JX
j=1

Z
Ij
Hj;t(i)di:

I use Cj;t to denote sectoral consumption
R
Ij Cj;t(i)di, and Bj;t to denote sectoral bond holdingR

Ij Bj;t(i)di. For any generic variable Xt, I use X
R
j;t(i) and X

R
j;t to denote "relative" variables:

XR
j;t(i) �

Xj;t(i)

n�1j Xj;t
and XR

j;t �
n�1j Xj;t

Xt
:

I log-linearize the equilibrium conditions around a symmetric steady state to solve the model.

Lowercase letters denote percentage deviation from the steady state X (i.e. xt � lnXt � lnX),
except in the case of bond holdings where they represent the deviation of nominal bond holdings
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from their steady-state level B = 0, relative to steady state nominal output (e.g. bj;t � Bj;t�B
PY ).

4 The New Keynesian Phillips Curve

The model considered here is necessarily more complicated than a standard representative-agent

sticky-price DSGE model. In principle, the evolution of consumption and asset holdings across

households should be computed, since these could a¤ect aggregate equilibrium dynamics. Because

of this complication, it is thus impractical to solve the model without an approximation scheme.

For this reason and also for comparison with earlier studies, I use the same approximation strategy

commonly employed in the NK literature. As discussed earlier, I assume time-dependent pricing

as in Calvo (1983) and Yun (1996) and then I take a log-linear approximation of the model.

For the single-sector model, because of the symmetric nature of the model and the approximation

technique employed, I do not need to compute the time path of households� consumption and

asset holdings. Moreover the form of the equations that characterize equilibrium dynamics are

identical in the RH and HH models. This however does not mean that household heterogeneity

has no �rst-order e¤ect on equilibrium aggregate dynamics, as the two models involve di¤erent

mappings between the structural parameters and the reduced-form parameters in the equilibrium

conditions. It turns out that household heterogeneity changes one reduced-form parameter: it

decreases, through the within-sector wealth e¤ect, the slope of the Phillips curve.

In the multiple-sector model, in the absence of symmetry across sectors, the evolution of the

distributions of households and �rms must be computed. As in the single-sector case, household

heterogeneity alters the Phillips curve by decreasing the slope through the within-sector wealth

e¤ect. In addition, however, heterogeneity adds an endogenous shift term that captures the cross-

sector wealth e¤ect.

Since the Phillips curve is the key equation through which household heterogeneity in�uences

aggregate dynamics, this section studies the generalized Phillips curve in isolation before presenting

the entire set of equilibrium conditions. Below I present the Phillips curve, and in the following

subsections I discuss its important properties.

4.1 Generalized Phillips Curve

Household heterogeneity complicates construction of the Phillips curve mainly because optimal

prices chosen at a given time t are not identical across �rms. The reason for this is that a �rm�s

marginal cost is a function of its employees� consumption choices which depend on their bond

holdings carried over from the previous period. This feature of the model creates a complication

similar to one that arises when capital stocks are �rm-speci�c. One cannot derive a Phillips curve

using the conventional method, and instead must use the undetermined coe¢ cient method suggested

in Woodford (2005). I refer the interested reader to the appendix for a detailed derivation of the

Phillips curve and more on the simplifying role of the assumption of time-dependent pricing. I

present the main result here:
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Proposition 4 Suppose the economy consists of multiple sectors indexed by j = 1; 2,� � �; J . In
each sector j, there is a continuum of �rms whose prices are sticky as in Calvo, with the probability

of price adjustment in each period is 1 � �j. Then, the dynamics of aggregate in�ation �t can be
described by the following Phillips curve:

�t = �Et [�t+1] + �yt +�c;t +�y;t � �t; (27)

where �t �
PJ
j=1 njg(�j ; �; �)

h
(1 + ') aj;t + '�t + �

�1dRj;t

i
is a linear combination of exogenous

disturbances. The two endogenous shift terms are given by

�c;t �
JX
j=1

njg(�j ; �; �)c
R
j;t, �y;t �

�
'+ ��1

� JX
j=1

njg(�j ; �; �)y
R
j;t,

and the slope of the Phillips curve is given by

� � (1 + ')
JX
j=1

njg(�j ; �; �)

where g(�j ; �; �) is a nonlinear decreasing function in each of �j, � and �.

As mentioned earlier, household heterogeneity a¤ects aggregate dynamics by changing the stan-

dard Phillips curve in two ways: (i) it decreases the slope of the Phillips curve, �, for a given degree

of nominal rigidity, f�jg, and (ii) it introduces an endogenous shift term, �c;t. The endogenous
shift terms, �c;t and �y;t, are relevant only when the economy has multiple sectors with varying

price stickiness. The shift terms disappear when prices adjust with identical frequency in every

sector (i.e. �j = � for all sectors)

4.2 Slope of the Phillips Curve

The major determinant of the slope, �; is the function g (�) ; which is always decreasing in �. This
implies that the larger the degree of nominal rigidity �, the smaller the slope of the Phillips curve.

For the two models, the function g (�) has di¤erent forms. In the HH model, for a given nominal

rigidity �, the function g (�) and thus the slope, depend on the �nancial friction parameters (�; �).
However, in theRH model, �nancial frictions play no role in determining equilibrium. Therefore, in
what follows, I use gRH(�) and gHH (�; �; �) separately for the RH and HH models respectively.22

22Speci�cally, the expression for gRH(�) and gHH (�; �; �) are given as

gRH(�) �
�
(1� ��) (1� �)

�

�
1

1 + '�

gHH (�; �; �) �
�
(1� ��) (1� �)

�

��
(1� �j��)

2

(1 + '� +  2) (1� �j��)
2 �  2 (1� �j)

2 ��

�
;

where � and  2 are some functions of (�; �). The parameter  2 measures the responsiveness of a household�s relative
consumption to a change in its current relative income. In the representative household model, where risk-sharing
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It is tedious but straightforward to show that, for all possible values of � and �, gHH (�; �; �)

is smaller than gRH(�) for a given �, that is, the HH model is characterized by a larger degree of

real rigidity.23 Instead of showing this analytically, I present a contour map of g
HH(�;�;�)
gRH(�)

in Figure

1 based on numerical calculations. In addition, the second and third panel in Figure 1 plot gHH

and gRH, with �xed � = 0:5; while varying � and � respectively. A few observations are worth

mentioning.

First, Figure 1-A shows that gHH < gRH for � > 0 and � 2 [0; 1]. Thus for a �xed degree of
nominal rigidity �, the slope of the Phillips curve is smaller with heterogeneous households. This

result implies that in�ation responds less to economic shocks, and output deviates more from the

natural level of output than in the representative household model.

Second, Figure 1-B shows gHH is decreasing in �: greater friction in bond trading increases the

degree of real rigidity. This result is intuitive, signi�cant �nancial frictions increase the dependence

of household consumption on its labor income, and the idiosyncratic wealth e¤ect on labor supply.

Recall this wealth e¤ect is a key determinant of real rigidity. Also note gHH is convex in �, which

implies that even a small �nancial friction could have a substantial e¤ect on aggregate dynamics.

Third, Figure 1-C shows gHH is also decreasing in �: less diversi�cation of household capital

incomes decreases real rigidity. To see this consider the extreme case of � = 0 where type-i

household receives pro�t exclusively from type-i �rm. In this case, the household�s total income

(the sum of labor and capital incomes) equals the industry�s revenue.24 Thus, in this situation,

household consumption does not depend directly on its labor income, and hence the wealth e¤ects

on labor supply are weak.

4.3 Endogenous Shift Terms in the Phillips Curve

When the economy is divided into multiple sectors, in addition to decreasing the slope, household

heterogeneity introduces an endogenous shift term. The Phillips curve, (27), contains two endoge-

nous shift terms, �c;t and �y;t, both of which contribute to slower aggregate price adjustments.

The e¤ects of �y;t are extensively documented in Carvalho (2006) and stem from having multiple

sectors. The other term �c;t; comes from adding household heterogeneity.

As documented in Carvalho (2006), when there is more than one sector, strategic comple-

mentarity in price setting can arise among sectors and thus sector prices have less tendency to

deviate from the economy�s average price level (i.e. aggregate price).25 On the one hand, �rms

in "high-frequency sectors" (i.e. sectors with a small �j) adjust their prices by a smaller amount

than they would in the single-sector model because their pricing decision is in�uenced by �rms in

"low-frequency sectors" (i.e. sectors with a big �j). This imposes more rigidity on the aggregate

is perfect,  2 should be equal to 0. From the equations above, one can verify that gRH = gHH when  2 = 0. See
appendix for a detailed derivation of gHH.

23See appendix for a proof of this statement.
24The household total income, in this case, is given by Wt(i)Ht(i) + �t(i): But, because �rm pro�ts are �t(i) =

Pt(i)Yt(i)�Wt(i)Ht(i);total income is Wt(i)Ht(i)+Pt(i)Yt(i)�Wt(i)Ht(i) and thus does not depend on the industry
wage rate. The household�s labor income is canceled out by the decrease in �rm pro�ts due to labor costs.

25Nakamura and Steinsson (2009) have shown related results in a multi-sector menu cost model.
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price level. By the same logic, however, �rms in the low-frequency sectors adjust their prices by

a larger amount, which provides more �exibility to the aggregate price level. As argued earlier,

high-frequency sectors dominate the process of aggregate price adjustments. Therefore introducing

multiple sectors leads to more rigid aggregate prices and in�ation.

Introducing heterogenous households reinforces this strategic complementarity through wealth

e¤ects, as described in the introduction. To understand the mechanism, it is helpful to consider

a particular example. Suppose the economy is hit by a contractionary monetary shock.26 Since a

larger fraction of �rms in high-frequency sectors adjusts their prices, a high-frequency sector price

decreases more than a low-frequency sector price in response to the shock. Or equivalently, output

from a high-frequency sector decreases less than output from a low-frequency sector. Moreover,

because of incomplete asset markets consumption and output in the same sector respond in the

same direction. Thus households in high-frequency sectors enjoy a relatively higher consumption

level. Since households in high-frequency sectors would then have less incentive to supply labor, the

marginal costs of these �rms would increase. Therefore �rms in high-frequency sectors do not lower

their prices as much as they would have if the asset markets were complete. Although the exact

opposite process happens in low-frequency sectors, high-frequency sectors, as mentioned earlier,

dominate aggregate price dynamics. Hence the end result of wealth e¤ects is a slower decline of

price level.

The e¤ects that I just mentioned are re�ected by the shift terms in the Phillips curve. Note

that �c;t and �y;t, are weighted sums of the relative consumption levels cRj;t (� cj;t � yt) and of
the relative outputs yRj;t (� yj;t � yt) respectively. Note, sectors are not equally weighted. Since
the function g (�; �; �) is decreasing and convex in �, disproportionately larger weights are placed

on the high-frequency sectors, that is, high-frequency sectors have a larger impact on a change

in the aggregate price level. With a contractionary monetary shock, cRj;t and y
R
j;t are positive in

high-frequency sectors and negative in low-frequency sectors. However, the total e¤ects on �c;t and

�y;t would be positive since high-frequency sectors dominate.

Solving the Phillips curve forward, in�ation can be written as a weighted sum of expected future

values of the shift terms and the output gap:

�t =
1X
k=0

�kEt
�
�yt+k +�c;t+k +�y;t+k � �t+k

�
:

With the contractionary shock, output falls. In�ation, however, does not fall as much because

�c;t and �y;t are expected to rise for a time after the shock. These endogenous Phillips curve

shifters make the model "stickier" by making the response of the price level and of in�ation more

sluggish. Once again note that the mechanism discussed in this subsection does not require house-

hold heterogeneity at the industry level. Even if labor markets are segmented at the sector-level

and households are homogeneous within sectors, the endogenous shift term �c;t would still appear

in the Phillips curve and thus increase price stickiness.

26 In the introduction, I described a positive shock to �rms�productivity.
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5 Estimation and Model Comparisons

This section describes the estimation procedure and evaluates the two model economies, RH and

HH, based on the model-implied degree of nominal rigidity.
I estimate the models using Bayesian methods. A modeler�s prior belief about the structural

parameters ! can be incorporated into the estimation process by specifying a prior distribution

f(!) for these parameters. Given a data set XT , a likelihood function f(XT j!) can be obtained by
exploiting restrictions imposed by general equilibrium. The posterior distribution of !; f(!jXT )
is then determined by Bayes theorem: f(!jXT ) = f(XT j!)f(!)=

R
f(XT j!)f(!)d!: Since it is

impossible to obtain a solution for the posterior distribution analytically, I simulate this distribution

using Markov Chain Monte Carlo methods.

I chose to evaluate the models by looking at the parameters that measure nominal rigidity for two

reasons. First, comparing the nominal rigidity implied by each model is a reasonable way to quantify

the real rigidity generated endogenously. Roughly speaking, total rigidity is the sum of nominal

and real rigidities. A model with greater real rigidity requires less nominal rigidity to achieve the

total rigidity required. Consequently it can be argued that the di¤erence between the estimated

nominal rigidities in the two models is the amount of endogenous stickiness generated by the model.

The second reason is that baseline sticky-price DSGE models often require an implausibly large

degree of nominal rigidity. Thus it would be interesting to see if adding household heterogeneity

recti�es this problem.

Following the tradition in NK literature, I �rst estimate both the RH and HH models assuming
�j = �, that is, all �rms in the economy update their prices with the same frequency. I then consider

a more complicated, yet more realistic case in which nominal rigidity varies across sectors.

5.1 Single Sector

There are two ways to view the single-sector case. One can think that the economy is literally

composed of one sector (i.e. J = 1). Or one can maintain the view that the economy consists of

multiple sectors (i.e. J > 1), but the degrees of nominal rigidity are the same across the sectors.

The two di¤erent approaches give the same log-linearized equilibrium conditions.

As mentioned in a previous section, in the single-sector case, the Phillips curve has no endoge-

nous shift terms. Adding heterogeneous households only changes the expression for the slope. Thus,

we do not need to keep track of the distributions of household consumption and wealth to compute

the equilibrium dynamics of the aggregate variables. The system of equations to be estimated looks

much like the standard sticky-price models:

yt = Et[yt+1]� (rt � Et[�t+1]) +
�
t � Ett+1

�
(28)

�t = �Et�t+1 + �yt � �t (29)

yt = at + ht (30)

rt = �mrt�1 + (1� �m)
�
���t + �yyt

	
+ �t (31)
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The �rst equation (28), often called the IS equation, is obtained by integrating the log-linearized

household optimality conditions over all households and then imposing a market clearing condition;

(29) is the Phillips curve; the aggregate production function (30) is obtained by integrating the

production functions over all �rms; the last equation (31) is a log-linear approximation of the

interest rate rule and it closes the model. Note that the slope of the Phillips curve is given by

� = (1 + ') g (�; �; �). The function g(�) is model-speci�c because of the di¤erent real rigidities,
but other than that, the equilibrium conditions look identical for the RH and HH models.

Following the convention in the DSGE literature, I assume that the two preference shocks and

the technology shock follow independent AR(1) processes, while the monetary policy shock follows

an i.i.d. process (since an interest rate smoothing term is already included in (31)):0BBBB@
t

�t

at

�t

1CCCCA =

0BBBB@
� 0 0 0

0 �� 0 0

0 0 �a 0

0 0 0 0

1CCCCA
0BBBB@
t�1
�t�1
at�1

�t�1

1CCCCA+
0BBBB@
� 0 0 0

0 �� 0 0

0 0 �a 0

0 0 0 ��

1CCCCA
0BBBB@
";t

"�;t

"a;t

"�;t

1CCCCA ; (32)

where ("�;t "a;t ";t "�;t)
0 is i.i.d N (04; I4).

The system of linear equations (28)-(32) characterizes the joint distribution of f�yt; �t; rt;�htg.
I estimated the model using time series data for the United States. I used real GDP and the GDP

de�ator to construct the growth rate of aggregate output and in�ation, f�yt; �tg.27 The e¤ective
federal funds rate measures the nominal interest rate rt. Total hours from the nonfarm business

sector are used to construct the growth rate of aggregate hours. Because I have normalized the

size of the model economy to one, I divided real GDP and hours worked by the total civilian

non-institutional population over the age of 16. I then demeaned every time series. The data are

quarterly, and the sample period runs from 1954:Q3 to 2006:Q4.

Some parameters such as (�; �; '; �; �) are not well identi�ed unless I impose strong priors on

those parameters. Throughout the paper I �x (�; �; ') at conventional values. I set the discount

factor � to 0.99. The elasticity of substitution � is �xed at 6 so that a �rm�s mark-up is 20 percent. I

set ' to 1, which implies the Frisch elasticity of labor supply is 1. To my knowledge, no quantitative

analysis has been done on the parameters � and � in the literature of Bayesian DSGE models, and

thus there is no general agreement on what values are appropriate for sticky-price DSGE models.

For the single sector model, I repeated the model estimation using several alternative values of �

and �. (In the multiple sector case, I estimated these two parameters along with the other model

parameters.)

The prior and posterior distributions for the remaining parameters are summarized in Table 1.

The prior distributions are mostly standard. However unlike many earlier papers, I assume a �at

prior on �, (instead of imposing an informative prior) because � is the key parameter of interest in

27The models considered here abstract from investment decisions for simplicity and therefore, in principle I could
use Personal Consumption Expenditure (PCE) as a measure of aggregate output and the PCE price index as a
measure of aggregate price level. However, the estimattion results are almost identical with those reported in Table
1 and 2.

22



this paper. The models then have complete freedom to choose any degree of nominal rigidity that

provides the best model �t.

Once the posterior distribution of � is obtained, I also construct a posterior distribution of

duration of price contracts D; employing the relation:

D = �1= log�:

Table 2 presents the posterior means of � and D under the RH model and also under the HH
model with di¤erent sets of values for (�; �).

In the RH model, the posterior mean of duration is 4.65 quarters, with 3.32 and 6.80 being

the lower and the upper bounds of the 95% highest posterior density region (HPD). Since the true

duration is indeed less than 2 quarters, we disfavor the representative household model.

As expected, the HH model performs better than the RH model along this dimension. In

particular, the HH model with a large value of � appears to match the empirical frequency well.

With � = 1 (i.e. when household capital income is completely diversi�ed across industries), the

posterior mean is about 2.29 quarters and the 95% HPD interval is given by [1:74Q; 3:12Q] when

� = 0:1. An even smaller value of � reduces implied duration substantially. When � = 0:01 (and

� = 1), the estimated duration of price contracts in the HH model is about 2.96 quarters. This

result is not surprising given that the slope of Phillips curve is highly convex in � (see Figure 1-B).

Overall, Table 2 suggests that introducing heterogeneous households with �nancial frictions can

potentially decrease the estimated duration of price contracts substantially, coming closer to the

empirical data.

However, further analysis of appropriate values for � and � is needed. In the next section, I

attempt to address this issue using the multiple-sector models. The main reason that the single

sector exercise fails to provide information on (�; �) is that the two model economies are observa-

tionally equivalent. The only di¤erence between the RH and HH models�equilibrium conditions is

the functional form of the slope of Phillips curve �. Since we allow � to vary freely, we are unable

to identify �, � and � separately since these parameters enter only one reduced form parameter, �.

This will no longer be the case with the multiple sector models as � and � will also a¤ect dynam-

ics at the sector level in addition to aggregate dynamics, which provides an additional source of

identi�cation. In the single sector environment, I arbitrarily set (�; �) = (1; 0:1) as the benchmark

and, for illustrative purpose, show the posterior densities of the degree of nominal rigidity and price

durations in Figure 3.

5.2 Multiple Sectors

In this exercise, I relaxed the restriction that every sector updates prices at the same frequency. I

then estimate the sector "infrequencies" f�1; �2;:::; �Jg and the implied durations fD1; D2;:::; DJg.
An aggregate (or average) frequency and/or duration can then be computed based on these esti-

mates.

23



As seen earlier, in the case of multiple sectors, the Phillips curve contains two endogenous shift

terms �c;t and �y;t, which makes studying equilibrium aggregate dynamics much more challenging

computationally. To compute the endogenous shift terms, we should keep track of the cross-sector

distributions of consumption and output, which in turn, can be computed only if we know the

evolution of sector level in�ation and bond holdings. Put di¤erently, we have to know the time

path of the sector variables
n
cRj;t; y

R
j;t; b

R
j;t; �j;t

oJ
j=1

and the sector weights fnjgJj=1 to obtain the
equilibrium dynamics of the aggregate variables, fyt; �t; rt; htg.

It is straightforward to show the following 4+(4� J) equations determine the equilibrium path
of the aggregate variables fyt; �t; rt; htg and the sector variables

n
cRj;t; y

R
j;t; b

R
j;t; �j;t

oJ
j=1
:

rt = �mrt�1 + (1� �m)
�
���t + �yyt

	
+ �t (33)

yt = Et[yt+1]� (rt � Et[�t+1]) +
�
t � Ett+1

�
(34)

yt =
�X

njaj;t

�
+ ht (35)

�t = �Et [�t+1] + �yt +
nX

njgjc
R
j;t

o
+
n�
'+ ��1

�X
njgjy

R
j;t

o
� �t (36)

bRj;t = ��1bRj;t�1 + {1yRj;t � {2cRj;t � {3aRj;t + {4dRj;t (37)

cRj;t = Etc
R
j;t+1 + 2�b

R
j;t; (38)

yRj;t = yRj;t�1 � � (�j;t � �t) + �dRj;t; (39)

�j;t = �Et�j;t+1 + gj

�
(1 + ') yt +

�
'+

1

�

�
yRj;t + c

R
j;t � (1 + ') aj;t � '�t �

1

�
dRj;t

�
(40)

The �rst four equations (33)-(36) are identical to those in the single-sector models except for the

presence of endogenous shift terms.28 The remaining (4� J) equations determine simultaneously
the dynamics of aggregate as well as sector variables.

In the system of equilibrium conditions above, the HH model di¤ers from the RH model in

two places. First, as in the single-sector case, the slope of the Phillips curve is di¤erent. As shown

before, the slope � has a smaller value in the HH model for a given nominal rigidity. Second, in

the RH model, (37) and (38) become irrelevant since it trivially holds that cRj;t = b
R
j;t = 0.

Similarly to aggregate shocks, the sector level shocks are assumed to follow AR(1) processes:

aj;t = �a;jaj;t�1 + �a;j"a;j;t; "a;j;t
i:i:d� N(0; 1)

dj;t = �d;jdj;t�1 + �d;j"d;j;t; "d;j;t
i:i:d� N(0; 1).

Before estimating the models, I present impulse responses to a monetary shock, at some �xed

parameter values, in Figure 2, to study the dynamic properties of the models. The aim is to

28For a shorter notation, I use gj to denote g(�j ; �; �). Also {1, {2, {3 and {4 are positive constants: {1 =
� (1 + ')

�
��1
�

�
+ (1� �)

�
��1
�

�
, {2 = 1� �

�
��1
�

�
, {3 = � (1 + ')

�
��1
�

�
, and {4 = (1� �) 1

�
.
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investigate the e¤ect of introducing household heterogeneity on the dynamics of the aggregate

and sector-level variables, if the two models are parameterized at the same values.29 The impulse

responses con�rm the theoretical results summarized in Proposition 2 and 3: (i) aggregate output

responds more and in�ation responds less to a monetary shock in the HH model than in the

RH model; (ii) the HH model generates stronger comovements among sector outputs and sector

in�ation.30

I estimated the models using sector-level and aggregate time series data for the United States.

In addition to the aggregate time series f�yt; �t; rt;�htg, I include in the set of observables the
growth rate of sector outputs and of sector price indices f�yj;t; �j;tgJj=1. I use PCE as a measure of
output and the corresponding price de�ator as a measure of the price index. The PCE is divide into

3 categories: durable goods, nondurable goods, and services, and these categories are disaggregated

further into 13 sectors, each of which are then divided into smaller sub-sectors. Although there

may be some value in estimating the models with more disaggregated variables as in Boivin et

al. (2009), I chose to estimate the models with the 13 sectors for computational reasons. Table

3 presents those 13 sectors. The sector weights in the table are the expenditure weights averaged

over the sample period of 1954:Q3-2006:Q4.31

The prior distributions are summarized in Table 4. Since no quantitative analysis has been

done on the parameters � and � in the literature on Bayesian DSGE models, I chose the prior

distributions for � and � based on information from the single-sector empirical exercise. The prior

mode and mean for � are set to 0.875 and 0.7 respectively. A relatively large value for � is based

on the result that a larger value of �, in the single-sector HH model, is necessary to match the

empirically reasonable frequency of price adjustments. Given the large values of �, values around

0.1 work best for � in matching the empirical frequency in the single sector model. I thus set

the prior mode and mean for � to 0.09 and 0.1 respectively. Note that since this choice of prior

distributions is based solely on the dynamic properties of the single-sector HH model and the

multiple-sector HH model has di¤erent dynamics, similar values of � and � will not necessarily do

a good job in the multiple-sector model. The AR coe¢ cient and innovation parameters of sector

shocks have the same prior distributions as those of the aggregate shocks. I set the prior mean of

the cross-sector elasticity of substitution � to 1 so that �nal goods producers have a Cobb-Douglas

production function. As in the single sector case, the key parameters of interest are the Calvo

parameters. I thus assume a �at prior for each �j . Finally, the sector weights fnjg follow the

values in Table 3.

29For this exercise, I divide the economy into 5 sectors with same size. The Calvo parameters are assigned as
f0:1; 0:3; 0:5; 0:7; 0:9g. Parameterizations for the remaining parameters relevant for this exercise are summarized in
the following table:

� ' � � " �� �y �m ��
0.99 1 1 1 0.1 1.3 0.125 0.9 0.25

.

Alternative sets of parameter values do not change the impulse responses qualitatively.
30 Impulse responses to other shocks shows the same dynamics qualitatively, and thus they are omitted.
31Note that the model imposes the structural relationships :yt =

PJ
j=1 njyj;t and �t =

PJ
j=1 nj�j;t. This suggests

that, in estimating the models, the aggregate variables yt and �t are redundant if I include all the sectoral counterparts
in the observables. Hence I drop the two aggregate variables in actual estimation.

25



The posterior means and the 95% HPD of the model parameters, except the sector frequencies,

are presented in Table 4. The means and 95% HPD of the Calvo parameters f�jg and durations of
price contracts that are implied by the estimated f�jg, are presented in Table 5. In addition, Table
6 and 7 compare the nominal rigidities estimated in the models to their empirical counterparts. The

model-implied durations in Table 6 are constructed in the following way. For the mean duration,

I �rst obtain the posterior distribution of �� =
P13
j=1 nj�j , the weighted mean of "infrequencies"

of price changes. With the posterior distribution of ��, the posterior distribution of the mean

duration �D is then obtained employing the relation �D = �1= log(��). The posterior distributions
of the durations in durable, non-durable, and service sectors are computed in a similar way.32

The empirical counterparts are based on BK, which are denoted by DBK .33 To be consistent, I

computed the empirical durations in the same way: I �rst take ��, the weighted mean of the sector

"infrequencies" reported in BK, and then compute the corresponding duration by �D = �1= log(��).
Figure 4 is a graphical representation of Table 6, presenting the posterior densities of the model-

implied durations for 3 broad sectors as well as for the whole economy along with their empirical

counterparts. Table 7 reports the model-implied and empirical durations for more disaggregated

sectors. BK and NS have used the consumption categories constructed by the Bureau of Labor

Statistics, which do not exactly match the consumption categories in the PCE. There are however

some comparable categories, and they are reported in Table 7.34

Some observations from Figure 4, Table 6 and Table 7 are worth mentioning. First, allowing

di¤erent degrees of nominal rigidity across sectors has non-trivial implications for estimating the

frequency of price changes, even when one�s interest is primarily the aggregate frequency/duration

as in many earlier papers on real rigidity. In both the RH and HH models, the estimated mean

durations are much smaller using multiple sectors relative to the single-sector case: they are 1.74

and 1.39 quarters respectively. Second, the HH model is broadly consistent with empirical evidence
of frequency of price changes not only at the aggregate but also at the sector level. Moreover, along

this dimension, Figure 4 and Table 6 suggest that the HH model performs better than the RH
model. However, the RH model is not far worse. With multiple sectors, the RH model becomes

much closer to the HH model in matching the empirical frequencies. It is somewhat surprising that

these sticky-price DSGE models with their many strong and implausible assumptions, can match

reasonably well the empirical cross-sector distribution of frequencies while �tting major U.S. time

series data.35

32For instance, the posterior distribution of the durable-sector duration can be obtained by taking posterior draws

of �1= log(~�), where ~� =
P3
j=1 nj�jP3
j=1 nj

:
33DBK are obtained excluding observations with item substitutions.
34The empirical durations from BK and NS in Table 6 and 7 are the ones estimated including observations with

temporary sales. There is no consensus yet whether the temporary sales should be included for macroeconomic
analyses. Therefore, DBK and DNS in Table 6 and 7, can be a conservative criteria.

35However, the models perform relatively poorly in capturing the dynamics of the durable sector with empirically
plausible price stickiness. This suggests that treating household consumption behavior symmetrically for durable and
non-durable goods might not be a good modeling strategy if disaggregated variables are your focus. Also, perhaps
not surprisingly, as the level of disaggregation of sectors increases, the match between model-implied and empirical
frequencies at the sector level becomes less accurate. Besides highly stylized nature of the models, it may be due to
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There are two main reasons that the multiple-sector models do a better job than their single-

sector counterparts in accounting jointly for persistent aggregate dynamics and for relatively �exible

prices. The �rst is a statistical property of the time series data, the other comes from the theoreti-

cal properties of this sticky-price DSGE models. First of all, in general, sector level in�ation is far

less persistent than aggregate in�ation as shown in Figure 5.36 Aggregate in�ation is more persis-

tent because the idiosyncratic components in each sector�s in�ation rate are averaged out through

aggregation. Since I include the sector level time series data in the observables in estimating the

multiple-sector models, it is not so surprising that the estimated sector level nominal rigidities in

the models are small.37 Unlike sector in�ation rates, however, aggregate in�ation is very persistent

as mentioned above. Why do the models not need large nominal rigidities to account for the per-

sistent aggregate dynamic? As discussed in a previous section, introducing multiple sectors with

di¤erent price stickiness endogenously increases the persistence of aggregate variables by creating a

shift term in Phillips curve. Moreover introducing heterogeneous households into a multiple sector

environment, ampli�es this mechanism by adding another shift term. Thanks to this theoretical

property of the models, there is no need for a large degree of nominal rigidity at the sector level

to account for persistent aggregate dynamics. The estimation scheme used in this paper e¤ectively

takes this theoretical property into account by using the models�entire set of general equilibrium

e¤ects. Figure 6 is the theoretical counterpart of Figure 5, presenting the autocorrelation of ag-

gregate and sector in�ation rates implied by the models using estimated parameter values (the

parameters are set to their posterior means). It shows that the models are able to explain the joint

phenomena of persistent aggregate in�ation and less persistent sector in�ation.

5.3 Some Additional Observations for Multiple-Sector Models

The log marginal likelihoods of the RH and HH models are �8335:2 and �8291:4 respectively,
which leads to the posterior odds ratio (or Bayes factor) of exp(43:8) in favor of the HH model.

The result suggests the heterogeneous household model is better at explaining the joint dynamics

of aggregate and sector level U.S. time series data. The magnitude of the posterior odds ratio is

not small statistically. However, the di¤erence may not be economically signi�cant. Investigating

if the HH model is systematically better in any economic sense and studying what feature of the

HH model is responsible for the improved �t, is beyond the scope of this paper, but o¤ers an

opportunity for future research.

The two estimated multiple-sector DSGE models have some common features worth mentioning.

First, sector shocks seem to be more volatile than aggregate shocks on average. Second, many sector

shocks are as persistent as the aggregate shocks. Third, the volatilities of sector demand shocks

the fact that the empirical frequencies in BK and NS are based on limited sample and hence sampling issues becomes
more pronounced for highly disaggregated sectors.

36The autocorrelation function of aggregate in�ation is presented in a dotted black line and those of sector level
in�ation are presented in solid lines.

37While the fact, that sector in�ation rates are not persistent, might explain the overall small estimated values for
the model-implied durations at the sectoral level, it does not necessarily explain why the estimated sector-by-sector
model-implied durations match well the empirical counterparts.
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and sector price change frequencies are positively correlated. This suggests that �rms in the sectors

with more volatile demand shocks tend to adjust prices more frequently. All three features may not

be too surprising. On the other hand, estimation result implies �rms in sectors with less volatile

supply shocks tend to change prices more frequently, which is somewhat counter-intuitive. I suspect

that the data fail to correctly identify sector technology shocks aj;t as average labor productivity

since the observables do not include sector level labor data. The shocks therefore serve only as

a residual in the sector Phillips curves without much economic meaning (see the equation (40)).

However, since the coe¢ cient on aj;t is given by g (�j ; �; �) (1 + '), which is decreasing in �j , the

residual aj;t in a low-frequency sector has a small coe¢ cient. To compensate for this, aj;t �uctuates

more widely in low-frequency sectors, which leads to the negative correlation. This issue deserves

further investigation.

In addition to the frequency of price changes, the �nancial friction parameters (�; �), are of

interest. These are potentially identi�able as they are associated with the magnitude of comovement

among sectors. The parameter � appears to be well identi�ed. Its posterior mean is 0.12, which

suggests that a smaller value of � is needed in the multiple-sector case because heterogeneous

sectors have already generated large real rigidity, and a larger value of � would induce too much

comovement among sectors. On the other hand, the data does not provide much information for �,38

which suggests an additional source of identi�cation is needed.39 Having household consumption

and wealth data at the sector level would solve the identi�cation problem; another opportunity for

future research.

6 Conclusion

In sum, this paper shows that relaxing the representative-household assumption in sticky-price

DSGE models can a¤ect equilibrium dynamics nontrivially by increasing the degree of real rigidity

through wealth e¤ects on labor supply. To quantify the importance of household heterogeneity

in amplifying price stickiness, I estimated a representative household and a heterogeneous house-

hold model and compared them by looking at the model-implied frequency of price changes. The

quantitative exercise shows that introducing household heterogeneity can improve the sticky-price

models�consistency with micro-level empirical evidence on nominal rigidity.

Looking forward, an interesting study building on this paper, would investigate if the household

heterogeneity introduced here could also solve another well-known puzzle: the large elasticity of ag-

gregate labor supply vs. the small elasticity of individual labor supply. This paper has shown that

idiosyncratic wealth e¤ects lead to a smaller individual labor supply elasticity. The idiosyncratic

wealth e¤ects, however, would cancel each other out through aggregation across households. There-

fore aggregate labor supply elasticity need not be identical to individual labor supply elasticity, and
38The posterior mean of � is a little larger than its prior mean, but the standard error in the posterior is also

larger.
39When I �x � to one, � is well identi�ed as it becomes the main parameter that controls sector comovement. As

expected, the estimated � turns out to be very small (around at 0.001) for the same reason that estimated � is small
when � is not �xed.
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the former would be larger than the latter. If this is indeed the case, household heterogeneity would

provide a single mechanism that could simultaneously resolve two important contradictions between

micro and macro observations, on price rigidity and labor supply elasticity.

Boivin, Giannoni, and Mihov (2009) have documented interesting empirical evidence on the

dynamics of aggregate and sector prices. While their focus is empirical, the model developed here

naturally provides a structural framework for similar analysis with its multiple sectors and aggregate

and sector-speci�c shocks. Current work is moving forward in this direction.40

The model has a testable implication: other things being equal, the business cycles of a country

with larger �nancial frictions should be more persistent and volatile. The model thus proposes an

explanation as to why developing countries often experience more prolonged and severe business

cycles than developed countries. A careful cross-country empirical analysis would be an interesting

project.

Finally, the model developed here can provide a tool to study the implications of imperfect

consumption insurance among heterogeneous households for optimal monetary policy. Investigating

these policy and welfare implications would be another area for future research.

40This is a joint project with Carlos Carvalho (Federal Reserve Bank of NY). Boukaez et al (2009) is another
related paper along this line.
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Appendix

A Tables

Table 1: Prior and Posterior Distributions (Single-Sector)
prior distribution prior mean (std) posterior mean & 95% HPD

�� Gamma 1.3 (0.2) 1.5645 [1.3884, 1.7632]
�y Gamma 0.125 (0.1) 0.0701 [0.0363, 0.1111]
�� Beta 0.75 (0.15) 0.7595 [0.7199, 0.7945]
�a Beta 0.6 (0.2) 0.9150 [0.8819, 0.9437]
� Beta 0.6 (0.2) 0.9481 [0.9226, 0.9715]
�� Beta 0.6 (0.2) 0.8329 [0.7696, 0.8926]
�� Inverse Gamma 0.25 (0.2) 0.2677 [0.2444, 0.2933]
�a Inverse Gamma 3 (3) 1.2995 [1.1996, 1.4078]
� Inverse Gamma 3 (3) 3.3827 [2.3751, 4.9798]
�� Inverse Gamma 3 (3) 11.0105 [6.2723, 16.7307]
� Uniform (0; 1) 0.5 (0.25) see Table 2

Table 2: Posterior Distribution of In-frequency and Duration (Single-Sector)
�, In-Frequncy D, Duration (quarters)

RH 0.8065 [0.7393, 0.8632] 4.65 Q [3.32, 6.80]
HH (� = 1; � = 0:1)

benchmark
0.6464 [0.5630, 0.7259] 2.29 Q [1.74, 3.12]

HH (� = 1; � = 0:01) 0.7134 2.96 Q
HH (� = 1; � = 0:1) 0.6464 2.29 Q
HH (� = 1; � = 1) 0.5530 1.69 Q
HH (� = 1; � = 10) 0.5155 1.51 Q
HH (� = 0; � = 0:01) 0.7699 3.81 Q
HH (� = 0; � = 0:1) 0.7555 3.56 Q
HH (� = 0; � = 1) 0.7497 3.47 Q
HH (� = 0; � = 10) 0.7487 3.45 Q

Table 3: Sectors and Weights
j Sectors Weights (nj)
1 Motor vehicles and parts 4.91
2 Furniture and household equipment 2.52
3 Other durable goods 1.71
4 Food 18.94
5 Clothing and shoes 3.69
6 Gasoline, fuel oil, and other energy goods 4.21
7 Other nondurable goods 7.96
8 Housing 16.18
9 Household operation 5.63
10 Transportation 4.19
11 Medical care 14.37
12 Recreation 2.91
13 Other services 12.77

Total 100%
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Table 4: Prior and Posterior Distributions (Multiple Sectors)

prior distribution prior mean (std)
RH model

posterior mean & 95% HPD
HH model

posterior mean & 95% HPD
�� Gamma 1.3 (0.2) 1.4544 [1.3248, 1.5980] 1.4446 [1.3150, 1.5929]
�y Gamma 0.125 (0.1) 0.0174 [0.0062, 0.0312] 0.0148 [0.0074, 0.0241]
�� Beta 0.75 (0.15) 0.6576 [0.6078, 0.7098] 0.6521 [0.6021, 0.7051]
� Beta 0.6 (0.2) 0.9753 [0.9621, 0.9848] 0.9771 [0.9638, 0.9869]
�� Beta 0.6 (0.2) 0.9908 [0.9834, 0.9975] 0.9930 [0.9861, 0.9981]
�� Inverse Gamma 0.25 (0.25) 0.2960 [0.2658, 0.3268] 0.3014 [0.2750, 0.3335]
� Inverse Gamma 3 (3) 3.0341 [2.0664, 4.1045] 3.1918 [2.1870, 4.4487]
�� Inverse Gamma 3 (3) 2.0948 [1.9111, 2.3306] 2.0631 [1.9052, 2.2456]
� Gamma 1 (0.25) 0.7664 [0.6982, 0.8402] 1.3068 [1.1796, 1.4030]
� Beta 0.7 (0.2) NA 0.1202 [0.0262, 0.1792]
� Gamma 0.1 (0.03) NA 0.1464 [0.0204, 0.2859]
�a;1 Beta 0.6 (0.2) 0.8682 [0.8155, 0.9211] 0.9156 [0.8764, 0.9540]
�a;2 Beta 0.6 (0.2) 0.9835 [0.9674, 0.9951] 0.9881 [0.9781, 0.9972]
�a;3 Beta 0.6 (0.2) 0.8354 [0.7665, 0.9070] 0.8732 [0.8073, 0.9341]
�a;4 Beta 0.6 (0.2) 0.9086 [0.8731, 0.9396] 0.9311 [0.8996, 0.9599]
�a;5 Beta 0.6 (0.2) 0.8569 [0.8076, 0.9058] 0.8263 [0.7631, 0.8864]
�a;6 Beta 0.6 (0.2) 0.9757 [0.9552, 0.9929] 0.9821 [0.9630, 0.9947]
�a;7 Beta 0.6 (0.2) 0.9454 [0.9109, 0.9747] 0.9627 [0.9384, 0.9862]
�a;8 Beta 0.6 (0.2) 0.9824 [0.9583, 0.9954] 0.9886 [0.9775, 0.9966]
�a;9 Beta 0.6 (0.2) 0.8931 [0.8343, 0.9553] 0.8891 [0.8370, 0.9380]
�a;10 Beta 0.6 (0.2) 0.9696 [0.9403, 0.9925] 0.9733 [0.9519, 0.9927]
�a;11 Beta 0.6 (0.2) 0.9517 [0.9271, 0.9779] 0.9588 [0.9377, 0.9793]
�a;12 Beta 0.6 (0.2) 0.8893 [0.8351, 0.9457] 0.9112 [0.8658, 0.9690]
�a;13 Beta 0.6 (0.2) 0.8398 [0.7831, 0.8892] 0.8543 [0.8101, 0.8949]
�d;1 Beta 0.6 (0.2) 0.7177 [0.6573, 0.7819] 0.6668 [0.6053, 0.7241]
�d;2 Beta 0.6 (0.2) 0.9753 [0.9556, 0.9933] 0.9608 [0.9327, 0.9855]
�d;3 Beta 0.6 (0.2) 0.9240 [0.8856, 0.9596] 0.9275 [0.8939, 0.9588]
�d;4 Beta 0.6 (0.2) 0.9758 [0.9537, 0.9937] 0.9834 [0.9675, 0.9959]
�d;5 Beta 0.6 (0.2) 0.8712 [0.8156, 0.9229] 0.9799 [0.9596, 0.9965]
�d;6 Beta 0.6 (0.2) 0.9760 [0.9561, 0.9934] 0.9828 [0.9644, 0.9961]
�d;7 Beta 0.6 (0.2) 0.9871 [0.9763, 0.9967] 0.9862 [0.9766, 0.9964]
�d;8 Beta 0.6 (0.2) 0.9776 [0.9556, 0.9957] 0.9751 [0.9414, 0.9939]
�d;9 Beta 0.6 (0.2) 0.9442 [0.9127, 0.9769] 0.9619 [0.9358, 0.9854]
�d;10 Beta 0.6 (0.2) 0.9466 [0.9018, 0.9817] 0.9367 [0.8896, 0.9766]
�d;11 Beta 0.6 (0.2) 0.9908 [0.9816, 0.9975] 0.9865 [0.9703, 0.9967]
�d;12 Beta 0.6 (0.2) 0.9685 [0.9478, 0.9878] 0.9649 [0.9367, 0.9861]
�d;13 Beta 0.6 (0.2) 0.9420 [0.9103, 0.9728] 0.9040 [0.8517, 0.9543]
�a;1 Inverse Gamma 3 (3) 5.9218 [4.9913, 7.0129] 6.9584 [6.0268, 7.9933]
�a;2 Inverse Gamma 3 (3) 4.3581 [3.2713, 5.8067] 4.4731 [3.5550, 5.5924]
�a;3 Inverse Gamma 3 (3) 8.9397 [6.3958, 11.6060] 9.2567 [6.8493, 13.1550]
�a;4 Inverse Gamma 3 (3) 1.8594 [1.5873, 2.1313] 1.6962 [1.4690, 2.0037]
�a;5 Inverse Gamma 3 (3) 5.3915 [4.1478, 6.8178] 5.0128 [4.0896, 6.2935]
�a;6 Inverse Gamma 3 (3) 3.2209 [2.8756, 3.6376] 1.9048 [1.7545, 2.0786]
�a;7 Inverse Gamma 3 (3) 2.8096 [2.1465, 3.6233] 2.3937 [1.8842, 2.9691]
�a;8 Inverse Gamma 3 (3) 2.0141 [1.6857, 2.5392] 1.8656 [1.6229, 2.1155]
�a;9 Inverse Gamma 3 (3) 3.2699 [2.5499, 4.1379] 3.6611 [2.9248, 4.3750]
�a;10 Inverse Gamma 3 (3) 1.2322 [1.1138, 1.3573] 1.2955 [1.1786, 1.4270]
�a;11 Inverse Gamma 3 (3) 2.0037 [1.6736, 2.3966] 2.0924 [1.8156, 2.4322]
�a;12 Inverse Gamma 3 (3) 5.1175 [3.5623, 7.5629] 5.1796 [4.0211, 6.6388]
�a;13 Inverse Gamma 3 (3) 2.2275 [1.8899, 2.6483] 2.2759 [1.9704, 2.6387]
�d;1 Inverse Gamma 3 (3) 6.2365 [5.7256, 6.8163] 6.2837 [5.8251, 6.7771]
�d;2 Inverse Gamma 3 (3) 1.4525 [1.3399, 1.5678] 1.4302 [1.3262, 1.5470]
�d;3 Inverse Gamma 3 (3) 2.1954 [2.0034, 2.3916] 2.1920 [2.0190, 2.3753]
�d;4 Inverse Gamma 3 (3) 0.6440 [0.5812, 0.7078] 0.8447 [0.7507, 0.9459]
�d;5 Inverse Gamma 3 (3) 1.0735 [0.9873, 1.1632] 1.1080 [1.0083, 1.2177]
�d;6 Inverse Gamma 3 (3) 3.3325 [2.9423, 3.7816] 5.9144 [5.1244, 6.8166]
�d;7 Inverse Gamma 3 (3) 0.7561 [0.6785, 0.8468] 0.7867 [0.7136, 0.8699]
�d;8 Inverse Gamma 3 (3) 0.5444 [0.4870, 0.5987] 0.6104 [0.5427, 0.6866]
�d;9 Inverse Gamma 3 (3) 1.4792 [1.3667, 1.5960] 1.6268 [1.4946, 1.7637]
�d;10 Inverse Gamma 3 (3) 2.0892 [1.9064, 2.2694] 2.9030 [2.6296, 3.2066]
�d;11 Inverse Gamma 3 (3) 0.9742 [0.9004, 1.0499] 1.0492 [0.9547, 1.1435]
�d;12 Inverse Gamma 3 (3) 1.4949 [1.3759, 1.6245] 1.4817 [1.3552, 1.6184]
�d;13 Inverse Gamma 3 (3) 1.1212 [1.0135, 1.2236] 1.2046 [1.1053, 1.3013]
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Table 5: Posterior Distribution of In-frequency and Duration of Price Contracts
RH model HH model

Sectors �j DRH
j �j DHH

j

1. Motor vehicles and parts
0.6334

[0.6034, 0.6629]
2.23 Q

[1.98, 2.51]
0.5922

[0.5620, 0.6377]
1.96 Q

[1.74, 2.19]

2. Furniture and household equipment
0.8076

[0.7675, 0.8466]
5.26 Q

[3.81, 7.01]
0.7449

[0.6969, 0.7939]
3.70 Q

[2.86, 4.63]

3. Other durable goods
0.7712

[0.7407, 0.8012]
4.00 Q

[3.42, 4.63]
0.7246

[0.6827, 0.7730]
3.31 Q

[2.82, 3.88]

4. Food
0.4465

[0.3933, 0.4947]
1.26 Q

[1.08, 1.46]
0.3347

[0.2880, 0.3979]
0.98 Q

[0.84, 1.13]

5. Clothing and shoes
0.6795

[0.6379, 0.7229]
2.82 Q

[2.30, 3.38]
0.5733

[0.5288, 0.6181]
1.98 Q

[1.66, 2.34]

6. Gasoline, fuel oil, and other energy goods
0.0132

[0.0010, 0.0349]
0.23 Q

[0.15, 0.31]
0.0047

[0.0004, 0.0117]
0.19 Q

[0.12, 0.22]

7. Other nondurable goods
0.7065

[0.6576, 0.7496]
2.96 Q

[2.45, 3.48]
0.5920

[0.5296, 0.6513]
2.09 Q

[1.69, 2.56]

8. Housing
0.7408

[0.7036, 0.7748]
3.48 Q

[2.86, 4.16]
0.6364

[0.5986, 0.6747]
2.42 Q

[2.03, 2.84]

9. Household operation
0.5830

[0.5349, 0.6333]
1.94 Q

[1.64, 2.23]
0.5181

[0.4720, 0.5639]
1.58 Q

[1.36, 1.81]

10. Transportation
0.0278

[0.0106, 0.0486]
0.28 Q

[0.22, 0.33]
0.0668

[0.0507, 0.0849]
0.37 Q

[0.34, 0.41]

11. Medical care
0.6486

[0.6097, 0.6912]
2.39 Q

[2.02, 2.78]
0.5694

[0.5278, 0.6169]
1.88 Q

[1.64, 2.14]

12. Recreation
0.6981

[0.6401, 0.7486]
2.87 Q

[2.32, 3.49]
0.6386

[0.5848, 0.6821]
2.33 Q

[1.90, 2.85]

13. Other services
0.4475

[0.3985, 0.4941]
1.27 Q

[1.11, 1.44]
0.3703

[0.3231, 0.4198]
1.06 Q

[0.94, 1.19]

Table 6: Model-implied vs. Empirical durations I
DRH DHH DBK

Mean
1.74 Q

[1.61, 1.88]
1.39 Q

[1.30, 1.53]
1.24 Q

-Durable
3.01 Q

[2.68, 3.31]
2.49 Q

[2.24, 2.78]
1.24 Q

-Nondurable
1.38 Q

[1.25, 1.53]
1.07 Q

[0.98, 1.19]
1.04 Q

-Service
1.87 Q

[1.71, 2.04]
1.53 Q

[1.40, 1.67]
1.55 Q

Table 7: Model-implied vs. Empirical durations II
j Sectors DRH DHH DBK DNS

2 Furniture and household equipment
5.26 Q

[3.81, 7.01]
3.70 Q

[2.86, 4.63]
1.09 Q* 1.5 Q*

4 Food
1.26 Q

[1.08, 1.46]
0.98 Q

[0.84, 1.13]
1.14 Q 0.81 Q**

5 Clothing and shoes
2.82 Q

[2.30, 3.38]
1.98 Q

[1.66, 2.34]
0.97 Q 0.93 Q

6 Gasoline, fuel oil, and other energy goods
0.23 Q

[0.15, 0.31]
0.19 Q

[0.12, 0.22]
0.17 Q***

10 Transportation
0.28 Q

[0.22, 0.33]
0.37 Q

[0.34, 0.41]
0.67 Q 1.33 Q

11 Medical care
2.39 Q

[2.02, 2.78]
1.88 Q

[1.64, 2.14]
3.38 Q 4.44 Q

12 Recreation
2.87 Q

[2.32, 3.49]
2.33 Q

[1.90, 2.85]
2.78 Q 2.26 Q

Note: *Home Furnishing, **Weighted average of processed and unprocessed food, ***Vehicle Fuel
DRH : durations of price contracts estimated in the RH model.
DHH : durations of price contracts estimated in the RH model.
DBK : durations of price contracts reported in Bills and Klenow (2004).
DNS : durations of price contracts reported in Nakamura and Steinsson (2008).
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B Figures

Figure 1: Comparison of slopes
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1-B plots gRH (�) and gHH(�; �; �) for � 2 (0; 0:5) while � is �xed at 1.

1-C plots gRH (�) and gHH(�; �; �) for � 2 (0; 1) while � is �xed at 0.1.
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Figure 2: Impulse responses to a contractionary monetary shock
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Notes: 2-A and 2-B show impulse responses of aggregate output and in�ation to a monetary shock

2-C and 2-F show impulse responses of sectoral outputs and in�ations to a monetary shock
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Figure 3: Posterior density of � and D in single-sector economies.
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Figure 5: Autocorrelations of aggregate and sectoral in�ations
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Figure 6: Estimated autocorrelations of aggregate and sectoral in�ations implied by the models
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autocorrelation functions are plotted at the posterior mean.
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C Proofs

C.1 Proof of Proposition 1

The equilibrium conditions can be reduced to

P (i)

P
= #C(i); (41)

C(i) = �Y + (1� �)

�
P (i)

P

�1��
Y; (42)

P =

�Z 1

0

P (i)1��di

� 1
1��

; (43)

M = PY: (44)

(41) is a �rm�s optimality condition that equates the �rm�s price with marginal cost multiplied by mark-up; (42) is

a household budget constraint after substituting out its incomes with other optimality conditions. Combining (41)

and (42) gives

PR(i) = �#Y + (1� �)#Y PR(i)1��; (45)

where PR(i) � P (i)
P

is �rm i�s relative price. Note (45) is the same equation as (10) in section 2, and the equation

should hold for all i. Thus for any arbitrary i1 and i2 in [0; 1], it must be true that

PR(i1)� PR(i2) = (1� �)#Y

(�
1

PR(i1)

���1
�
�

1

PR(i2)

���1)
: (46)

Note that both (1� �)#Y and (� � 1) are positive. Therefore, it is not possible that either PR(i1) > PR(i2) or

PR(i1) < PR(i2) while satisfying (46). The only case consistent with the equation (46) is PR(i1) = PR(i2), and

hence P (i1) = P (i2): Then it should be that P (i) = P; 8i 2 [0; 1] from (43) and that C(i) = Y from (42). Finally

from (41) and (44), it can be obtained that Y = 1=# and P = #M:

C.2 Proof of Proposition 2

Let M > �M . If PIC � #M , then we have

PIC =

 
n

�
[#M ]

1
� P

��1
�

IC

�1��
+ (1� n)

�
# �M

�1��! 1
1��

�
�
nP 1��

IC + (1� n)
�
# �M

�1��� 1
1��

<
�
nP 1��

IC + (1� n)P 1��
IC

� 1
1��

�
* �M < M � PIC

#

�
= PIC ,

which cannot be true. Therefore it must be that PIC < #M: Then we have

PIC =

 
n

�
[#M ]

1
� P

��1
�

IC

�1��
+ (1� n)

�
# �M

�1��! 1
1��

<

�
n
h
(#M)

1
� [#M ]

��1
�

i1��
+ (1� n)

�
# �M

�1��� 1
1��

=
�
n [#M ]1�� + (1� n)

�
# �M

�1��� 1
1��

= PC <
�
n [#M ]1�� + (1� n) [#M ]1��

� 1
1��

= #M = PF :

Therefore, it has been shown that

PIC < PC < PF :

From Y =M=P , it is also true that

YIC > YC > YF :
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C.3 Proof of Proposition 3

The result in this proposition is a direct implication of Proposition 2. Taking log in the demand function (3), we get

log Y1 � log Y = ��(logP1 � logP ) and log Y2 � log Y = ��(logP2 � logP );

where P1 and P2 are common prices, set by �rms, that correspond to Y1 and Y2 respectively. Subtracting the second

equation from the �rst, and then taking absolute values on both sides, we get jlog Y1 � log Y2j = � jlogP1 � logP2j.
Since P2 responds less to a shock under incomplete markets, jlogP1 � logP2j is smaller, and so is jlog Y1 � log Y2j.
Therefore jY1 � Y2j is also smaller under incomplete markets.

C.4 Proof of Proposition 4 (Derivation of Phillips Curve)

Since the dynamics of relative consumption and bond holding play important roles in �rms�pricing decisions, I �rst

present the household optimality conditions. Log-linearizing the household Euler equation and budget constraint,

and then expressing them in terms of relative consumption, relative bond holding, and relative price yields

cRj;t(i) = Et
h
cRj;t+1(i)

i
+ 2�bRj;t(i)

cRj;t(i) = � 1b
R
j;t(i) + ��1 1b

R
j;t�1(i)�  2p

R
j;t(i);

where

 1 �
�
1� �

�
� � 1
�

���1
and  2 � (� � 1) f� (1 + ') + (1� �)g 1;

and � � ~�=PY .41 Combining the �rst and the second equations, I can substitute out type-i household�s relative

consumption cRj;t(i), which gives an equation that describes the dynamics of a household�s relative bond holding given

the relative price:

Et

�
bRj;t+1(i) +

�
��1 � 1� 2�

 1

�
bRj;t(i) + ��1bRj;t�1(i)

�
=
 2
 1
Et
h
pRj;t+1(i) + pRj;t(i)

i
(47)

Turning to �rms, the log-linearized �rst order condition of a �rm that sets its price at time t is

Êi
t

1X
k=0

(�j�)
k �p�j;t(i)� pt+k

	
= Êi

t

1X
k=0

(�j�)
kmcj;t+k(i):

The expectation operator, Êi
t is distinct from Et as emphasized in Woodford (2005): Êi

t is type-i �rm�s expectation

at time t conditioned on its own price remaining unchanged for the entire future period from time t onwards. Because

households and �rms are so small in size, they cannot a¤ect aggregate or sectoral level variables. Thus distinguishing

the two expectation operators is important only for micro level variables. After substituting out relative consumption

from marginal cost mcj;t+k(i) and then replacing Êi
t

�
pRj;t+k(i)

�
by p�Rj;t (i) �

Pk
s=1 Et�j;t+s, the �rm�s log-linearized

�rst order condition can be written as

p�Rj;t (i) =

�
1� �j�

1 + '� +  2

� 1X
k=0

(�j�)
k Et [Vj;t+k] +

1X
k=1

(�j�)
k Et [�j;t+k] (48)

� 1 (1� �j)

�
1� �j�

1 + '� +  2

� 1X
k=0

(�j�)
k Êi

t

h
bRj;t+k(i)

i
+ ��1 1

�
1� �j�

1 + '� +  2

�
bRj;t�1(i);

where

Vj;t � (1 + ') yt +
�
'+ ��1

�
yRj;t + cRj;t � (1 + ') aj;t � '�t � ��1dRj;t

is the common factor across all the �rms within a sector. The operator, Et is used in the �rst two summations on

41Recall that xRj;t(i) denotes a percentage deviation of X
R
j;t(i) from its steady state (which is equal to zero).

Therefore it must be that cRj;t(i) = cj;t(i)� cj;t, bRj;t(i) = bj;t(i)� bj;t, and pRj;t(i) = pj;t(i)� pj;t:
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the right hand side of (48) in place of Êi
t since those terms have only aggregate and sector-level variables.

Finally, the expected value of the �rm�s next-period price must be a weighted average of the current price and

next-period�s optimal price:

Et
h
pRj;t+1(i)

i
= �j

h
pRj;t(i)� Et�j;t+1

i
+ (1� �j)Et

h
p�Rj;t+1(i)

i
: (49)

The three equations, (47), (48), and (49) together characterize the dynamics of micro level variables fbRj;t(i); pRj;t(i); p�Rj;t (i)g,
given the time path of the aggregate and sector level variables, fVj;t; �j;tg. The system of linear di¤erence equations

is, however, hard to solve analytically. I thus take the undetermined coe¢ cient method as in Woodford (2005). From

equation (47), I posit that the time path of relative bond holding follows

bRj;t(i) = �bRj;t�1(i) + �pRj;t(i); (50)

where � and � are some functions of the structural parameters. From (48) and (50), it then follows that a �rm�s

optimal price satis�es:

p�Rj;t (i) = p�Rj;t + �bRj;t�1(i); (51)

where � is again a function of the parameters, and p�Rj;t denotes the common component of optimal prices of the

�rms who set prices anew in sector j, which is a function of the aggregate and sector variables only. If the set of

parameters, f�; �; �g and the common component, p�Rj;t were known, one could easily construct the Phillips curve.
The �rst step to determine f�; �; �g and p�Rj;t is substituting (51) into (49) to obtain:

Et
h
pRj;t+1(i)

i
= �jp

R
j;t(i) + �(1� �j)b

R
j;t(i): (52)

Note that (50), the posited time path of bond holdings, should satisfy the di¤erence equation (47) after Et
�
pRj;t+1(i)

�
is substituted out using (52). This is true if and only if f�; �; �g satisfy the following conditions:

� =
(1� �j) 2�

�j 1� � ��1 1
(53)

� =
��1 � �j�

(1� �j) 2

�
2�

��1 � �
�  1 (1� �)

�

�
: (54)

Note I have expressed � and � as a functions of �. One more relation is needed to determine f�; �; �g and the �rm�s
�rst order condition (48) provides that additional relation. Based on (50), Êi

t

�
bRj;t+k(i)

�
can be expressed as

Êi
t

h
bRj;t+k(i)

i
= �Êi

t

h
bRj;t+k�1(i)

i
+ �Êi

t

h
pRj;t+k(i)

i
= �Êi

t

h
bRj;t+k�1(i)

i
+ �

"
p�Rj;t (i)�

kX
s=1

Et�j;t+s

#
;

which implies the following equation:

1X
k=0

(�j�)
k Êi

t

h
bRj;t+k(i)

i
=

�
�

1� ��j�

�
bRj;t�1(i) +

�

(1� �j�) (1� ��j�)

"
p�Rj;t (i)�

1X
k=1

(�j�)
k Et [�j;t+k]

#
:

Plugging this expression into the �rm�s �rst order condition, (48), I obtain:

	p�Rj;t (i) =

�
1� �j�

1 + '� +  2

� 1X
k=0

(�j�)
k Et [Vj;t+k] + 	

1X
k=1

(�j�)
k Et [�j;t+k] + �b

R
j;t�1(i); (55)

where

	 � 1�  2 (1� �j)
2 �

(1 + '� +  2) (1� �j��)
�
��1 � �j�

�
� �

 1 (1� �j�)
�
��1 � �

�
(1 + '� +  2) (1� �j��)

:

42



Comparing (55) and (51), one can solve for p�Rj;t :

p�Rj;t = 	
�1
�

1� �j�

1 + '� +  2

� 1X
k=0

(�j�)
k Et [Vj;t+k] +

1X
k=1

(�j�)
k Et [�j;t+k] ; (56)

and the coe¢ cient � satis�es the following equation:

	� = �: (57)

The three equations, (53), (54), and (57) jointly determine the coe¢ cients f�; �; �g if a solution exists. The system
of equations is nonlinear in f�; �; �g, and thus there could be more than one solution. Following Woodford (2005), I
only consider a solution that would make the joint dynamics of relative price and relative bond holdings convergent so

that the means and the variances remain bounded. We can rewrite equations (50) and (52) as the following system: 
Et
�
pRj;t+1(i)

�
bRj;t(i)

!
=

 
�j + (1� �j)�� (1� �j)��

� �

! 
pRj;t(i)

bRj;t�1(i)

!
: (58)

The system is stable if and only if the eigenvalues of the coe¢ cient matrix are inside the unit circle.

Lemma 1 If �j��1 � 1; then the system (58) is stable if and only if 0 < � < ��1:

See the following subsections for the proof of Lemma 1 and 2. Based on Lemma 1, I focus only on the values of

� on the interval
�
0; ��1

�
, and �j on (0; �) in what follows. A natural question to ask at this point might be if there

exists such a f�; �; �g that solve (53), (54), and (57) while satisfying the stability condition, 0 < � < ��1. Lemma 2

shows that there indeed exists a unique set of f�; �; �g as long as � is positive.

Lemma 2 There exists a unique set of f�; �; �g that satis�es (53), (54), and (57), and 0 < � < ��1 if � > 0.

As mentioned above, once I �nd the solution for f�; �; �g, the generalized NK Phillips curve can be constructed

by combining (55) which determines a �rm�s relative optimal price p�Rj;t (i) and (22) which determines the dynamics

of the sector price level pj;t. Log-linearizing (22) yields

pj;t =
1

nj

Z
I�j

p�j;t(i)di� �jpj;t�1:

Substituting (51) into the equation above, one obtains

�j�j;t =
1

nj

Z
I�j

�
p�Rj;t + �bRj;t�1(i)

�
di;

implying

p�Rj;t =
�j

1� �j
�j;t; (59)

because
R
I�j
bRj;t�1(i)di = 0 holds due to the assumption of time-dependent pricing. Note that time-dependent pricing

is a crucial assumption that allows me to avoid keeping track of distributions of household wealth. Substituting (59)

into (56) gives the "sector-level Phillips curve":

�j;t = �Et [�j;t+1] + g (�j)Vj;t; (60)

where

g (�j ; �; �) �
�
(1� �j�) (1� �j)

�j

��
(1� �j��)

2

(1 + '� +  2) (1� �j��)
2 �  2 (1� �j)

2 ��

�
(61)

I have made explicit in (61) g�s dependence on the two �nancial frictions parameters, (�; �), since � and  2 are

functions of these two parameters.
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To summarize the results obtained so far, the sector Phillips curve, for each sector j, is given by

�j;t = �Et [�j;t+1] + g (�j ; �; �)
h
(1 + ') yt +

�
'+ ��1

�
yRj;t + cRj;t

i
� �j;t; (62)

where g (�j ; �; �) is given by (61), and f�; �; �g satisfy (53), (54), (57) and 0 < � < ��1. The disturbance term �j;t
is a linear combination of exogenous shocks:

�j;t � g (�j ; �; �)
h
(1 + ') aj;t + '�t + ��1dRj;t

i
:

The Phillips curve for aggregate in�ation �t is consequently obtained by taking a weighted sum of sector Phillips

curves:

�t = �Et [�t+1] + �yt +�c;t +�y;t � �t;

where

�c;t �
JX
j=1

njg (�j ; �; �) c
R
j;t, �y;t �

�
'+ ��1

� JX
j=1

njg (�j ; �; �) y
R
j;t,

� � (1 + ')

JX
j=1

njg (�j ; �; �) , �t �
JX
j=1

nj�j;t.

C.5 Comparison of gHH (�j; �; �) to gRH (�j) :

This subsection shows that the slope of the Phillips curve is smaller in the HH model than in the RH model. For

this purpose, I compare gHH (�j ; �; �) to gRH (�j).

gRH(�) �
�
(1� ��) (1� �)

�

�
1

1 + '�

gHH (�; �; �) �
�
(1� ��) (1� �)

�

��
(1� ���)2

(1 + '� +  2) (1� ���)2 �  2 (1� �)2 ��

�
:

For the sake of brevity, I omit the derivation of gRH and refer the interested reader to Woodford (2003). Taking the

ratio of gHH (�; �; �) to gRH(�), I obtain

gHH (�; �; �)

gRH(�)
=

(1� ���)2 (1 + '�)

(1 + '� +  2) (1� ���)2 �  2 (1� �)2 ��

=
(1� ���)2 (1 + '�)

(1 + '�) (1� ���)2 +  2 (1� ���)2 �  2 (1� �)2 ��

=
(1� ���)2 (1 + '�)

(1 + '�) (1� ���)2 +  2
�
1� 2��� + (���)2 � �� + 2��� � �2��

	
=

(1� ���)2 (1 + '�)

(1 + '�) (1� ���)2 +  2
�
(1� ��) + �2�� (1� ��)

	| {z }
>0

< 1:

C.6 Proof of Lemma 1

The eigenvalues of the system are the roots of the following equation:

f(X) = (�+ (1� �)�� �X) (� �X)� (1� �)��� = X2 � f�+ � + (1� �)��gX + ��
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The two roots are given by

X1 = 0:5

�
�+ � + (1� �)�� +

q
(�+ � + (1� �)��)2 � 4��

�
;

X2 = 0:5

�
�+ � + (1� �)�� �

q
(�+ � + (1� �)��)2 � 4��

�
:

The term inside the root
�
(�+ � + (1� �)��)2 � 4��

	
is always positive, implying that X1 and X2 are two real

roots with X1 � X2. Consequently, for the system to be stable, the following two conditions must hold:

(i) X1 < 1 and (ii) X2 > �1:

(i) Note that the �rst condition, X1 < 1, holds if and only ifq
(�+ � + (1� �)��)2 � 4�� < 2� f�+ � + (1� �)��g ;

which holds if and only if the following two conditions are met:

(a) : (�+ � + (1� �)��)2 � 4�� < (2� f�+ � + (1� �)��g)2

(b) : 2� f�+ � + (1� �)��g > 0

(a) and (b) can be simpli�ed as

(a) : �+ � + (1� �)�� < 1 + ��

(b) : �+ � + (1� �)�� < 2

Suppose �� � 1. Then condition (a) becomes irrelevant. And, (b) can be written as:

� < 1 + (1� �)(1� ��):

Suppose �� � 1. Then condition (b) becomes irrelevant, and (a) can be written as:

(1� �) (� + �� � 1) < 0;

which can be simpli�ed to

� < 1� ��

assuming 0 < � < � (which will be the case throughout the paper). In sum, the �rst condition, X1 < 1, holds if and

only if

� < 1 + (1� �)(1� ��) and �� � 1 (63)

or

� < 1� �� and �� � 1 (64)

(ii) The second condition, X2 > �1, holds if and only if

� > �
�
1 +

1� �

1 + �
��

�
; (65)

Note

�� = (1� �)� 2��

 1
�
��1 � �

� ,
which leads to

1� �� = � +
2��

 1
�
��1 � �

�
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The condition (63) cannot be true because

� < 1 + (1� �)(1� ��) � 1 + (1� �)� ( * 1� �� � � when �� � 1)

() �� < 1;

which contradicts �� � 1. Therefore the stability conditions are summarized by (64) and (65). Consider (64) �rst:

� < 1� �� = � +
2��

 1
�
��1 � �

� and �� � 1() 0 <
2��

 1
�
��1 � �

� and �� � 1

() 0 < � <
1

�
and � � 1

�
() 0 < � <

1

�
. (66)

Now let us consider (65). From (64), it can be shown that �� < 1� � < 1. Then we have

�
�
1 +

1� �

1 + �
��

�
< �

�
1 +

1� �

1 + �

�
< �1 < �; (67)

which shows that (64) implies (65). Therefore the inequality (66) alone gives the stability condition, and this proves

Lemma 1.

C.7 Proof of Lemma 2

The system of nonlinear equations for f�; �; �g is given by the following three equations: 
1�  2 (1� �j)

2 �

(1 + '� +  2) (1� �j��)
�
��1 � �j�

�! ��1 � �j�

(1� �j) 2

�
2�

��1 � �
�  1 (1� �)

�

�
=

 1 (1� �j�)
�
��1 � �

�
(1 + '� +  2) (1� �j��)

:

(68)

� =
(1� �j) 2�

�j 1� � ��1 1
(69)

� =
��1 � �j�

(1� �j) 2

�
2�

��1 � �
�  1 (1� �)

�

�
: (70)

Given � ( and other parameters), � and � are uniquely determined by (69) and (70). Therefore it remains to show if

there exist � that satisfy (68) and 0 < � < 1
�
. Rewrite (68) as:

2� =
 1 (1� �)

�
��1 � �

�
�

+
 1 2 (1� �j�) (1� �j)

�
��1 � �

�2�
(1 + '� +  2) (1� �j��)

2 ��1 �  2 (1� �j)
2 �
�| {z }

�K(�)

; (71)

where K(�) is a continuous function on � 2
�
0; 1

�

�
. In the two limiting cases where � = 0 and � = 1, � = ��1 and

� = 0 respectively satisfy (71). Moreover, it is tedious yet straightforward to show @K(�)
@�

< 0 for � 2
�
0; 1

�

�
, which

implies that for each value of � 2 (0;1), there exists one value of � that satis�es (71) and that � is decreasing in �
with the following properties:

lim
�!0

� =
1

�
and lim

�!1
� = 0.

This proves Lemma 2.
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