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1 Introduction

Unawareness refers to the lack of conception rather than the lack of information. There is
a fundamental difference between uncertainty about which event obtains and the inability
to conceive of some events. In the literature, unawareness has been defined epistemically
using syntactic and semantic approaches.1 While epistemic characterizations are concep-
tually insightful, the behavioral content of unawareness remains unclear. For instance, a
referee of a recent report on Heifetz, Meier, and Schipper (2011b) wrote “It has become
a folk wisdom among readers of this literature that unawareness is often nothing but an-
other name for 0-probability belief. ... Is unawareness really nothing but another name
for 0-probability belief? I don’t know.”

Heifetz, Meier, and Schipper (2006, 2008, 2011a) introduced a syntax-free semantics
of unawareness using state spaces familiar to economists, decision theorists, and game
theorists.2 Instead of one state space, it consists of a lattice of disjoint spaces, where
every space in the lattice captures one particular horizon of meanings or propositions.
Higher spaces capture wider horizons, in which states correspond to situations described
by a richer vocabulary. In the present paper, we replace the standard state space in
the Anscombe and Aumann (1963) approach to subjective utility theory by a lattice of
spaces. This is done because Dekel, Lipman, and Rustichini (1998) showed that standard
state spaces preclude unawareness while Heifetz, Meier, and Schipper (2006) showed that
nontrivial unawareness obtains in a lattice of spaces. In this richer framework, we are
able to characterize awareness-dependent subjective expected utility. We choose the
Anscombe-Aumann approach not because we think it is the most natural one in the
context of unawareness but because it is perhaps the most “standard” approach and
starting point. Apart from the lattice of spaces, the setting should be entirely familiar and
thus easily accessible to the reader. The message we like to convey is that unawareness
structures lend themselves in a straightforward way as primitives in subjective expected
utility theory.

Acts are now defined on the union of all spaces and are interpreted as labels for actions.
The interpretation of those label depends on the awareness of the decision maker and the
decision maker may evaluate acts differently depending on her awareness. For instance,
consider a potential investor who considers the act “invest in firm X”. Firm X is a bundle
of potential opportunities and liabilities that depend on the states of nature. Which of

1For a bibliography see http://www.econ.ucdavis.edu/faculty/schipper/unaw.htm
2Apart from having a syntax-free semantics, Heifetz, Meier, and Schipper (2006, 2008) generalize

Modica and Rustichini (1999) and a version of Fagin and Halpern (1988) to the multi-agent case. The
precise connection between Fagin and Halpern (1988), Modica and Rustichini (1999), Halpern (2001)
and Heifetz, Meier, and Schipper (2006) is understood from Halpern and Rêgo (2008) and Heifetz, Meier,
and Schipper (2008). The connection between Heifetz, Meier, and Schipper (2006, 2008) and Galanis
(2011a) is explored in Galanis (2011b). The relationship between Board and Chung (2009) and Heifetz,
Meier, and Schipper (2006) is studied in Board, Chung, and Schipper (2011). Heinsalu (2011) studies
the relationship between Li (2009) and Fagin and Halpern (1988). The connection to Feinberg (2009) is
yet to be explored.
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these opportunities and liabilities the investor has in mind is determined by her awareness
of these events. An investor being aware of a potential lawsuit that involves the firm but
unaware of a potential innovation that may enhance the value of the firm may evaluate
the act differently than an investor who is unaware of the former but aware of the latter.3

Preferences of the decision maker are defined on those modified acts, one preference
relation for each awareness level, so that the same decision maker at different awareness
levels can be compared. Standard properties on preferences are imposed for each aware-
ness level, and an additional property is imposed that confines the perception of an act to
one awareness level. An awareness-dependent subjective expected utility representation
is then characterized in an embarrassingly straightforward way. Indeed, the first positive
main message of this paper for the applied economist may be that it is straightforward
to characterize subjective expected utility in unawareness structures. This closes an im-
portant gap in the literature, as we do not know of any other choice-theoretic model that
allows for nontrivial unawareness satisfying epistemic properties as introduced in Fagin
and Halpern (1988), Modica and Rustichini (1999), and Dekel, Lipman, and Rustichini
(1998). On one hand, standard choice-theory uses a state-space as a primitive such
that nontrivial unawareness is precluded by Dekel, Lipman, and Rustichini (1998)’s im-
possibility result. On the other hand, the literature on unawareness defines unawareness
epistemically but provides no choice-theoretic characterization of it. This critique applies
also to our own prior work. Originally, we studied just epistemic properties of unaware-
ness structures in Heifetz, Meier, and Schipper (2006). Logical foundations have been
provided by Halpern and Rego (2008) and Heifetz, Meier, and Schipper (2008). Unaware-
ness structures have been applied to speculative trade in Heifetz, Meier, and Schipper
(2011a) and Meier and Schipper (2010), to Bayesian games in Meier and Schipper (2011),
and to dynamic games Heifetz, Meier, and Schipper (2011b). Yet, until now, notions of
utility and beliefs have been taken as primitives in those structures. The current paper
shows that they can be derived from choices within unawareness structures.4

The second goal is to apply the representation theorem to analyze the behavioral
implications of unawareness. Consider an outside observer who wishes to know from
the choices of a decision maker conforming to the Anscombe-Aumann approach whether
she is unaware of an event or not. It is shown that a decision maker is unaware of the
event if and only if her choices reveal that the event is “null” and the negation of the
event is “null”. This distinguishes unawareness from subjective probability zero belief,
for which the event is null but its negation cannot be null. Thus unawareness does have
behavioral implications different from subjective probability zero belief. The following
example illustrates the point: Consider a potential buyer of a firm. Agreements on the
change of ownerships of private firms may be very complex, involving many pages of legal

3See Heifetz, Meier, and Schipper (2011a) and Meier and Schipper (2010) for the analysis of specu-
lative trade in such a setting.

4This claim must come with a caveat. Like universal type-spaces in standard game theory, the
universal unawareness type–space in Heifetz, Meier, and Schipper (2011a) contains all hierarchies of
beliefs. It is hard to conceive of choice experiments that would “reveal” all those higher order beliefs.
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documents. It is not inconceivable that the buyer may miss certain important clauses
and may not think about them when contemplating the transaction. In particular, the
buyer may be unaware of a specific costly future lawsuit that the firm may or may not be
involved in. Assume that the buyer can choose among two contracts. Under contract 1
the potential lawsuit is the buyer’s responsibility. Under contract 2, the potential lawsuit
is the seller’s responsibility. Otherwise both contracts are the same in content. Being
indifferent between both contracts is consistent with assigning probability zero to the
event of the lawsuit. Assume now that a third contract is available. Under contract
3 the potential lawsuit is the seller’s responsibility but the seller receives an additional
compensation from the buyer in the event that the lawsuit does not obtain. Apart from
this clause, the content of contract 3 is the same as the other contracts. Being indifferent
between contract 3 and 2 is consistent with assigning probability zero to the event of “no
lawsuit”. Indifference between all three contracts is consistent with being unaware of
“lawsuit”, but not with assigning probability zero to either the events “lawsuit” or “no
lawsuit” because probability zero cannot be assigned to an event and its negation.5

The third goal of this note is to explore to what extent behavior of unaware decision
makers can be captured with probability zero nevertheless. We characterize “imper-
sonal” expected utility that is behaviorally indistinguishable from awareness-dependent
expected utility. The representation delivers a probability measure on the “flattened
state space”, the union of all state spaces in the lattice, that assigns zero probability not
only to null events but also to any subsets of states (that may not necessarily be events)
that the decision maker does “not reason” about. We discuss in Subsection 6.1 that
probability zero per se cannot model unawareness. It requires additionally the “rich lan-
guage” of unawareness structures. But in unawareness structures, awareness-dependent
subjective expected utility should be preferable.

Awareness-dependent expected utility may be seen as a step towards analyzing Sav-
age’s (1954) “small worlds” assumption. Savage (1954, p. 82-83) used the term for the
space of states of nature to indicate the “...practical necessity to confining attention, or
isolating, relatively simple situations...”. Savage (1954, p. 16) felt that he “was unable
to formulate criteria for selecting these small worlds...”. While we cannot deliver such a
criterion either, our approach allows the modeler to analyze the decision maker in various
sets of “small worlds”, partially ordered by their richness. The representation theorem
should be interpreted either from the modeler’s point of view as contemplating a deci-
sion maker’s (admittedly counterfactual) choices at various awareness levels, or from the
decision maker’s point of view conditional on her awareness level.6

5See Section 4 for a more detailed discussion of the example and Figure 2.
6Intuitively, the awareness level corresponds to the richest description of events that can be detected

from the decision maker’s choices. See the discussion of Property 6. In an extended model with states
of the world (as in Heifetz, Meier, and Schipper, 2011a) rather than states of nature, that is, in which
states also encode the preference and thus beliefs of the decision maker, the decision maker at a given
awareness level could also reason about her own decisions at lower awareness levels. See Schipper (2011)
for such an extended model.
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The paper is organized as follows: In Section 2, we present primitives of unawareness
structures. In Section 3, we develop awareness-dependent subjective expected utility.
This is applied to the problem of revealing unawareness in Section 4. In Section 5, we
characterize impersonal expected utility and discuss its relation to awareness-dependent
subjective expected utility. In Section 6, we finish with a discussion of probability zero,
caveats, and extensions, as well as the related literature. All proofs are collected in an
appendix.

2 Primitives of Unawareness Structures

2.1 State spaces

Let S = {Sα}α∈A be a finite lattice of disjoint state spaces, with a partial order � on S.
For simplicity we assume in this paper that each S is finite. If Sα and Sβ are such that
Sα � Sβ we say that “Sα is more expressive than Sβ – states of Sα describe situations
with a richer vocabulary than states of Sβ ”.7 Denote by Ω =

⋃
α∈A

Sα the union of these
spaces.

Spaces in the lattice can be more or less “rich” in terms of facts that may or may not
obtain in them. The partial order relates to the “richness” of spaces.

2.2 Projections

For every S and S ′ such that S ′ � S, there is a surjective projection rS
′

S : S ′ → S,
where rSS is the identity. (“rS

′
S (ω) is the restriction of the description ω to the more

limited vocabulary of S.”) Note that the cardinality of S is smaller than or equal to
the cardinality of S ′. We require the projections to commute: If S ′′ � S ′ � S then
rS
′′

S = rS
′

S ◦ rS
′′

S′ . If ω ∈ S ′, denote ωS = rS
′

S (ω). If D ⊆ S ′, denote DS = {ωS : ω ∈ D}.
Projections “translate” states in “more expressive” spaces to states in “less expres-

sive” spaces by “erasing” facts that cannot be expressed in a lower space.

These surjective projections may embody Savage’s idea that “(i)t may be well, how-
ever, to emphasize that a state of the smaller world corresponds not to a state of the
larger, but to a set of states” (Savage, 1954, p. 9).

2.3 Events

Denote g(S) = {S ′ : S ′ � S}. For D ⊆ S, denote D↑ =
⋃
S′∈g(S)

(
rS
′

S

)−1
(D). (“All the

extensions of descriptions in D to at least as expressive vocabularies.”)

7Here and in what follows, phrases within quotation marks hint at intended interpretations, but we
emphasize that these interpretations are not part of the definition of the set-theoretic structure.
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An event is a pair (E, S), where E = D↑ with D ⊆ S, where S ∈ S. D is called the
base and S the base-space of (E, S), denoted by S(E).8 If E 6= ∅, then S is uniquely
determined by E and, abusing notation, we write E for (E, S). Otherwise, we write ∅S
for (∅, S). Note that not every subset of Ω is an event.

Some fact may obtain in a subset of a space. Then this fact should be also “express-
ible” in “more expressive” spaces. Therefore the event contains not only the particular
subset but also its inverse images in “more expressive” spaces.

Let Σ be the set of events of Ω. Note that unless S is a singleton, Σ is not an algebra
because it contains distinct vacuous events ∅S for all S ∈ S. These vacuous events
correspond to contradictions with differing “expressive power”.

2.4 Negation

If (D↑, S) is an event where D ⊆ S, the negation ¬(D↑, S) of (D↑, S) is defined by
¬(D↑, S) := ((S \D)↑, S). Note, that by this definition, the negation of a (measurable)
event is a (measurable) event. Abusing notation, we write ¬D↑ := (S \D)↑. Note that by
our notational convention, we have ¬S↑ = ∅S and ¬∅S = S↑, for each space S ∈ S. The
event ∅S should be interpreted as a “logical contradiction phrased with the expressive
power available in S.” ¬D↑ is typically a proper subset of the complement Ω \D↑ . That
is, (S \D)↑ $ Ω \D↑ .

Intuitively, there may be states in which the description of an event D↑ is both
expressible and true – these are the states in D↑; there may be states in which its
description is expressible but false – these are the states in ¬D↑; and there may be states
in which neither its description nor its negation are expressible – these are the states in

Ω \
(
D↑ ∪ ¬D↑

)
= Ω \ S

(
D↑
)↑
.

Thus our structure is not a standard state space model in the sense of Dekel, Lipman,
and Rustichini (1998).

2.5 Conjunction and Disjunction

If
{(
D↑λ, Sλ

)}
λ∈L

is a collection of events (with Dλ ⊆ Sλ, for λ ∈ L), their conjunc-

tion
∧
λ∈L

(
D↑λ, Sλ

)
is defined by

∧
λ∈L

(
D↑λ, Sλ

)
:=
((⋂

λ∈LD
↑
λ

)
, supλ∈L Sλ

)
. Note,

that since S is a complete lattice, supλ∈L Sλ exists. If S = supλ∈L Sλ, then we have(⋂
λ∈LD

↑
λ

)
=
(⋂

λ∈L

((
rSSλ
)−1

(Dλ)
))↑

. Again, abusing notation, we write
∧
λ∈LD

↑
λ :=⋂

λ∈LD
↑
λ (we will therefore use the conjunction symbol ∧ and the intersection symbol ∩

interchangeably).

8For instance, for the event (E,S) the base-space is S(E) = S, for the event (F, S′) the base-space is
S(F ) = S′.
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We define the relation ⊆ between events (E, S) and (F, S ′) , by (E, S) ⊆ (F, S ′) if
and only if E ⊆ F as sets and S ′ � S. If E 6= ∅, we have that (E, S) ⊆ (F, S ′) if and
only if E ⊆ F as sets. Note however that for E = ∅S we have (E, S) ⊆ (F, S ′) if and
only if S ′ � S. Hence we can write E ⊆ F instead of (E, S) ⊆ (F, S ′) as long as we keep
in mind that in the case of E = ∅S we have ∅S ⊆ F if and only if S � S(F ). It follows
from these definitions that for events E and F , E ⊆ F is equivalent to ¬F ⊆ ¬E only
when E and F have the same base, that is, S(E) = S(F ).

The disjunction of
{
D↑λ

}
λ∈L

is defined by de Morgan’s Law:
∨
λ∈LD

↑
λ = ¬

(∧
λ∈L ¬

(
D↑λ

))
.

Typically,
∨
λ∈LD

↑
λ $

⋃
λ∈LD

↑
λ, and, if all Dλ are nonempty, we have that

∨
λ∈LD

↑
λ =⋃

λ∈LD
↑
λ holds if and only if all the D↑λ have the same base space. Note that by these

definitions, the conjunction and disjunction of events is an event.

2.6 Probability Measures

Let ∆ (S) be the set of probability measures on S.

For a probability measure µ ∈ ∆ (S ′), the marginal µ|S of µ on S � S ′ is defined by

µ|S (D) := µ

((
rS
′

S

)−1

(D)

)
, D ⊆ S.

Let Sµ be the space on which µ is a probability measure. If Sµ � S(E) for an event
E ∈ Σ, then we abuse notation slightly and write

µ (E) = µ (E ∩ Sµ) .

If S(E) � Sµ, then we say that µ(E) is undefined.

2.7 Unawareness

We follow the literature on unawareness, and define an epistemic notion of unawareness
that in the subsequent sections will be characterized behaviorally.

Definition 1 (Unawareness) A decision maker is unaware of the event E if her belief
is represented by a probability measure µ ∈ ∆(S) with S 6� S(E).

This notion follows the definition of unawareness in a more sophisticated model in
which states of the world rather than states of nature are considered. That is, states also
capture beliefs of agents. In such a richer setting, unawareness of an agent may differ
from state to state even within the same space. Unawareness operators on events can be
defined, and it can be shown that these operators satisfy all properties of unawareness
that have been suggested in the literature. See Heifetz, Meier, and Schipper (2011a) for
details.
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If a decision maker’s belief is represented by a probability measure µ ∈ ∆(S), we
sometimes refer to S as the “awareness level” of the decision maker.

Since S(E) = S(¬E) by definition, we have the following observation.

Remark 1 (Symmetry) A decision maker is unaware of the event E if and only if she
is unaware of the event ¬E.

3 Subjective Expected Utility

3.1 Outcomes

Let X be an arbitrary space of outcomes or prizes. We denote by ∆(X) the set of simple
probability measures on X, that is, the set of finitely additive probability measures with
finite support (see Fishburn, 1970, Section 8.2). For p ∈ ∆(X), we denote by supp(p)
the support of p.

3.2 Acts

An act is a function f : Ω −→ ∆(X). Note that, unlike Anscombe-Aumann acts, f is
not defined on just one state space, but on the union Ω of spaces. This is interpreted
as follows: Let’s say an individual considers buying a firm (e.g., the act f). A firm can
be viewed as a bundle of uncertain opportunities and liabilities. The decision maker
may perceive only a subset of opportunities and liabilities depending on her awareness
level that may be influenced by her prior experience or her reading of the “fine print”
of the share sales and purchase agreement. In our setting, the uncertain opportunities
and liabilities are represented by lotteries over outcomes contingent on states (i.e., acts).
Some of the opportunities and liabilities (i.e., events) may not be expressible in some of
the spaces in S. That is, they are not perceived when having certain awareness levels.
For instance, if ω ∈ S and the decision maker’s awareness level is given by space S ′ ≺ S,
then the lottery perceived is not f(ω) but f(ωS′). So an act denotes simultaneously more
or less rich descriptions of those uncertain opportunities and liabilities. In the present
example, it is essentially a label of the action “buy the firm”. Which opportunities and
liabilities are perceived by the decision maker, that is, the awareness level of the decision
maker, will be captured by the preferences over acts introduced below.

For any event E and acts f and g, define a composite act fEg by

fEg(ω) =

{
f(ω) if ω ∈ E
g(ω) otherwise.

Note that unlike composite acts in the Anscombe-Aumann approach, g is not only pre-
scribed on the negation of E but also on all states that are neither in E nor in ¬E.
Unlike acts defined on a standard state space, we have in general fEg 6= g¬Ef .

8



For any collection of pairwise disjoint events E1, E2, ..., En ∈ Σ and acts f 1, f 2, ..., fn, g ∈
A, let f 1

E1
f 2
E2
...fnEng denote the composite act that yields f i(ω) if ω ∈ Ei for i = 1, ..., n,

and g(ω) otherwise.

If f and g are acts and α ∈ [0, 1] then αf + (1 − α)g is an act defined pointwise by
(αf + (1− α)g)(ω) = αf(ω) + (1− α)g(ω) for all ω ∈ Ω.

We abuse notation slightly and let p also denote the constant act that yields p ∈ ∆(X)
in every state in Ω.

Let A denote the set of all acts.

Remark 2 A is a mixture space. That is, for all f, g ∈ A and all α, β ∈ [0, 1], (i)
1f + 0g = f , (ii) αf + (1−α)g = (1−α)g+αf , and (iii) α[βf + (1− β)g] + (1−α)g =
αβf + (1− αβ)g.

Note that we do not impose a measurability condition on acts in the sense that for
any f ∈ A and p ∈ ∆(X), the set of states {ω ∈ Ω : f(ω) = p} is an event in Σ
as defined previously. While such a measurability assumption may be justified in some
applications, it may not be applicable in general. Consider, for instance, the example
of a potential investor buying a firm discussed in the introduction. Contracts 1 and 3
are not measurable in the above sense.9 A practical framework of decision making under
unawareness should not rule out such examples.

3.3 Preferences

The decision maker’s choices are represented by a collection of preferences, {%S}S∈S , one
for each space S ∈ S, with each %S defined on A. The preference relation of the decision
maker with awareness level S is %S.

For each S ∈ S, strict preference, �S, is defined on A by %S and not -S. Indifference,
∼S, is defined on A by %S and -S.

Preferences are allowed to vary with state spaces. The idea is that an act f may be
preferred over the act g at a certain awareness level but g may be preferred over f at a
different awareness level. For example, suppose that you may prefer onions to any other
food, but, if you were aware that an eminent expert suspects that onions cause the fatal
disease cuppacuppitis then you may rank onions below some other vegetable.

3.4 Assumptions on Preferences

The following five well known properties are standard in the Anscombe-Aumann ap-
proach, but adapted here to the lattice of state spaces.

9See Figure 2 in Section 4 for a more detailed exposition. In this figure, for the act depicted in the
left graph (contract 1), the set of states that yield outcome 100 is not an event in our structure.
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Property 1 (Weak Order) For all S ∈ S, �S is complete and transitive.

Property 2 (Archimedean Continuity) For all S ∈ S and f, g, h ∈ A, if f �S g �S
h, then there exists α, β ∈ (0, 1) such that αf + (1− α)h �S g �S βf + (1− β)h.

Property 3 (Independence) For all S ∈ S, f, g, h ∈ A and α ∈ (0, 1), if f �S g then
αf + (1− α)h �S αg + (1− α)h.

Definition 2 (Null Event) An event E is S-null if S(E) � S and fEg ∼S hEg for all
f, g, h ∈ A. A state ω is S-null if {ω}↑ is S-null. An event E is S-nonnull if S(E) � S
and fEg �S hEg for some f, g, h ∈ A.

This definition generalizes Savage’s notion of null event to our structure. We will show
that it captures “events conceived but assigned probability zero” rather than “events not
conceived of”. We think that indeed this is in the spirit of Savage’s notion of null event
because, in Savage, “events not conceived of” are simply not considered in the decision
maker’s small world.

Remark 3 For each S ∈ S:

(i) For any event F with S(F ) 6� S, F is neither S-null nor S-nonnull.

(ii) ∅S′ is S-null if and only if S ′ � S.

Property 4 (Nondegeneracy) For all S ∈ S there exist f, g ∈ A such that f �S g.

Property 5 (State Independence) If f ∈ A, p, q ∈ ∆(X) are such that p{ω}↑f �S
q{ω}↑f for some ω, then for all S-nonnull ω′ we have p{ω′}↑f �S q{ω′}↑f

If the decision maker has preference %S, then the following property suggests the
interpretation that she has “awareness level” S. This property is trivially satisfied in
standard state space models; it is key in the current approach.

Property 6 (Confined Extensionality) For any S ∈ S, if f, g ∈ A are such that
f(ω) = g(ω) for all ω ∈ S, then f ∼S g.

The examples in Figure 1 illustrate Property 6. There are only two spaces, S1 and
S2 with S1 � S2. Different shades represent different outcomes. For instance, the left
structure in Figure 1 represents the choice between two different composite acts. The
left composite act yields “grey” in state ω1 but “white” in states ω2 and ω3. The right
composite act yields “white” in states ω1 and ω3, and “grey” in state ω2. If the decision
maker’s awareness level is given by the lower space, S2, then she does not care what
happens in the upper space because she is unaware of those events. She is indifferent
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Figure 1: Illustration of Property 6
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between the two composite acts. The right structure of Figure 1 illustrates that if the
decision maker’s awareness level is given by the upper space, S1, then she cares only
about states in S1. She neglects whatever happens in lower spaces presumably because
everything that can be expressed in S1 can also be expressed in S2. Consequently, she is
indifferent between the two composite acts.

Remark 4 Property 6 implies that for all events E, if S(E) 6� S, then

(i) fEg ∼S g for all f, g ∈ A.

(ii) fEg ∼S hEg and f¬Eg ∼S h¬Eg for all f, g, h ∈ A.

Remark 5 Properties 1 and 6 imply that if S ′ � S, then fS′↑g %S hS′↑g if and only if
f %S h.

Remark 6 Properties 1, 4, and 6 imply that, for each S ∈ S, there exists a state ω ∈ S
that is S-nonnull.

3.5 Awareness-Dependent Subjective Expected Utility

Definition 3 (ASEU) We say that {%S}S∈S admits an awareness-dependent subjec-
tive expected utility (ASEU) representation if there exists a collection of nonconstant
von Neumann-Morgenstern utility functions {uS : X −→ R}S∈S and a collection of prob-
ability measures {µS ∈ ∆(S)}S∈S such that for all S ∈ S and f, g ∈ A, f �S g if and
only if

∑
ω∈S

 ∑
x∈supp(f(ω))

uS(x)f(ω)(x)

µS(ω) >
∑
ω∈S

 ∑
x∈supp(g(ω))

uS(x)g(ω)(x)

µS(ω),(1)

and µS({ω}) = 0 if and only if ω is S-null.
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Moreover, if there exists another collection of von Neumann-Morgenstern utility func-
tions {vS : X −→ R}S∈S and a collection of probability measures {νS ∈ ∆(S)}S∈S , then,
for all S ∈ S, there are constants aS > 0 and bS such that vS(x) = aSuS(x) + bS and
νS = µS.

The specification outlined so far allows me to apply the Anscombe and Aumann
(1963) approach to each S ∈ S separately to prove in the appendix the following result.

Theorem 1 (Representation) {%S}S∈S admits an awareness-dependent subjective ex-
pected utility representation if and only if it satisfies Properties 1 to 6.

Definition 4 An awareness-dependent subjective expected utility representation has awareness-
independent utilities if for all S, S ′ ∈ S there exist constants aS′S > 0 and bS′S such that
uS = aS′SuS′ + bS′S.

If an awareness-dependent subjective expected utility representation has awareness-
independent utilities, then the utility function uS at awareness level S is also a utility
function for any awareness level S ′ ∈ S because conditional on each awareness level,
utilities are unique up to affine transformations. We believe that in reality this may not
be satisfied except in rather special cases.

Property 7 (Awareness-Independent Ranking) For p, q ∈ ∆(X), p �S q if and
only if p �S′ q for all S ′, S ∈ S.

Proposition 1 {%S}S∈S admits an awareness-dependent subjective expected utility rep-
resentation with awareness-independent utilities if and only if it satisfies Properties 1 to
7.

4 Revealed Unawareness

In this section, we want to apply the representation to “reveal” a decision maker’s un-
awareness of an event. Suppose an outside observer wishes to infer from the choices of a
decision maker whether she is unaware of an event E or not. The outside observer does
not know the preferences of the decision maker nor does he know which preference rela-
tion is related to which awareness level (the mapping from state spaces to binary relations
over acts). All he knows is that no matter what the awareness level of the decision maker
is, her choices conform to Properties 1 to 6. Given that the outside observer knows that
the decision maker is an awareness-dependent subjective expected utility maximizer but
does not know the awareness level of the decision maker, can he learn from the choices
of the decision maker whether she is aware of an event E? We denote by % the observed
choices and define � and ∼ as usual.

The following proposition summarizes the behavioral implications of unawareness.
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Proposition 2 (Revealed Unawareness) Assume that {%S}S∈S satisfy Properties 1
to 6, and let %∈ {%S}S∈S . A decision maker is unaware of the event E if and only if for
all events F with S(F ) = S(E), fFg ∼ hFg for all f, g, h ∈ A.

We may take the characterization of Proposition 2 as a behavioral definition of un-
awareness and call it revealed unawareness.

Consider now an outside observer who knows that the decision maker is an awareness-
dependent subjective expected utility maximizer, does not know the awareness level of the
decision maker, and wishes to infer from choices of a decision maker whether she attaches
subjective probability zero belief to the event E or whether she is unaware of the event
E. We say that the decision maker ascribes subjective probability zero to the event E
if in the representation of Definition 3, µS(E) = 0 for some S � S(E). The following
proposition states the different behavioral implications of unawareness and subjective
probability zero belief. With the structure in place, the proof is straightforward.

Proposition 3 (Null versus Unawareness) Assume that {%S}S∈S satisfy Properties
1 to 6, and let %∈ {%S}S∈S .

(i) Unawareness: A decision maker is unaware of the event E if and only if fEg ∼ hEg
and f¬Eg ∼ h¬Eg for all f, g, h ∈ A.

(ii) Subjective Probability Zero Belief: A decision maker ascribes subjective probability
zero to the event E if and only if fEg ∼ hEg and not f¬Eg ∼ h¬Eg for all f, g, h ∈
A.

A decision maker is unaware of an event E if and only if she considers both E and
the negation of E to be “null”. This is different from assigning subjective probability
zero to the event E which is characterized by considering E to be null but the negation
of E to be nonnull.

Recall the example from the introduction in which a potential investor may buy a firm
using one of three contracts. The investor may or may not be aware of a potential lawsuit
involving the firm. The contracts differ in the “fine print” with respect to this lawsuit.
The three contracts are represented in the three graphics of Figure 2, respectively. Each
contract describes in the upper space the monetary payoffs to the buyer in the event of
lawsuit, [`], not lawsuit, ¬[`], and in the lower space the status quo payoff to the buyer
when she does not think about the lawsuit, ∅. For instance, the act/contract depicted
in the left graph assigns probability 1 to the monetary payoff of 80 if the state is `.
For a buyer conforming to awareness-dependent expected utility, indifference among all
contracts is consistent with being unaware of [`], that is, having the preference relation
%S∅ . But it is inconsistent with the event [`] or ¬[`] being null. To see this, note that
contract 1 ∼S{`} contract 2 is consistent with the event lawsuit, [`], being null. But then
¬[`] cannot be null, that is, contract 2 �S{`} contract 3.
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Figure 2: Example
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5 Impersonal Expected Utility

In what sense could a probability zero approach “model” behavior under unawareness
nevertheless?

Given a lattice of spaces S, we follow Heifetz, Meier, and Schipper (2011a) in defining
the flattened state space associated with S simply by the union of all spaces, Ω =

⋃
S∈S S.

Note that the set of all subsets 2Ω may contain elements that are not events in the
unawareness structure (unless the lattice is trivially a singleton). That is, typically
Σ $ 2Ω.

A probability measure µS on S is extended to a probability measure ϕS on the flat-
tened state space Ω by10

ϕS(E) :=

{
µS(E ∩ S) if E ∩ S 6= ∅
0 otherwise.

Note that Ω is just a standard state space. The probability measure is extended
by assigning probability zero to all subsets of Ω that are “not reasoned” about by the
decision maker. Such subsets may not be events in the unawareness structure.

Consider a composite act of the form

f{ω}g(ω′) =

{
f(ω′) if ω = ω′

g(ω′) otherwise.
(2)

At first glance, it may appear that f{ω}g is not an act in the set A since {ω} may not be
an event in the unawareness structure. However, for every f, g ∈ A we can find h ∈ A
such that h(ω) = f(ω) and h(ω′) = g(ω′) for ω′ 6= ω. Clearly, f{ω}g = h{ω}↑g and
h{ω}↑g ∈ A. Thus, f{ω}g ∈ A.

The following remark characterizes “null” in the flattened state space by S-null or
unawareness.

10Recall that if S � S(E) then µS(E) is undefined. In this case too, we now require ϕS(E) = 0.
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Remark 7 Properties 1 and 6 imply that f{ω}g ∼S h{ω}g for all f, g, h ∈ A if and only
if ω ∈ Ω is S-null or ω /∈ S.

Definition 5 (IEU) We say that {%S}S∈S admits an impersonal expected utility (IEU)
representation if there exists a collection of nonconstant von Neumann-Morgenstern util-
ity functions {wS : X −→ R}S∈S and a collection of probability measures {ϕS ∈ ∆(Ω)}S∈S
such that, for all f, g ∈ A, f �S g if and only if

∑
ω∈Ω

 ∑
x∈supp(f(ω))

wS(x)f(ω)(x)

ϕS(ω) >
∑
ω∈Ω

 ∑
x∈supp(g(ω))

wS(x)g(ω)(x)

ϕS(ω),(3)

and ϕS({ω}) = 0 if and only if ω is S-null or ω /∈ S.

Moreover, if there exists another collection of von Neumann-Morgenstern utility func-
tions {vS : X −→ R}S∈S and a collection of probability measures {φS ∈ ∆(Ω)}S∈S , then,
for all S ∈ S, there are constants aS > 0 and bS such that vS(x) = aSwS(x) + bS and
φS = ϕS.

Compared to awareness-dependent subjective expected utility, there are two key dif-
ferences. First, we sum over states in the union of spaces Ω rather than states in S.
This is exactly the deference between Propositions 4 and 5 in the appendix. Second,
we use the extended probability measure ϕS defined on Ω instead of µS defined on S.
Consequently, probability zero is now attached also to states ω that are not “reasoned
about” by the decision maker with awareness level S, that is all ω /∈ S.

Theorem 2 (Characterization) {%S}S∈S admits an impersonal expected utility rep-
resentation if and only if it satisfies Properties 1 to 6.

Corollary 1 {%S}S∈S admits an impersonal expected utility representation if and only
if it admits an awareness-dependent subjective expected utility representation.

Corollary 2 Let {%S}S∈S satisfy Properties 1 to 6. Denote by {µS ∈ ∆(S)}S∈S the
collection of subjective probability measures from the awareness-dependent subjective ex-
pected utility representation of %S, and by {ϕS ∈ ∆(Ω)}S∈S the collection of probability
measures from the impersonal representation of %S. Then, for all S ∈ S, µS(E) = ϕS(E)
for all events E ∈ Σ with S(E) � S.

6 Discussion

6.1 Can we model unawareness with probability zero?

Both Theorems 1 and 2 provide characterizations of Properties 1 to 6. In Section 4
we showed that unawareness of an event is behaviorally distinct from the event being
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null. In the awareness-dependent subjective expected utility representation of Theorem 1,
null is captured by probability zero and revealed unawareness is captured by undefined
probability. This is in contrast to the impersonal expected utility representation of
Theorem 2 that must represent both null and revealed unawareness with probability
zero.

Suppose that we want to model a the decision maker who is unaware of an event E.
Under impersonal expected utility, if the decision maker is unaware of the event E, then
she assigns probability zero to it. But zero probability is just a necessary condition. A
necessary and sufficient condition would be that probability zero is assigned to the event
E and probability zero is assigned to the negation of the event, ¬E. But to model this, we
would be required to consider negation as defined in Subsection 2.4 and thus (the special
event structure of) unawareness structures. Thus, probability zero alone won’t allow us
to model unawareness, and we are required to consider unawareness structures. However,
using the unawareness structure in the first place makes the impersonal expected utility
approach obsolete, since every behavior that can be captured in impersonal expected
utility theory can also be captured in awareness-dependent expected utility, but the
latter has the advantage of clearly distinguishing between revealed unawareness of an
event and the event being null in the representation. This should be of practical interest
in applications where we work with representations rather than with (properties of)
preferences.

It has been argued in game theory that a “good” model should model the relevant
factors as perceived by the decision maker (Rubinstein, 1991). However, note that prob-
ability measures in impersonal expected utility cannot be interpreted as a “personal” or
“subjective” probabilities of the decision maker. (Hence, the attribute “impersonal”.)
Statements like “I am assigning probability zero to the event E because I am unaware
of it” are nonsensical, since the very statement implies that I think about the event E.11

Historically, it was precisely the goal of subjective expected utility theory to make sense
of statements like “I find the event E more likely than the event F” (see for instance
Savage, 1954, p. 27). For me, the attraction of subjective expected utility theory is that
choices provide a window into the decision maker’s reasoning. This attraction is lost with
impersonal expected utility but not with awareness-dependent expected utility. In the
latter representation, it makes sense to interpret the probability measures as “personal”
or “subjective” beliefs of a decision maker given her awareness level. In contrast, the
probability measures in impersonal expected utility can only be interpreted as an artifi-
cial construct ascribed to the decision maker by an outside modeler. The issue here is
more severe than the usual “as if” assumption in decision theory. In subjective expected
utility, the decision maker may not really reason with the subjective probabilities ascribed
to her by her choices. But it is not impossible that she could use them for reasoning. In
impersonal expected utility, it is impossible that the decision maker uses such impersonal

11Indeed, one of the epistemic properties of unawareness (in a model with states of the world rather
than with states of nature) is that if a decision maker is aware that she is unaware of the event E then
she is aware of the event E. This is called AU-introspection in Dekel, Lipman, and Rustichini (1998),
and it holds in unawareness structures; see Heifetz, Meier, and Schipper (2011a, Proposition 3).
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probabilities and is at the same time be unaware of some events.12

6.2 Caveats

Property 6 implies that events of which the decision maker is unaware of do not affect
her ranking of acts. This holds even for composite acts conditioned on events that the
decision maker is unaware of. More generally, it rules out that a decision maker becomes
aware of an event merely from facing an act. While this is also the implicit assumption in
standard decision theory (i.e., different acts do change the subset of “small worlds” that
a decision maker pays attention to), it may be unrealistic in some situations. Sometimes,
when facing an act, a decision maker may become in very subtle ways a bit more careful
with the “fine print” of acts, and this care may lead her to become aware of events.
For example, a buyer facing a decision about whether or not to buy a certain insurance
contract may become aware of events that she was previously unaware of when reading
all the fine print of the contract. If ex ante an outside observer does not know how acts
affect the awareness of a decision maker, can he still elicit whether or not a decision
maker is unaware of an event?

To answer this question, we could consider a modified framework in which acts may
influence the awareness of a decision maker. When an outside observer presents the
decision maker with acts, he may change the decision maker’s awareness. So, in this
sense, the outside observer may destroy the unawareness of the decision maker with the
experiment to measure it. While this weakens substantially the usefulness of the approach
for revealing unawareness of events, it still allows the outside observer to measure at least
sometimes whether or not a decision maker was unaware of some events ex ante (i.e.,
before the experiment). For instance, in this framework we may observe a sequence of
choices f � g, g � h and h � f that constitute a cycle. The reason is that when the
decision maker faced act h, she became aware of an event that led her to evaluate acts
differently from the time she faced the choice between f and g. But without further
assumptions, the outside observer cannot draw inferences with regard to which event(s)
the decision maker was unaware of. Moreover, after observing h � f , when the outside
observer lets the decision maker choose again between f and g for a second time, the
outside observer should observe g � f .13 That is, in this setting arbitrary choice cycles
are still ruled out and limited to one-time cycles.

A second caveat applies to the approach presented in this paper. In what sense
do Theorems 1 and 2 really provide behavioral representations of awareness-dependent
subjective expected utility and impersonal expected utility, respectively? How would
one go about practically testing these theories? An experiment would require us to test

12This is not surprising since (in a model with states of the world rather than with states of nature)
the impossibility result by Dekel, Lipman, and Rustichini (1998) applies, because the flattened state
space is a standard state space.

13Unless in between the decision maker faced some act different from f, g and h that made her aware
of yet other events such that again f � g.
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Properties 1 to 6 for every space S ∈ S. Suppose we first run such an experiment for
space S. Afterwards we could mention an event E with S(E) � S to the decision maker
and run the experiment again, this time effectively for the join of spaces S and S(E). We
could continue step-by-step in this fashion, at each step mentioning a new event to the
decision maker at which she was previously unaware of. But this procedure would allow
us to test the theory for a finite chain of state spaces only and not for a finite lattice
of spaces in general. The problem is that in order to run such an experiment also for a
space that is unordered to S, we would require a procedure that makes the decision maker
unaware of an event. Although it is not inconceivable that, in the moment of taking a
decision, the decision maker may not think about a relevant event that he previously
thought about, we still believe that it poses an unsurmountable challenge to find an
experiment design that would make a decision maker systematically unaware of events.
This practical challenge is analogous to challenges shared by other decision theories that
require tests of continuity properties of preferences or properties of preferences conditional
on events that are physically or logically impossible, unverifiable, or counterfactual.

The caveat extends also to our Propositions 2 and 3 on the behavioral implications
of unawareness. These results show the possibility of revealing unawareness of an event
assuming that the decision maker is an awareness-dependent subjective expected utility
maximizer. More desirable would be to reveal jointly that the decision maker is an
awareness-dependent subjective expected utility maximizer and is unaware of this or
that event.

6.3 Related Literature

The present approach is silent on the decision maker’s reasoning about his preferences.
It due to the fact that we work with states of nature rather than with states of the
world, a feature shared with standard decision theoretic models. In a states-of-nature
approach, the preferences or beliefs of the decision maker are not part of the description
of the state, and beliefs are elicited for non-epistemic events only. This is in contrast to
Bayesian games or epistemic game theory, in which states of the world also describe a
player’s preferences, beliefs, beliefs about beliefs and so on. To bridge the gap, Morris
(1996) introduced preference-based definitions of knowledge and beliefs in states-of-the-
world models. Schipper (2011) extends this approach to unawareness structures and
provides a preference-based characterization of knowledge and unawareness. In such a
structure, a decision maker can reason about his own preferences and those of other
players at (weakly) lower awareness levels.

Li (2008) analyzes unawareness versus zero probability in a model different from ours.
Her study is a bit more ambitious than mine, as she considers a two-period model in which
an initially unaware decision maker becomes aware in the second period. The decision
maker chooses among bets defined on her first-period “subjective” states. This requires
her to specify how those “subjective bets” correspond to “objective” bets in the second
period. In contrast, in my model, acts are already defined on all states, although the

18



decision maker may have a limited understanding of them. Li (2008) considers various
specifications, including one in which unawareness of an event may be thought of “as if”
the decision maker believes that the event does not obtain.

Ahn and Ergin (2010) study framing that may also be due to lack of awareness.
They take more or less fine partitions of a state space as the primitive. Since the set
of all partitions forms a lattice, we believe that their analysis could be “translated”
into unawareness structures. In their approach, acts are defined to be measurable with
respect to some of the partitions. When a decision maker faces an act that is measurable
with respect to some partition, then she evaluates the act on at least the events of that
partition. Intuitively, they assume that a decision maker always reads the “fine print” of
an act. This is important for their aim of studying how decisions are affected by framing
through acts. It is in contrast to the approach taken in Section 3 because I define
acts on all partitions simultaneously. One interesting feature of their representation is
a (not necessarily additive) set function from which the partition-dependent probability
measure is defined. It allows them to relate beliefs across partitions. They discuss
various interpretations of this set function. In particular, their approach is an extension
and axiomatization of support theory in psychology.

Ahn and Ergin’s (2010) notion of “completely overlooked” differs from the notion of
(propositional) unawareness in the epistemic literature. It is consistent with their model
that an event is “completely overlooked” while its negation is not. This is in contrast
with the symmetry property of unawareness: if a decision maker can reason about the
negation of an event, then she can reason about the event (and vice versa).

Blume, Easley, and Halpern (2009) take a syntactic approach to subjective expected
utility theory in which primitives in standard subjective expected utility theory such as
the state space, outcome space, and acts are replaced by syntactic descriptions. This
requires a modified set of properties which are used to characterize subjective expected
utility theory including the primitives. It would be intriguing to extend their approach
to unawareness structures.

The caveats discussed in Section 6.2 suggest that decision making under unawareness
may be more appropriately studied in a dynamic setting in which awareness can grow
over time. Karni and Vierø (2011) present a decision theoretic model in which the de-
cision maker can become aware of new acts, consequences, as well as links between acts
and consequence. The preference relations over the expanding sets of acts are linked by
an underlying preference over satisfactions of basic needs. They develop representation
theorems and updating rules for beliefs over expanding state spaces. Grant and Quiggin
(2011) consider also dynamic decisions with differential levels of awareness and associate
a language to such dynamic decision problems that allows them to study whether it is
possible for a decision maker to believe that there exists a proposition of which he is
unaware. They then argue that based on the experience of becoming aware of proposi-
tions, the proposition that this will continue to be so in future is supported by historical
induction. Van Ditmarsch and French (2011) present a purely epistemic framework to
study agents that may become aware of propositional variables. They present a complete
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axiomatization of their logic and show that it is decidable. Their approach can be also
interpreted as deriving a complete lattice of spaces of Heifetz, Meier, and Schipper (2006)
via their notion of awareness bisimulation.

A Proofs

A.1 Proof of Remark 4

(i) If S(E) 6� S, then by the definition of composite acts, fEg(ω) = g(ω) for all ω ∈ S
for all f, g ∈ A. Hence by Property 6, fEg ∼S g for all f, g ∈ A.

(ii) If S(E) 6� S, then fEg(ω) = hEg(ω) for all ω ∈ S. Hence by Property 6,
fEg ∼S hEg. Since S(E) = S(¬E), by analogous arguments, f¬Eg ∼S h¬Eg. �

A.2 Proof of Remark 5

If S ′ � S, then fS′↑g(ω) = f(ω) and hS′↑g(ω) = h(ω) for all ω ∈ S ′↑ ∩ S. Since
S ′ � S, we have S ′↑ ∩ S = S. Hence by Property 6 and transitivity (Property 1),
fS′↑g ∼S f %S h ∼S hS′↑g imply fS′↑g %S hS′↑g and vice versa. �

A.3 Proof of Remark 6

Assume that Properties 1, 4, and 6 hold, and suppose by way of contradiction that, for
some S ∈ S all states in S are S-null. Since S is finite, number its states 1, ..., |S|. Then
for all g, h ∈ A, g ∼S h{ω1}↑g ∼S h{ω1,ω2}↑g ∼S ... ∼S h{ω1,ω2,...,ω|S|−1}↑g ∼S hS↑g ∼S h,

where the last ∼S follows from Property 6. By transitivity (Property 1), we have g ∼S h
for all g, h ∈ A, a contradiction to Property 4. �

A.4 Proof of Remark 7

“⇐”: If ω /∈ S, then f{ω}g(ω′) = g(ω′) = h{ω}g(ω′) for all ω′ ∈ S and all f, g, h ∈ A.
Thus by Property 6, f{ω}g ∼S h{ω}g for all f, g, h ∈ A.

State ω being S-null means S({ω}↑) � S and f{ω}↑g ∼S h{ω}↑g for all f, g, h ∈ A. If
S({ω}↑) = S, then f{ω}g(ω′) = f{ω}↑g(ω′) and h{ω}g(ω′) = h{ω}↑g(ω′) for all ω′ ∈ S and
all f, g, h ∈ A. By Property 6, f{ω}g ∼S f{ω}↑g and h{ω}g ∼S h{ω}↑g for all f, g, h ∈ A.
Thus, by Property 1, f{ω}g = h{ω}g for all f, g, h ∈ A. If S({ω}↑) ≺ S, then ω /∈ S.
Thus, in this case the result follows from the arguments above.

“⇒”: Suppose to the contrary that f{ω}g ∼S h{ω}g for all f, g, h ∈ A, but ω is S-
nonnull and ω ∈ S. ω being S-nonnull and ω ∈ S means that f{ω}↑g �S h{ω}↑g for
some f, g, h ∈ A. Since ω ∈ S, f{ω}↑g(ω′) = f{ω}g(ω′) and h{ω}↑g(ω′) = h{ω}g(ω′) for
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all ω′ ∈ S. By Property 6, f{ω}↑g ∼S f{ω}g and h{ω}↑g ∼S h{ω}g. From Property 1, it
follows that f{ω}g �S h{ω}g, a contradiction. �

A.5 Proofs of Theorems 1 and 2

The proofs follow essentially Fishburn (1970, Chapter 13.1 and 13.2). We point out
minor differences along the way. We present the proofs of both results side-by-side so
that the interested reader can compare the differences. Moreover, this presentation helps
to minimize redundancies.

First we show the following representation results in terms of state-dependent utilities
or additively separable utilities.

Proposition 4 {%S}S∈S satisfies Properties 1 to
3 and 6 if and only if there exists a collection of
functions {uS : X×S −→ R}S∈S such that for all
S ∈ S and f, g ∈ A,

f �S g if and only if

∑
ω∈S

∑
x∈supp(f(ω))

uS(x, ω)f(ω)(x) (4)

>
∑
ω∈S

∑
x∈supp(g(ω))

uS(x, ω)g(ω)(x).

Moreover, if {vS : X × S −→ R}S∈S is another
collection of functions satisfying formula (4), then
for each S ∈ S there exist constants aS ∈ R++

and bS ∈ R such aSuS(·, ω) + bS = vS(·, ω) for
each ω ∈ S.

Proposition 5 {%S}S∈S satisfies Properties 1 to
3 and 6 if and only if there exists a collection of
functions {wS : X × Ω −→ R}S∈S such that for
all S ∈ S and f, g ∈ A,

f �S g if and only if

∑
ω∈Ω

∑
x∈supp(f(ω))

wS(x, ω)f(ω)(x) (5)

>
∑
ω∈Ω

∑
x∈supp(g(ω))

wS(x, ω)g(ω)(x).

Moreover, if {zS : X × Ω −→ R}S∈S is another
collection of functions satisfying formula (5), then
for each S ∈ S there exist constants aS ∈ R++

and bS ∈ R such aSwS(·, ω) + bS = zS(·, ω) for
each ω ∈ Ω.

Proofs of Propositions. Under Properties 1 to 3 and 6, the existence of a collection of functions
{US : A −→ R}S∈S such that for f, g ∈ A

f �S g if and only if US(f) > US(g) (6)

and US being affine, that is,

US(αf + (1− α)g) = αUS(f) + (1− α)US(g), for all α ∈ [0, 1], (7)

follows from applying the Mixture-Space Theorem (Herstein and Milnor, 1953, see also Fishburn, 1970,
Section 8.4) for each S ∈ S. Moreover, for each S ∈ S, US is unique up to positive affine transformations.

We want to show that for f ∈ A,

US(f) =
∑
ω∈S

∑
x∈supp(f(ω))

uS(x, ω)f(ω)(x) (8)

for some function uS : X × S −→ R for every
S ∈ S.

We want to show that for f ∈ A,

US(f) =
∑
ω∈Ω

∑
x∈supp(f(ω))

wS(x, ω)f(ω)(x) (9)

for some function wS : X × Ω −→ R for every
S ∈ S.

The next step in the proof of Proposition 4 differs slightly from the Anscombe-Aumann approach.
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We claim that Property 6 implies that

1

|S|
f +
|S| − 1

|S|
g ∼S

∑
ω∈S

1

|S|
f{ω}↑g. (10)

To see the claim, number states in S by 1, ..., |S|,
and observe that for all ω ∈ S,

1

|S|
f(ω) +

|S| − 1

|S|
g(ω)

=
1

|S|
f{ω1}↑g(ω) + · · ·+ 1

|S|
f{ω|S|}↑g(ω)

=
∑
ω′∈S

1

|S|
f{ω′}↑g(ω).

Hence, Property 6 implies the claim.

We claim

1

|Ω|
f +
|Ω| − 1

|Ω|
g =

∑
ω∈Ω

1

|Ω|
f{ω}g. (11)

To see the claim, number states in Ω by 1, ..., |Ω|,
and observe that for all ω ∈ S,

1

|Ω|
f(ω) +

|Ω| − 1

|Ω|
g(ω)

=
1

|Ω|
f{ω1}g(ω) + · · ·+ 1

|Ω|
f{ω|Ω|}g(ω)

=
∑
ω′∈Ω

1

|Ω|
f{ω′}g(ω).

Note that Property 6 is not required for the claim
since equation (11) holds with equality.

By equations (6) and (7), we have

1

|S|
US(f) +

|S| − 1

|S|
US(g) (12)

=
1

|S|
∑
ω∈S

US

(
f{ω}↑g

)
.

By equations (6) and (7), we have

1

|Ω|
US(f) +

|Ω| − 1

|Ω|
US(g) (13)

=
1

|Ω|
∑
ω∈Ω

US

(
f{ω}g

)
.

Define uS : ∆(X)× S −→ R by

uS(p, ω) := US

(
p{ω}↑g

)
− |S| − 1

|S|
US(g). (14)

Define wS : ∆(X)× Ω −→ R by

wS(p, ω) := US

(
p{ω}g

)
− |Ω| − 1

|Ω|
US(g). (15)

For f ∈ A,

uS(f(ω), ω) = US

(
f{ω}↑g

)
− |S| − 1

|S|
US(g). (16)

For f ∈ A,

wS(f(ω), ω) = US

(
f{ω}g

)
− |Ω| − 1

|Ω|
US(g). (17)

Summing over ω ∈ S and dividing by |S|, we ob-
tain

1

|S|
∑
ω∈S

uS(f(ω), ω) (18)

=
1

|S|
∑
ω∈S

US

(
f{ω}↑g

)
− |S| − 1

|S|
US(g).

Summing over ω ∈ Ω and dividing by |Ω|, we ob-
tain

1

|Ω|
∑
ω∈Ω

wS(f(ω), ω) (19)

=
1

|Ω|
∑
ω∈Ω

US

(
f{ω}g

)
− |Ω| − 1

|Ω|
US(g).

Comparing equation (18) with (12), we have

US(f) =
∑
ω∈S

uS(f(ω), ω). (20)

Comparing equation (19) with (13), we have

US(f) =
∑
ω∈Ω

wS(f(ω), ω). (21)

Combining equations (14) and (7) yields, for p, q ∈
∆(X), ω ∈ S, and α ∈ [0, 1],

uS(αp+ (1− α)q, ω) (22)

= αuS(p, ω) + (1− α)uS(q, ω).

Combining equations (15) and (7) yields, for p, q ∈
∆(X), ω ∈ Ω, and α ∈ [0, 1],

wS(αp+ (1− α)q, ω) (23)

= αwS(p, ω) + (1− α)wS(q, ω).
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For x ∈ X, let uS(x, ω) = uS(δx, ω), with δx being
the Dirac measure with unit mass on x. Since the
support of a simple probability measure is finite,

uS(p, ω) =
∑

x∈supp(p)

uS(x, ω). (24)

For x ∈ X, let wS(x, ω) = wS(δx, ω), with δx being
the Dirac measure with unit mass on x. Since the
support of a simple probability measure is finite,

wS(p, ω) =
∑

x∈supp(p)

wS(x, ω). (25)

Combining the representation in formula (6) with
equation (20) yields inequality (4) for f, g ∈ A.
Repeat this construction for each S ∈ S.

Combining the representation in formula (6) with
equation (21) yields inequality (5) for f, g ∈ A.
Repeat this construction for each S ∈ S.

Uniqueness up to positive linear transformations
follows from the uniqueness of US . If vS(·, ω) sat-
isfies formula (4) in place of uS(·, ω), then

VS(f) =
∑
ω∈S

∑
x∈supp(f(ω))

vS(x, ω)f(ω)(x),

VS = aSUS + bS , and aS > 0. Holding f(ω′)(x)
fixed for all ω′ ∈ S, ω′ 6= ω, it then follows that
vS(·, ω) = aS(ω)uS(·, ω) + bS(ω). This holds for
each ω ∈ S.

Uniqueness up to positive linear transformations
follows from the uniqueness of US . If zS(·, ω) sat-
isfies formula (5) in place of wS(·, ω), then

ZS(f) =
∑
ω∈Ω

∑
x∈supp(f(ω))

zS(x, ω)f(ω)(x),

ZS = aSUS + bS , and aS > 0. Holding f(ω′)(x)
fixed for all ω′ ∈ Ω, ω′ 6= ω, it then follows that
zS(·, ω) = aS(ω)wS(·, ω) + bS(ω). This holds for
each ω ∈ Ω.

Note that uS(·, ω) is constant on X if and only if
ω ∈ S is S-null. To see this, note that ω ∈ S being
S-null means (with some slight abuse of notation)
x{ω}↑g ∼S g for all x ∈ X and g ∈ A, which is
equivalent by formula (6) to US(x{ω}↑g) = US(g)
for all x ∈ X and g ∈ A. But uS(x, ω) = US(g)−
|S|−1
|S| US(g) = 1

|S|US(g), which is independent of x

and thus constant in x.

Note that wS(·, ω) is constant on X if and only
if ω ∈ Ω is S-null or ω ∈ Ω \ S. To see this,
note that by Remark 7 (Property 1 and 6), ω ∈
Ω is S-null or ω /∈ S if and only if (with some
slight abuse of notation) x{ω}g ∼S g for all x ∈ X
and g ∈ A, which is equivalent by formula (6) to
US(x{ω}↑g) = US(g) for all x ∈ X and g ∈ A. But

uS(x, ω) = US(g)− |Ω|−1
|Ω| US(g) = 1

|Ω|US(g), which

is independent of x and thus constant in x.

For the converse, we prove only the nonstandard
Property 6. Suppose, by way of contradiction,
that we have the representation in formula (4) but
Property 6 is violated. Then there exist a space
S ∈ S and acts f, g ∈ A with f(ω) = g(ω) for
all ω ∈ S but f �S g. But this contradicts for-
mula (4). �

For the converse, we prove only the nonstandard
Property 6. Suppose by way of contradiction,
that we have the representation in formula (5) but
Property 6 is violated. Then there exist a space
S ∈ S and acts f, g ∈ A with f(ω) = g(ω) for all
ω ∈ S but f �S g.

. It follows from the fact that f(ω) = g(ω) for all
ω ∈ S that∑

ω∈S

∑
x∈supp(f(ω))

wS(x, ω)f(ω)(x) (26)

=
∑
ω∈S

∑
x∈supp(g(ω))

wS(x, ω)g(ω)(x).

. Note that∑
ω∈Ω\S

∑
x∈supp(f(ω))

wS(x, ω)f(ω)(x) (27)

=
∑

ω∈Ω\S

∑
x∈supp(g(ω))

wS(x, ω)g(ω)(x),
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. since, as we noted earlier, wS(·, ω) is constant on
X for all ω ∈ Ω \ S. But this contradicts for-
mula (5). �

We continue with the proof of Theorems 1 and 2, respectively. Fix an space S ∈ S. By Remark 6,
there exists an S-nonnull state ω◦ ∈ S. Let p, q ∈ ∆(X), and let ω ∈ S be an S-nonnull state.

For f ∈ A,∑
x∈supp(p)

uS(x, ω)p(x) >
∑

x∈supp(q)

uS(x, ω)q(x) (28)

if and only if

US(p{ω}↑f) > US(q{ω}↑f), (29)

if and only if by Proposition 4

p{ω}↑f �S q{ω}↑f, (30)

if and only if, by Property 5,

p{ω◦}↑f �S q{ω◦}↑f, (31)

if and only if, by Proposition 4,

US(p{ω◦}↑f) > US(q{ω◦}↑f), (32)

if and only if∑
x∈supp(p)

uS(x, ω◦)p(x) >
∑

x∈supp(q)

uS(x, ω◦)q(x). (33)

For f ∈ A,∑
x∈supp(p)

wS(x, ω)p(x) >
∑

x∈supp(q)

wS(x, ω)q(x) (34)

if and only if

US(p{ω}↑f) > US(q{ω}↑f). (35)

To see this, note that

US(p{ω}↑f) =
∑

x∈supp(p)

wS(x, ω)p(x)

+
∑

ω′∈{ω}↑\{ω}

∑
x∈supp(p)

wS(x, ω′)p(x)

+
∑

ω′∈Ω\{ω}↑

∑
x∈supp(f(ω′))

wS(x, ω′)f(ω′)(x).

It is sufficient to show that∑
ω′∈{ω}↑\{ω}

∑
x∈supp(p)

wS(x, ω′)p(x) (36)

=
∑

ω′∈{ω}↑\{ω}

∑
x∈supp(q)

wS(x, ω′)q(x).

. Since ω ∈ S, ω′ ∈ {ω}↑ \ {ω} implies that ω′ /∈
S. By arguments in the proof of Proposition 5,
wS(·, ω′) is constant in X. This yields inequal-
ity (36). Inequality (35) holds if and only if, by
Proposition 5,

p{ω}↑f �S q{ω}↑f, (37)

if and only if, by Property 5,

p{ω◦}↑f �S q{ω◦}↑f, (38)
. if and only if, by Proposition 5,

US(p{ω◦}↑f) > US(q{ω◦}↑f), (39)

if and only if (by analogous arguments as for in-
equality (35))∑
x∈supp(p)

wS(x, ω◦)p(x) >
∑

x∈supp(q)

wS(x, ω◦)q(x). (40)

By the uniqueness of von Neumann-Morgenstern utilities, there exist constants aS(ω) > 0 and bS(ω) such
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that

aS(ω)uS(·, ω◦) + bS(ω) = uS(·, ω). (41) aS(ω)wS(·, ω◦) + bS(ω) = wS(·, ω). (42)

For S-null states, let aS(ω) = 0, since we observed
in the proof of Proposition 4 that ω is S-null if
and only if uS(·, ω) is constant on X.

If ω is S-null or ω ∈ Ω \ S, let aS(ω) = 0, since
we observed in the proof of Proposition 5 that ω
is S-null or ω ∈ Ω \ S if and only if wS(·, ω) is
constant on X.

Define uS(x) := uS(x, ω◦), that is, aS(ω◦) = 1
and bS(ω◦) = 0. Then the representation in for-
mula (4) becomes

Define wS(x) := wS(x, ω◦), that is, aS(ω◦) = 1
and bS(ω◦) = 0. Then the representation in for-
mula (5) becomes

f �S g if and only if

∑
ω∈S

∑
x∈supp(f(ω))

(aS(ω)uS(x) + bS(ω))f(ω)(x) (43)

>
∑
ω∈S

∑
x∈supp(g(ω))

(aS(ω)uS(x) + bS(ω))g(ω)(x),

f �S g if and only if

∑
ω∈Ω

∑
x∈supp(f(ω))

(aS(ω)wS(x) + bS(ω))f(ω)(x) (44)

>
∑
ω∈Ω

∑
x∈supp(g(ω))

(aS(ω)wS(x) + bS(ω))g(ω)(x),

which simplifies to

∑
ω∈S

bS(ω) + aS(ω)[
∑

x∈supp(f(ω))

uS(x)f(ω)(x)]


>
∑
ω∈S

bS(ω) + aS(ω)[
∑

x∈supp(g(ω))

uS(x)g(ω)(x)]

 .

which simplifies to

∑
ω∈Ω

bS(ω) + aS(ω)[
∑

x∈supp(f(ω))

wS(x)f(ω)(x)]


>
∑
ω∈Ω

bS(ω) + aS(ω)[
∑

x∈supp(g(ω))

wS(x)g(ω)(x)]

 .

We cancel bS(ω), divide by
∑

ω∈S aS(ω), and de-
fine

µS(ω) :=
aS(ω)∑

ω′∈S aS(ω′)
(45)

We cancel bS(ω), divide by
∑

ω∈Ω aS(ω), and de-
fine

ϕS(ω) :=
aS(ω)∑

ω′∈Ω aS(ω′)
(46)

to obtain inequality (1). to obtain inequality (3).

Repeating this construction for every S ∈ S yields representations of Theorems 1 and 2, respectively.
�

A.6 Proof of Proposition 2

Suppose that Properties 1 to 6 hold. We need to show that µS ∈ ∆(S) for S 6� S(E) if
and only if, for all events F such that S(F ) = S(E), we have fF ∼ hFg for all f, g, h ∈ A.

“⇒”: If µS ∈ ∆(S) with S 6� S(E), then for all events F with S(F ) = S(E),

∑
ω∈S

 ∑
x∈supp(fF g(ω))

uS(x)fFg(ω)(x)

µS(ω)

=
∑
ω∈S

 ∑
x∈supp(hF g(ω))

uS(x)hFg(ω)(x)

µS(ω). (47)
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for all f, g, h ∈ A. By Theorem 1, we have fFg ∼S hFg for all events F such that
S(F ) = S(E) and all f, g, h ∈ A.

“⇐”: If, for all events F with S(F ) = S(E) we have fFg ∼ hFg for all f, g, h ∈ A,
then∼=∼S for S 6� S(E), otherwise we have a contradiction to Remark 6. By Theorem 1,
there exists an awareness-dependent expected utility for which equation (47) holds for
all f, g, h ∈ A and F ∈ Σ such that S(F ) = S(E). Thus µS ∈ ∆(S) with S 6� S(E). �
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