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In this paper we propose a variance estimator for the OLS estimator as well as
for nonlinear estimators such as logit, probit and GMM. This variance estimator en-
ables cluster-robust inference when there is two-way or multi-way clustering that is
non-nested. The variance estimator extends the standard cluster-robust variance es-
timator or sandwich estimator for one-way clustering (e.g. Liang and Zeger (1986),
Arellano (1987)) and relies on similar relatively weak distributional assumptions.
Our method is easily implemented in statistical packages, such as Stata and SAS,
that already o¤er cluster-robust standard errors when there is one-way clustering.
The method is demonstrated by a Monte Carlo analysis for a two-way random ef-
fects model; a Monte Carlo analysis of a placebo law that extends the state-year
e¤ects example of Bertrand et al. (2004) to two dimensions; and by application to
studies in the empirical literature where two-way clustering is present.
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1. Introduction

A key component of empirical research is conducting accurate statistical inference. One
challenge to this is the possibility of errors being correlated within cluster. In this paper
we propose a variance estimator for commonly used estimators, such as OLS, probit, and
logit, that provides cluster-robust inference when there is multi-way non-nested clus-
tering. The variance estimator extends the standard cluster-robust variance estimator
for one-way clustering, and relies on similar relatively weak distributional assumptions.
Our method is easily implemented in any statistical package that provides cluster-robust
standard errors with one-way clustering. An ado �le for multi-way clustering in Stata
is available at the website www.econ.ucdavis.edu/faculty/dlmiller/stata�les.

Controlling for clustering can be very important, as failure to do so can lead to
massively under-estimated standard errors and consequent over-rejection using standard
hypothesis tests. Moulton (1986, 1990) demonstrated that this problem arose in a much
wider range of settings than had been appreciated by microeconometricians. More
recently Bertrand, Du�o and Mullainathan (2004) and Kezdi (2004) emphasized that
with state-year panel or repeated cross-section data, clustering can be present even after
including state and year e¤ects and valid inference requires controlling for clustering
within state. These papers, like most previous analyses, focus on one-way clustering.

For nested two-way or multi-way clustering one simply clusters at the highest level of
aggregation. For example, with individual-level data and clustering on both household
and state one should cluster on state. Pepper (2002) provides an example.

If instead multi-way clustering is non-nested, the existing approach is to specify a
multi-way error components model with iid errors. Moulton (1986) considered clustering
due to grouping of three regressors (schooling, age and weeks worked) in a cross-section
log earnings regression. Davis (2002) modelled �lm attendance data clustered by �lm,
theater and time and provided a quite general way to implement feasible GLS even
with clustering in many dimensions. But these models impose strong assumptions,
including homoskedasticity and errors equicorrelated within cluster. And even the two-
way random e¤ects model for linear regression is typically not included in standard
econometrics packages.

In this paper we take a less parametric cluster-robust approach that generalizes
one-way cluster-robust standard errors to the non-nested multi-way clustering case.
One-way �cluster-robust� standard errors rely on weak assumptions � errors are in-
dependent but not identically distributed across clusters and can have quite general
patterns of within cluster correlation and heteroskedasticity. These standard errors
generalize those of White (1980) for independent heteroskedastic errors. Key references
include Pfe¤ermann and Nathan (1981) for clustered sampling, White (1984) for a mul-
tivariate dependent variable, Liang and Zeger (1986) for estimation in a generalized
estimating equations setting, and Arellano (1987) and Hansen (2007) for linear panel
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models. Wooldridge (2003) provides a survey, and Wooldridge (2002) and Cameron and
Trivedi (2005) give textbook treatments.

Our multi-way robust variance estimator is easy to implement. In the two-way
clustering case, we obtain three di¤erent cluster-robust �variance�matrices for the esti-
mator by one-way clustering in, respectively, the �rst dimension, the second dimension,
and by the intersection of the �rst and second dimensions (sometimes referred to as
�rst-by-second, as in �state-by-year�, clustering). Then we add the �rst two variance
matrices and subtract the third. In the three-way clustering case there is an analogous
formula, with seven one-way cluster robust variance matrices computed and combined.

The method is useful in many applications, including:

1. In a cross-section study clustering may arise at several levels simultaneously. For
example a model may have errors that are correlated within region, within indus-
try, and within occupation. This leads to inference problems if there are region-
level, industry-level, and occupation-level regressors.

2. Clustering may arise due to discrete regressors. Moulton (1986) considered infer-
ence in this case, modelling the error correlation using an error components model.
More recently, Card and Lee (2004) argue that in a regression discontinuity frame-
work where the treatment-determining variable is discrete, the observations should
be clustered at the level of the right-hand side variable. If additionally interest
lies in a �primary� dimension of clustering (e.g., state or village), then there is
clustering in more than one dimension.

3. In datasets based on pair-wise observations, researchers may wish to allow for
clustering at each node of the pair. For example, Rose and Engel (2002) consider
estimation of a gravity model for trade �ows using a single cross-section with data
on many country-pairs, and are unable to control for the likely two-way error
correlation across both the �rst and second country in the pair.

4. Matched employer-employee studies may wish to allow for clustering at both the
employer level as well as the employee level when there are repeated observations
at the employee level.

5. Studies that employ the usual one-way cluster robust standard errors may wish to
additionally control for clustering due to sample design. For example, clustering
may occur at the level of a primary sampling unit in addition to the level of an
industry-level regressor.

6. Panel studies that employ the usual one-way cluster robust standard errors may
wish to additionally control for panel survey design. For example, the Current
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Population Survey (CPS) uses a rotating panel structure, with households resur-
veyed for a number of months. Researchers using data on households or indi-
viduals and concerned about within state-year clustering (correlated errors within
state-year along with important state-year variables or instruments) should also
account for household-level clustering across the two years of the panel structure.
Then they need to account for clustering across both dimensions. A related ex-
ample is Acemoglu and Pischke (2003), who study a panel of individuals who are
a¤ected by region-year policy variables.

7. In a state-year panel setting, we may want to cluster at the state level to permit
valid inference if there is within-state autocorrelation in the errors. If there is also
geographic-based correlation, a similar issue may be at play with respect to the
within-year cross-state errors (Conley 1999). In this case, researchers may wish
to cluster at the year level as well as at the state level.

8. More generally this situation arises when there is clustering at both a cross-section
level and temporal level. For example, �nance applications may call for clustering
at the �rm level and at the time (e.g., day) level.

There are many other situation-speci�c applications. Papers that cite earlier drafts
of our paper include Baughman and Smith (2007), Beck, Demirguc-Kunt, Laeven, and
Levine (2008), Cascio and Schanzenbach (2007), Cujjpers and Peek (2008), Engelhardt
and Kumar (2007), Foote (2007), Gow, Ormazabal and Taylor (2008), Gurun, Booth
and Zhang (2008), Loughran and Shive (2007), Martin, Mayer and Thoenig (2008),
Mitchener and Weidenmier, (2007), Olken and Barron (2007), Peress (2007), Pierce and
Snyder (2008), and Rountree, Weston and Allayannis (2008).

Our estimator is qualitatively similar to the ones presented in White and Domowitz
(1984), for time series data, and Conley (1999), for spatial data. It is based on a
weighted double-sum over all observations of the form

P
i

P
j w (i; j)xix

0
jb"ib"j . White

and Domowitz (1984), considering time series dependence, use a weight w (i; j) = 1 for
observations �close� in time to one another, and w (i; j) = 0 for other observations.
Conley (1999) considers the case where observations have spatial locations, and has
weights w (i; j) to be decaying to 0 as the distance between observations grows. Our
estimator can be expressed algebraically as a special case of the spatial HAC (Het-
eroscedasticity and Autocorrelation Consistent) estimator presented in Conley (1999).
Bester, Conley, and Hansen (2009) explicitly consider a setting with spatial or temporal
cross-cluster dependence that dies out. These three papers use mixing conditions to en-
sure that dependence decays as observations as the spatial or temporal distance beween
observations grows. Such conditions are not applicable to clustering due to common
shocks, which have a factor structure rather than decaying dependence. Thus, we rely
on independence of observations that share no clusters in common.
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The �fth example introduces consideration of sample design, in which case the most
precise statistical inference would control for strati�cation in addition to clustering.
Bhattacharya (2005) provides a comprehensive treatment in a GMM framework. He
�nds that accounting for strati�cation tends to reduce reported standard errors, and
that this e¤ect can be meaningfully large. In his empirical examples, the strati�cation
e¤ect is largest when estimating (unconditional) means and Lorenz shares, and much
smaller when estimating conditional means. Like most econometrics studies, we do not
control for the e¤ects of strati�cation. In so doing there will be some over-estimation
of the estimator�s standard deviation.

Since the initial draft of this paper, we have become aware of several independent
applications of the multi-way robust estimator. Acemoglu and Pischke (2003) estimate
OLS standard errors allowing for clustering at the individual level as well as the region-
by-time level. Miglioretti and Heagerty (2006) present results for multi-way clustering
in the Generalized Estimating Equations setting, and provide simulation results and an
application to a mammogram screeing epidemiological study. Petersen (2007) compares
a number of approaches for OLS estimation in a �nance panel setting, using results by
Thompson (2005, 2006) that provides some theory and Monte Carlo evidence for the
two-way OLS case with panel data on �rms. Fafchamps and Gubert (2006) analyze
networks among individuals, where a person-pair is the unit of observation. In this
context they describe the two-way robust estimator in the setting of dyadic models.

The methods and supporting theory for two-way and multi-way clustering and for
both OLS and quite general nonlinear estimators are presented in Section 2 and in
the Appendix. Like the one-way cluster-robust method, our methods assume that the
number of clusters goes to in�nity. This assumption does become more binding with
multi-way clustering. For example, in the two-way case it is assumed that min (G;H)!
1, where there are G clusters in dimension 1 and H clusters in dimension 2. In Section
3 we present two di¤erent Monte Carlo experiments. The �rst is based on a two-
way random e¤ects model and some extensions of that model. The second follows
the general approach of Bertrand et al. (2004) in investigating a placebo law in an
earnings regression, except that in our example the induced error dependence is two-way
(over both states and years) rather than one-way. Section 4 presents several empirical
examples where we contrast results obtained using conventional one-way clustering to
those allowing for two-way clustering. Section 5 concludes.

2. Cluster-Robust Inference

This section emphasizes the OLS estimator, for simplicity. We begin with a review of
one-way clustering, before considering in turn two-way clustering and multi-way clus-
tering. The section concludes with extension from OLS to m-estimators, such as probit
and logit, and GMM estimators.

5



2.1. One-Way Clustering

The linear model with one-way clustering is

yig = x
0
ig� + uig; (2.1)

where i denotes the ith of N individuals in the sample, g denotes the gth of G clusters,
E[uigjxig] = 0, and error independence across clusters is assumed so that for i 6= j

E[uigujg0 jxig;xjg0 ] = 0, unless g = g0: (2.2)

Errors for individuals belonging to the same group may be correlated, with quite general
heteroskedasticity and correlation.

Grouping observations by cluster, the model can be written as

yg = Xg� + ug; (2.3)

where yg and ug are Ng � 1 vectors, Xg is an Ng � K matrix, and there are Ng
observations in cluster g. Further stacking over clusters yields

y = X� + u;

where y and u are N � 1 vectors, X is an N �K matrix, and N =
P
gNg.

The OLS estimator is

b� = �X0X��1X0y =
0@ GX
g=1

X0gXg

1A�1
GX
g=1

X0gyg: (2.4)

Under commonly assumed restrictions on moments and heterogeneity of the data,p
G(b� � �) has a limit normal distribution with variance matrix

0@ lim
G!1

1

G

GX
g=1

E
�
X0gXg

�1A�10@ lim
G!1

1

G

GX
g=1

E
�
X0gugu

0
gXg

�1A0@ lim
G!1

1

G

GX
g=1

E
�
X0gXg

�1A�1

:

(2.5)
If the primary source of clustering is due to group-level common shocks, a useful

approximation is that for the jth regressor the default OLS variance estimate based
on s2 (X0X)�1, where s is the standard deviation of the error, should be in�ated by
� j ' 1 + �xj�u( �Ng � 1), where �xj is a measure of the within cluster correlation of xj ,
�u is the within cluster error correlation, and �Ng is the average cluster size; see Kloek
(1981), Scott and Holt (1982) and Greenwald (1983). Moulton (1986, 1990) pointed out
that in many settings the adjustment factor � j can be large even if �u is small.
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The earliest work posited a model for the cluster error variance matrices


g = V[ugjXg] = E[ugu0gjXg]; (2.6)

in which case E[X0gugu
0
gXg] = E[X

0
g
gXg] can be estimated given a consistent estimateb
g of 
g, and feasible GLS estimation is then additionally possible.

Current applied studies instead use the cluster-robust variance matrix estimate

bV[b�] = �X0X��1
0@ GX
g=1

X0gbugbu0gXg
1A�X0X��1 ; (2.7)

where bug = yg � Xgb�. This provides a consistent estimate of the variance matrix if
G�1

PG
g=1X

0
gbugbu0gXg � G�1PG

g=1E[X
0
gugu

0
gXg]

p! 0 as G ! 1. White (1984, p.134-
142) presented formal theorems for a multivariate dependent variable, directly applicable
to balanced clusters. Liang and Zeger (1986) proposed this method for estimation in a
generalized estimating equations setting, Arellano (1987) for the �xed e¤ects estimator
in linear panel models, and Rogers (1993) popularized this method in applied economet-
rics by incorporating it in Stata. The method generalizes White (1980), who considered
the case Ng = 1. Most recently, Hansen (2007) provides asymptotic theory for panel
data where T !1 (Ng !1 in the notation above) in addition to N !1 (G!1 in
the notation above). Note that (2.7) does not require speci�cation of a model for 
g,
and thus it permits quite general forms of 
g.

A helpful informal presentation of (2.7) is that

bV[b�] = (X0X)�1 bB(X0X)�1; (2.8)

where the central matrix

bB =

GX
g=1

X0gbugbu0gXg (2.9)

= X0

266664
bu1bu01 0 � � � 0

0 bu2bu02 ...
...

. . . 0
0 � � � � � � buGbu0G

377775X

= X0

0BBBB@bubu0: �
266664
E1 0 � � � 0

0 E2

...
...

. . .
0 � � � � � � EG

377775
1CCCCAX;
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where :� denotes element-by-element multiplication and Eg is an (Ng � Ng) matrix of
ones.

More generally we can view bB in (2.9) as being given by

bB = X0(bubu0: � SG)X (2.10)

where SG is an N �N indicator, or selection, matrix with ijth entry equal to one if the
ith and jth observation belong to the same cluster and equal to zero otherwise. SG in
turn equals �G�G0 where �G is an N � G matrix with igth entry equal to one if the
ith observation belongs to cluster g and equal to zero otherwise. The (a; b)-th element
of bB is

PN
i=1

PN
j=1 xiaxjbbuibuj1[i; j in same cluster], where bui = yi � x0ib�:

An intuitive explanation of the asymptotic theory is that the indicator matrix SG

must zero out a large amount of bubu0, or, asymptotically equivalently, uu0. Here there
are N2 = (

PG
g=1Ng)

2 terms in bubu0 and all but PG
g=1N

2
g of these are zeroed out. For

�xed Ng,
PG
g=1N

2
g =N

2 ! 0 as G!1. In particular, for balanced clusters Ng = N=G,
so
PG
g=1N

2
g =N

2 = 1=G! 0 as G!1.

2.2. Two-Way Clustering

Now consider situations where each observation may belong to more than one �dimen-
sion�of groups. For instance, if there are two dimensions of grouping, each individual
will belong to a group g 2 f1; 2; :::; Gg, as well as to a group h 2 f1; 2; :::;Hg, and we
have

yigh = x
0
igh� + uigh; (2.11)

where we assume that for i 6= j

E[uighujg0h0 jxigh;xjg0h0 ] = 0, unless g = g0 or h = h0: (2.12)

If errors belong to the same group (along either dimension), they may have an arbitrary
correlation. For non-nested two-way clustering, which we consider, 
 = V[ujX] can no
longer be written as a block diagonal matrix.

The intuition for the variance estimator in this case is a simple extension of (2.10)
for one-way clustering. Instead of keeping only those elements of bubu0 where the ith and
jth observations share a cluster in one speci�ed dimension, we keep those elements ofbubu0 where the ith and jth observations share a cluster in any dimension. Then

bB = X0(bubu0: � SGH)X; (2.13)

where SGH is an N �N indicator matrix with ijth entry equal to one if the ith and jth

observation share any cluster, and equal to zero otherwise. Now, the (a; b)-th element
of bB is

PN
i=1

PN
j=1 xiaxjbbuibuj1[i; j share any cluster].
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bB and hence bV[b�] can be calculated using matrix algebra. The N � N selection
matrix SGH may be large in some problems, however, and even if N is manageable
many users will prefer to use readily available software that calculates cluster-robust
standard errors for one-way clustering.

This is done by de�ning three N �N indicator matrices: SG with ijth entry equal
to one if the ith and jth observation belong to the same cluster g 2 f1; 2; :::; Gg, SH
with ijth entry equal to one if the ith and jth observation belong to the same cluster
h 2 f1; 2; :::;Hg, and SG\H with ijth entry equal to one if the ith and jth observation
belong to both the same cluster g 2 f1; 2; :::; Gg and the same cluster h 2 f1; 2; :::;Hg.
Then

SGH = SG + SH � SG\H ;
so bB = X0(bubu0: � SG)X+X0(bubu0: � SH)X�X0(bubu0: � SG\H)X: (2.14)

Substituting (2.14) into (2.8) yieldsbV[b�] = (X0X)�1X0(bubu0: � SG)X(X0X)�1 (2.15)

+(X0X)�1X0(bubu0: � SH)X(X0X)�1
�(X0X)�1X0(bubu0: � SG\H)X(X0X)�1:

The three components can be separately computed by

1. OLS regression of y onX with variance matrix estimate computed using clustering
on g 2 f1; 2; :::; Gg;

2. OLS regression of y onX with variance matrix estimate computed using clustering
on h 2 f1; 2; :::;Hg; and

3. OLS regression of y onX with variance matrix estimate computed using clustering
on (g; h) 2 f(1; 1); :::; (G;H)g.

Given these three components, bV[b�] is computed as the sum of the �rst and second
components, minus the third component.

2.3. Practical considerations

In much the same way that robust inference in the presence of one-way clustering re-
quires empirical researchers to know which �way� is the one where clustering may be
important, our discussion presumes that the researcher knows what �ways� will be
potentially important for clustering in her application.

It would be useful to have an objective way to determine which, and how many,
dimensions require allowance for clustering. Unfortunately, we are presently unaware
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of a systematic, data-driven approach to this issue. From the discussion after (2.5) a
necessary condition for a dimension (e.g., state, industry, occupation, year) to exhibit
clustering is that there be correlation in the errors within that dimension of the data.
This e¤ect is exacerbated by regressors that also exhibit correlation in that dimension.
The impact of controlling for two-way clustering is likely to be greatest when both the
regressor of interest and the error, conditional on the other regressors, are correlated
over two dimensions.

In principle, we believe that one could formulate tests based on conditional mo-
ments, similar to the White (1980) test for heteroskedasticity. Such an approach would
likely involve using sample covariances of X0bu terms within dimensions to test the null
hypothesis that the average of such covariances is zero. Rejecting this null would be
su¢ cient, though not necessary, to reject the null hypothesis of no clustering in a di-
mension. The di¢ culty in making such a test operational is �nding a way to partial
out, or otherwise hold constant, the part of the covariance average in one dimension
that overlaps with other dimensions. While we think this could be a fruitful direction
for future research, we also believe that this topic is too far a�eld for detailed treatment
in the present paper.

Small-sample modi�cations of (2.7) for one-way clustering are typically used, since
without modi�cation the cluster-robust standard errors are biased downwards. Cameron,
Gelbach, and Miller (2008) review various small-sample corrections that have been pro-
posed in the literature, for both standard errors and for inference using resultant Wald
statistics. For example, Stata uses

p
cbug in (2.7) rather than bug, with c = G

G�1
N�1
N�K '

G
G�1 . Similar corrections may be used for two-way clustering. One method is to use
the Stata formula throughout, in which case the errors in the three components are
multiplied by, respectively, c1 = G

G�1
N�1
N�K , c2 =

H
H�1

N�1
N�K and c3 = I

I�1
N�1
N�K where I

equals the number of unique clusters formed by the intersection of the H groups and
the G groups. A second is to use a constant c = J

J�1
N�1
N�K where J = min(G;H). We

use the �rst of these methods in our OLS simulations and applications.
Some statistical packages, for example Stata, permit separate estimation of the vari-

ance matrices using stored estimation results. In this case one need only estimate �
and invert (X0X) once. As a result estimating bV[b�] often adds little computational time
over that of one-way cluster-robust inference.

A practical matter that can arise when implementing the two-way robust estimator
is that the resulting variance estimate bV[b�] may have negative elements on the diagonal.
Using the Stata-style formula for residual adjustment reduces the likelihood of estimat-
ing a negative variance, especially when the number of clusters is small, because this
problem is more likely to arise when the third covariance matrix is relatively large and
the Stata-style formula uses a smaller (in�ationary) adjustment to the standard errors
in the third matrix, since I > max (G;H).
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In some applications with �xed e¤ects, bV[b�] may be non positive-de�nite, but the
subcomponent of bV[b�] associated with the regressors of interest may be positive-de�nite.
In some statistical package programs this may lead to a reported error, even though
inference is appropriate for the parameters of interest. Our informal observation is that
this issue is most likely to arise when clustering is done over the same groups as the �xed
e¤ects. In that case eliminating the �xed e¤ects by di¤erencing, rather than directly
estimating them, leads to a positive de�nite matrix for the remaining coe¢ cients.

In some applications and simulations it can still be the case that the variance-
covariance matrix is not positive-semide�nite. A positive-semide�nite matrix can be
created by employing a technique used in the time series HAC literature, such as in
Politis (2007). This involves three steps. First decompose the variance matrix de�ned
in (2.15) into the product of its eigenvectors and eigenvalues: bV[b�] = U�U 0, with U
containing the eigenvectors of bV, and � = Diag[�1; :::; �d] containing the eigenvalues ofbV. Then create �+ = Diag[�+1 ; :::; �+d ], with �+j = max (0; �j), and use bV+[b�] = U�+U 0
as the variance estimate. In some of our simulations with a small number of clusters
(G;H = 10) we very occasionally obtained a non positive-semide�nite variance matrix
and dropped that draw from our Monte Carlo analysis. When we instead use the above
method we �nd that in the problematic draws the negative eigenvalue is small, bV+[b�]
always yields a positive de�nite variance matrix estimate, and keeping all draws (usingbV+[b�] where necessary) leads to results very similar to those reported in the Monte
Carlos below.

Most empirical studies with clustered data estimate by OLS, ignoring potential
e¢ ciency gains due to modeling heteroskedasticity and/or clustering and estimating
by feasible GLS. The method outlined in this paper can be adapted to weighted least
squares that accounts for heteroskedasticity, as the resulting residuals bu�igh from the
transformed model will asymptotically retain the same broad correlation pattern over
g and h. It can also be adapted to robustify a one-way random e¤ects feasible GLS
estimator that clusters over g, say, when there is also correlation over h. Then the
random e¤ects transformation will induce some correlation across h and h0 between
transformed errors u�igh and u

�
ig0h0 , but this correlation is negligible as G ! 1 and

H !1.
In some applications researchers will wish to include �xed e¤ects in one or both

dimensions. We do not formally address this complication. However, we note that
given our assumption that G ! 1 and H ! 1, each �xed e¤ect is estimated using
many observations. We think that this is likely to mitigate the incidental parameters
problem in nonlinear models such as the probit model. We �nd in practice that the
main consequence of including �xed e¤ects is a reduction in within cluster correlation.

As discussed in the appendix, the relative importance of the third variance term in
(2.15) varies with the type of application. For a classic two-way random e¤ects model
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with common shocks and no �xed e¤ects the third term is dominated by the �rst two
variance terms asymptotically. But in other applications (for example with iid errors)
the third term can be of similar order to the �rst two terms asymptotically. In both
cases we recommend use of all three terms in �nite-sample practice.

2.4. Multi-Way Clustering

Our approach generalizes to clustering in more than two dimensions. We now give a
quite general treatment that requires some new notation and de�nitions.

Suppose there are D dimensions within which clustering must be accounted for.
For example, if we want to cluster on industry, occupation, and state, then D = 3.
Let Gd denote the number of clusters in dimension d. Let the D-vector �i = �(i),
where the function � : f1; 2; :::; Ng ! �Dd=1f1; 2; :::; Gdg lists the cluster membership
in each dimension for each observation. For example, if �i = (5; 8; 2) then there are
three dimensions and the ith observation is in the �fth cluster in the �rst dimension, the
eighth cluster in the second dimension, and the second cluster in the third dimension.
Thus 1[i; j share a cluster] = 1, �id = �jd for some d 2 f1; 2; :::; Dg, where �id denotes
the dth element of �i.

Now let r be a D-vector, with dth coordinate equal to rd, and de�ne the set R �
fr: rd 2 f0; 1g; d = 1; 2; :::; D; r 6= 0g, where the exclusion of the vector 0 means that
R has 2D � 1 elements. For example, for D = 3 we have R = f(1; 0; 0), (0; 1; 0),
(0; 0; 1), (1; 1; 0), (1; 0; 1), (0; 1; 1), (1; 1; 1)g. Elements of the set R can be used to index
all cases in which two observations share a cluster in at least one dimension. To see
how, de�ne the indicator function Ir(i; j) � 1[rd�id = rd�jd;8 d]. This function tells
us whether observations i and j have identical cluster membership for all dimensions
d such that rd = 1. For example, with D = 3 and r = (1; 1; 0), Ir(i; j) = 1 if and
only if (�i1; �i2) = (�j1; �j2), so that i and j are in the same group in dimensions 1 and
2 (regardless of whether �i3 = �j3). Suppose that the three clustering dimensions are
industry, occupation, and U.S. state. For the vector r = (1; 1; 0), Ir(i; j) = 1 if and only
if the two observations share an industry and an occupation, regardless of whether or
not they share a U.S. state. Similarly, if r = (1; 1; 1), Ir(i; j) = 1 if and only if the two
observations share industry, occupation, and U.S. state. De�ne I(i; j) = 1 if and only
if Ir(i; j) = 1 for some r 2 R. Thus, I(i; j) = 1 if and only if the two observations share
at least one dimension.

Now de�ne the 2D � 1 matrices

eBr � NX
i=1

NX
j=1

xix
0
jbuibujIr(i; j); r 2 R: (2.16)

For example, if D = 2, then bB in (2.14) can be expressed in the new notation asbB = eB(1;0)+ eB(0;1)� eB(1;1). And if D = 3 and r = (1; 1; 0), then eBr is the middle matrix
12



we get when we cluster on the variable I(1;1;0); when the �rst two dimensions are industry
and occupation, this is the matrix we get when we cluster on industry-occupation cells.

Our proposed estimator may be written as

bV[b�] = (X0X)�1 eB(X0X)�1; (2.17)

where eB � X
krk=k, r2R

(�1)k+1 eBr: (2.18)

Thus we sum over all possible values of k r k=
P
d rd. Cases in which the matrix eBr

involves clustering on an odd number of dimensions are added, while those involving
clustering on an even number are subtracted (note that k r k� D for all r 2 R).

As an example, when D = 3, eB may be written as�eB(1;0;0) + eB(0;1;0) + eB(0;0;1)�� �eB(1;1;0) + eB(1;0;1) + eB(0;1;1)�+ eB(1;1;1):
Each of the �rst three matrices clusters on exactly one dimension. In some cases,
observation pairs are in the same cluster in dimensions one and two; thus if we included
only the �rst three matrices, we would double-count these pairs. Thus we cluster on
each of the three combinations of two dimensions and subtract the resulting matrices,
eliminating double-counting of such pairs. However, some observation pairs share the
same cluster in all three dimensions; if we stopped after the �rst six matrices, these
pairs would be included three times and excluded three times, so that they would not be
accounted for. Hence we add back the seventh matrix, which is the clustering matrix for
observation pairs sharing the same cluster on all dimensions (e.g., industry-occupation
cells within state).

To prove that this approach is identical to the earlier one, so that eB = bB identically,
it is su¢ cient to show that (i) no observation pair with I(i; j) = 0 is included, and (ii)
the covariance term corresponding to each observation pair with I(i; j) = 1 is included
exactly once in eB. The �rst result is immediate, since I(i; j) = 0 if and only if Ir(i; j) = 0
for all r (see above). The second result follows because it is straightforward to show by
induction that when I(i; j) = 1,X

krk=k, r2R
(�1)k+1Ir(i; j) = 1:

(Actually, the �rst result also follows using this expression, since the left hand side is 0
when all Ir(i; j) = 0.) This fact, which can also be shown to be an application of the
inclusion-exclusion principle for set cardinality, ensures that eB and bB are numerically
identical in every sample.
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As a practical matter, the inclusion-exclusion approach may be computationally
dominated by direct computation of (2.16) whenever D is relatively large. This is
because the computational cost of this approach grows at rate 2D � 1. However, our
experience suggests that when D is small (e.g., 2 or 3), it may be quicker to use the
inclusion-exclusion approach.

A related concern is the possibility of a curse of dimensionality with multi-way
clustering. This could arise in a setting with many dimensions of clustering, and in which
one or more dimensions have few clusters. The square design (where each dimension
has the same number of clusters) with orthogonal dimensions (for example, 30 states by
30 years by 30 industries) has the least independence of observations. In this setting
on average a fraction D

G observations will be potentially related to one another. While
this has a multiplier of D, it always decays at a rate G (since D is �xed). We suggest
an ad-hoc rule of thumb for approximating su¢ cient numbers of clusters - if G1 would
be a su¢ cient number with one-way clustering, then DG1 should be a su¢ cient number
with D-way clustering. In the rectangular case (e.g. with 20 years and 50 states and
200 industries) the curse of dimensionality is lessened.

2.5. Multi�way Clustering for m-estimators and GMM Estimators

The preceding analysis considered the OLS estimator. More generally we consider multi-
way clustering for other (nonlinear) regression estimators commonly used in economet-
rics.

We begin with an m-estimator that solvesXN

i=1
hi(b�) = 0: (2.19)

Examples include nonlinear least squares estimation, maximum likelihood estimation,
and instrumental variables estimation in the just-identi�ed case. For the probit MLE
hi(�) = (yi � �(x0i�))�(x0i�)xi=[�(x0i�)(1 � �(x0i�))], where �(�) and �(�) are the
standard normal cdf and density.

Under standard assumptions, b� is asymptotically normal with estimated variance
matrix bV[b�] = bA�1 bBbA0�1;
where bA =

P
i
@hi
@�0

���b� or bA =
P
i E
h
@hi
@�0

i���b�, and bB is an estimate of V[
P
i hi].

Computation of bB varies with assumptions about clustering. Given independence
over i, V[

P
i hi] =

P
iV[hi] and bB =PN

i=1
bhibh0i, where bhi = hi(b�). Note that for OLSbhi = buibxi, so bB =PN

i=1 bu2i bxibx0i, leading to White�s heteroskedastic consistent estimate.
For one-way clustering bB =

PG
g=1

bhgbh0g where bhg = PNg
i=1

bhig. Clustering may or
may not lead to parameter inconsistency, depending on whether E[hi(�)] = 0 in the
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presence of clustering. As an example consider a probit model with one-way clustering.
One approach, called a population-averaged approach in the statistics literature is to
assume that E[yigjxig] = �(x0ig�), even in the presence of clustering. An alternative
approach is a random e¤ects approach. Let yig = 1 if y�ig > 0 where y

�
ig = x

0
ig�+"g+"ig,

where the idiosyncratic error "ig � N [0; 1] as usual and the cluster-speci�c error "g �
N [0; �2g]. Then it can be shown that E[yigjxig] = �(x0ig�=

q
1 + �2g), so that the moment

condition is no longer E[yigjxig] = �(x0ig�). When E[hi(�)] 6= 0 the estimated variance
matrix is still as above, but the distribution of the estimator will be instead centered
on a pseudo-true value (White, 1982). For the probit model the average partial e¤ect
is nonetheless consistently estimated (Wooldridge 2002, pg. 471).

Our concern is with multiway clustering. The analysis of the preceding section
carries through, with buixi in (2.16) replaced by bhi. Then b� is asymptotically normal
with estimated variance matrix

bV[b�] = bA�1 eBbA0�1; (2.20)

where as usual bA =
X
i

@hi
@�0

����b� ; (2.21)

or bA =
P
i E
h
@hi
@�0

i���b� , and noweB � X
krk=k, r2R

(�1)k+1 eBr; (2.22)

as in (2.18), with the 2D � 1 matrices eBr de�ned analogously to (2.16) as
eBr � NX

i=1

NX
j=1

bhibh0jIr(i; j); r 2 R: (2.23)

Implementation is similar to before. For example, for two-way clustering in the
probit model estimate the three components separately by

1. Probit regression of y on X with variance matrix estimate computed using clus-
tering on g 2 f1; 2; :::; Gg;

2. Probit regression of y on X with variance matrix estimate computed using clus-
tering on h 2 f1; 2; :::;Hg; and

3. Probit regression of y on X with variance matrix estimate computed using clus-
tering on (g; h) 2 f(1; 1); :::; (G;H)g.
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Given these three components, bV[b�] is computed as the sum of the �rst and second
components, minus the third component.

Commonly-used examples of nonlinear estimators to which this method can be ap-
plied are nonlinear-least squares, just-identi�ed instrumental variables estimation, logit,
probit and Poisson. In the case of Poisson, for example, the method controls for under-
dispersion or overdispersion in addition to multiway clustering.

The standard small-sample correction for standard errors of these nonlinear estima-
tors in the one-way clustering case leads to use of

p
crbhi rather than bhi in (2.23), where

cr = Gr=(Gr�1) and Gr is the number of clusters de�ned by r. We use this adjustment,
which is used in Stata, in our probit application in Section 4.2.

If the estimator under consideration is one for which a package does not provide
one-way cluster-robust standard errors it is possible to implement our procedure using
several one-way clustered bootstraps. In the two-way clustered probit example above, in
step 1 do a pairs cluster bootstrap that resamples with replacement from the G clusters,
(y1;X1); ::::; (yG;XG), in step 2 do a pairs cluster bootstrap that resamples with replace-
ment from the H clusters, (y1;X1); ::::; (yH ;XH), and in step 3 do a pairs cluster boot-
strap that resamples with replacement using clustering on (g; h) 2 f(1; 1); :::; (G;H)g.
The resulting three separate variance matrix estimates are then combined as before �
add the �rst two and subtract the third. This bootstrap provides the same level of
asymptotic approximation as that without bootstrap, and does not additionally provide
an asymptotic re�nement (see Cameron et al. (2008) for a discussion of clustering and
asymptotic re�nement in the one-way case).

Finally we consider GMM estimation for over-identi�ed models. A leading example
is linear two stage least squares with more instruments than endogenous regressors.
Then b� minimizes

Q(�) =

�XN

i=1
hi(�)

�0
W

�XN

i=1
hi(�)

�
;

whereW is a symmetric positive de�nite weighting matrix. Under standard regularity
conditions b� is asymptotically normal with estimated variance matrix

bV[b�] = �bA0W bA��1 bA0WeBW bA�bA0W bA��1 ; (2.24)

where bA is de�ned in (2.21), and eB is an estimate of V[
P
i hi] that can be computed

using (2.22) and (2.23).
The procedure is qualitatively the same as for OLS and m-estimation. In the two-

way clustering case, we obtain three di¤erent cluster-robust variance matrices for the
GMM estimator by one-way clustering in, respectively, the �rst dimension, the second
dimension, and after grouping by the intersection of the �rst and second dimensions.
Then we add the �rst two variance matrices and subtract the third.
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3. Monte Carlo Exercises

In this section we analyze the size performance of Wald tests based on standard errors,
rather than on the standard errors per se, in two di¤erent settings for two-way cluster-
ing. We compare the rejection rates of Wald tests based on alternative standard error
estimates and, in the �rst example, investigate the performance of our asymptotically-
justi�ed method when there are few clusters.

3.1. Monte Carlo based on Two-way Random E¤ects Errors

The �rst Monte Carlo exercise is based on a two-way random e¤ects model for the
errors. This has the advantage of providing a more parsimonious competitor, a Moulton-
type correction that assumes the error process is that of a two-way random e¤ects
model. We eventually introduce group-level heteroskedasticity into the errors that can
be accommodated by our two-way cluster-robust method, but not by the other methods.

We consider the following data generating process for two-way clustering

yigh = �0 + �1x1igh + �2x2igh + uigh; (3.1)

where �0 = �1 = �2 = 1 throughout. The regressors x1igh and x2igh and the errors
uigh vary with the experiment performed, as described below. We use rectangular
designs with exactly one observation drawn from each (g; h) pair, leading to G � H
observations. The subscript i in (3.1) is then redundant, and is suppressed in the
subsequent discussion. The �rst ten designs are square with G = H varying from 10 to
100 in increments of 10, and the remaining designs are rectangular with G < H.

We consider inference based on the OLS slope coe¢ cients b�1 and b�2, reporting
empirical rejection probabilities for asymptotic two-sided tests of whether �1 = 1 or
�2 = 1. That is we report in adjacent columns the percentage of times

t1 =

����� b�1 � 1se[b�1]
����� � 1:96, and t2 =

����� b�2 � 1se[b�2]
����� � 1:96:

Since the Wald test statistic is asymptotically normal, asymptotically rejection should
occur 5% of the time. As a small-sample adjustment for two-way cluster-robust stan-
dard errors, discussed below, we also report rejection rates when the critical value is
t:025;min(G;H)�1.

The standard errors se[b�1] and se[b�2] used to construct the Wald statistics are com-
puted in several ways:

1. Assume iid errors: This uses the �default�variance matrix estimate bs2(X0X)�1:
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2. One-way cluster-robust (cluster on �rst group): This uses one-way cluster-robust
standard errors, based on (2.7) with small-sample modi�cation, that correct for
clustering on the �rst grouping g 2 f1; 2; :::; Gg but not the second grouping.

3. Two-way random e¤ects correction: This assumes a two-way random e¤ects model
for the error and gives Moulton-type corrected standard errors calculated frombV[b�] = (X0X)�1X0b
X(X0X)�1, where b
 is a consistent estimate of V[u] based
on assuming two-way random e¤ects errors (ugh = "g + "h + "gh where the three
error components are iid).

4. Two-way cluster-robust: This is the method of this paper, given in (2.15), that
allows for two-way clustering but does not restrict it to follow a two-way random
e¤ects model.

Tables 1-3 use 2,000 simulations, which yields a 95% con�dence interval of (4:0%,
6:0%) for the Monte Carlo rejection rate, given that the true rejection rate is 5%.

3.1.1. Dgp with no clustering

Table 1 reports results for a dgp with iid errors and regressors. Speci�cally ugh = "gh �
N [0; 1], x1gh � N [0; 1], x2gh � N [0; 1].

Here all four methods are asymptotically valid, since the errors are not clustered.
This fact is re�ected by simulations with the largest sample, the G = H = 100 row,
presented in bold in Table 1. The rejection rates for the four methods range from 4.7%
to 6.1%, with one case marginally outside the already-mentioned simulation con�dence
intervals.

We now consider in detail inference with smaller numbers of clusters. Then rejec-
tion rates may exceed 5%, as even with a Gaussian dgp, the Wald test statistic has a
distribution with fatter tails than the standard normal, due to the need to estimate the
unknown error variance (even if the standard error estimate is unbiased).

The Wald test based on assuming iid errors is exactly T distributed with (GH � 3)
degrees of freedom under the current dgp, so that even in the smallest design with G =
H = 10 the theoretical rejection rate is 5:3% (since Pr [jtj > 1:96jt � T (97)] = 0:053),
still quite close to 5%. Results in Table 1 re�ect this fact, with rejection rates in the
�rst two columns ranging from 4:1% to 6:7%.

Exact �nite-sample results are not available for the other methods. For one-way
clustering a common small-sample correction is to use the T (G�1) distribution, though
this may still not be fat enough in the tails (see, for example, Cameron et al. (2008)).
For a regressor that is cluster-invariant, Donald and Lang (2007) support the T (G�L)
distribution, with L the number of cluster-invariant regressors and often L = 2 (the
cluster-invariant regressor and the intercept). Assuming a T (G � 1) distribution, with
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G = 10 the rejection rate should be 8:2% (since Pr [jtj > 1:96jt � T (9)] = 0:082), which
can be compared with the actual one-way rejection rates that range from 7:0% to 9:7%
for various rows of Table 1 with G = 10.

Wald tests based on standard errors computed using a two-way random e¤ects model
have rejection rates in Table 1 that are qualitatively similar to those assuming iid errors.
This is expected as the random e¤ects method has little loss of degrees of freedom as
just two additional variance parameters need to be computed. A T distribution with
degrees of freedom close to the number of observations, essentially a standard normal,
may provide a good approximation.

The next two columns of Table 1 present Wald tests based on two-way cluster-robust
standard errors. From the �rst two rows of the table, with a small number of clusters
the test over-rejects considerably when standard normal critical values are used.

The next two columns present rejection rates when the critical value is instead that
from a T distribution with min(G;H) � 1 degrees of freedom. The motivation is that
for one-way cluster-robust standard errors a common small-sample adjustment is to
use critical values from the T distribution with G� 1 degrees of freedom. This leads to
rejection rates of no more than 7.2% for all designs except the smallest withG = H = 10.

The �nal two columns present results when G group 1 and H group 2 �xed e¤ect
dummies are additionally included as regressors in the �tted model. Two-way cluster
robust standard errors continue to show good performance.

3.1.2. Dgp with two-way clustered homoskedastic errors

Table 2 reports results for a dgp with two-way random e¤ect errors and with clustered
regressors. Speci�cally, ugh = "g + "h + "gh where the three errors are iid N [0; 1], the
regressor x1gh is the sum of an iid N [0; 1] draw and a gth cluster-speci�c N [0; 1] draw,
and similarly x2gh is the sum of an iid N [0; 1] draw and an hth cluster-speci�c N [0; 1]
draw. The intraclass correlation coe¢ cient for errors that share one but not two clusters
is 0:33.

Here both the third and fourth methods are asymptotically valid. With two-way
clustering the second method will generally fail, but for our particular dgp, one-way
cluster-robust standard errors (with clustering on group 1) will be valid for inference
on �1 but not �2. Speci�cally, here the regressor x1gh is correlated over only g (and
not h), so that for inference on �1 it is necessary to control for clustering only over g,
even though the error is also correlated over h. If the regressor x1gh was additionally
correlated over h, even mildly so, then the one-way standard errors for b�1 would also
be incorrect.

Simulations for the largest sample, the G = H = 100 row presented in bold in Table
2, con�rm these assertions. The rejection rates for the third and fourth methods, and
the second method for �1, range from 3.6% to 6.4%.
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For Wald tests based on the erroneous assumption of iid errors there is considerable
over-rejection, and we observe the well-known result (presented after (2.5)) that the
over-rejection is increasing in the number of observations within each cluster, while
it is invariant in the number of clusters. For example, with 20 group 1 clusters the
rejection rates for tests on �1 are 34:0% , 50:8% and 62:9%, respectively, as the number
of observations in each cluster (which equals the number of group 2 clusters in our
design) increases from 20 to 50 and to 100, while the corresponding rejection rates for
tests on �2 are 32:3%, 33:1% and 33:9%.

Controlling for clustering by using standard one-way cluster-robust standard errors
that cluster on group 1 leads to rejection rates for �1 that go to 5% as the number of
clusters increases, though there is a high rejection rate of 13:7% when G = H = 10.
The high over-rejection rates for inference on �2 even exceed those when iid errors are
assumed.

The two-way random e¤ects correction does very well. This is to be expected as
this corresponds to the dgp, and because in �nite samples the Wald test is close to T
distributed with many degrees of freedom (roughly the number of observations).

The next two columns of Table 2 show that the two-way cluster-robust correction
with standard normal critical values does �ne for large number of clusters, but there is
considerable over-rejection when there are few clusters.

The next two columns show considerable improvement for the two-way cluster-robust
method when T critical values are used in place of standard normal critical values. The
rejection rate is less than 9% for all designs except those with 10 clusters. And even
with 10 clusters the rejection rate falls as the number of clusters in the other dimension
rises. Thus the rejection rate for tests on �1 is 12.6% when G = H = 10, 10.2% when
(G;H) = (10; 50) and 9.2% when (G;H) = (10; 100). This fact suggests that our design
with only one observation per (g; h) cluster may be especially challenging.

The �nal two columns of Table 2 show that the two-way cluster robust standard
errors continue to perform well after adding group speci�c �xed e¤ect dummies as
additional regressors.

3.1.3. Dgp with two-way clustered heteroskedastic errors

Table 3 considers a dgp with heteroskedastic two-way random e¤ect errors and clustered
regressors. Speci�cally, ugh = "g + "h + "gh where "g and "h are again N [0; 1] but now
"gh is N [0, jx1gh � x2ghj], while the regressors are distributed as in the dgp for Table
2. This dgp induces heteroskedasticity, so the Moulton-type standard error estimator
that assumes homoskedastic error components is inconsistent and will lead to Wald
tests with rejection rate di¤erent from 5%. Note that compared to the Table 2 dgp, the
variances of the cluster components "g and "h are unchanged while the variance of "gh
has increased. This reduces the correlation of ugh over g and h, so that rejection rates
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of methods that do not control for clustering will not be as high as in Table 2.
Here the �rst three methods will in general fail. As already mentioned in section

3.1.2, however, inference on �1 (but not �2) is valid using the second method, due to
the particular dgp used here. The fourth method remains asymptotically valid.

The simulations with the largest sample, the G = H = 100 row presented in bold in
Table 3, con�rm these expectations. The two-way cluster-robust method has rejection
rates between 6% and 7% that may be high due in part to simulation variability as the
rejection rates for G = H = 90 are between 5% and 6%. All the other methods, (except
the one-way cluster-robust for �1 with clustering on group 1), have rejection rates for
one or both of �1 and �2 that exceed 9%.

Assuming iid errors, the �rst two columns of Table 3 display over-rejection rates
that are lower than those in Table 2, due to lower correlation in the errors as already
explained.

The next two columns are qualitatively similar to those in Table 2 �controlling for
one-way clustering on group 1 improves inference on �1, but tests on �2 over-reject even
more than when iid errors are assumed.

The Moulton-type two-way e¤ects method clearly fails when heteroskedasticity is
present. The lowest rejection rate in Table 3 is 8:5%, and the rejection rates generally
exceed those assuming iid errors.

The two-way cluster robust standard errors are clearly able to control for both two-
way clustering and heteroskedasticity. When standard normal critical values are used
there is some over-rejection for small numbers of clusters, as in earlier Tables, but except
for G = H = 10 the rejection rates are lower than if the Moulton-type correction is used.
Once T critical values are used, the two-way cluster-robust method�s rejection rates are
always lower than using the Moulton-type standard errors, and they are always less
than 10% except for the smallest design with G = H = 10. It is not clear whether
the small-sample correction of Bell and McCa¤rey (2002) for the variance of the OLS
estimator with one-way clustering, used in Angrist and Lavy (2002) and Cameron et al.
(2008), can be adapted to two-way clustering.

As in Tables 1 and 2, the �nal two columns show continued good performance when
group speci�c dummies are additionally included as regressors.

Our results are based on the assumption that the group size Ngh is �nite (see the
Appendix). However, it does not necessarily need to be small compared to G or H.
We have estimated models similar to this dgp with G = H = 30, where we have varied
the cell sizes (observations per g � h cell) from 1, as in Tables 1-3, to 1000. In these
simulations we have also added separate iid N (0; 1) errors to each of x1igh; x2igh and
uigh. Results (not reported) indicate that the two-way robust estimator continues to
perform well across the various cell sizes.
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3.2. Monte Carlo Based on Errors Correlated over Time and States

We now consider an example applicable to panel and repeated cross-section data, with
errors that are correlated over both states and time. Correlation over states at a given
point in time may occur, for example, if there are common shocks, while correlation
over time for a given state typically reduces with lag length. An example of this sort of
situation is found in Foote (2007). This is unlike the preceding section random e¤ects
model that assumes constant autocorrelation.

One possibility is to adapt the random e¤ects model to allow dampening serial
correlation in the error, similar to the dgp used by Kezdi (2004) and Hansen (2007) in
studying one-way clustering, with addition of a common shock.

Instead we follow Bertrand et al. (2004) in using actual data, augmented by a
variation of their randomly-generated �placebo law� policy that produces a regressor
correlated over both states and time.

The original data are for 1,358,623 employed women from the 1979-1999 Current
Population Surveys, with log earnings as the outcome of interest. For each simulation,
we randomly draw 50 U.S. states from the original data (and re-label the states from 1
to 50). The model estimated is

yist = �dst + x
0
ist� + �s + t + uist; (3.2)

where yist is individual log-earnings, the grouping is by state and time (with indices s
and t corresponding to g and h in Section 2), dst is a state-year-speci�c regressor, and
xist are individual characteristics. Here G = 50 and H = 21 and, unlike in Section 3.1,
there are many (on average 1294) observations per (g; h) cell. For some estimations
we include state-speci�c �xed e¤ects �s and time-speci�c �xed e¤ects t (70 dummies),
as our d.g.p. enables these �xed e¤ects to be identi�ed. In most of their simulations
Bertand et al. (2004) run regressions on data aggregated into state-year cells, to reduce
computation time for their many simulations. Here we work with the individual-level
data in part to demonstrate the feasibility of our methods for large data sets (over one
million observations).

Interest lies in inference on �, the coe¢ cient of a randomly-assigned �placebo policy�
variable. Bertrand et al. (2004) consider one-way clustering, with dst generated to
be correlated within state (i.e., over time for a given state). Here we extend their
approach to induce two-way clustering, with within-time clustering as well as within-
state clustering. The placebo law for a state-year cell is generated by dst = "sst + 2"

t
st.

The variable "sst is a within-state AR(1) variable, "
s
st = 0:6"

s
st�1+u

s
st, with u

s
st iidN [0; 1],

and is generated independently from all other variables. "sst is independent across states.
Similarly, the variable "tst is a within-year AR(1) variable, "

t
st = 0:6"

t
s�1;t+u

t
st, correlated

over states, with utst iid N [0; 1], and also independent from other variables. Here the
index s ranges from 1-50 based on the order that the states were drawn from the original
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data. This law is the same for all individuals within a state-year cell. This dgp ensures
that dst and ds0t0 are dependent if and only if at least one of s = s0 or t = t0 holds.
Because we draw the full time-series for each state, the outcome variables (and hence
the errors) are autocorrelated over time within a state. We also add in a wage shock
ynewist = yoriginalist + 0:01 � wtst, with wtst generated similarly to (but independent of) "tst,
that is correlated over states. In each of 2,000 simulations we draw the 50 states�worth
of individual data, wages are adjusted with wtst, the variable dst is randomly generated,
model (3.2) is estimated, and the null hypothesis that � = 0 is rejected at signi�cance
level 0:05 if jb�j=se[b�] > 1:96. Given the design used here, b� is consistent, and the correct
asymptotic rejection rates for the simulation results in Table 4 will be 5%, provided that
a consistent estimate of the standard error is used.

The �rst column of Table 4 considers regression on dst and individual controls (a
quartic in age and four education dummies, without the �xed e¤ects �s and t). Since
log earnings yist are correlated over both time and state and dst is a generated regressor
uncorrelated with yist, the error uist is correlated over both time and state. Using
heteroskedastic-robust standard errors leads to a very large rejection rate (92%) due to
failure to control for clustering. The standard one-way cluster-robust cluster methods
partly mitigate this, though the rejection rates still exceed 19%. Note that, as argued
by Bertrand et al. (2004), clustering on the 50 states does better than clustering on
the 1,050 state-year cells. In this example, clustering on year also shows improvements
over clustering on state-year cells. We present results from the two-way cluster-robust
method in the last row. As before, we use standard Stata degrees-of-freedom corrections
for each component of the variance estimator. The two-way variance estimator does
best, with rejection rate of 7:2%. This rate is still higher than 5%, in part due to use of
critical values from asymptotic theory. Assuming a T (H� 1) distribution, with H = 21
the rejection rate should be 6:4% (since Pr [jtj > 1:96jt � T (20)] = 0:064), and with
1,000 simulations a 95% con�dence interval is (4:9%, 7:9%). The dgp studied here is
thus might be well approximated by a T (H � 1) distribution.

For the second column of Table 4, we add state �xed e¤ects. The inclusion of state
�xed e¤ects does not improve rejection rates for heteroskedasticity robust, clustering on
state-year cells, or clustering on state. Clustering on year does somewhat better. As
in the �rst column, two-way robust clustering does best, with rejection rates of 6:9%.

For the third column of Table 4, we add year (but not state) �xed e¤ects. In this
setting the results for clustering on state-by-year and for clustering on state improve
markedly. However, when clustering on state we still reject 12% of the time, which is
not close to the two-way cluster robust rejection rate of 7:6%.

In column four we include both year and state dummies as regressors. For the models
using heteroskedastic-robust standard errors the rejection rate is 79%. Clustering on
just state-year cells results in rejection rates of 13:9%, which is similar to those from
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clustering on state (15%). As before, two-way clustering does best, with rejection rates
of 7:1%. In this example the two-way cluster-robust method works well regardless of
whether or not state and year �xed e¤ects are included as regressors, and gives the best
results of the methods considered.

4. Empirical examples

In this section we contrast results obtained using conventional one-way cluster-robust
standard errors to those using our method that controls for two-way (or multi-way)
clustering. The �rst and third examples consider two-way clustering in a cross-section
setting. The second considers a rotating panel, and considers probit estimation in
addition to OLS.

We compare computed standard errors and p-values across various methods. In
contrast to the section 3 simulations, there is no benchmark for the rejection rates.

4.1. Hersch - Cross-Section with Two-way Clustering

We consider a cross-section study of wages with clustering at both the industry and
occupation level. Ideally one would obtain cluster-robust standard errors that control
for both sources of clustering, but previous researchers have been restricted to the choice
of one or the other. In this example there are 5,960 individuals in 211 industries and
387 occupations.

We base our application on Hersch�s (1998) study of compensating wage di¤erentials.
Using industry and occupation injury rates merged into CPS data, Hersch examines the
relationship between injury risk and wages for men and women. The model is

yigh = �+ x
0
igh� +  � rindig + � � roccih + uigh; (4.1)

where yigh is individual log-wage rate, xigh includes individual characteristics such as
education, race, and union status, rindig is the injury rate for individual i�s industry
and roccih is the injury rate for occupation. In this application, as in many similar
applications, it is not possible to include industry and occupation �xed e¤ects, because
then the coe¢ cients of the key regressors rind and rocc cannot be identi�ed. Hersch
emphasizes the importance of using cluster-robust standard errors, noting that they
are considerably larger than heteroskedastic-robust standard errors. But she is able
to control only for one source of clustering - industry or occupation - and not both
simultaneously. Instead she separately reports regressions with just rind as a regressor
with clustering on industry, with just rocc as a regressor with clustering on occupation,
and with both rind and rocc as regressors with clustering on just industry.

We replicate results for column 4 of Panel B of Table 3 of Hersch (1998), with
both rind and rocc included as regressors, using data on 5,960 male workers. We
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report a wider array of estimated standard errors: default standard errors assuming
iid errors, White heteroskedastic-robust, one-way cluster-robust by industry, one-way
cluster-robust by occupation, and our preferred two-way cluster-robust with clustering
on both industry and occupation. We also present (in brackets) p-values from a test of
each coe¢ cient being equal to zero.

The �rst results given in our Table 5 show that heteroskedastic-robust standard
errors di¤er little from standard errors based on the assumption of iid errors. The big
change arises when clustering is appropriately accounted for. One-way cluster-robust
standard errors with clustering on industry lead to substantially larger standard errors
for rind (0:643 compared to 0:397 for heteroskedastic-robust), though clustering on
industry has little e¤ect on those for rocc. One-way cluster-robust standard errors
with clustering on occupation yield substantially larger standard errors for rocc (0:363
compared to 0:260 for heteroskedastic-robust), with a lesser e¤ect for those for rind.
Clearly for rind it is best to cluster on industry, and for rocc it is best to cluster on
occupation.

Our two-way cluster-robust method permits clustering on both industry and occupa-
tion. It is to be expected that the increase in the standard error for rind will be greatest
when compared to one-way clustering on occupation (rather than industry), and for rocc
the increase will be largest when compared to one-way clustering on industry (rather
than occupation). This is indeed the case. For rind, the two-way cluster-robust stan-
dard error is ten percent larger than that based on one-way clustering at the industry
level, and is forty-�ve percent larger than that based on one-way clustering on occupa-
tion. The p-value for a test of zero on the coe¢ cient on rind goes from 0.0001 (when
clustering on Occupation) to 0.0070. For rocc, the two-way standard error is little dif-
ferent from that based on clustering on occupation, but it is forty percent larger than
that based on clustering on industry. The p-value on a similar test for rocc goes from
0.0639 (when clustering on Industry) to 0.1927.

In this application it is obvious that for rind it is most important to cluster on
industry, while for rocc it is most important to cluster on occupation. Our method
provides a way to simultaneously do both. For the industry injury rate this makes a
substantial di¤erence. The standard error of rind increases from 0:40 without control
for clustering to 0:64 with one-way clustering on industry, and then increases further to
0:70 with two-way clustering on both industry and occupation. This application nicely
illustrates the importance of using our procedure when we are interested in estimating
coe¢ cients for multiple variables having di¤erent intraclass correlation coe¢ cients in
di¤erent clustering dimensions.
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4.2. Gruber and Madrian - Rotating Panel

In this example we use data on 39,063 men and cluster by state-year cell (359 clus-
ters) and by household (26,383 clusters). The latter clustering is unconventional and
accommodates the rotating panel of the CPS.

Speci�cally, many surveys taken on a regular basis involve a panel-type structure
for households, which are resurveyed for several months. The U.S. Current Population
Survey (CPS) uses a speci�c rotation scheme to survey households: a household is
surveyed for four consecutive months, then not surveyed for the next eight months, and
then surveyed again for four more months. Then any study that uses the CPS data for
more than one time period will have households appearing more than once in the data
set (unless the time periods are more than 15 months apart).

Household errors can be expected to be correlated from one period to the next. This
correlation is typically ignored, due to a perceived need to control �rst for other sources
of error correlation (note that any control for clustering on region, such as on state, will
subsume household error correlation).

In this example we use similar data to that in Gruber and Madrian�s (1995) study
of health insurance availability and retirement. The probit model estimated is

Pr[yist = 1] = �(�dst + x
0
ist� + �s + t); (4.2)

where yist is a binary variable for whether or not retired in the past year, the key
regressor dst is a state-year policy variable that equals the number of months in a
state-year of mandated continuation of health insurance coverage after job separation,
and xist denotes individual-level controls. State �xed e¤ects and year �xed e¤ects are
also included. Given the large number of observations available to estimate each �xed
e¤ect, the well-known incidental parameters problem for probit models is unlikely to be
important. In addition to estimating probit models, we also estimate linear probability
(OLS) models. For comparability, we present for the probit model the average marginal
e¤ect, and it�s estimated standard error.

One natural dimension for clustering is the state-year group (539 clusters) since
this re�ects the variation in dst. Given the rotating design, if a household is in a
given year�s March CPS, it is likely to also appear in the data set in the previous
year or in the subsequent year. If household outcomes are correlated from one year
to the next, then the household identi�er serves as a natural second dimension for
clustering (26,383 clusters). The maximum possible increase in standard errors due
to error correlation at the household level is about forty percent (corresponding to a
doubling of the variance estimate:

p
2 = 1:41). This would occur under the strong

assumptions that all households appear in two consecutive years, that the errors for
the same household are perfectly correlated across the two years, that dst for the same
household is perfectly correlated across the two years (i.e., dst is time invariant), and
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that already accounted for state-year correlation is negligible. The di¤erence turns out
to be considerably less than that here.

Our results are given in Table 6. We use White heteroskedastic standard errors,
which di¤er little from those assuming iid errors, as the benchmark. We have come
close to replicating Gruber and Madrian�s data, but we have not done not so exactly.
The means of key variables in our data set are close to those in their 1993 and 1995
papers, with small exceptions. The basic probit estimates provide point estimates and
(nonclustered) standard errors that are broadly similar to those reported in their paper.

For the probit estimator, the standard error increases by 9.2% when we control
for one-way clustering at the state-year level (6:265=5:732 = 1:092) and by 2.3% when
we control for one-way clustering at the household level. When we allow for two-way
clustering (with state-year as one dimension and household as the other dimension),
the standard error increases by 11.5% which in this example coincides with the sum of
the two-separate one-way clustering corrections. A more common correction for these
data would be one-way clustering on state, which leads to a smaller 5.2% increase in
the standard error.

The results for OLS estimation of this model are qualitatively similar. The standard
errors increase by 11.1% using one-way clustering on state-year, by 2.6% using one-
way clustering on household, and by 13.3% using two-way clustering on state-year and
household.

4.3. Rose and Engel - bilateral trade model

A common setting for two-way clustering arises is paired or dyadic data, such as that
on trade �ows between pairs of countries. Cameron and Golotvina (2005) show the
importance of controlling for two-way clustering, and propose FGLS estimation based
on the assumption of iid country random e¤ects. Here we instead apply our more robust
method to an example in their paper, which replicates the �tted model given in the �rst
column of Table 3 of Rose and Engel (2002).

The data are a single cross-section on trade �ows between 98 countries with 3262
unique country pairs. A gravity model is �tted for the natural logarithm of bilateral
trade. The coe¢ cient of the log product of real GDP (estimated slope = 0:867) has
heteroskedastic-robust standard error of 0:013, reported by Rose and Engel (2002),
and average one-way clustered standard error of 0:031, where we average the one-way
standard error with clustering on the �rst country in the country pair and the one-way
standard error clustering on the second country in the country pair. Using the methods
proposed in this paper, the two-way robust standard error is 0:043. This is 36% larger
than the average one-way cluster robust standard error, and 230% larger than the White
robust standard error. Note that if country speci�c e¤ects are included (for each of the
two countries in the country pair) as a possible way to control for the clustering, then
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the coe¢ cient of the log product of real GDP is no longer identi�ed.
For the coe¢ cient on log distance (estimated slope = �1:367), we obtain standard

errors of 0:035 (heteroskedastic robust), 0:078 (average of one-way clustered standard
errors), and 0:106 (two-way robust). Roughly similar proportionate increases in the
standard errors are obtained for the coe¢ cients of the other regressors in the model.

Allowing for two-way robust clustering impacts the estimated standard errors by a
considerable magnitude.

4.4. Other examples

In this section we discuss details of two studies that implement the two-way clustering
method proposed in this paper.

Foote (2007) re-investigated Shimer�s (2001) in�uential �nding of a (surprising) neg-
ative correlation between a U.S. state�s annual unemployment rate (dependent variable)
and the share of the state�s labor force that is young. Even with relatively high migra-
tion by the young, a state�s youth share is highly autocorrelated over time; correlation in
regional socioeconomic conditions also imply that youth shares will be correlated across
states within year. Similar two-way correlation is expected for residual state-level un-
employment rates.

In the subset of his results that exactly replicates Shimer�s OLS speci�cation (Panel
A, column (1) of his Table I), Foote �nds that clustering at the state level, which most
researchers likely would do in the wake of Bertrand et al. (2004), raises the estimated
standard error from 0.18 to 0.39. Using our method to cluster at both the state and
year levels yields as dramatic an increase in the estimated standard error from 0.39 to
0.61, even with state and year �xed e¤ects included as regressors. Clustering on year
alone, which would be an uncommon approach, yields a 0.50 estimate. A qualitatively
similar pattern of changes in estimated standard errors is obtained for a speci�cation
that instruments the state�s youth share (Foote�s Panel B).

Cascio and Schanzenbach (2007) use data from the state of Tennessee�s Project Star
random-assignment experiment to study the relationship between educational outcomes
and a child�s age relative to the rest of her class, holding constant the child�s own age. In
their typical regression model, an educational outcome is measured at the student-year-
classroom level. Each classroom contains multiple students, so there is the potential
for classroom-level clustering. At the same time, students may be observed in multiple
years, each time in a di¤erent classroom, so there is the potential for student-level
clustering. Since any given student�s relative age depends deterministically on the ages
of other students in the class, there will be (negative) autocorrelation of relative-age
variables within class; moreover, students who are young for their class in one year
will also tend to be young in the subsequent year�s class, so there will be (positive)
autocorrelation of relative-age variables within the student dimension. Again, there is
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no way to construct a variable that subsumes all potential multi-way clustering.
According to the authors, (unreported) standard error estimates using our estimator

were �slightly more precise�(p. 26) than estimates that cluster only at the classroom
level. Such an increase in precision is expected if there is clustering at the classroom
level, given the negative dependence of students�relative-age measures within classroom.

5. Conclusion

There are many empirical applications where a researcher needs to make statistical
inference controlling for clustering in errors in multiple non-nested dimensions, under
less restrictive assumptions than those of a multi-way random e¤ects model. In this
paper we o¤er a simple procedure that allows researchers to do this.

Our two-way or multi-way cluster-robust procedure is straightforward to implement.
As a small-sample correction we propose adjustments to both standard errors and Wald
test critical values that are analogous to those often used in the case of one-way cluster-
robust inference. Then inference appears to be reasonably accurate except in the small-
est design with ten clusters in each dimension.

In a variety of Monte Carlo experiments and replications, we �nd that accounting for
multi-way clustering can have important quantitative impacts on the estimated standard
errors and associated p-values. For perspective we note that if our method leads to an
increase of 20% in the reported standard errors, then a t-statistic of 1:96 with a p-value
of 0:050 becomes a t-statistic of 1:63 with a p-value of 0:103. Even modest changes in
standard errors can have large e¤ects on statistical inference.

The impact of controlling for multi-way clustering is likely to be greatest when
the errors are correlated over two or more dimensions. When this is the case, then
the impact of the errors�correlation may be magni�ed if in addtion the regressors of
interest are also correlated over the same dimensions. This is especially likely to be the
case when the research design precludes �xed e¤ects along each of the dimensions, as
in the Hersch (1995) example. This example also illustrates that even if the regressor
is most clearly correlated over only one dimension, controlling for error correlation in
the second dimension can also make a di¤erence. However, we also note that in some
settings, such as the Gruber-Madrian replication, the impact of the method is modest.

In general a researcher will not know ex ante how important it is to allow for multi-
way clustering, just as in the one-way case. Our method provides a way to control
for multi-way clustering that is a simple extension of established methods for one-way
clustering, and it should be of considerable use to applied researchers.
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A. Appendix

We present results for the general case of GMM estimation. Estimation is based on the
moment condition

E[zi(�0)] = 0,

for observation i, where � is a q � 1 parameter vector � and z is an m� 1 vector with
m � q. Examples include OLS with zi = (yi�x0i�)xi, linear IV with zi = (yi�x0i�)wi
where wi are instruments for xi, and the logit MLE with zi = (yi � �(x0i�))x0i�.

For models with m = q, such as OLS, logit, and just-identi�ed IV we need only use
the m-estimator e� that solves XN

i=1
zi(e�) = 0: (A.1)

Given two-way clustering with typical cluster (g; h), zi(�) = zigh(�) andXN

i=1
zi(�) =

XG

g=1

XH

h=1

X
i2Cgh

zigh(�) (A.2)

=
XG

g=1

XH

h=1
zgh(�);

where Cgh denotes the observations in cluster (g; h), and

zgh(�) =
X

i2Cgh
zigh(�) (A.3)

combines observations in cluster (g; h).
For models with m > q, the more general GMM estimator b� maximizes

Q(�) =

�
N�1

XN

i=1
zi(�)

�0
W

�
N�1

XN

i=1
zi(�)

�
; (A.4)

whereW is an m�m full rank symmetric weighting matrix withW
p!W0. The GMM

estimator reduces to the m-estimator when m = q, for any choice ofW.
We assume that b� is consistent for �0, that G!1 and H !1 at the same rate, so

that G=H ! constant, and that the number Ngh of observations in cluster (g; h) is not
growing with G or H. Note that Ngh = 1 is possible. As discussed below, we consider
a rate of convergence

p
G, so that

p
G(b� � �0) d! N [0,

�
A00W0A0

��1
A00W0B0W0A0

�
A00W0A0

��1
]; (A.5)

where

A0 = lim E
�
(GH)�1

XN

i=1
@zi0(�)=@�

0
�

(A.6)
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and

B0 = lim E
�
G�1H�2

XN

i=1

XN

j=1
zi(�)zj(�)

0
�
: (A.7)

For m = q the result simpli�es to
p
G(b� � �0) d! N [0, (A00B0A0)

�1].
We now simplify B0 under the assumption of two-way clustering. Since

P
i zi(�) =P

g

P
h zgh(�) we have

E
�
G�1H�2

XN

i=1

XN

j=1
zi(�)zj(�)

0
�

(A.8)

= E
�
G�1H�2

XG

g=1

XH

h=1

XG

g0=1

XH

h0=1
zgh(�)zg0h0(�)

0
�

= G�1H�2
X

g

X
h

X
h0
E[zghz

0
gh0 ]

+G�1H�2
X

h

X
g

X
g0
E[zghz

0
g0h]

�G�1H�2
X

g

X
h
E[zghz

0
gh];

where the �rst triple sum uses dependence if g = g0, the second triple sum uses depen-
dence if h = h0, and the third double sum subtracts terms when g = g0 and h = h0

which are double counted as they appear in both of the �rst two sums.
Consider the �rst triple sum which hasGH2 terms. The cross-product term zghz0gh0 =P
i2Cgh

P
j2Cgh0 zghi(�)zgh

0j(�) is anNgh�Ngh matrix. We assume that E[zigh(�)zjgh0(�)]
is bounded away from zero and bounded from above. Then E[zghz0gh0 ] is bounded, given
Ngh �xed, and G�1H�2P

g

P
h

P
h0E[zghz

0
gh0 ] is bounded. Similarly for the second

term. The third term has only GH terms so this third term goes to zero.
The above analysis assumes that E[zigh(�)zjgh0(�)] is bounded away from zero. This

will be the case for common shocks such as the standard two-way random e¤ects model.
But it need not always be the case. As an extreme example, suppose Ngh = 1 and that
there is no clustering; i.e., each observation is independent. Then E[zghz0gh0 ] = 0 unless
h = h0 and so the �rst sum has only GH nonzero terms, and similarly for the other two
terms. The triple sum is of order GH, rather than GH2, and the rate of convergence
of the estimator becomes a faster

p
GH rather than

p
G. This is the rate expected for

estimation based on GH independent observations.
More generally the triple sum is of order GH, rather than GH2, if the dependence

of observations in common cluster g goes to zero as clusters h and h0 become further
apart, as is the case with declining time series dependence or spatial dependence. Then
in B0 we normalize by (GH) and the rate of convergence of the estimator becomes a
faster

p
GH rather than

p
G. Regardless of the rate of convergence we obtain the same

asymptotic variance matrix for b�.
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Qualitatively similar di¤erences in rates of convergence are obtained by Hansen
(2007) for the standard one-way cluster-robust variance matrix estimator for panel data.
When N !1 with T �xed (a short panel), the rate of convergence is

p
N . When both

N ! 1 and T ! 1 (a long panel), the rate of convergence is
p
N if there is no

mixing (his Theorem 2) and
p
NT if there is mixing (his Theorem 3). While the rates

of convergence di¤er in the two cases, he obtains the same asymptotic variance for the
OLS estimator.
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Table 1
Rejection probabilities for a true null hypothesis

Number of 
Group 1 
Clusters

Number of 
Group 2 
Clusters

10 10 5.6% 6.7% 9.0% 9.7% 4.4% 5.8% 13.3% 14.9% 9.9% 11.5% 10.1% 9.9%

20 20 6.5% 4.8% 7.9% 5.7% 5.9% 4.9% 9.0% 7.6% 7.2% 5.9% 6.8% 7.4%

30 30 5.1% 4.8% 5.9% 5.9% 5.1% 5.0% 6.8% 7.1% 6.1% 6.1% 6.7% 5.6%

40 40 5.3% 4.8% 5.8% 5.5% 5.3% 4.7% 6.6% 6.1% 5.5% 5.4% 5.9% 6.1%

50 50 5.0% 5.3% 5.7% 6.1% 5.2% 5.8% 5.7% 6.5% 4.9% 5.6% 5.8% 6.3%

60 60 4.9% 5.6% 5.7% 5.8% 4.9% 5.4% 6.5% 6.0% 6.0% 5.2% 5.4% 5.9%

70 70 4.7% 5.3% 4.3% 5.6% 4.9% 5.5% 5.9% 6.0% 5.7% 5.7% 5.5% 5.0%

80 80 4.6% 5.3% 5.2% 6.0% 4.7% 5.2% 6.0% 6.4% 5.6% 5.9% 4.7% 6.0%

90 90 5.1% 5.1% 5.7% 5.7% 5.2% 4.9% 5.7% 5.6% 5.4% 5.4% 5.6% 4.4%

100 100 4.7% 5.1% 4.9% 5.3% 4.7% 5.2% 5.1% 6.1% 4.9% 5.7% 5.1% 6.2%

10 50 5.6% 4.0% 8.6% 7.3% 5.5% 4.1% 8.9% 9.7% 5.9% 6.8% 7.3% 6.6%

20 50 5.2% 5.1% 6.2% 7.3% 5.3% 5.1% 6.7% 7.4% 5.2% 5.8% 6.5% 5.8%

10 100 4.8% 5.1% 7.0% 7.7% 4.7% 5.0% 8.9% 8.9% 5.9% 5.8% 5.8% 6.8%

20 100 4.1% 3.8% 5.8% 5.0% 3.9% 3.7% 6.7% 7.7% 5.4% 5.9% 5.8% 6.6%

50 100 5.7% 4.8% 6.2% 5.0% 5.7% 4.8% 6.1% 4.6% 5.6% 4.3% 5.4% 5.3%

Note:  The null hypothesis should be rejected 5% of the time.  Number of monte carlo simulations is 2000.

Group fixed effects, 
Two-way cluster-

robust

Assumption about errors in construction of Variance
Two-way cluster-
robust, T critical 

values

True model: iid errors

One-way cluster 
robust (cluster on 

group1)
Two-way cluster-

robust

Assume 
independent 

errors
Two-way random 

effects



Table 2
Rejection probabilities for a true null hypothesis

Number of 
Group 1 
Clusters

Number of 
Group 2 
Clusters

10 10 23.4% 23.7% 13.7% 33.2% 6.2% 6.6% 17.4% 17.4% 12.6% 13.4% 9.0% 9.1%

20 20 34.0% 32.3% 8.6% 42.7% 5.7% 5.3% 10.3% 9.6% 8.7% 7.6% 7.0% 8.2%

30 30 39.7% 41.7% 7.4% 50.6% 5.2% 5.6% 8.6% 9.1% 7.8% 7.7% 6.5% 7.4%

40 40 47.7% 47.6% 8.7% 55.2% 6.5% 5.4% 9.0% 9.3% 7.9% 8.1% 6.2% 5.5%

50 50 50.0% 50.4% 6.0% 58.8% 4.9% 4.8% 7.0% 6.7% 6.3% 6.2% 6.1% 5.1%

60 60 54.5% 56.3% 6.4% 64.1% 5.6% 6.5% 6.7% 6.1% 5.9% 5.6% 5.0% 5.3%

70 70 54.2% 57.6% 5.5% 64.8% 4.8% 6.0% 6.4% 6.5% 5.9% 6.0% 4.9% 5.6%

80 80 61.1% 60.9% 6.5% 67.0% 4.9% 4.7% 6.3% 7.0% 5.7% 6.5% 5.9% 5.0%

90 90 63.7% 60.4% 5.4% 67.0% 4.9% 5.0% 5.9% 6.1% 5.5% 5.8% 5.4% 5.3%

100 100 62.2% 60.4% 5.8% 67.9% 5.3% 3.6% 6.4% 5.3% 6.1% 5.1% 5.4% 4.9%

10 50 49.9% 21.3% 13.3% 33.4% 8.9% 4.0% 15.0% 9.3% 10.2% 5.8% 7.1% 6.5%

20 50 50.8% 33.1% 9.8% 44.5% 6.7% 4.5% 9.3% 8.1% 8.2% 6.2% 6.4% 5.3%

10 100 63.0% 21.0% 14.1% 31.7% 10.4% 3.3% 14.2% 8.1% 9.2% 4.6% 5.8% 6.6%

20 100 62.9% 33.9% 10.0% 43.7% 6.2% 3.7% 9.2% 6.3% 7.7% 4.6% 6.1% 6.2%

50 100 63.4% 60.7% 5.6% 67.9% 5.0% 5.4% 6.0% 6.7% 5.8% 6.3% 4.8% 5.9%

Group fixed effects, 
Two-way cluster-

robust

True model: random effects on both Group1 and Group 2

Two-way cluster-
robust, T critical 

values

Note:  See Table 1.

Assume 
independent 

errors

One-way cluster 
robust (cluster on 

group1)
Two-way random 

effects
Two-way cluster-

robust

Assumption about errors in construction of Variance



Table 3
Rejection probabilities for a true null hypothesis

Number of 
Group 1 
Clusters

Number of 
Group 2 
Clusters

10 10 8.0% 7.9% 15.7% 9.8% 15.9% 14.3% 18.4% 16.5% 14.5% 12.9% 8.6% 8.9%

20 20 7.0% 5.4% 9.5% 7.1% 13.0% 10.8% 11.9% 10.9% 10.3% 8.8% 7.1% 5.9%

30 30 5.9% 6.9% 7.0% 8.1% 9.7% 10.8% 8.2% 9.2% 7.1% 8.0% 6.2% 6.0%

40 40 5.9% 6.5% 5.4% 7.3% 8.7% 9.7% 6.8% 7.8% 5.9% 7.1% 5.6% 5.4%

50 50 7.9% 7.1% 6.6% 7.5% 9.7% 8.9% 6.7% 6.1% 6.1% 5.4% 5.4% 5.3%

60 60 7.6% 8.2% 6.0% 8.5% 8.8% 9.4% 7.1% 7.0% 6.3% 6.5% 5.9% 5.7%

70 70 9.3% 8.6% 6.6% 9.1% 9.6% 9.9% 7.3% 6.2% 6.8% 5.9% 6.3% 5.5%

80 80 10.3% 9.0% 6.0% 10.2% 9.5% 9.0% 6.7% 6.8% 5.9% 6.2% 5.0% 5.1%

90 90 9.9% 9.1% 5.4% 10.2% 9.4% 8.1% 5.3% 6.6% 5.2% 6.0% 5.5% 6.1%

100 100 11.6% 10.5% 6.1% 11.2% 9.6% 9.0% 6.4% 6.9% 6.0% 6.4% 4.4% 5.4%

10 50 8.1% 5.6% 12.9% 8.8% 12.9% 12.3% 13.7% 9.8% 9.6% 5.9% 6.1% 6.0%

20 50 7.6% 7.5% 7.9% 8.1% 10.5% 11.5% 9.2% 8.6% 7.6% 6.6% 5.2% 6.7%

10 100 10.0% 6.4% 10.4% 9.4% 10.1% 13.0% 11.3% 10.0% 7.3% 6.8% 7.5% 6.2%

20 100 11.7% 5.3% 9.2% 6.7% 10.8% 10.1% 9.4% 6.4% 7.7% 4.5% 5.1% 6.2%

50 100 11.2% 8.1% 6.7% 8.7% 9.9% 10.0% 6.9% 6.8% 6.1% 6.2% 6.1% 5.2%

Group fixed 
effects, Two-way 

cluster-robust

True model: a random effects common to each Group, and a 
heterscedastic component.

Two-way cluster-
robust, T critical 

values

Note:  See Table 1.

Assume 
independent errors

One-way cluster 
robust (cluster on 

group1)
Two-way random 

effects
Two-way cluster-

robust

Assumption about errors in construction of Variance



Table 4
Rejection probabilities for a true null hypothesis
Monte Carlos with micro (CPS) data

quartic in age, 4 
education dummies

quartic in age, 4 
education dummies, 

state fixed effects

quartic in age, 4 
education dummies, 

year fixed effects

quartic in age, 4 
education dummies, 
state and year fixed 

effects

Standard error assumption:
Heterscedasticity robust 91.6% 92.1% 82.2% 79.0%

One-way cluster robust (cluster on state-by-year cell) 19.8% 22.4% 13.1% 13.9%
One-way cluster robust (cluster on state) 16.2% 17.0% 12.0% 15.0%
One-way cluster robust (cluster on year) 10.2% 8.9% 8.7% 7.6%

Two-way cluster-robust (cluster on state and year) 7.2% 6.9% 7.6% 7.1%

RHS control variables

Note: Data come from 1.3 million employed women from the 1979-1999 March CPS.  Table reports rejection rates for testing a (true) null hypothesis of 
zero on the coefficient of fake treatments.  The "treatments" are generated as (t = e_s + 2 e_y), with e_s a state-specific autoregressive component and 
e_y a year-specific "spatial" autoregressive component.  The outcome is also modified by an independent year-specific "spatial" autoregressive 
component.  See text for details.  2000 Monte Carlo replications



Table 5
Replication of Hersch (1998)

Industry 
Injury Rate

Occupation 
Injury Rate

Estimated slope coefficient: -1.894 -0.465

Estimated standard errors Default (iid) (0.415) {0.0000} (0.235) {0.0478}
and p-values: Heteroscedastic robust (0.397) {0.0000} (0.260) {0.0737}

One-way cluster on Industry (0.643) {0.0032} (0.251) {0.0639}
One-way cluster on Occupation (0.486) {0.0001} (0.363) {0.2002}

Two-way clustering (0.702) {0.0070} (0.357) {0.1927}

Note: Replication of Hersch (1998), pg 604, Table 3, Panel B, Column 4.  Standard errors in parentheses.  P-
values from a test of each coefficient equal to zero in brackets.  Data are 5960 observations on working men from 
the Current Population Survey.  Both columns come from the same regression.  There are 211 industries and 387 
occupations in the data set.

Variable



Table 6
Replication of Gruber and Madrian (1995)

Probit 
coefficient

Probit average 
marginal effect OLS

Estimated slope coefficient (* 1000): 13.264 1.644
Estimated marginal effect (* 1000) 1.544
Estimated standard errors (* 1000): Default (iid) (5.709) (0.665) (0.675)

Heteroscedastic robust (5.732) (0.668) (0.684)
One-way cluster on state-year (6.265) (0.729) (0.759)

One-way cluster on household id (5.866) (0.683) (0.702)
One-way cluster on hhid-by-state-year (5.732) (0.668) (0.685)

Two-way clustering (6.389) (0.718) (0.775)
One-way cluster on State (6.030) (0.703) (0.718)

Model

Note: Replication of Gruber and Madrian (1995), pg 943, Table 3, Model 1, Column 1.  Standard errors in parentheses.  
Data are 39,063 observations on 55-64 year-old men from the 1980-1990 Current Population Surveys.


