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Healthcare Choices, Information and Health Outcomes

Achyuta Adhvaryu and Anant Nyshadham∗

September 29, 2010

Abstract

Self-selection into healthcare options biases estimates of the effects of healthcare on health
outcomes. We exploit exogenous variation in the cost of formal-sector care to show that the
use of such care improves short-term health outcomes for acutely ill children in Tanzania.
Better treatment-specific information, rather than greater access to medicines, appears to be
the primary mechanism for this effect: children who use formal-sector care are as a result
more likely to get timely treatment and adhere to their medications.

JEL: I10, I18, O10, O12
Keywords: healthcare, information, child health, Tanzania

1 Introduction

Healthcare choices and health outcomes following an acute shock to one’s health are likely to be

simultaneously determined, not only by preferences and information but also by the severity of

the shock (Maureen Cropper 1977; Thomas Selden 1993; Fwu-Ranq Chang 1996; Michael Gross-

man 2000). Self-selection into healthcare options based on severity of illness renders estimating

the effects of healthcare choice on health outcomes difficult. In particular, comparing health

outcomes across high- and low-quality healthcare options would underestimate the beneficial

effects of quality on outcomes, since sicker individuals (with more severe illnesses) are both

∗Adhvaryu: Yale University, e-mail: achyuta.adhvaryu@yale.edu. web: http://www.yale.edu/adhvaryu.
Nyshadham: Yale University, e-mail: anant.nyshadham@yale.edu. We thank Abhijit Banerjee, Prashant Bharadwaj,
Michael Boozer, Joe Doyle, James Fenske, Jason Fletcher, T. Paul Schultz, Tavneet Suri, Chris Udry and participants
at the Yale Development Lunch Seminar and the 2010 Pacific Development Conference for helpful comments and
suggestions. All errors are our own.
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more likely to select into higher-quality options and have worse health outcomes on average

(Gautam Gowrisankaran and Robert Town 1999; David Cutler et al. 2004).

Several recent studies in the United States have exploited “natural experiments” to estimate

the returns to healthcare net of this bias. This has been done in the context of hospital choice

(John Geweke et al. 2003; Thomas Buchmueller et al. 2006), emergency care (Joseph Doyle 2005,

2010), physician choice (Doyle et al. 2010), and postnatal and postpartum care (Douglas Almond

and Doyle 2009; Almond et al. 2010).

We study the effects of formal-sector healthcare on the incidence of fever and malaria in

young children in Tanzania. Our study advances the aforementioned literature in two main

ways. First, despite a large number of studies in the developing country context on the effects

of health interventions–e.g. nutritional supplements, preventive technology and treatments1–

on outcomes, little is known about the returns to choosing formal-sector healthcare (over self-

treatment or traditional care, for example) following an illness. We provide what is to our

knowledge the first assessment of these returns in a developing country setting using methods

which account for the bias induced by self-selection into healthcare options.2

Second, though disparities in quality of care (formal vis-a-vis informal healthcare options)

have been well documented, the particular mechanisms through which improvements in health

outcomes may be induced, in a causal sense, have not to our knowledge been explored. Our

empirical strategy allows us to answer the following question: if we do observe improvements

in health outcomes, why do these improvements occur? Does seeking care at a formal-sector fa-

cility enable greater access to medicines, as studies in public health have often suggested (Hans

Hogerzeil 2004; WHO 2004; Minmin Zhu et al. 2008)? Or does formal-sector care induce benefi-

cial changes in treatment-specific information and behaviors?3 Our evidence suggests the latter

1See, for example, John Strauss and Duncan Thomas (1998), Edward Miguel and Michael Kremer (2004), Gustavo
Bobonis et al. (2006), Thomas et al. (2006), and Harsha Thirumurthy et al. (2009).

2Victor Lavy et al. (1996) study the effects of accessibility of health services on health outcomes, but their the
validity of their exclusion restriction is questionable. William Dow et al. (1997) study the effect of healthcare prices
on health and labor outcomes, but as a result of their experimental design, the mechanism for the induced effects
cannot be adduced.

3See, for example, Wen Chern et al. (1995), Maglosia Madajewicz et al. (2007), Julie Downs et al. (2009), Pascaline
Dupas (2010), and Rebecca Thornton (2010).
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is predominantly at play.

As shown in a simple model of healthcare choice, the structural parameter we estimate is the

returns to formal-sector healthcare in the health production function. We identify these effects

using an instrumental variables (IV) strategy which exploits exogenous variation in the costs

of traveling to formal-sector health facilities. Since insurance mechanisms are rarely in place

in developing countries and many governments heavily subsidize payments for care at health

facilities and hospitals, the costs of healthcare to individuals are in large part related to the op-

portunity costs of traveling to the care option (Paul Gertler et al. 1987; Germano Mwabu et al.

1995). These costs can be economically substantial, especially in remote areas of the develop-

ing world.4 Moreover, recent studies (Gertler 2004; Michael Kremer and Edward Miguel 2007;

Kremer and Alaka Holla 2008; Jessica Cohen and Pascaline Dupas 2010) find that the price elas-

ticity of health-related investment is very high in developing countries, suggesting that shifts in

the costs of traveling to health facilities can plausibly induce large changes in the probability of

choosing this option for care.

We use variation in this cost, generated by distance (to the nearest health facility) and rain-

fall, to predict the choice of healthcare in response to acute illness. We argue that distance alone,

while it clearly affects the costs of choosing formal-sector care, is likely to be correlated with

unobserved determinants of health outcomes. Health facilities in developing countries are of-

ten built or expanded where they are needed most (for example, in areas more prone to severe

illnesses). We thus interact distance with rainfall in the month the child became sick, and use the

interaction as the instrumental variable, while controlling for both main effects in the first- and

second-stage specifications. The intuition behind the instrument is simple: rainfall generates

random variation in the cost (or disutility) of traveling a given distance. In other words, heavier

rains should discourage individuals who live farther away more than individuals living closer

to the nearest facility.

We find that the instrument is strongly predictive in the first stage. It is robust to a variety

4In the rural part of our sample from Tanzania, where health facilities are relatively densely located compared
to the rest of East Africa, the average distance to the nearest health facility is 4.67 kilometers, which is most often
traveled by foot.
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of additional controls and passes various falsification tests.5 Using a sample of young children

who were sick with fever and/or cough in the two weeks preceding survey, we focus on two

main health outcome variables: the incidences of fever and malaria on the day of survey. We

find that ordinary least squares (OLS) estimates of the effects of formal-sector healthcare use

are small (and precisely estimated). In contrast, the IV estimates are several times as large in

magnitude, consistent with self-selection based on the severity of illness. Our overall finding is

that formal-sector care greatly reduces the incidence of fever and malaria amongst children who

reported being acutely ill.

Given the large magnitudes of the IV estimates, next we ask why formal-sector care is more

effective. Greater access to medicines at formal-sector health facilities does not appear to be

the primary mechanism. IV estimates show that using formal-sector care does not significantly

increase the number of medicines received for treatment. Moreover, we can test whether formal-

sector care enables greater access to appropriate medicines, since guidelines for the treatment of

fever in young children in malaria-endemic countries require that anti-malarial drugs be pre-

scribed presumptively to this vulnerable group. We find no evidence that using formal-sector

care increases access to malaria medication.

On the other hand, we do find evidence that formal-sector healthcare improves individuals’

treatment-related information and behavior. In particular, we find that children using formal-

sector care begin antimalarial treatment with substantially less delay and are much more likely

to adhere to their medications. Further, using mother-level data on questions related to health

perceptions, we construct a variety of indices measuring mothers’ general knowledge of impor-

tant diseases and their transmission and treatment. IV estimates show no evidence that bringing

their children to formal-sector care increases mothers’ health-related information in general, in-

5Additional controls include the historical mean and standard deviation of rainfall in a given locality; distance
to the nearest market (which is a measure of remoteness of the household) and its interaction with rainfall; and the
geographic (region fixed effects), demographic and socioeconomic characteristics of sample households. We provide
falsification tests using rainfall in past and future months, and find no effects of their interactions with distance on
healthcare choice. Additionally, we show that the instrument does not predict selection into the sick sample (reported
fever in 2 weeks prior to survey) nor does it predict sickness (positive test for malaria) at the time of survey among
the reportedly non-sick sample. These checks alleviate concerns that the instrument is picking up on unobservable,
systematic differences between more or less remote locales that experienced more or less rainfall in the month of
survey.
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dicating that improvements in access to information at the formal healthcare sector are focused

on the use of immediately relevant treatments, rather than on broad health concepts. Taken to-

gether, these results show, at least for the Tanzanian context, that the outcome gradient across

the formal and informal healthcare sectors is driven by quality differences not related to access

to medicines, but rather to access to specific, treatment-related information which spurs changes

in patients’ behaviors.

Measuring these effects, and understanding the mechanisms underlying them, is relevant in

the developing country context for at least two reasons. First, there is substantial heterogene-

ity in the quality of care, particularly across formal and informal options (Mwabu et al. 1993;

Jishnu Das et al. 2008; Heather Klemick et al. 2009). This potentially exposes individuals fac-

ing healthcare choices to different outcomes depending on the type of care they choose. In this

sense, healthcare choice at the individual level matters perhaps to a greater degree than in the

developed world.

Second, since insurance mechanisms do not exist in the developing world to the degree they

do in developed countries, healthcare choice is more of an acute decision, in which an individual

responds to a one-off shock (recognizing, of course, that one’s stock of health determines the

probability of shock and its ensuing severity). In developed-country settings, since much of

healthcare is regulated by insurance providers and the choice of insurance is endogenous, it is

difficult to find examples of shocks for which an individual’s set of possible healthcare choices

is exogenous.6

The remainder of the paper is structured as follows. Section 2 describes a model of health-

care choice and outcomes to motivate the empirical analysis. Section 3 describes the data we

use and the construction of important variables. Section 4 explains the empirical strategy and

provides evidence for the validity of the instrument. Section 5 presents the results, and Section

6 concludes.
6Work by Doyle (2005, 2010), as an exception, finds convincing solutions to this endogeneity problem as relates

to emergency care in the United States.

5



2 Model

In this section, we develop a simple model which relates healthcare choice to health outcomes, to

better understand why comparing the health of individuals who do and do not choose formal-

sector healthcare produces a likely biased estimate of the effect of healthcare choice on outcomes.

The model emphasizes the role of severity of illness, which simultaneously influences healthcare

choice and outcomes and is unobserved to the researcher.

2.1 Setup

We consider a utility-maximizing agent who falls sick at random and must make a healthcare

choice. His realized health outcome is determined by the inherent severity of his illness s, and

by his choice of healthcare h ∈ {0, 1}. We will think of h = 1 as the choice of formal-sector

healthcare, and h = 0 as care outside the formal-sector (or no care at all). Severity, which is

observed by the individual, is randomly drawn from a distribution F (s).

There are two health outcomes (represented as the random variable D, number of days ill)

which may ensue: D = Dg (good), or D = Db (bad), where Dg < Db.7 Healthcare choice and

severity combine to determine the probability that the good health outcome occurs. Denote

p(s, h) as the function which maps severity and healthcare choice into a probability: p(s, h) =

Pr(D = Dg|s, h) ∈ [0, 1]. By definition of severity s, p(s, h) is decreasing in s for all h. That is,

for both choices of healthcare, a higher severity level decreases the probability of realizing the

good health outcome.

We impose the following assumption: p(s, 1) − p(s, 0) is increasing in s. Formal-sector care

is more comparatively effective at higher levels of severity: the differential benefit of visiting

the health facility will be lower for low-severity illnesses than for high-severity illnesses. The

intuition here is that self-treatment for the common cold, for example, is not likely to be very

different from treatment in the formal-sector; however, treatment for a more severe illness like

pneumonia will likely be very different at a facility as compared to treatment in one’s own home.

7In our empirical setting, since we analyze a dataset of children, we can interpret D as the number of days a
parent must spend in caring for her sick child.
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There are two main caveats to making this assumption. First, for extremely severe illnesses,

the difference between formal-sector care and informal care is likely to matter little (i.e. both

p(s, 1) and p(s, 0) are likely to be close to 0). If this were true, then p(s, 1) − p(s, 0) would be a

non-monotonic function of s; in particular, we would expect the difference in the effectiveness

of care to increase up to a certain point in the severity distribution and then begin to decline. For

our analysis, however, we are interested less in this extreme case. We focus on individuals in the

portion of the severity distribution whose healthcare choices can be shifted through exogenous

movements in the relative price of care. (Indeed, it is perhaps more policy-relevant to focus

on this sub-group.) It is unlikely that these individuals are at either extreme of the severity

distribution. Second, Leonard (2007) suggests, in a similar formulation, that this assumption

may not hold for all illnesses. Nevertheless, the empirical application presented in this paper is

specific to malaria-related symptoms and illness, which are unlikely to violate this assumption.

It is clear that for there to be a non-trivial tradeoff between quality and cost of healthcare,

s must lie in a region of F (s) such that p(s, 1) > p(s, 0). That is, the probability of a good

health outcome is larger at each level of severity if the agent chooses formal-sector care. This

establishes the comparative effectiveness of formal-sector healthcare over other forms of care.

Most evidence from both developed and developing countries suggests that the price of formal-

sector care is substantially larger than informal care, which establishes the tradeoff in price.

2.2 Utility maximization

Individuals choose h in order to maximize their expected utility subject to a budget constraint.

The utility maximization problem is the following:

max
h∈{0,1}

E
(
u(C)

)
− P (h) subject to C ≤ w(Ω−D). (1)

Here, C is consumption; u(C) is the utility function; P (h) is the price of healthcare at option

h; w is the wage; and Ω is the amount of time an individual would work if fully healthy. The

health outcome enters utility through its effect on the amount of time an individual is able to
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work (and thus the amount he can consume).

Since there are two possible states (D = Dg or D = Db) with known probabilities (p(s, h)),

when the budget constraint binds we can write the maximization problem as

max
h∈{0,1}

p(s, h)u
(
w(Ω−Dg)

)
+ (1− p(s, h))u

(
w(Ω−Db)

)
− P (h). (2)

Let us define u = u
(
w(Ω−Dg)

)
and u = u

(
w(Ω−Db)

)
as the utilities in the good and bad

state, respectively. Then, the expected utility of choosing h = 1 and h = 0, respectively, are:

U1 = p(s, 1)u+ (1− p(s, 1))u− P (1),

U0 = p(s, 0)u+ (1− p(s, 0))u− P (0).

The individual will choose h = 1 if and only if U1 − U0 > 0. Denoting ∆P = P1 − P0 and

∆u = u− u, we can express this inequality as

p(s, 1)− p(s, 0) >
∆P
∆u

. (3)

Since we have assumed that the left-hand side of the above inequality is increasing in s, it

follows that the function (let us denote g(s) = p(s, 1) − p(s, 0)) has an inverse (g−1). Thus, the

utility maximization problem can be expressed as a simple cutoff rule:

Choose h = 1 iff s > g−1
(∆P

∆u

)
≡ K. (4)

The individual will thus choose to use formal-sector healthcare if the severity of his illness

is greater than a cutoff, which is in turn a function of the model’s parameters. The parameters

enter in intuitive ways in the cutoff value. An increase in the relative price of formal-sector

care (∆P ) increases the cutoff, which in turn decreases the probability that an individual with

randomly chosen severity uses formal-sector care. On the other hand, an increase in the relative

return to formal-sector healthcare (∆u), for example due to an increase in the wage w, lowers
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the cutoff and thus increases the probability of choosing h = 1.

2.3 Empirical implications

We are primarily interested in estimating the effect of formal-sector health care usage on health

outcomes. In doing this, we are essentially estimating the returns to formal-sector care in the

health production function. In this section, we investigate why comparing the average out-

comes of individuals who used formal-sector care with the outcomes of those who did not is

an invalid strategy for estimating this effect. We then discuss the model implications for a valid

identification strategy.

First, we calculate the true average treatment effect of formal-sector healthcare on health

outcomes over the entire distribution of severity. Denote f(s) as the pdf of F (s). The difference

between the expected outcome under h = 1 and h = 0, which we denote E(O1 −O0), is

∫ ∞
−∞

((
p(s, 1)Dg + (1− p(s, 1))Db

)
−
(
p(s, 0)Dg + (1− p(s, 0))Db

))
f(s)ds

We can rewrite this quantity as
(
Dg − Db

) ∫∞
−∞

(
p(s, 1) − p(s, 0)

)
f(s)ds. Since, Dg < Db,

and p(s, 1) − p(s, 0) > 0 for all s, we have that E(O1 − O0) is negative, which indicates that the

true average treatment effect of formal-sector healthcare is an improvement in health outcomes.

This fact arises rather trivially from the second assumption we made on p.

Second, we calculate the difference in health outcomes between individuals who chose to use

formal-sector care and those who did not. We know from the model’s cutoff rule that individuals

below the cutoff (K) in the distribution of severity will choose h = 0, while those with severity

levels above it will choose h = 1. We can thus calculate the average outcome as:

∫ ∞
K

((
p(s, 1)Dg + (1− p(s, 1))Db

)
f(s)ds

−
∫ K

−∞

(
p(s, 0)Dg + (1− p(s, 0))Db

))
f(s)ds (5)

Again, we can rewrite this quantity as
(
Dg − Db

)( ∫∞
K p(s, 1)f(s)ds −

∫K
−∞ p(s, 0)f(s)ds

)
.
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Thus, the effect of formal-sector healthcare calculated by simply comparing health outcomes for

individuals who chose h = 1 and h = 0 has the following bias (calculated by subtracting the

average treatment effect from this naively measured effect):

∫ ∞
K

p(s, 0)f(s)ds−
∫ K

−∞
p(s, 1)f(s)ds. (6)

It is clear that this bias term is not in general equal to 0. The direction of the bias depends

on the shape of the severity distribution and of p. For example, if we assume that severity s is

uniformly distributed between 0 and 1, we can show that the bias is negative if and only if

∫ 1

K
p(s, 0)ds <

∫ K

0
p(s, 1)ds. (7)

Whether this inequality holds depends on K as well as the shape of p. Severity generates a

more negative (or less positive) bias the larger the difference between p(s, 1) and p(s, 0), and the

larger the value of K. The results presented in this paper are consistent with an attenuating bias

due to severity. That is, the probability of a good health outcome appears to be higher under

formal-sector care, and the severity bias in the OLS estimates appears to be large and negative.

Finally, we discuss how the model motivates our instrumental variables strategy, which we

will develop further in Section 4. As we have shown, comparing outcomes for individuals who

chose h = 1 and h = 0 generates a biased estimate of the effects of formal-sector healthcare. The

ideal experiment for estimating average treatment effect without bias would be to randomize

the choice of healthcare for individuals across the severity distribution, and then compare out-

comes for individuals who were randomly treated with formal-sector care with those who were

not.

In the absence of such an experiment, we consider the following strategy. If, on a random

basis, individuals were to face different prices for formal-sector care, the price variation would

generate exogenous shifts in the cutoff K, and thus create treatment and control groups based

on whether individuals were randomly exposed to higher or lower prices for formal-sector care.

For example, suppose that randomly chosen individuals were exposed to a higher relative
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price of formal-sector care (∆P ′ > ∆P ). This price shift would generate variation in the cutoff

(K ′ > K), and would thus exogenously drive a portion of individuals (specifically, those who

have severity levels between K and K ′) to choose h = 0 instead of h = 1, which is what they

would have chosen if the cutoff had not changed. Thus, we can compare the health outcomes

of individuals who would have chosen formal-sector healthcare but were incentivized on a ran-

dom basis not to by the change in price with those of the individuals who were not exposed to

this random price incentive.

Note that this type of experiment elicits not an average treatment effect but rather a local

average treatment effect (LATE), since the price experiment will generate variation in choice

only in the region of the severity distribution between K and K ′. We can express the LATE

estimate as

(
Dg −Db

)∫ K′

K

(
p(s, 1)− p(s, 0)

)
f(s)ds. (8)

The LATE estimate is the average treatment effect restricted to the region of the severity

distribution between K and K ′. In the following section, we discuss the particular instrument

used to generate variation in the price of formal-sector healthcare, using the model to better

understand threats to the validity of the instrument, and creating tests to evaluate empirically

the extent to which these issues are present in our data.

Figure 1 depicts the price variation we propose to use as an instrument in the context of

the utility function presented above. Normalizing prices to the price of the informal option,

a relative increase in the price of formal-sector care results in a shift downwards of U1(s), the

expected utility of choosing h = 1 as a function of s. For the sake of simplicity in the graphical

representation, we have assumed that p(s, h), and hence Uh(s), is linear in s with s ∈ [0, 100].

This is, of course, not necessary for the predictions of the model shown above to hold. The solid

red line corresponds to U1(s) before an increase in the relative price of formal-sector care, and

the dotted red line below it represents the same utility after the price change. The blue line,

denoting the U0(s) is held constant, and thus the new cutoff value, where the new U1(s) and
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U0(s) meet, is to the right of the old in the severity distribution. We refer to the old cutoff as

K (the solid vertical black line in Figures 1 and 2) and the new cutoff as K ′ (the dotted vertical

black line in both figures).

Figure 2 depicts p(s, 1) and p(s, 0) under the linear functional form assumption along with

the same shift in the severity cutoff as in Figure 1. Here we can see that the average treatment

effect estimate from the OLS regression compares the average of p(s, 1) over s ∈ (K, 100] with

the average of p(s, 0) over s ∈ [0,K]. On the other hand, the LATE estimate from the second

stage IV regression compares the average of p(s, 1) over s ∈ [K,K ′] with the average of p(s, 0)

over s ∈ [K,K ′].

3 Data

We use the 2007-2008 Tanzania HIV/AIDS and Malaria Indicator Survey (THMIS), which is

part of the Demographic and Health Surveys (DHS) collected by MEASURE DHS (in conjunc-

tion with the Tanzanian National Bureau of Statistics), a project funded by the United States

Agency for International Development. The THMIS used a two-stage sampling frame. In the

first stage, sample points (clusters) were selected based on enumeration areas designated by

the 2002 Tanzanian Population and Housing Census; 475 clusters were selected. A household

census within each cluster was then used to randomly select approximately 16 households from

each cluster to be surveyed. Weighting factors are included in the data, so when weighted the

sample is nationally representative. In sampled households, all men and women ages 15-49

were interviewed, and blood samples for malaria and anemia were collected for children under

five years old (excluding children less than 6 months old) 8.

3.1 Child-level variables

The majority of our analysis is at the child level. Mothers were asked questions regarding the

health of their children. We deal primarily with the sample of sick children, that is, children who

8The Paracheck-Pf rapid diagnostic test used to detect malaria was found to be very reliable when measured
against the current gold standard microscopy test for malaria in 5 districts in Tanzania (L.E.G. Mboera et al. 2006).
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were sick with fever or cough in the two weeks preceding the date of survey. Respondents who

answered “yes” to this question were asked where they had sought care for the sick child, when

they had sought care if they had, and whether the child was still sick (at the time of survey).

We construct variables corresponding to selection into the sick sample, healthcare choice,

and health outcomes using answers to the survey questions mentioned above. If the respon-

dent answered “yes” to the question about their child having a fever in the two weeks before

survey, they are included in our sample of sick children. We then construct a binary variable

h corresponding to the use of formal-sector healthcare for the child; h = 1 if the respondent

brought the sick child to formal-sector healthcare, and h = 0 otherwise.

We use two main health outcome variables. The first is a fever dummy variable, which

equals 1 if the respondent reports that the sick child still has fever on the day of survey, and 0

otherwise. The second is a dummy variable which equals 1 if the child tests positive for malaria

when surveyed, and 0 otherwise. We also construct and use binary variables for whether or

not the sick child received any medicine; whether or not he received malaria medicine; days

delayed before receiving malaria medicine; and whether or not he adhered to treatment regimen

corresponding to these malaria medications. Please refer to the Appendix for more details on

construction of the variables.

3.2 Mother- and household-level variables

In subsequent analysis, we collapse the child-level data to the mother level, and analyze the

level of healthcare-related information help by the sample of mothers who had at least one

sick child. We construct indices corresponding to the amount of health-related information the

mothers have, by aggregating yes-or-no questions on the definitions of diseases, disease trans-

mission, and treatment. For example, if there were 6 questions about transmission of various

diseases, the respondent was awarded 1 point for every correct answer, deducted 1 point for

every wrong answer, and given a 0 for a response of “don’t know” if applicable. The scores

were then summed across the 6 questions yielding the disease transmission information score

for that respondent. The same was done for a set of questions about the existence of various dis-
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eases and a set of questions about medical treatments for various diseases. A composite index

equaling the sum across all of these information measures was also constructed. Please refer to

the Appendix for details on the construction of these indices.9

We obtain data on the distance to the nearest health facility and distance to the nearest mar-

ket (both in kilometers) from the household questionnaire (a module of questions for household

heads).10 In addition, we include the following control variables from the child-level, mother-

level and household-level questionnaires in our regressions: dummies for age of the child (in

years); region dummies; wealth dummies; mother’s educational attainment in years; mother’s

age at marriage; year in which mother was married; dummies for the month of survey; house-

hold size; number of living children in household; number of children under age of 5 in house-

hold; a dummy for urban clusters; gender of the child; and household’s altitude.

3.3 Rainfall and temperature data

We use the restricted version of the THMIS, which contains data on the latitude and longitude

coordinates of each of the sampled clusters. We use these data to match clusters to rainfall and

temperature data from the University of Delaware’s Center for Climatic Research. The rainfall

dataset is called “Terrestrial Precipitation: 1900-2008 Gridded Monthly Time Series (1900 - 2008)

(Version 2.01),” and the temperature dataset is called “Terrestrial Air Temperature: 1900-2008

Gridded Monthly Time Series (1900 - 2008) (Version 2.01).”

The rainfall and temperature measures for a latitude-longitude node (on a 0.5◦ latitude by

0.5◦ longitude grid) combine data from 20 nearby weather stations using an interpolation al-

gorithm based on the spherical version of Shepard’s distance-weighting method. We matched

the rainfall and temperature data to clusters by calculating the closest grid point to the latitude-

9We also constructed principal component indices using the health-related information questions (composite,
as well as separately for diseases, disease transmission, and treatment). The results are similar to the alternate
constructions discussed above, and thus are not reported in the paper, but are available upon request.

10Note as a caveat that distances are self-reported, and thus likely have a degree of error which may be correlated
with household characteristics (for example, one might imagine that the extent of reporting error is correlated with
the household head’s educational attainment). Nevertheless, in the absence of objective measures of distances, many
studies use the self-reported measure (see, e.g., Gertler et al. 1987).
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longitude coordinates of each cluster.11 The rainfall quantity we use for analysis is the one

which corresponds to the month in which the individual was surveyed. Since the survey took

place over a period of 4 months, each individual is matched based on the latitude-longitude

coordinates of his household’s cluster, and on the month of survey.

In all our regressions, we control for the historical mean and standard deviation of rainfall

and temperature in the month of survey at the closest grid point to the latitude-longitude co-

ordinates of the household’s cluster. We calculate these historical variables by averaging over

the rainfall quantities in the last 50 years in the particular month in question. So, for example,

if an individual in cluster 1 was surveyed in January, the value corresponding to the historical

mean of rainfall would be the average rainfall in January in his cluster over the last 50 years.

The historical standard deviation would be the standard deviation from this mean in the last 50

years.

3.4 Summary Statistics

Table I presents means, standard deviations, and number of observations for select variables of

interest to be used in the analysis below for 1) the sample of children whose mothers reported

them as having been ill in the two weeks prior to survey; 2) sick children who received care at

formal-sector health facilities; and 3) sick children who did not receive formal-sector care.

We see that 16 percent of the total sample of children under the age of 5 were reportedly ill

with fever and/or cough, leaving a restricted sample of 1200 children on which to perform the

proposed analysis. Roughly 27 percent of this restricted sample still reported having fever at the

time of survey and roughly 23 percent tested positive for malaria. It is important to note that

these means are across the entirety of the restricted sample and that the relevant means against

which to compare any local average treatment effect estimates from two-stage least squares

regressions are those for the population on the margin. It is possible that these means are signif-

icantly different.

11We thank Seema Jayachandran for the Stata code that performs this calculation, which is based on the Haversine
formula.
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The second and third columns of Table 1 compare means in the variables of interest across

sick children who did and did not receive formal-sector healthcare. We discuss these compar-

isons for the different sets of variables below.12

3.4.1 Current health status

Children who did and did not receive formal-sector care appear similar in terms of probability

of anemia; we might expect this, given that anemia is an indicator for longer-term health status.

On the other hand, the proportions of children with malaria and fever (at the time of survey)

are substantially different: for both short-term health indicators, children who received formal-

sector care appear better off.

3.4.2 Demographic characteristics

Across healthcare choices, sick children appear generally similar in terms of age, gender and

rural residence. The two groups differ on mean household size, with those not receiving formal

care coming from larger households.

3.4.3 Medications and medicine-related behaviors

Those who received formal sector care received more medicines on average, and the difference is

apparent for antimalarials as well as non-antimalarials. Adherence, on the other hand, appears

to be similar across healthcare choice groups.

3.4.4 Information indices

The information indices are constructed from responses to numerous questions regarding the

existence, transmission, and treatment of various diseases. The information on disease index

was constructed to range from -4 to 4 and has a mean value of just over 3. The information

12We bear in mind in examining these differences in means that children in the two categories of care are, of
course, likely different on many margins, not all of which can be observed (e.g. severity of illness, or the child’s
family’s preferences for health). Thus we cannot interpret these differences causally. We develop a methodology for
causal identification of effects in section 4.

16



on transmission index was constructed to range from -13 to 13 and has a mean of just over 8.

The information on treatment index was constructed to range from -3 to 3 and has a mean of

roughly 1.9. The composite ranges from -20 to 20. It has a mean of just over 14. Please see the

data appendix for more information on the creation of these indices.

We see that the mean composite index (measured at the mother-level) is slightly larger for

those who visited formal-sector care, and that the separate indices related to diseases, trans-

mission and treatment are all slightly larger for formal-sector care users as well, though the

differences are fairly small (as compared to the means).

4 Empirical strategy

In this section, we discuss the aim of our empirical analysis, describe our instrumental variables

strategy, and discuss and present evidence related to the validity of our instrument. Our pri-

mary aim is to obtain unbiased estimates of the effects of formal-sector care on health outcomes.

As detailed in the previous section, ordinary least squares (OLS) estimates of this effect will

likely be biased by the severity of illness, which is omitted from the regression and a determi-

nant of both healthcare choice and health outcomes. While the model does not explicitly allow

for heterogeneity in preferences for health, it is possible that these unobserved preferences also

influence both choice of care and outcomes.

Let Oij denote a health outcome for (sick) child i in cluster j; let hij denote the healthcare

choice made for the child; and let Xij denote a vector of child-, mother- and household-level

characteristics. The following is the OLS specification, which as we discussed above, likely

results in a biased estimate of the effect of h on O, due to unobserved determinants of outcomes

in the error term ε that are correlated with healthcare choice:

Oij = βhij + X′ijγ + εij . (9)
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4.1 Endogeneity of distance and rainfall

We propose instrumenting for healthcare choice using exogenous variation in the relative price

of formal-sector care. The most salient costs to healthcare in developing countries are those

incurred through travel (Gertler et al. 1987). Since care at health facilities and hospitals is often

free or heavily subsidized by the government, individuals’ largest costs are the opportunity

costs and general disutility associated with traveling to the source of care. Gertler et al. (1987)

find that the most important determinant of these costs is the distance to health facilities. In

countries with a low density of health facilities, and especially in sparsely populated rural areas,

visiting a health facility for treatment often involves walking or riding in public transportation

for many hours; individuals must incur the opportunity cost of this time and the disutility of

strenuous travel if they choose to visit a formal-sector healthcare provider. On the other hand,

informal healthcare options–such as self-treatment with medicines obtained from a drug store

or kiosk, a village health worker or a traditional healer–are often much more accessible in terms

of distance.

While distance to the nearest health facility has clearly been established as a shifter of the

demand for formal-sector care, it is likely that this variable is correlated with unobserved el-

ements of the error term in equation 9, and is thus invalid as an instrument. Specifically, an

important issue is one of endogenous placement: governments often choose to locate health

facilities where they will have the greatest impact on the surrounding population. As a result,

facilities may be more likely to be placed in areas with poor average health, where illnesses are

more likely to manifest as severe, and preferences for health are likely to be different than in

places with generally better health. Conversely, it may also be that health facilities, as they are

able to provide more quality healthcare to the local population, are positively correlated with

the average level of health stock in their surrounding areas. In this case, distance to the nearest

facility would be negatively correlated with unobserved severity of illness.

While rainfall is clearly exogenous, and so does not suffer the same critique as was given

above regarding distance to health facility, we argue that it is, nevertheless, not a valid candi-
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date (as a main effect) for an instrument. Rainfall does indeed generate variation in healthcare

choices (as is shown in the last column of Table A.2). However, it surely also affects, amongst

other things, the general extent and severity of sickness in a given locality (e.g. Frank Tanser et

al. 2003); agricultural incomes for farm households (e.g. Christina Paxson 1992); and local prices

(e.g. Esther Duflo and Christopher Udry 2004). All of these variables are 1) unavailable in our

data or commonly unobservable, and 2) likely determinants of healthcare choice and health out-

comes, and thus will be in the error term in the second stage. Therefore, rainfall as a main effect

is not valid as an instrument.

4.2 An interaction instrument using distance

We introduce a new instrument for healthcare choice which does not suffer from the endogene-

ity issues discussed above, to which the distance to health facility variable falls prey. We interact

distance to nearest health facility with the amount of rainfall at the time of sickness, and exclude

only this interaction from the second stage, while controlling for the main effects of distance and

rainfall in the first and second stages of a two-stage instrumental variables estimator. The two

stages of analysis are specified as follows. Define dij to be the distance to the closest health

facility, and Rij to be the quantity of rainfall in cluster j at the time of the individual’s sickness.

The specification is:

1st stage: hij = α1 (dij x Rij) + α2dij + α3Rij + X′ijα4 + ζij (10)

2nd stage: Oij = β1hij + β2dij + β3Rij + X′ijβ4 + εij (11)

The intuition behind the instrument is simple. The main effects of distance and rain should

both be negative; that is, traveling a greater distance and being exposed to heavier rains should

both discourage formal-sector health facility usage for individuals seeking care. Moreover,

heavier rains should discourage individuals who live farther away more than individuals liv-

ing closer to the nearest facility. Imagine, in the extreme case, one household is located next

door to a facility, while another is located 10 kilometers away. In times of dry weather, clearly
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the household next door will be more likely to choose health facility care than the one farther

away. But in times of heavy rains, the rain should incrementally deter the farther household

more than the one just next door.

4.3 First Stage Results

The first two columns of Table II present results from the first stage regressions of healthcare

choice on the interaction of rainfall and distance to nearest health facility for child level and

mother level samples, respectively. All standard errors, here and in the results presented be-

low, are clustered at the sampling cluster level. The first stage effects are negative, significantly

different from zero and robust to the inclusion of various controls. Along with various demo-

graphic controls, we include region fixed effects representing the 26 regions in the data to ensure

that the instrument is not picking up broad geographic variation across regions.

Insofar as distance to the nearest health facility is correlated with distance (or general ac-

cess) to other resources, the first stage estimates may reflect the effect of differential access to

non-healthcare resources on health outcomes. In order to avoid (at least in part) such bias, we

control for the direct effects of rainfall and distance to the nearest health facility along with dis-

tance to the nearest market and the interaction of this distance with rainfall. The specifications

also control for demographic and geographic characteristics such as age and gender of child;

household wealth; mother’s education; mother’s age at marriage; year in which mother was

married; region, altitude, and size of household; number of living children and number of chil-

dren under the age of 5 in the household and a dummy for whether the household is located in

a rural or urban area.

To the extent that rainfall and its subsequent effects on cost of travel are predictable, the

ability of the instrument to predict healthcare choice in response to acute health shocks may

be impaired. In order to account for this predictability of rainfall and the possibility that trans-

portation infrastructure adapts to the predictable component of rainfall, we control for historical

means and standard deviations of rainfall for the month of survey. Also, so as to ensure that the

instrument is in fact reflecting specifically an increased cost of travel rather than a general im-
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pact of extreme weather on behavior, we control for average temperature in month of survey

as well as historical mean and historical standard deviation. Table A.2 in the appendix presents

results from the first stage specifications with various sets of controls omitted.

It is important to note that the model presented above implicitly assumes that sickness is

random; that is, whether or not an individual falls ill is not in any way determined by the

distribution of health outcomes, nor therefore by the ex-post healthcare choice. In practice,

all we need for the empirical application is that sickness, or more specifically the reporting

of sickness, is not in some way driven by the instrument. To explicitly address any concerns

that reduced access to healthcare (increased cost of travel to a health facility as proxied by the

interaction of rainfall and distance) may lead to some systematic selection into or out of the

sample of children with reported acute illnesses in the two weeks prior to survey, we present

results in the third column of Table II from the regression of a binary for fever and/or cough in

the last two weeks on the instrument and full set of controls. We find no evidence of selection

into sickness on the basis of the instrument.

4.4 Instrument Validity: Satisfying the exclusion restriction

Given the importance of the proposed instrument to the empirical strategy, we undertake a

careful discussion of its validity and conduct several checks before proceeding. Specifically, in

addition to being strongly predictive of healthcare choice as established in the first stage results

discussed in the previous section, the instrument should be uncorrelated with unobserved de-

terminants of health outcomes, such as preferences for health and the severity of illness, or more

completely, should be excludable from the second stage regressions.

In terms of the model parameters, the proposed second stage regressions of health outcomes

on healthcare choice correspond to a regression of p(s, h) on h(s,∆P ) to recover ∂p/∂h. The

major obstacle we attempt to overcome with the proposed empirical strategy is the presence of

unobserved severity on both the left and right hand sides of the regression. We can imagine

several ways in which severity, and even other parameters of the model, depend on rainfall and

distance to nearest health facility. Given that we control for the direct effects of rainfall and dis-
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tance in all of the linear regression specifications, all that is required for the exclusion restriction

of the interaction instrument to hold is that severity and any other parameters which might en-

ter both p and h are additively separable functions of rainfall and distance, and ultimately that

p is itself additively separable in rainfall and distance; whereas ∆P , and hence h, are nonsep-

arable in rainfall and distance. Below we present several checks as evidence in support of this

assumption.

4.4.1 Instrument does not predict illness amongst non-acutely ill

We begin by applying the same strategy used earlier with regards to showing the endogeneity

of distance to demonstrate that the interaction term does not significantly predict prevalence of

malaria. In particular, we regress the result of the malaria test given to children on the inter-

action of distance and rainfall, the distance and rainfall main effects, and the same controls as

in the analysis above. We do this for the non-sick sample only, noting that the same regression

run on the sick sample is just the reduced form regression reported in Column 2 of Table A.1.13

We should expect to find an effect for the reduced form regression on the sick sample, if the

instrument is driving formal-sector healthcare choice, and these changes are driving changes

in outcomes. The coefficient estimate of this regression, reported in column 2 of Table A.1, is

indeed positive (though insignificant).

On the other hand, we should expect to find no effect of the interaction in the sample of

non-sick children. The results of this estimation are reported in Column 1 of Table III. The

results indicate that for the non-sick sample of children, the interaction term does not predict the

local prevalence of malaria. This serves as evidence in support of the interaction instrument’s

exclusion from second stage regressions of health outcomes on healthcare choice.

13Of course, we cannot replicate this analysis using fever (at the time of survey) as the dependent variable, since
the question related to fever is only asked of individuals who answered “yes” to having been acutely ill in the two
weeks prior to survey.
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4.4.2 Non-effect for faraway facilities

The instrument is posited to generate variation in healthcare choices by exogenously shifting

the cost of formal-sector care, but only for individuals on the margin between choosing formal

versus informal care. Thus, we should not expect to see an effect for individuals away from

this margin, whose costs of travel are either too low or too high for a fluctuation to matter. We

test this implication by running the baseline first-stage specification restricting the sample to

individuals living more than 10km from the nearest health facility. The results are reported in

column 2 of Table III. We find, consistent with the above hypothesis, that there is no predictive

power of the instrument in the first stage for the restricted sample.

4.4.3 Using transitory rainfall variation

Our next concern is the transience of the rainfall variation. Should this variation in the cost of

formal-sector care be insufficiently transitory (that is, should it persist from last period or into

next period), the interaction term could affect health outcomes outside of its effect on contem-

poraneous acute healthcare choice and therefore violate the exclusion restriction. To rule out

this possibility, we explore the predictive power of the interaction of distance to nearest health

facility with rainfall in the months prior to and after the individual was surveyed.

Columns 3 and 5 of Table III report results from the estimation of specifications identical

to the first stage regressions reported in Table II, but with rainfall in the month of interview

replaced by rainfall in the month following the month of survey and rainfall in the month pre-

ceding the month of survey, respectively. These replacements are made in the interaction terms

as well, of course. The results show that the interaction of future or past rainfall and distance to

nearest health facility is not predictive of healthcare choice. These serve as falsification exercises

for the validity of the instrument, verifying that the predictive power of the instrument is in fact

coming from a transient shock to the cost of traveling long distances to formal-sector care.

Columns 4 and 6 report first stage results controlling for past and future rainfall and their

interactions with distance to nearest health facility and distance to nearest market. The results
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show that the predictive power of the instrument is very robust to the inclusion of these addi-

tional controls.

4.4.4 Controlling for general remoteness

Next, it is likely that the distance to the nearest health facility is correlated with the distance

to other care options or other amenities that influence health outcomes. Fluctuations in rainfall

might affect individuals who live farther away from these amenities differently than individuals

who live closer, and this disparity may drive resulting changes in health outcomes.

If this were the case, our interaction instrument would not be validly excludable from the

second stage. We address this issue by controlling for the distance to the nearest market, which

is a proxy for the distance to other amenities, and its interaction with rainfall. As shown in

Table A.2, even after including the distance-to-market variable and its interaction with rainfall

along with numerous other household-level controls, the predictive power of our interaction

instrument remains strong, and in fact increases.

As further evidence, we report in the first column of Table A.6 results from the first stage

regression including additional controls of interactions of rainfall with all other covariates of

the household. If the interaction instrument is merely picking up on some unobservable re-

moteness or lack of access to resources of the household, which is then exacerbated by rainfall

and ultimately predictive of health outcomes irrespective of healthcare choice, we should ex-

pect that controlling for the interaction of rainfall with demographic covariates such as wealth,

education, household size, etc. will greatly attenuate the coefficient on the instrument in the

first stage regression. We find, however, that the first stage, and in fact most of the second stage

results reported in columns 2-6, are robust to these additional controls. Note that the point es-

timate of the coefficient on the instrument in column 1 of Table A.6 is nearly identical to that in

the main specification reported in column 1 of Table II.

24



4.4.5 Nonlinear effects of endogenous distance

Lastly, we discuss the specific functional form requirements for the exclusion of the interaction

term given that we have established the possibility that distance to nearest health facility is

endogenous. In particular, if distance to nearest health facility enters the true data generating

process of the health outcome nonlinearly, the interaction of distance with rainfall might corre-

late with these nonlinear terms and cause a violation of the exclusion restriction. That is, the

interaction of rainfall and distance to nearest health facility might simply pick up the more ex-

treme effects of living far away from a health facility on health outcomes if we do not control for

these nonlinearities.

To explicitly account for this possibility, we include 2nd and 3rd degree polynomial terms in

distance and dummies for the deciles of the distance distribution in the specifications reported

in Table A.3 of the appendix. For the sake of parsimony, we chose not to include these terms

in the main specifications of the analysis. However, it is clear from Table A.3 that the first stage

and main second stage results are robust to the inclusion of nonlinear terms in distance.

5 Results

5.1 Health Outcomes

Table IV presents the main results from regressions of healthcare choice on the incidence of fever

and malaria amongst the sample of children who were reportedly ill with fever and/or cough

in the two weeks prior to survey. The first two columns of Table IV report the OLS endogenous

regression estimates. We find that formal healthcare has small, negative and precisely estimated

effects on the incidences of fever and malaria. The point estimates suggest that a child is roughly

9 percentage points less likely to still have fever or malaria at the time of survey if they visit a

health facility. Both estimates are significant at the 1 percent level.

The third and fourth columns in Table IV report second stage instrumental variables esti-

mates from the estimations of equations (10) and (11) with the incidence of fever and malaria
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as outcomes, respectively. We find that the estimates of the effects on fever and malaria are

still negative and significant, but the magnitudes are roughly 7 and 4 times as large as their

OLS counterparts with point estimates of approximately 62 percentage points and 40 percent-

age points, respectively. Therefore, we find strong evidence of beneficial effects of formal sector

healthcare on health outcomes following acute health shocks.

The underestimation of OLS is consistent with bias from the omission of severity from the

specification. Given that the assumptions hold, the model predicts that unobserved severity

will reduce the estimated efficacy of formal sector healthcare in the OLS regressions. That is,

provided that more severe illnesses require longer recovery times, or more generally correspond

to a lower probability of the child no longer being sick at the time of survey, and provided that

the benefit of formal sector care is increasing in severity, OLS will find that the children who are

selected to visit the formal sector health facility are more severely ill and therefore are less likely

to be well by the time of survey. This will lead to systematic underestimation of the beneficial

effects of formal sector care on recovery from acute illness.

The extent to which the second stage IV and OLS estimates on incidence of fever and malaria

differ is consistent with that found in similar studies. Table A.7 reports a comparison of the

estimates of severity bias found in this paper with those found in other work.

5.2 Receipt of Medication

Given the large and significant effects on health outcomes, we now explore whether access to

medication is a potential mechanism by which formal-sector care improves health outcomes

following acute illness. The medicine specifications reported in Table V are exactly the same as

those reported in Table IV, excepting the dependent variables. This table only reports second-

stage instrumental variables coefficient estimates.

Columns 1 and 2 of Table V show results for the number of medications received and num-

ber of medications conditional on receipt of at least one, respectively. We find that neither the

number of medications received, nor the number conditional on receipt of any medication, in-

crease significantly when an individual is driven exogenously to formal-sector healthcare.
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The argument is often made that one important benefit of expanding the formal healthcare

sector is enhanced access to appropriate medicines. While we find significant health improve-

ments as a result of formal-sector care, we find no evidence that the mechanism by which these

health improvements are achieved involves improved access to medications. This conclusion is

distinctly at odds with the common assumption, made by academics and policymakers alike,

that bad health outcomes following acute sickness in underserved populations are due to a lack

of access to appropriate medicines (Hogerzeil 2004; WHO 2004; Zhu et al. 2008).

While these results are quite interesting, we must be careful here to make the distinction be-

tween our context–in which many drugs are available in the informal sector as well as at formal

health facilities–and other contexts in which the informal drug sector is less active. In Tanzania,

a fairly well-developed informal health infrastructure provides access to many medications out-

side of formal health facilities; this is not necessarily true in other developing settings, including

other areas of sub-Saharan Africa (Catherine Goodman et al. 2004; S. Patrick Kachur et al. 2006;

Goodman et al. 2007).

We must also contend with the possibility that formal-sector care, though it may not be as-

sociated with increased receipt of total medications, may nevertheless improve health outcomes

through improved access to better quality or more appropriate medications. We test for this pos-

sibility by noting the fact that in much of Tanzania, and in general in malaria-endemic areas, in-

ternational health policy standards recommend treating fever in young children presumptively

as malaria (so as to avoid the potential onset of more severe forms of malaria) (Hugh Reyburn

et al. 2004). Thus in our context, antimalarials specifically represent appropriate medication.

In columns 3 and 4 of Table V, we report results for the number of antimalarial and non-

antimalarial medications. We find similar conclusions to the ones made from columns 1 and

2: for neither dependent variable does health facility usage generate increases in the num-

ber of medicines received. We therefore do not find evidence that access to more appropriate

medicines is a primary mechanism through which formal-sector care improves health outcomes.

Accordingly, we next explore the effects of formal-sector care on efficacy-enhancing behaviors

related to medications as a possible mechanism.
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5.3 Medication-Related Behaviors

Table VI reports second-stage instrumental variables results from regressions of adherence to

medicine regimens and the number of days delayed before receiving medication on formal-

sector care. Columns 1-3 of Table VI show respectively estimates of effects on a binary for

whether the individual adhered to at least one malaria medication, the number of malaria med-

ications to which the individual adhered, and a binary for adherence to all malaria medications

received. The regressions reported in columns 1-3 are conducted on unrestricted samples; that

is, sick individuals who did not receive any malaria medications are still included and treated

as zeros in all three dependent variables.

Across all regressions on the unconditional sample, we find evidence that formal-sector care

improves adherence to medication regimens. Acutely ill individuals that were exogenously

driven to formal-sector care are 56 percentage points more likely to adhere to at least one malaria

medication; adhere to .5 medications more than those who chose informal care or no care; and

are 58 percentage points more likely to adhere to all malaria medications they received.

Columns 4-6 of Table VI report the same adherence regressions as in columns 1-3, but con-

ducted on a conditional sample of children who received at least one malaria medication. Though

the estimates are no longer significant at conventional levels, the signs and magnitudes of the

point estimates are similar to those from the unconditional sample. Column 7 reports a re-

gression conducted on the conditioned sample of days delayed before receipt of medication on

formal-sector care. We find a large and significant reduction in days delayed induced by a visit

to a formal health facility. This result suggests that amongst children who received at least one

malaria medication, those who visited a health facility delayed in receiving malaria medications

nearly a day and a half less than those who did not.

The fact that delay greatly reduces the efficacy of malaria treatment is well documented

in the health literature (see, for example, Susan McCombie 1996). Similarly, full adherence to

medicine regimens is crucial to their effectiveness. The large and significant reduction in the

days delayed to treatment and increases in the probability of adhering to malaria medications
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and the number of malaria medications to which the child adhered are likely channels through

which use of formal healthcare affects the incidence of malaria and fever (a primary symptom

of malaria).

It is unlikely that these results derive from more prompt and consistent access to medicines

through formal-sector care because, in the Tanzanian context, malaria medicines are commonly

available in the informal sector as well. If individuals wish to purchase malaria medications,

they can in general do so at drug stores, convenience stores, kiosks, etc. (with the exception of

artemisinin-based combination therapies, whose distribution is often regulated through formal

sector health facilities (see Achyuta Adhvaryu (2010)). We therefore interpret the results on

delay and adherence as working primarily through an informational channel: the prescription

of medicines is usually accompanied at health facilities with instructions and guidance from

health workers on their optimal usage, which includes an emphasis on prompt and complete

treatment.

Following this suggestive evidence of the transmission of information about effective treat-

ment for malaria as a result of formal-sector care use, we explore the degree to which visits to

formal care facilities are associated with the transmission of information about other illnesses,

their transmission, and treatments.

5.4 Effects on General Health Knowledge

Table VII reports estimates from second stage IV regressions on indices measuring the mother’s

information about the existence of tuberculosis and sexually transmitted diseases including

HIV/AIDS, the transmission of these diseases, and the existence of treatments for these diseases.

The corresponding first stage regression results from this mother-level sample are reported in

the second column of Table II.

Column 1 of table VII reports estimates of the effect of a visit to formal care on the composite

index of all this disease related information. We find no significant effects on health-related

knowledge of the mother. Though the standard error is large, the point estimate is quite small

at less than .5 in absolute value, as compared to a mean of more than 14. Columns 2-4 show
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results on sub-indices which measure information on the specific topics of disease existence,

transmission, and treatment, respectively. We do not find significant effects on information by

topic either, with similarly small point estimates as well.

These results indicate that, though the evidence suggests that treatment at formal-sector fa-

cilities is accompanied by information which improves medication-related behaviors and subse-

quently improves treatment efficacy, there does not seem to be any transmission of information

about other illnesses.

5.5 Heterogeneous Returns Across Severity of Illness

Lastly, we explore heterogeneity across the severity of illness in the returns to healthcare. Table

VIII shows results from the 2SLS regressions of the interaction of formal healthcare and anemia

status of the child on incidence of fever and malaria. To the extent that anemia, at least in part,

proxies for severity, the third assumption from the model requires that the effects of formal

healthcare on health outcomes be larger for children who are anemic. We find, in fact, large and

significant effects of the interaction of formal healthcare and anemia on the incidence of fever

and malaria, verifying this assumption in the model. We unfortunately do not have information

on other co-morbidities, but we believe anemia status is an appropriate measure in this context

given that it is a slightly longer term stock variable measuring some degree of general health.

6 Conclusion

Estimating the effects of formal-sector care on health outcomes is an important undertaking

in both developed and developing contexts, the results of which are particularly germane to

policy-makers’ decisions regarding resource allocation and infrastructural investment. Consis-

tent estimation of these effects has proven difficult due to the endogeneity of healthcare choice.

This paper improves on previous work by developing a new identification strategy, particu-

larly appropriate to the developing country context, which exploits exogenous variation in the

cost of formal-sector care, and in doing so overcomes the well-known problem of self-selection
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into healthcare options. We find large and significant reductions in the incidence of fever and

malaria among children with acute illness as a result of visiting formal-sector facilities.

The paper makes further contributions to the literature in its exploration of the mechanisms

by which formal-sector care improves health outcomes. We find that enhanced access to medica-

tions is not the primary mechanism by which health facilities improve health outcomes. Rather

we find that visiting health facilities improves medication-related behaviors. Specifically, visits

to formal-sector care reduce the delay in receiving medication and increase adherence to medi-

cation regimens, both of which are known to greatly improve the efficacy of treatment.

In contrast, we find no evidence that general health information is improved by formal

health facility use. We find that mothers who are exogenously driven to take their acutely ill

children to formal health facilities are no better informed about disease existence, transmission,

and transmission than those who are not. Altogether, the results suggest that improvements

in health outcomes following formal-sector care are driven by transfers of immediately rele-

vant, treatment-specific information, rather than access to medicines or improvements in gen-

eral health-related knowledge.

Consistent estimation of returns to quality healthcare in a developing country context and

exploration of corresponding mechanisms by which these returns are achieved are, to the best

of our knowledge, novel contributions to the literature. More generally, the identification strat-

egy used in this paper contributes to the vast literature regarding self-selection issues in applied

economics studies. The concept of self-selection has been addressed in the literature on treat-

ment effects (Anders Bjorklund and Robert Moffitt 1987), technology adoption (Tavneet Suri

2010), and returns to schooling (David Card 2001). This paper proposes a robust identification

strategy for dealing with similar self-selection issues in healthcare choice, as relates particularly

to the developing country context.
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A Additional Results

A.1 Reduced Form Effects

Table A.1 reports estimates of the reduced form effects of the interaction of rainfall and distance

to the nearest health facility on the incidence of fever and malaria, the number of medicines

received, adherence to malaria medicines, and the number of days delayed before receiving

malaria medication conditional on receiving at least one malaria medication. Given that the

point estimates in the reduced form regressions are arithmetically equivalent to the point esti-

mates from the second stage IV regression multiplied by those from the first stage, the signs and

magnitudes of the reduced form results are exactly as expected. Significance is also preserved

across all regressions, excepting incidence of malaria.

A.2 First Stage Robustness

The first 3 columns of Table A.2 present results from the estimation of alternate specifications of

the first stage equation. The specification in column 1 includes no additional controls beyond

those listed; the specification in column 2 includes only age, region, wealth, education, and

month of survey group effects; and the specification in column 3 is a reproduction of the main

specification in column 1 of Table II which includes all controls and group effects. Note that the

estimates with and without controls are not statistically significantly different from each other

at conventional levels.

Column 4 of Table A.2 reports results from the regression of just the main effects of rainfall,

distance to nearest health facility, and distance to nearest market on healthcare choice, including

all the usual controls. That is, the specification in column 4 does not include the interaction

of rainfall and distance to nearest health facility nor the interaction of rainfall and distance to

nearest market. As expected, the main effects of both distance and rainfall are negative and

significant.
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A.3 Robustness of Results to Nonlinear Distance Terms

Table A.3 reports results from first stage and select second stage regressions including nonlinear

terms in distance as additional controls. In particular, the specifications reported in Table A.3

are identical to those reported in the main results above except for the inclusion of 2nd and 3rd

degree polynomials in distance to nearest health facility and a vector of dummies representing

the deciles of the distance distribution. It is clear that the first stage is robust to the inclusion of

these additional controls. Furthermore, in columns 2-6 of Table A.3 we see that the main results

on the incidence of fever and malaria, the number of medicines received, adherence to malaria

medicines, and the number of days delayed before receiving malaria medication conditional on

receiving at least one malaria medication are preserved.

A.4 Robustness of Results to Future and Past Rain Interaction Controls

Table A.4 reports results from first stage and select second stage regressions including addi-

tional controls of rainfall in the month before and after the month of reported illness and their

interaction with distance to nearest health facility. As in Table A.3, the specifications reported

in Table A.4 are identical to those reported in the main results except for these additional con-

trols. Again, we find that the first stage is robust to the inclusion of these additional controls.

Furthermore, in columns 2-6 of Table A.3 we see that the main results are, in general, preserved.

Results from regressions of the incidence of fever and malaria on formal care are of the same

sign and magnitude as the main results, and are statistically significant. The estimate of the

effect of formal care on the number of medicines received is still insignificant. Results from the

regressions of adherence to malaria medicines and the number of days delayed before receiving

malaria medication on formal care are no longer significant at conventional levels and are of

diminished magnitude, but are of the same sign.
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A.5 Reduced Form Checks on Future/Past Rain

In Table A.5 we check reduced form effects of future and past rain interactions with distance

on incidence of fever and malaria and on selection into sickness. We omit rainfall in the month

of reported illness and its interaction with distance and check the predictive power of the non-

contemporaneous rainfall interactions. The future rain interaction is not predictive and the past

rain interaction coefficient is only weakly significant at the 10 percent level. In column 3 of Table

A.5, we find no evidence that non-contemporaneous rainfall nor its interaction with distance are

predictive of selection into sickness. This result provides further evidence that the interaction

of rainfall and distance to health facility only effects health temporarily through its effect on

healthcare choice in times of acute illness and not otherwise through additional channels.

A.6 Reduced to Additional Controls of Interactions of Rainfall with Other Covari-

ates

Table A.6 reports results from first stage and select second stage regressions including additional

controls of rainfall in the month of reported illness interacted with all other covariates. The

specifications reported in Table A.4 are identical to those reported in the main results except

for these additional controls. Again, we find that the first stage is robust to the inclusion of

these additional controls. Furthermore, in columns 2-6 of Table A.3 we see that the main results

are entirely preserved. The coefficients of interest are all of the same sign and magnitude as in

the main results; they are also all significant at the same level, except for in the regression of

incidence of malaria.

A.7 Comparison of Self-Selection Bias in Estimates

Table A.7 reproduces the main health outcomes results from this study in columns 1 and 2.

The remaining columns of Table A.7 present results from other studies which also attempt to

overcome the issue of bias due to self-selection on severity. The results show that severity bias

significantly attenuates estimates of the effects of healthcare quality on health outcomes. More-
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over, the degree of severity bias appears to be on a similar order of magnitude as the results

found in this study.

B Construction of variables

The following variables were constructed for use in the analysis:

• formalhealthcare = 1 if child visited a government or private hospital or health centre;

formalhealthcare = 0 if child did not visit a government or private hospital or health

centre

• histmean of rainfall and temperature are calculated using average rainfall or temperature

over the month of survey in the year of survey back to the year 1949

• histsd is calculated as the standard deviation from historical mean for average rainfall or

temperature in month of survey from 2007-1949

• shocknorm = (rain− histmean)/(histsd)

• infodisease = TB + STD + HIV/AIDS + otherSTD, where each variable on the RHS

is a multinomial variable taking values 1 and -1 for the right and wrong answer, respec-

tively, and value 0 for a response of “don’t know” in response to questions of whether the

respondent had heard of the disease

• infotransmission = TBair+TButensils+TBtouch+TBfood+TBsex+TBunknown+

AIDSabst+AIDScondom+AIDS1prtnr+healthyAIDS+AIDSmsqto+AIDSfood+

AIDSwitch, where each variable on the RHS is a multinomial variable taking values 1 and

-1 for the right and wrong answer, respectively, and value 0 for a response of “don’t know”

in response to questions of whether the disease could be transmitted in that particular way

• infotreatment = TBcure + AIDSdrugs + AIDSdrugsbaby, where each variable on the

RHS is a multinomial variable taking values 1 and -1 for the right and wrong answer,

respectively, and value 0 for a response of “don’t know” in response to questions regarding
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the existence of a cure for TB, drugs to help HIV/AIDS infected individuals live a long life,

and drugs to block transmission of HIV/AIDS from an infected mother to her baby.

• info = infodisease+ infotransmission+ infotreatment

• nummeds is the number of medications the child received of any type, including 0 if the

child did not receive any medication

• nummedscon is the number of medications the child received of any type, it is missing if

the child did not receive any medication

• nummalmeds is the number of malaria medications the child received, including 0 if the

child did not receive any malaria medication

• numnonmalmeds is the number of non-malaria medications the child received, including

0 if the child did not receive any non-malaria medication

• adhereone = 1 if the child received and adhered to at least one malaria medication;

adhereone = 0 if the child did not adhere to any of the medications received or did not

receive any medications

• numadhere is the number of malaria medications the child received and adhered to, in-

cluding 0 if the child did not receive any malaria medication or if he received malaria

medications but did not adhere to any of them

• adhereall = 1 if the child adhered to all of the malaria medications received; adhereall = 0

if the child did not adhere to all of the malaria medications received or did not receive any

medications

• adhereonecon = 1 if the child received and adhered to at least one malaria medication;

adhereonecon = 0 if the child did not adhere to any of the medications received

• numadherecon is the number of malaria medications the child received and adhered to,

including 0 if he received malaria medications but did not adhere to any of them; it is

missing if the child did not receive any malaria medication
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• adhereallcon = 1 if the child adhered to all of the malaria medications received; adhereall =

0 if the child did not adhere to all of the malaria medications received

• meddelay = min(delay), where delay is measured in days for each malaria medication

observed and is missing if the child did not receive that malaria medication at all.

43



FIGURE 1: PRICE INCREASE INDUCES RIGHTWARD SHIFT IN CUTOFF VALUE
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FIGURE 2: PRICE SHIFT, LATE AND ATE
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Table I: Summary Statistics

Number of Observations:
All children 7502
Children reporting sickness in 2 wks prior to survey 1200
All mothers 4910
Mothers reporting at least 1 child (<5) as acutely ill 1071

Sick Children
All Formal Care No Formal Care

Mean SD Mean SD Mean SD
Sought care at a formal‐sector healthcare facility 0.573 0.495

Instrument (cost‐of‐care shifters):
Rain (mm/100) 0.918 0.610 0.881 0.631 0.967 0.579
Distance to nearest formal‐sector health facility (km) 4.418 6.027 3.352 4.789 5.853 7.131
Distance to nearest market (km) 26.293 29.585 22.127 27.652 31.927 31.168

Health status:
Tested positive for mild to severe anemia 0.770 0.421 0.777 0.417 0.761 0.427
Tested positive for malaria (at time of survey) 0.232 0.422 0.165 0.372 0.319 0.467
Fever now (self‐reported, at time of survey) 0.272 0.445 0.213 0.409 0.351 0.478

Demographic characteristics:
Age 1.603 1.301 1.489 1.273 1.754 1.324
Female 0.496 0.500 0.483 0.500 0.513 0.500
Rural 0.819 0.385 0.783 0.412 0.867 0.339
Household size 7.254 3.856 6.815 3.427 7.842 4.298

Medications:
No. of medicines received 1.491 0.863 1.761 0.756 1.122 0.863
No. of medicines conditional on # > 0 1.694 0.708 1.795 0.722 1.511 0.644
No. of antimalarials 0.551 0.521 0.703 0.492 0.343 0.488
No. of non‐antimalarials 0.940 0.762 1.058 0.808 0.779 0.661

Medication‐related behaviors:
Adhered to at least 1 medication 0.629 0.483 0.639 0.481 0.602 0.491
No. of medications adhered to 0.634 0.492 0.643 0.489 0.608 0.502
Adhered to all medications 0.619 0.486 0.628 0.484 0.596 0.492
No. of days delayed before receiving medication 1.180 1.079 1.150 1.071 1.264 1.099

Health information indices:
Composite 14.173 3.559 14.307 3.496 13.971 3.650
General disease‐related 3.481 1.093 3.463 1.105 3.507 1.078
Transmission‐related 8.507 2.749 8.611 2.701 8.357 2.815
Treatment‐related 1.909 1.298 1.996 1.275 1.778 1.324

Notes: Please see data appendix for details on the construction of variables.
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Table II: First Stages and Selection Check

Interaction of Rain and Distance to Health Facility on Healthcare  Selection on SickChoice
Child Level Mother Level Fever Last 2 Weeks

Rain x Distance ‐0.0204*** ‐0.0192*** 0.000988
(0.00516) (0.00534) (0.00185)

Distance 0.00569 0.00348 ‐0.000503
(0.00489) (0.00506) (0.00173)

Market ‐0.00167 ‐0.00177 ‐1.72e‐05
(0.00130) (0.00131) (0.000493)

Rain ‐0.139* ‐0.175** ‐0.0162
(0.0706)(0.0706) (0.0724) (0.0271)(0.0724) (0.0271)

Rain x Market 0.000776 0.000912 0.000299
(0.00118) (0.00122) (0.000409)

F‐test: Rain x Distance=0 15.60 12.98
Prob>F 9.37e‐05 0.000358

Observations 1081 963 6267
R‐squared 0.178 0.177 0.048

Notes: Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1). Standard errors are clustered at the sampling cluster level.  All specificat
wealth, eduction, and month of survey group effects. Other  controls include temperature, historical means and standard deviations of both rainfall 
altitude, household size, number of living children, number of children under 5, gender, motherʹs age at marriage, year in which mother was marrie
whether the household is located in a rural or urban area. For the sake of parsimony, all coefficients are not reported here, but are available upon req



Formal Healthcare

Prob>F 0.267 0.938

Prob>F 0.301 0.00142 0.000511

0.177
Notes: Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1). ʺFaraway facilitiesʺ are those more than 10km from the individualʹs dwelling. See Table II for other notes.

Table III: Instrument Checks

Eviden
Exoge

ce of 
neity

Falsific
Faraw

ation Using 
ay Facilities

Falsification with 
Future Rain

Robust to Futu
Rain Inclusio

re 
n

Falsification with 
Past Rain

Robust to Past Rain 
Inclusion

Malaria (if 
last 2 w

no fever in 
eeks)

Formal Healthcare Formal Healthcare

Future or Past Rain x Dist ‐0.00563 0.00241 ‐0.000504 0.00673
(0.00506) (0.00528) (0.00652) (0.00686)

Future or Past Rain 0.116** 0.0640 ‐0.0428 ‐0.108
(0.0519) (0.0642) (0.0859) (0.0855)

Future or Past Rain x Market 0.000694 0.000396 ‐5.87e‐05 ‐8.74e‐05
(0.00102) (0.00114) (0.00146) (0.00132)

Rain x Distance 0.00151 ‐0.0201 ‐0.0203*** ‐0.0214***
(0.00206) (0.0193) (0.00630) (0.00611)

Distance 0.000226 0.0228 ‐0.00382 0.00259 ‐0.00943 0.00145
(0.00183) (0.0139) (0.00693) (0.00644) (0.00598) (0.00557)

Market ‐0.000149 ‐0.00545 ‐0.00169 ‐0.00202 ‐0.000770 ‐0.00116
(0.000517) (0.00370) (0.00139) (0.00167) (0.00123) (0.00144)

Rain ‐0.0409 0.638 ‐0.0713 ‐0.132*
(0.0307) (0.534) (0.0784) (0.0732)

Rain x Market 0.000826* 0.00507 0.000806 0.000513
(0.000482) (0.00489) (0.00115) (0.00106)

F‐test: Future or Past Rain x 
1.24 0.01

Distance=0

F‐test: Rain x Distance=0 1.09 10.33 12.29

Observations 4177 135 1130 1130 1130 1130
R‐squared 0.157 0.429 0.167 0.176 0.162
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a. 

Table IV: Health Outcomes

Effects of Healthcare Choice on Health Outcomes
OLS  Second Stage IV

Fever Malaria Fever Malaria

Formal Healthcare ‐0.0945*** ‐0.0961*** ‐0.619** ‐0.398*
(0.0315) (0.0270) (0.266) (0.236)

Distance 0.00132 0.00228 ‐0.00442 ‐0.00102
(0.00295) (0.00236) (0.00385) (0.00286)

Market ‐0.00123 0.000902 ‐0.00191 0.000706
(0.00111) (0.000940) (0.00130) (0.00105)

Rain 0.0640 0.0577 ‐0.0191 0.0152
(0.0855) (0.0599) (0.106) (0.0702)

Rain x Market 0.000494 ‐0.000885 0.000612 ‐0.000958
(0.000943) (0.000779) (0.00108) (0.000928)

Observations 1073 934 1073 934
R‐squared 0.110 0.294 ‐0.173 0.189

Notes: Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1). Standard errors are clustered at the sampling clus
level.  All specifications inlcude age, region, wealth, eduction, and month of survey group effects. Other  controls include 
temperature, historical means and standard deviations of both rainfall and temperature, altitude, household size, number of 
living children, number of children under 5, gender, and a dummy for whether the household is located in a rural or urban are
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Table V: Receipt of Medication

Second Stage IV: Effects of Healthcare Choice on Number of Medications Obtained
Any Medication Medications By Type

No. of Meds
No. of Meds 

(Conditional on On
Med)

e 
No. of Malaria 

Meds
No. of  Non‐Malaria 

Meds

Formal Healthcare 0.572 0.218 0.283 0.290
(0.410) (0.345) (0.279) (0.356)

Distance ‐0.000531 ‐0.00519 0.000886 ‐0.00142
(0.00619) (0.00549) (0.00437) (0.00546)

MarketMarket ‐0 00227.00227 ‐0 00242.00242 ‐0 00231.00231 3 12e‐05.12e 05
(0.00243) (0.00210) (0.00143) (0.00187)

Rain 0.0546 0.122 ‐0.0473 0.102
(0.133) (0.119) (0.0837) (0.125)

Rain x Market 0.000743 0.000493 0.000697 4.60e‐05
(0.00185) (0.00153) (0.00121) (0.00131)

Observations 1049 931 1049 1049
R‐squared 0.205 0.117 0.290 0.146

Notes: Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1). See Table IV for other notes.



a Medication

Table VI: Medication‐Related Behaviors

Second Stage IV: Effects of Healthcare Choice on Adherence and Delay to Medication
Uncondtional Conditional on Reciept of Malari

Adhered
least 1 M

 to at 
ed

No. 
Adh

of Meds 
ered to

Adhered to All 
Meds

Adhered to at
least 1 Med

  No. of Me
Adhered 

ds 
to

Adhered to All 
Meds

Days Delayed Before 
Medicating

Formal Healthcare 0.560** 0.506* 0.579** 0.427 0.343 0.440 ‐1.328**
(0.277) (0.285) (0.278) (0.314) (0.322) (0.315) (0.578)

Distance 0.00287 0.00279 0.00321 0.00481 0.00420 0.00530 ‐0.00618
(0.00477) (0.00476) (0.00471) (0.00583) (0.00588) (0.00577) (0.0119)

Market 0.000777 0.000771 0.000967 0.00446** 0.00453** 0.00471*** ‐0.00447
(0(0.00139)00139) .(0 00141)(0 00141) (0 00136)(0.00136) (0 00179)(0.00179) (0(0.00179) (0 00179) (0 00417)00179) (0.00179) (0.00417)

Rain ‐0.0659 ‐0.0485 ‐0.0669 ‐0.0844 ‐0.0528 ‐0.0916 0.0551
(0.0948) (0.100) (0.0950) (0.103) (0.113) (0.104) (0.238)

Rain x Market ‐0.000731 ‐0.000761 ‐0.000877 ‐0.00232* ‐0.00249* ‐0.00255* 0.000279
(0.00122) (0.00128) (0.00122) (0.00140) (0.00146) (0.00140) (0.00328)

Observations 1049 1049 1049 565 565 565 554
R‐squared 0.065 0.096 0.042 0.036 0.073 0.024 ‐0.003

Notes: Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1). See Table IV for other notes.



Table VII: Information Externalities

Effects of Healthcare Choice on Health‐related Information
Composite Information by Topic

Information Abo
Disease

ut  Information Ab
Transmission

out  Information About 
Treatment

Formal Healthcare ‐0.421 ‐0.0276 ‐0.351 0.358
(2.086) (0.575) (1.473) (0.754)

Distance ‐0.0510 ‐0.00666 ‐0.0546** 0.00664
(0.0321) (0.0111) (0.0219) (0.0134)

Market ‐0.0188** ‐0.000181 ‐0.0110* ‐8.97e‐05
(0.00816) (0.00310) (0.00572) (0.00332)

Rain ‐0.457 0.0653 ‐0.262 ‐0.0253
(0.693) (0.207) (0.451) (0.262)

Rain x Market 0.0113* ‐0.00178 0.00821** 2.53e‐05
(0.00582) (0.00224) (0.00401) (0.00251)

Observations 845 963 943 854
R‐squared 0.258 0.157 0.215 0.170

Notes: Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1). See Table IV for other notes.



Table VIII: Heterogeneous Effects

Effects of Healthcare Choice on Health Outcomes by Initial Health

Fever Malaria

Anemic x Formal Healthcare ‐1.497* ‐1.819**
(0.854) (0.795)

Formal Healthcare 0.568 1.036
(0.754) (0.679)

Anemic 0.916 1.351**
(0.642) (0.599)

Joint F‐test for Anemic x Formal 
Healthcare

5.17 5.6

Prob>F 0.006 0.004

Joint F‐test for Formal 
Healthcare

6.11 6.36

Prob>F 0.003 0.002

Observations 935 934
R‐squared ‐0.512 ‐0.481

Notes: Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1). See Table IV for other notes. Instruments are 
(Anemic x Rain x Distance) and (Rain x Distance).



Table A.1: Reduced Form Estimates

Effects of Healthcare Choice on Health Outcomes and Medication‐Related Behaviors
Health Outcomes Medications

Fever Malaria No. of Meds
Adherenc

(Unconditio
e 
nal)

Days Delayed Before 
Medicating

Rain x Distance 0.0127** 0.00769 ‐0.0125 ‐0.0122* 0.0334**
(0.00559) (0.00496) (0.00941) (0.00633) (0.0152)

Distance ‐0.00786 ‐0.00300 0.00323 0.00655 ‐0.0132
(0.00500) (0.00424) (0.00871) (0.00634) (0.0156)

Market ‐0.000845 0.00110 ‐0.00304 2.62e‐05 ‐0.00316
(0 00113)(0.00113) (0 000948)(0.000948) (0 00225)(0.00225) (0(0.00129) (0 00453)00129) (0.00453)

Rain 0.0663 0.0612 ‐0.0250 ‐0.144* 0.159
(0.0838) (0.0585) (0.119) (0.0779) (0.225)

Rain x Market 0.000119 ‐0.00105 0.00108 ‐0.000405 0.000797
(0.000983) (0.000767) (0.00166) (0.00101) (0.00312)

Observations 1073 934 1049 1049 554
R‐squared 0.106 0.286 0.122 0.119 0.216

Notes: Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1). See Table IV for other notes.



Table A.2: First Stage Robustness

First Stage Main Effects

No Controls Group Effects Main Specification  No Rain Interactions

Rain x Distance ‐0.0184*** ‐0.0176*** ‐0.0204***
(0.00543) (0.00513) (0.00516)

Distance 0.00161 0.00390 0.00569 ‐0.0108***
(0.00529) (0.00502) (0.00489) (0.00310)

Market ‐0.00253** ‐0.00182 ‐0.00167 ‐0.000794
(0.00123) (0.00130) (0.00130) (0.000756)

Rain ‐0.00756 ‐0.0322 ‐0.139* ‐0.148**
(0.0409) (0.0557) (0.0706) (0.0662)

Rain x Market 0.00110 0.000851 0.000776
(0.00106) (0.00114) (0.00118)

F‐test: Rain x Distance=0 11.52 11.72 15.60
Prob>F 0.000761 0.000688 9.37e‐05

Observations 1130 1130 1081 1130
R‐squared 0.062 0.150 0.178 0.166

Notes: Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1). See Table II for other notes



(0.00118) (0.00104) (0.000907) (0.00178) (0.00122) (0.00318)

Prob>F 0.0002

Table A.3: Robustness to Nonlinear Distance Terms

Effects of Healthcare Choice on Health Outcomes and Medication‐Related Behaviors
First Stage Health Outcomes Medications

Formal Healthcare Fever Malaria No. of Meds Adherence 
(Unconditional)

Days Delayed Before 
Medicating

Formal Healthcare ‐0.584** ‐0.362 0.551 0.642** ‐1.206**
(0.291) (0.254) (0.456) (0.289) (0.568)

Rain x Distance ‐0.0187***
(0.00502)

Distance 0.00870 ‐0.143** ‐0.108* 0.106 0.155** ‐0.105
(0.0551) (0.0641) (0.0591) (0.126) (0.0786) (0.256)

Distance^2 0.000948 0.00594** 0.00407* ‐0.00424 ‐0.00711** 0.00532
(0.00217) (0.00236) (0.00219) (0.00564) (0.00362) (0.0116)

Distance^3 ‐1.83e‐05 ‐7.40e‐05*** ‐4.54e‐05* 5.49e‐05 9.52e‐05* ‐8.69e‐05
(2.55e‐05) (2.64e‐05) (2.43e‐05) (7.70e‐05) (5.19e‐05) (0.000161)

2nd Distance Decile 0.0181 0.116 0.126* ‐0.266* ‐0.207** 0.000781
(0.0724) (0.0785) (0.0686) (0.152) (0.0926) (0.294)

4th Distance Decile 0.0395 0.273** 0.192* ‐0.290 ‐0.288* 0.376
(0 116)(0.116) (0 129)(0.129) (0 116)(0.116) (0 251)(0.251) (0 154)(0.154) (0 501)(0.501)

6th Distance Decile ‐0.0236 0.365* 0.307* ‐0.386 ‐0.400* 0.370
(0.161) (0.188) (0.172) (0.360) (0.217) (0.678)

7th Distance Decile 0.0103 0.577** 0.452** ‐0.612 ‐0.639** 0.499
(0.209) (0.240) (0.209) (0.448) (0.274) (0.886)

8th Distance Decile ‐0.120 0.481 0.506* ‐0.459 ‐0.596* 0.409
(0.253) (0.304) (0.272) (0.571) (0.338) (1.090)

9th Distance Decile ‐0.171 0.780* 0.675* ‐0.671 ‐0.710 0.489
(0.340) (0.409) (0.355) (0.751) (0.447) (1.483)

10th Distance Decile ‐0.307 0.951* 0.827* ‐0.975 ‐0.939* 0.709
(0.452) (0.551) (0.481) (0.922) (0.557) (1.795)

Market ‐0.00166 ‐0.00199 0.000662 ‐0.00245 0.000955 ‐0.00430
(0.00131) (0.00131) (0.00105) (0.00240) (0.00141) (0.00412)

Rain ‐0.123* ‐0.0252 0.0126 0.0835 ‐0.0563 0.0208
(0.0708) (0.104) (0.0700) (0.133) (0.0949) (0.239)

Rain x Market 0.000857 0.000729 ‐0.000849 0.000722 ‐0.000961 0.000754

F‐test: Rain x Distance=0 13.91

Observations 1081 1073 934 1049 1049 554
R‐squared 0.189 ‐0.120 0.219 0.213 0.030 0.043

Notes: Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1). Specifications used in this table are identical to those reported in the main results, except for the inclusion of 2nd 
and 3rd degree polynomials in distance to nearest health facility, and a vector of dummies representing the deciles of the distance distribution.  See Table IV for other notes.
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Table A.4: Robustness to Both Future and Past Rain Interaction Controls

Effects of Healthcare Choice on Health Outcomes and Medication‐Related Behaviors
First Stage Health Outcomes Medications

Formal Healthcare Fever Malaria No. of Meds
Adherence

(Uncondition
 
al)

Days Delayed Before 
Medicating

Formal Healthcare ‐0.731** ‐0.505* 0.652 0.112 ‐0.931
(0.291) (0.293) (0.515) (0.288) (0.798)

Rain x Distance ‐0.0225***
(0.00689)

Distance 0.000585 ‐0.00680 ‐0.00393 ‐0.0131 0.0107 ‐0.0144
(0.00697) (0.00734) (0.00522) (0.0120) (0.00771) (0.0151)

Market ‐0.00224 ‐0.00179 0.000525 0.00184 0.000913 ‐0.00556
(0.00188) (0.00182) (0.00167) (0.00371) (0.00197) (0.00537)

Rain ‐0.0863 ‐0.0189 0.0751 ‐0.0133 ‐0.252*** 0.0573
(0.0821) (0.110) (0.0830) (0.161) (0.0907) (0.252)

Rain x MarketRain   Market 0 000673.000673 0 000405.000405 0 000415‐ .000415 0 000747.000747 0 00106‐ .00106 0 00317‐ .00317
(0.00115) (0.00110) (0.00114) (0.00197) (0.00107) (0.00271)

Future Rain x Dist 0.00263 ‐0.00499 ‐0.00544 0.0142* ‐0.00434 0.0145
(0.00535) (0.00599) (0.00404) (0.00842) (0.00454) (0.0131)

Future Rain 0.0421 0.119* 0.133** ‐0.139 ‐0.0540 ‐0.179
(0.0627) (0.0620) (0.0599) (0.102) (0.0617) (0.185)

Future Rain x Market 0.000652 ‐0.00138 ‐0.000797 ‐0.000729 ‐0.000771 0.00107
(0.00117) (0.00107) (0.000918) (0.00200) (0.00101) (0.00321)

Past Rain x Dist 0.00465 0.00834 0.0109** ‐0.00539 ‐0.00991 ‐0.00464
(0.00680) (0.00594) (0.00526) (0.0111) (0.00642) (0.0219)

Past Rain ‐0.107 ‐0.202** ‐0.0298 0.151 0.0111 ‐0.485**
(0.0869) (0.0834) (0.0757) (0.120) (0.0765) (0.203)

Past Rain x Market 5.22e‐05 0.00260** 0.000267 ‐0.00356* 0.000911 0.00789**
(0.00130) (0.00118) (0.00120) (0.00194) (0.00136) (0.00382)

F‐test: Rain x Distance=0 10.65
Prob>F 0.00120

1130 1122 973 1098 1098 582Observations
0.179 ‐0.274 0.111 0.205 0.150 0.116R‐squared

Notes: Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1). Specifications used in this table are identical to those reported in the main results, except for the inclusion of ra
the month directly prior to and following the month of sickness and their interactions with distance to nearest health facility and distance to nearest market.  See Table IV for other notes.



t 0 0 0

(0.000883) (0.000632) (0.000469)

Notes: Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1). See Table IV for other notes.

Table A.5: Reduced Form Checks on Future/Past Rain

Effects of Future/Past Rain and Interactions on Health Outcomes
Health Outcomes Selection on Sick

Fever Malaria Fever Last 2 Weeks

Future Rain x Dist ‐0.00171 5.86e‐05 ‐0.00113
(0.00506) (0.00159) (0.00138)

Future Rain 0.0569 0.0449* 0.00171
(0.0525) (0.0272) (0.0217)

Future Rain x Market ‐0.00179** ‐0.00113*** 0.000132
(0.000908) (0.000422) (0.000413)

P t R i tPast Rain x DisDi 0 0110*.0110* 0 00554*.00554* 0 00236.00236
(0.00581) (0.00301) (0.00206)

Past Rain ‐0.152** ‐0.0665* ‐0.00993
(0.0641) (0.0365) (0.0277)

Past Rain x Market 0.00243** 0.000509 0.000379
(0.00115) (0.000591) (0.000492)

Distance ‐0.00493 ‐0.00172 0.000162
(0.00665) (0.00251) (0.00228)

Market ‐0.000340 0.000871 ‐0.000365
(0.00158) (0.000695) (0.000600)

Rain 0.0832 ‐0.0227 ‐0.00279
(0.0802) (0.0323) (0.0296)

Rain x Market 0.000187 0.000698 0.000148

Observations 1122 5312 6502
R‐squared 0.115 0.183 0.046



Distance 0.00500 ‐0.00569 ‐8.56e‐05 ‐0.000368 0.00210 ‐0.00648

Rain 0.294 ‐0.641 ‐0.179 ‐1.005 ‐1.435*** 0.902
(0.577) (0.649) (0.490) (0.890) (0.474) (1.877)

F‐test: Rain x Distance=0 11.63
Prob>F 0.000718

R‐squared 0.196 ‐0.328 0.215 0.224 0.115 0.024
ion of rainfall in the 
.

Table A.6: Robustness to Additional Controls of Interactions of Rainfall with Other Covariates

Effects of Healthcare Choice on Health Outcomes and Medication‐Related Behaviors
First Stage Health Outcomes

Adherence  Days Delayed Before 
Medications

Formal Healthcare Fever Malaria No. of Meds
(Unconditional) Medicating

Formal Healthcare ‐0.771** ‐0.399 0.568 0.522* ‐1.403**

Rain x Distance
(

‐0.0190***
(0.00557)

0.309) (0.265) (0.462) (0.291) (0.591)

Market
(0.00523) (0.00417) (0.00319) (0.00645) (0.00463) (0.0107)
‐0.00177 ‐0.00259* 0.000700 ‐0.00273 0.00137 ‐0.00628
(0(0.00143) (000143) (0 00151) (0 00116).00151) (0.00116) (0 00252)(0.00252) (0 00136) (0 00421)(0.00136) (0.00421)

Rain x Market 0.00109 0.00169 ‐0.000455 0.00116 ‐0.00136 0.00285
(0.00132) (0.00132) (0.00110) (0.00206) (0.00111) (0.00357)

Observations 1081 1073 934 1049 1049 554

Notes: Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1). Specifications used in this table are identical to those reported in the main results, except for the inclus
month directly prior to and following the month of sickness and their interactions with distance to nearest health facility and distance to nearest market.  See Table IV for other notes



Adhvaryu and 
Nyshadham (2010)

Gowrisankaran and 
Town (1999)

Doyle (2010)

Data/Location
LSMS Kagera, Tanzania 

(1991‐1994)
United States United States

Dependent Variable Fever Malaria Fever Mortality Mortality

Independent Variable of 
Interest

Formal Healthcare
 Not‐for‐profit Hospitals 

(vs. For‐profit)
Area‐level Healthcare 

Spending

Table A.7: Comparison of Self‐Selection Bias in Estimates

Comparison of Self‐Selection Bias in Estimates with Previous Studies

DHS Tanzania (2007‐08)

Formal Healthcare

IV IV IV IV OLS (Florida Visitors)

‐0.619** ‐0.398* ‐0.595** ‐0.0055* ‐0.028***
(0.266) (0.236) (0.291) (0.003) (0.0082)

OLS OLS OLS OLS OLS (Florida Locals)
‐0.0945*** ‐0.0961*** 0.0300 ‐0.00016 ‐0.003
(0.0315) (0.0270) (0.0236) (0.00047) (0.0039)

Observations 1123 973 5203 844
 37185 (Visitors), 
749762 (Locals)

Notes: Columns 1‐2: See notes in table IV; Column 3: See Adhvaryu and Nyshadham (2010) Table IV; Column 4: See Gowrisankaran and Town (1999) Table IV; 
Column 5: See Doyle et al. (2010) Table II.

Adjusted Estimate

Biased Estimate
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