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Abstract

Recovery is a hard problem in environments where transactions perform work in a cooperative

style (e.g., design environments). We propose concepts to control cooperation and recovery

within nested transaction hierarchies. By allowing different nodes to run different protocols,

we can build so-called recovery spheres with well-defined properties. We characterize those

properties and illustrate them by examples from design environments.
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1 Introduction

Research work on recovery has emerged from techniques for simple transactions [HR83,

BHG87] to techniques which can be applied within nested transactions [Mos85,HR87,WS92].

Most proposed algorithms for nested transactions are based on the ACID-properties [HR83]

(ACID stands for Atomicity, Consistency, Isolation and Durability).

However, non-standard applications like design (e.g., CAD, CASE or CACE1)) strongly

require a relaxation of the ACID-paradigm. These applications often need cooperation instead

of isolation and partial recovery instead of atomicity. Conventional protocols like strict two-

phase locking can only be used in special cases. Here, we have a typical trade-off: the more

cooperation we allow, the more difficult is recovery.

To support advanced applications, we propose a nested transaction model which is based on a

heterogeneous transaction hierarchy. Within this hierarchy, we can support different protocols

for concurrency control and recovery, which allows us to adapt the hierarchy to the individual

needs of applications. More specifically, we can build so called recovery spheres, which are a

means to control cooperation and to limit propagation in case of cascading rollback. We can

identify different kinds of recovery spheres depending on how a transaction has to interact with

its environment.

In section 2 we present an application scenario for design environments which will be used as

an example scenario in the rest of the paper. Then we describe two nested transaction

paradigms, the conventional paradigm as proposed by Moss [Mos85] and the transaction

toolkit approach [US92]. In section 4, we describe recovery mechanisms based on the toolkit

approach, sketch an algorithm for handling cooperation and recovery and introduce different

kinds of recovery spheres. Section 5 focuses on related work while section 6 gives a

conclusion.

2 Application Scenario

In this section, we consider an application scenario for design transactions (in the following

called DTs). We choose a software design environment, but we think the results can be applied

to other areas as well.

                                               

1) computer-aided design, software engineering or  concurrent engineering
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Typically, design environments are structured hierarchically. If we regard the whole project as

a DT, we can model all the activities and subprojects as child-DTs2) which possibly have

further children. Thus, we get a nested DT hierarchy where the DTs can be regarded as

workspaces.

Test

Entw.Proj.2

Project
"Text Processing"

Development Customer Support

User Interface Kernel Spell Checker Automatic
Testsoftware

Interactive
Testing

Test EngineersDevelopment Engineers

Support Engineers

Figure 1: Example Project Hierarchy

As an example, consider the development of a Text Processing system (Fig. 1). First we can

divide the project into Development, Test and Customer Support. The Development consists

of the subprojects User Interface, Kernel Text System and Spell Checker. Each of these

subprojects is realized by several developers who perform their work by executing tools (e.g.,

compiler or debugger) on objects within a DT. The Test is divided into a subproject for

implementing Automatic Testsoftware and a subproject for Interactive Testing.

From this scenario, we can induce some requirements for handling DTs:

– Some DTs are of long duration, e.g., the development of the Spell Checker. Atomicity is

not adequate since a complete rollback of such a DT would cause too much work to be

lost.

– Some DTs have to interact with each other; for example, it is necessary to integrate the

Spell Checker, the Kernel, and the User Interface. Traditional concurrency control

protocols like strict two-phase locking are too restrictive since they prohibit the exchange

of objects (e.g., module interfaces) before EOT. Such an interaction may cause cascading

rollback since uncommitted information is spread between transactions.

                                               

2) Our terminology uses the words child, parent, sibling, ancestor and descendant in the obvious meaning.
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– At some places in the hierarchy, we have strong requirements with respect to consistency.

For example, it is important to release only tested software to the Customer Support.

Moreover, a cascading rollback of the Customer Support DT would be intolerable. On the

other hand, there are places with lower consistency requirements. For example, within the

User Interface subproject it should be possible to exchange objects between developers

without major restrictions.

We can deal with those contradicting requirements by supporting different protocols within the

DT hierarchy. Thus we get a configurable hierarchy which guarantees different levels of

consistency and recovery support.

3 Nested Transaction Concepts

The nested transaction paradigm has its roots with the spheres of control of Davies [Dav78]

and became well-known by Moss' approach [Mos85]. The main idea is to give transactions a

tree-like structure by allowing them to start child transactions. To the outside, a nested

transaction looks like a conventional flat transaction, but its inner structure offers some

advantages. First, nested transactions support a modular design. Second, they permit

parallelism within a transaction (e.g., parallel execution of sibling transactions). Third, they

provide finer recovery units by aborting only child transactions instead of complete

transactions.

acquire
lock

parent inherits lock

Figure 2: Nested Transactions with Upward Inheritance

The classical model for nested transactions, closed nested transactions (Fig. 2), is based on the

notion of upward inheritance of locks3). A transaction can acquire a lock on an object if all

                                               

3) We do not consider other concurrency control techniques like timestamping here.
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conflicting locks (if any) are held by ancestors of the transaction. If a non-root transaction

commits, its locks will be upward inherited by its parent. If the root transaction commits, the

locks will be released. In Moss' original concept, only leaf transactions are allowed to perform

work on objects. To remove this restriction requires additional parent-child synchronization,

e.g., by using retention locks [HR93] or implicit child transactions [US92]. The approach of

upward inheritance relies on the strict two-phase locking protocol, i.e., it cannot be applied to

arbitrary concurrency control protocols [US92].

The transaction toolkit approach [US92,MUZ94] (Fig. 3) is also based on the closed nested

transaction model. But the main goal of the toolkit is to support different protocols within a

transaction hierarchy. This permits the definition of transaction hierarchies which are especially

adapted to the individual needs of the application.

object pool

release object/lock to
parent (checkin)

inherit object/lock
by child (checkout)

Figure 3: Nested Transactions with Downward Inheritance

In the toolkit, every transaction in the hierarchy has an object pool which (logically, not

necessarily physically) contains those objects that are currently locked by the transaction. The

root transaction has direct access to the database. In contrast to the classical concept, locks are

inherited in downward direction. This means that a child transaction can acquire a lock resp. an

object only if its parent already has acquired that lock/object. If not, the lock/object must be

acquired step by step in downward direction from the higher levels of the hierarchy. When

releasing a lock/object, the process works in the upward direction. Thus a stepwise transfer of

locks resp. objects is performed. This mechanism corresponds to the checkout/checkin-

paradigm often used in design environments.

The main advantage of stepwise transfer is the possibility to apply different concurrency

control procotols at different nodes of the tree (Fig. 4). Each transaction defines the protocol

to be used by its children for accessing its object pool. If, for example, a transaction requires a

two-phase lock protocol for its object pool, its children may use strict or simple two-phase

locking, but not an optimistic protocol to access the pool. Thus we get a two stage control
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sphere: The protocol defined by a parent is only relevant for its children. The children may

apply other protocols on their own object pools etc.

object pool

two−stage
control sphere

protocol for object pool

access parent pool according to protocol

Figure 4: Heterogeneous Protocols within a Transaction Hierarchy

Cooperation between transactions is achieved by transferring objects along the hierarchy in a

stepwise manner. While this may induce some overhead, it guarantees that all the protocols

defined by transactions are obeyed4). This is a very important precondition for controlling

cooperation and recovery in a nested transaction hierarchy as will be shown in the next section.

As an example, consider a developer of the User Interface component. If he wants

to pass on an object to a Kernel developer, he has to checkin this object to the

User Interface DT and then to the Development DT. The Kernel developer has to

check out the object from the Development DT through the Kernel DT. If the

protocol of one of these DTs does not allow the transfer, the cooperation cannot

be established.

4 Recovery for Nested Transactions

In this section, we look at the recovery aspects in a nested DT hierarchy. We base our

discussion on the toolkit approach with downward inheritance and stepwise transfer because

this approach gives us the possibility to define different protocols for the nodes of the DT tree.

Recovery is always caused by a failure. A typical classification of failures distinguishes between

transaction failures, system (site) failures, media failures and communication failures. We

assume that the underlying database system for storing design objects already supports

recovery for conventional (short) transactions and thereby masks most of the failures. Thus,

                                               

4) At the user interface, there may be high-level operations for cooperation that hide the stepwise transfer.
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we restrict ourselves to logical failures within a DT, which are, for example, caused by an

exception handler of an application or by a synchronization protocol.

For concurrency control, we assume a locking protocol using conventional lock modes like

shared and exclusive. When checking out an object, a DT acquires a lock and copies the object

to its object pool. When checking in an object, it releases the lock and removes its copy. We

do not allow parallel modifications of the same object by several DTs and do not discuss any

versioning.

We can distinguish between two kinds of DTs, Service DTs which only serve as a database for

their children and do not perform real work on objects, and Working DTs which perform work

on objects. If a non-leaf DT acts as a Working DT, we assume a mechanism for handling

parent-child synchronization (e.g., by starting an implicit child DT).

The Recovery Process

Recovery is always initiated by a certain recovery event, e.g., an application error. We call this

recovery event a primary recovery event. When such an event is detected, a certain recovery

action is performed.

When a DT in the hierarchy executes a recovery action, other DTs may get involved too, i.e.,

they have to do some recovery action as well because they are in some way dependent on the

first DT. In this context, we talk of secondary recovery events that lead to cascading

recovery5). While we cannot prevent primary recovery events, we should try to reduce

secondary recovery events. In general, we can distinguish two ways to deal with those events:

an optimistic approach, where we allow secondary recovery events to occur and therefore

have to accept cascading recovery, and a pessimistic approach, where we try to prevent

secondary recovery actions.

In the conventional model transactions either abort or commit (according to the atomicity

principle). As noted above, this is too restrictive for DTs. Thus, we also allow a DT to abort or

commit parts of its work. A DT can selectively abort a part of its work by rolling back the

modifications on some objects6). We call this rollback of objects. A DT can selectively commit

a part of its work by checking in some objects and giving up the right to rollback its changes

(although the DT itself can still abort). We call this of objects.

                                               

5) We use this term instead of cascading rollback since a rollback is only one possible recovery action
6) We can also imagine advanced recovery techniques like compensation or forward recovery here.
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As an example, let us assume that a Kernel developer has passed on a module

interface to the User Interface subproject and now recognizes an error. He will

rollback his changes on the module interface (a total abort of the developer's DT

normally would not be acceptable). If the User Interface subproject has used this

interface, it has to perform some recovery actions as well, possibly also on other

modules.

Dependencies

Recovery is influenced by dependencies between DTs, which can be classified as follows

(Fig.5):

– parent-child dependencies

The principle of nesting implies that we get dependencies between a parent and its children.

In the classical model, a child is always weak-abort-dependent [CR92] on its parent, i.e.,

when the parent aborts, all its children are aborted too. A commit of a child and the

durability of its results are always subject to the commit of its parent. A parent can be

abort-dependent on some of its children (called vital [BOH+92]), i.e., it will abort when

one of its vital children aborts.

– reads-from dependencies

Whenever a DT (say DTa) modifies an object, this object is first in an uncommitted state,

i.e. it is still subject to a possible rollback. The changes are committed only when DTa
releases this object or commits completely. When other DTs read an uncommitted object

they become reads-from dependent on DTa. This has two effects: First, if DTa executes a

recovery action, the dependent DTs have to execute an appropriate recovery action as well

(cascading recovery). Second, the dependent DTs cannot commit as long as the object is in

an uncommitted state. This ensures that when DTa rolls back the object, a correct recovery

can occur (the property of recoverability [BHG87]7).

The parent-child dependencies are already known from the classical nested transaction model.

The reads-from dependencies do not occur there because the two-phase locking protocol must

be strict. As soon as we allow DTs to cooperate we have to cope with reads-from

dependencies.

                                               

7) If we allow non-two-phase locking protocols, this condition may lead to cycles, i.e., no DT can commit
before the other one (deadlock)
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parent−child dependency

reads−from
dependency

object

DT0

DT1 DT2

Figure 5: Dependencies between DTs

Service DTs are a special case: since they only serve as a database for their children (as a

medium for transferring objects in a stepwise manner), we do not want a Service DT to abort

due to reads-from dependencies on other DTs.

Cooperation and Recovery Algorithm

To make the above description more precise, we now sketch an algorithm for performing

cooperation and recovery within nested transactions.

We model cooperation by transferring objects along the hierarchy using the operations checkin

and checkout. We model recovery by describing the state of an object and the reads-from

dependencies between DTs.

Whenever a DT modifies an object, we assign to the DT a so-called decide-right [MUZ94] for

this modification on the object. This means that the DT has the right to decide whether it

commits or aborts its modification8). The DT holds the decide-right until it comes to its

decision, even if it has transferred the object to another DT in the meantime. The DT can

commit its modifications on an object either by committing completely or by releasing the

object (selective commit). The DT can abort its modifications on an object either by aborting

completely or by rolling back the modifications on the object. If several DTs have modified an

object one after the other, there may be an ordered list of decide-rights on the object (even for

the same DT). When an object is transferred by checkin or checkout, it takes all the decide-

rights with it. When a DT releases an object on which it has a decide-right, the decide-right is

                                               

8) This is similar to the notion of responsibility in the ACTA framework [CR92].
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inherited by the parent (or removed if the DT is the root). When a DT rolls back an object on

which it has a decide-right, the decide-right is removed.

The decide-right gives a DT the possibility to recognize whether an object it works on can still

be subject to a rollback. We will use this in the following to control cooperation and recovery.

When an object with a decide-right is checked out or in, we establish a reads-from dependency

which is used in the case of recovery to identify the way the object has already covered within

the hierarchy.

To describe the algorithm, we use the following notation:

– There is a predicate dec(x, m, DT), if DT owns the decide-right on object x for a certain

modification m. If a DT has made several modifications without any intervening

modification by another DT these modifications can be combined to one. The predicates

are ordered by a relation "<".

– There is a relation DTa 
x m, →  DTb, if DTb is reads-from dependent on DTa because of

the modification m on object x. When we add a "*" we mean the reflexive and transitive

closure.

– The parent of a DT is called p(DT).

Since parent-child dependencies are fairly simple and are only relevant for complete aborts of

DTs, we restrict the algorithm to reads-from dependencies. We informally sketch the main

steps for the operations checkout, checkin, modify, release and rollback. We also describe an

operation recover which models the reaction of a DT that is affected by recovery. The

algorithm does not treat the dependencies between objects within a Working DT (caused, e.g.,

by operations or semantic dependencies).

DT.checkout(x) (DT checks out object x from its parent.)

forall  DTd: dec(x, m, DTd)

do add (p(DT) x m, →  DT) (establish the reads-from dependencies)

DT.checkin(x) (DT checks in object x to its parent.)

(There must be a dec on x from the DT or its descendants. The object can only be checked

in if no child has checked out the object for modification.)
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forall  DTd : dec(x, m, DTd)

do add (DT x m, →  p(DT)) (establish the reads-from dependencies)

DT.modify(x) (DT modifies object x by modification m.)

add dec(x, m, DT) (add a dec-predicate for this modification)

DT.release(x) (DT releases object x with dec(x, m, DT).)

(Here, m is the last modification the DT made on the object. Earlier modifications by the

same DT are released implicitly, too.)

if  ∃ DTd not ancestor of DT: (dec(x, m1, DTd) < dec(x, m, DT))

then error ("release of object would violate recoverability")

if  x was not already checked in

then DT.checkin(x)

forall  object pools containing a copy of x with dec(x, m, DT)

do change dec(x, m, DT) to dec(x, m, p(DT)) (the parent inherits the dec.)

remove the corresponding reads-from dependency

if  DT is the root DT

then remove the dec-predicate and the corresponding reads-from dependencies for all DTs.

DT.rollback(x, m) (DT rolls back the modification m on object x with dec(x, m, DT).)

forall  DTa: (DT x m, * →  DTa) do begin

DTa.recover(x) ((cascading) recovery for (transitively) reads-from dependent DTs)

remove the corresponding reads-from dependency
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remove dec(x, m, DT)

end

DT.recover(x, m) (DT performs recovery because of the modification m on object x.)

rollback modification m on x in the pool of DT (Here we expect the existence of before

images or other recovery information.)

if  there is a modification m1 occurring after m

then DT.rollback(x, m1) (later modifications on the same object have to be rolled back,

too.)

if  there is a modification m2 on object y relying on the modifications on x

then DT.rollback(y, m2) (other objects may be affected, too.)

The algorithm only demonstrates the basic principles of cooperation and recovery. It becomes

more complex if we remove the restrictions, e.g. by allowing more flexible lock modes.

The algorithm works in a stepwise manner: a DT can only have direct dependencies on its

parent or its children. All other dependencies between arbitrary DTs are transitive. This gives

us the possibility to control dependencies by controlling the interaction between a parent and

its children.

We illustrate the algorithm by an example (Fig. 6.). DT1 checks out object x from

DT0, modifies it and checks it in. Then DT3 checks out the object through DT2,

reads and modifies it. Thus, DT3 has read an uncommitted object, expressed by the

dec(DT1) predicate, and must be aware of a possible cascading recovery. If DT1

releases the object, its dec will be inherited by DT0. If DT1 rolls back the object,

the changes have to be rolled back in the pools of DT0, DT2 and DT3, too. Since

DT3 is a Working DT, its own modifications and maybe some of its work on other

objects will have to be rolled back as well.
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DT1 DT2

DT3

modify

modify
parent−child−dependency

reads−from−dependency

Service DT

Service DT

Working DT

Working DT

DT0

dec(DT1)

dec(DT1)
dec(DT1)

dec(DT1) dec(DT1)

dec(DT3)

Figure 6: Example for the Algorithm

Controlling Cooperation and Recovery

The above algorithm can lead to a complex dependency graph if there are many dependencies

within a hierarchy. Our goal is to regulate the structure of such dependencies in order to

prevent arbitrary cascading recovery.

There are three ways to influence dependencies:

– Declare a child as vital or non-vital. In the non-vital case, the parent will not become abort-

dependent on the child.

– Allow or disallow reads-from dependencies from the child to the parent. If we want to

disallow this, we have to prevent the child from checking in objects on which the child or

some of its descendants have a dec. This means that the child must either run a strict two-

phase locking protocol or must release objects on checkin. We say that the child is checkin-

safe.

– Allow or disallow reads-from dependencies from the parent to a child. If we want to

disallow this, we have to prevent the child from checking out objects on which a

descendant of an ancestor has a dec9). A dec from an ancestor is not critical. Due to the

                                               

9) The child can browse such objects. A browse has lower consistency requirements and therefore will not
cause reads-from dependencies.
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nesting the whole object pool of the child is dependent on its ancestors anyway. We say

that the child is checkout-safe.

Thus, we get eight (theoretical) combinations of recovery properties of DTs. If we disallow

dependencies, we follow a pessimistic approach, i.e., we prevent cascading recovery. Such an

approach limits cooperation between DTs. Otherwise we follow an optimistic approach. This

gives us more freedom for cooperation between DTs for the price of cascading recovery. Of

course, there are other combinations in between.

As an example for a checkin-safe DT consider the Test DT. If it transfers an object

to the Customer Support DT, it must guarantee that it will not rollback this object,

because this is not acceptable for the Customer Support DT. On the other hand,

the Customer Support DT should be defined as checkout-safe.

Recovery Spheres

The advantage of the principle of stepwise transfer is that there may be transitive but no direct

dependencies between two arbitrary DTs (which are not in parent-child relation). All the

dependencies are local within a two stage control sphere which is a noticeable advantage in

comparison to traditional recovery concepts.

The two stage control sphere gives us the possibility to adapt recovery to the special needs of

each DT. In the toolkit approach, a DT has to use a protocol as required by its parent. Because

of the principle of stepwise transfer, this protocol can act as a barrier. It defines the

information flow between the DT and its descendants on the one side and all other DTs on the

other side. We call the DT together with all its descendants the recovery sphere (RS) of the

DT (Fig. 7). Of course, RSs can be nested.

A protocol for a DT can, e.g., have the following properties:

– The DT may be non-vital. In this case, its parent is safe against a rollback within the DT's

RS (provided, there are no other dependencies).

– The DT may be checkout-safe. In this case, the DT's RS is safe against reads-from

dependencies on other DTs.

– The DT may be checkin-safe. In this case, all other DTs are safe against reads-from

dependencies on the DT's RS.
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DT0

DT1

DT11 DT12

DT2

DT21

DT1’s recovery sphere

DT0’s recovery sphere checkin−safe
checkout−safe

Figure 7: Recovery Spheres

The concept of RSs gives us the possibility to define special environments and their

relationship to outer or inner environments. By specifying protocols, we define the interaction

of the RS with the outer DTs and the inner DTs.

For example, the Development's RS defines the relation of all the development

DTs to the DTs outside the development. This RS can, e.g., be defined as checkin-

safe, so that no uncommitted objects may leave the development. Within the

Development's RS we have several other RSs, e.g., the Spell Checker's RS within

which arbitrary cooperation may be allowed.

Extensions

In the previous discussion, we used a simplified model. We distinguished between objects with

or without decide-right and we defined rules for each object a DT accesses. For a realistic

environment, this model is too restrictive.

A possible extension is to define several consistency states for objects. This is typical for

design environments where an object is not just consistent or not consistent, but goes through

a number of states which eventually lead to the required consistency level. A typical example is

a software module which may be uncompiled, compiled, passed through a module test, tested

together with other modules etc. If we have a mechanism to describe the consistency state of

an object (e.g., by features [Kae91]), we can use this to define an RS on a more specific level.

More precisely, this means that we can define
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– what consistency state an object must have when it is checked out by a DT.

– what consistency state an object must have when it is checked in by a DT.

As an example, consider the Test DT. It should only checkout objects which have

been compiled and passed a module test, and it should only checkin objects for

which a certain test suite has been run successfully.

Another extension is to distinguish between several object types. For some types of objects,

there are stronger consistency requirements than for other types. Thus, a DT may refuse to

checkout or checkin objects of a certain type with a certain consistency state, but it will allow

to checkout or checkin objects of another type.

For example, consider the Test DT. It should only checkin objects for which the

test suite was run successfully. But if it wants to transmit a test protocol to the

Development DT, this should be allowed. Thus, the rules should be defined

differently for different object types.

In our model, we can release or rollback single objects. Since objects are often dependent on

other objects, this can cause inconsistencies. The classical transaction model deals with this

problem by aborting complete transactions and implicitly assuming that transactions are

consistency-preserving units. Thus, to permit selective recovery, we have to consider the

dependencies between objects. These dependencies may be caused by operations on objects, by

the data schema (e.g., objects containing other objects) or by the application semantics. We

have to refer the reader to forthcoming results here.

Consider a developer checking out an interface and using some of its functions in

another module. If the interface is rolled back, a rollback or a correction of the

changes in the other module has to be performed.

Summary

We presented a number of recovery protocols which can be independently applied for different

nodes of a nested transaction:

– DTs can be defined as vital or non-vital.

– DTs can be checkin-safe and/or checkout-safe.

– For checking objects in and out, certain consistency states can be defined.

– The protocols can distinguish between different types of objects.
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Because of the principle of stepwise transfer, we can define such features for whole

environments, called recovery spheres. This allows us to gain control over the behaviour of

certain environments within a DT hierarchy. Thereby, we can avoid arbitrary information flow

between DTs and thus avoid arbitrary dependencies that could lead to cascading recovery.

Another advantage of this locality occurs in distributed environments: a node in the DT

hierarchy can autonomously decide about its protocols and has to communicate directly only

with its parent and children.

5 Related Work

The problem of recovery within cooperative environments is dealt with rarely in literature. The

work of [HR87,HR93] is based on the classical nested transaction model. It does not allow for

configuration of the nodes in a transaction hierarchy and for building recovery spheres.

In [NRZ92], selective recovery is proposed based on individual operations. Dependencies

between operations within a transaction and operations in different transactions are recorded in

a log. When cascading recovery occurs, a transaction can react in several ways (e.g., reread

invalid versions or compensate operations). Again, there is no way to build recovery spheres

with defined properties.

The concept of Split Transactions [PK92] allows transactions to selectively commit or abort

parts of their work by splitting off this work as a separate transaction. The model relies on

serializability and does not deal with the problem of cascading recovery caused by cooperation

between transactions.

In some work, cooperation is achieved by building special relationships (e.g., a usage,

delegation or negotiate relationship as described in [RMH+94a]). Since arbitrary transactions

can cooperate in such a way, it is very difficult to control the consequences of recovery.

Therefore, we prefer the more restrictive approach of stepwise transfer.

Many papers (e.g., [KLS90,WR92,WS92]) suggest compensation as a means of recovery in

cooperative environments. Compensation could be integrated into our approach too: it allows

to pass on objects with decide-right even if DTs are checkout-safe or checkin-safe.

Compensation can be performed without causing cascading recovery if other DTs are

restricted to execute only those operations which are commutative to the compensating

operation. Thus, we either must define restrictive rules for compensation to be successful or
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must accept cascading compensations [WR92]. In any case, compensation is restricted to

special environments and therefore not generally applicable.

6 Conclusion and Future Work

In this paper, we have described how recovery problems can be handled in a cooperative

transaction environment. We have presented a nested transaction approach with downward

inheritance and stepwise transfer. This gives us the possibility to define different protocols for

the nodes of the hierarchy and to control the cooperation and recovery behaviour of

subhierarchies (called recovery spheres).

We have shown several primitives to define recovery protocols for the nodes. These primitives

already allow to describe a lot of different kinds of recovery spheres. There are some other

facilities which should be included as well:

– Compensation should be integrated because it permits more application-specific recovery.

– Other recovery mechanisms should be integrated. E.g., it should be possible to reread

invalidated objects or make automatic or manual corrections instead of rolling back the

changes.

– Event-Trigger mechanisms should be considered. On the one hand, they could be used as a

mechanism to define application-specific recovery actions. On the other hand, it has to be

prevented that by such mechanisms information can flow within the hierarchy without

considering the protocols of the DTs.

– Additional dependencies (e.g., data schema dependencies) should be handled.

The implementation of the proposed mechanisms on the base of our transaction toolkit

prototype and the investigation of the above facilities are topics of future work.
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