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Abstract

We extend existing estimators for duration data that sufferfrom non-random sample selection

to allow for time-varying covariates. Rather than a continuous-time duration model, we propose a

discrete-time alternative that models the effects of sample selection at the time of selection across

all subsequent years of the resulting spell. Properties of the estimator are compared to those of a

naive discrete duration model through Monte Carlo analysis and indicate that our estimator outper-

forms the naive model when selection is non-trivial. We thenapply this estimator to the question

of the duration of monetary regimes and find evidence that ignoring selection into pegs leads to

faulty inferences.



1 Introduction

The consequences of non-random sample selection have been known among political scientists for

quite some time. A growing body of literature exists that documents the consequences of ignor-

ing sample selection and that demonstrates its effects on our understanding of real-world political

phenomena, including voter turnout, interest group lobbying, public opinion, and the outcome

of international crises. As the methodological tools and interests of political scientists have de-

veloped, we have extended our studies into situations whereexisting techniques for correcting

selection bias do not fit the question in hand. Specifically, the last decade has seen a dramatic

rise in the use of duration models to explain the time until political events occur, including regime

transitions, the confirmation of political nominees, position-taking by elected representatives and

the duration of cabinets in parliamentary democracies. Unfortunately, until recently there has been

no way to deal with issues of sample selection in these and other duration analyses, despite many

theoretical advances that indicate that selection should be a concern.

In response to this gap, researchers have proposed a couple of approaches for dealing with sam-

ple selection issues in the duration context. Prieger (2002) uses copulae (see, e.g., Smith 2003) to

bind together two marginal distributions while Boehmke, Morey and Shannon (2006) use bivariate

distributions to accomplish the same task. The latter demonstrates through Monte Carlo analy-

sis that ignoring sample selection issues can result in biased parameter estimates when estimating

naive duration models — including the exponential, Weibull, and Cox — on data that suffer from

selectivity.

While political scientists are already applying these estimators (e.g., Beardsley and Asal 2009;

Long, Nordstrom and Baek 2007), one significant shortcoming is that they do not allow for time-

varying covariates, despite the fact that many, perhaps most, applications of duration models in-

volve explanatory factors that change over the course of a single spell. Unfortunately, extending

existing models to permit time varying covariates are complicated by the move from a single

stochastic component for the entire duration to a series of them — one for each interval of a spell

(e.g., each year or day). Even without the sample selection component, any (parametric) duration

model that allows for time-varying covariates (hereafter,TVCs) models the probability of failure

within each interval of a spell, rather than the continuous hazard at each point in time.
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Given this difference between estimators for time-invariant covariates and those for TVCs,

developing an estimator that accounts for sample selectionin durations with TVCs requires a

different approach than that used for continuous-time durations without TVCs. In this paper we

develop such an estimator. Our approach reflects the discrete nature of failure within an interval

by joining probit models for selection and duration. While moving to a discrete duration model

means that we do not model duration dependence directly through the parametric shape of the

error distribution (e.g., Weibull, log-normal), durationdependence is still easily modeled through

the inclusion of appropriate variables measuring time since a spell begins. We allow the error in the

selection equation from the year the spell begins to be correlated with the errors in each interval

for the subsequent spell; we also assume that despite this correlation, errors within a spell are

uncorrelated with each other. In order to permit greater flexibility, we allow the correlation to decay

over time so that the effect of selection may decrease over the course of a spell as an observation

moves farther away from the circumstances at the time of selection. This assumption both extends

the applicability of our estimator and also likely fits with empirical reality: the conditions that help

engender selection will generally have a large effect earlyon in the ensuing duration process, but

their effect will often decrease over time as circumstanceschange and new forces swamp the initial

conditions.

In order to evaluate the usefulness of our proposed estimator, we perform a series of Monte

Carlo simulations comparing its results to those obtained from naive discrete-time duration esti-

mators. We vary both the initial correlation as well as its rate of decay. Our results provide strong

support for our new estimator, which outperforms the naive estimator in terms of bias and root

mean squared error whenever the correlation is non-trivial.

We then apply our estimator to the study of the duration of monetary regimes. A recent view

holds that the decline in the average duration of pegged exchange rates in the early 1990s was

likely caused by the increasing global integration of capital markets (Obstfeld and Rogoff 1995).

We argue that the kind of countries that adopt pegs differ from the general population of countries.

In fact, our correction for sample selection finds evidence consistent with the idea that unobserved

factors that lead a country to choose a peg also make that country more likely to drop out of

that peg. Such evidence is consistent with the idea that countries use only short-term criteria
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to judge the benefits and costs of pegs or systematically underestimate their ability to maintain

a peg. Further, correcting for non-random sample selectionalso changes our inferences about

key explanatory factors. In particular, we find a greater role for political factors such as political

stability, and a reduced role for economic factors such as reserve accumulation. These findings are

consistent with the idea that reserves may merely be a signalof the resolve of a country to defend

a peg rather than being the means to the end of defense of the peg.

2 Existing Estimators for Duration Data with Selection

Non-random sample selection is a problem for standard estimators because unobserved factors that

influence the duration (or, more generally, the quantity) ofinterest also influence whether or not

that observation makes it into the sample at all. When this relationship exists, the value of the

dependent variable of interest is related to the selection process, since it depends on both the sys-

tematic and the unobserved stochastic components. Observed values of the dependent variables are

therefore not representative, even for the observed sample. Because the dependent variable is un-

representative, parameter estimates are biased, even after controlling for individual characteristics

through independent variables. The severity of the problemdepends on the correlation between

explanatory factors in the selection and outcome equations. When they are correlated, this gen-

erally induces correlation between the error term in the equation of interest and the independent

variables. Thus an additional assumption is violated and the bias is generally exacerbated. In more

complicated models, bias in one parameter can lead to bias inother parameters.

A common solution for selection bias involves modeling the selection process and estimating

its parameters while simultaneously estimating the parameters of the equation of interest (e.g.,

Heckman 1976 and 1979; Dubin and Rivers 1990). In these cases,one conditions on the selection

process when estimating the quantity of interest. With a properly specified selection equation,

these estimators generally produce consistent parameter estimates.

Boehmke, Morey and Shannon (2006) build on these results by developing an estimator for

duration data with possible non-random sample selection. They use a bivariate exponential distri-

bution to link the discrete outcome of the selection equation with the continuous duration outcome

of interest. This estimator is then extended to allow for Weibull duration dependence. The deriva-
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tion parallels that used to correct for selection bias with acontinuous (Heckman 1976, 1979) or a

discrete (Maddala 1983; Dubin and Rivers 1990) dependent variable. By jointly modeling the se-

lection and duration processes, consistent estimates are obtained. An alternate approach is taken by

Prieger (2002), which uses copulae to combine a probit selection equation with a Weibull duration

equation.

In these estimators, the duration component corresponds toa continuous-time duration model

with time-invariant covariates.1 Yet many applications of duration models involve TVCs. For

example, the duration of cabinets may depend on economic performance, which changes from

month-to-month or year-to-year; the duration of militarized interstate disputes may depend on

the losses taken by each side or by the actions of third parties that try to intervene. Standard

continuous-time duration models can be easily modified to allow for TVCs by partitioning each

spell into intervals during which included covariates do not change. These intervals may be days,

months, or years depending on the frequency with which observed values change. The likelihood

of each spell is then calculated with the product of the probability of surviving each interval given

survival until that interval, until the last period, which contributes either a discrete probability

of failure if failure is observed or a discrete probability of survival if the observations is right-

censored.2

In essence, then, estimating a continuous-time duration model with TVCs is quite the same

as estimating a discrete-time duration model. The two main differences arise from the distribu-

tional assumptions regarding the error terms — parametric continuous time models often assume

a Weibull distribution whereas discrete ones assume a logistic or normal distribution — and the

treatment of duration dependence, which is accomplished implicitly through the distribution in

continuous models and explicitly through the possible inclusion of covariates relating to time in

the discrete-time models.

The move to TVCs therefore changes the structure of the estimation in such a way as to make it

difficult to apply existing solutions for sample selection with duration data. Partitioning each spell

into different components and then calculating the probability of failure in each interval changes

1See Box-Steffensmeier and Jones (2004) for more information on duration models in general.
2If the precise moment of failure is observed, then the last interval contributes the density of the time of failure

given survival until that interval.
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the data generating process from one in which each spell has asingle stochastic component to

one in which each interval of each spell has its own stochastic term. This makes it impossible to

directly apply existing solutions for non-random sample selection in duration models. Further, it

makes it difficult to extend existing solutions since one must correlate the unobserved terms at the

time of selection with potentially more than one unobservedterm for each interval in the duration

of the subsequent spell. This leads us to propose an alternate, though related, form of the estimator

that allows for both sample selection and time-varying covariates.

3 Modeling Sample Selection in Discrete-Time Durations

Given the complications just outlined and the discrete nature of the duration process, we move from

previous estimators’ use of continuous-time duration models to discrete-time duration models. As

with previous estimators, we continue to model the selection process as a discrete outcome, but

also model the duration process as a discrete outcome. Once an observation has selected into the

duration process, then, we assume that we observe a discreteindicator for failure for each interval

of the corresponding spell. This estimator therefore has a lot in common with discrete versions of

the Heckman model (Dubin and Rivers 1990; Maddala 1983), but rather than observing a single

outcome (e.g., whether an individual registers to vote and whether registered individuals turn out

on election day), we observe a series of zeros for each interval the individual survives followed by

a single one corresponding to failure in the last interval ofthe spell.

In the standard extension of the Heckman model for dichotomous outcomes, the two stochastic

components are allowed to have non-zero correlation in order to capture possible non-random

sample selection. This involves a straightforward application of, for example, the bivariate normal

distribution. If all of our durations were observed for onlyone interval, we too could apply this

estimator (though we would not have TVCs if that were the case). But because our duration is

measured as a vector of zeros followed by a one (or a terminal zero in the case of right-censoring),

there are a series of stochastic terms — one for each period ofthe ongoing spell — that could

possibly be correlated with unobserved components at the time of selection. This necessitates

modifying the standard dichotomous selection estimator toaccount for the duration structure.

In the following section we propose such an estimator by allowing the stochastic term in the
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selection equation at the time of entry to be correlated withthe stochastic terms for each interval

of the resulting duration. Basically, this means that the effects of unobserved variables influencing

selection persist over the entire duration of the ensuing spell, but that errors across periods in a spell

are not correlated. This leads to an estimator that involvesa combination of a sample selection

model for a discrete outcome to account for the first period ofa spell with the same model for

stochastic truncation in subsequent periods.

4 Derivation of the Likelihood Function

In order to derive the full likelihood, we first describe the selection and duration equations sepa-

rately and then discuss how we link the two to account for possible non-random sample selection.

Both equations are represented with standard binary outcomemodels.

For the selection equation, letCi indicate whether an individual,i, selects into the duration

sample and let the probability thatCi = 1 depend on some vector of covariatesWi. Assume a

standard threshold model as follows:

C∗

i = Wi + �i; (1)

Ci =

{

1 if C∗

i > 0,
0 otherwise.

(2)

Ultimately, we will use the bivariate normal to link the unobserved components, which makes the

selection equation a standard probit model. This set up is identical to that used in most selection

estimators.

The duration equation is modeled in a similar way, but since we must model duration in each

interval of a given spell, we add a subscript for time,t. The length of time represented by each

increment oft is determined by the largest unit of time such that covariates are constant within that

interval. In most political science applications,t will represent days, months or years. Failure is

measured by the binary variableYit, which indicates whether individuali’s duration ends at timet.

Let Ti correspond to the final interval ofi’s spell. ThusYiTi
equals one and all other realizations of

Yit are zero.3 We assume that the duration depends on a vector of covariates, Xit, at least some of

3Right-censoring is handled trivially by this model. Ratherthan ending with a one, right-censored observations
merely end with a zero in the last interval when censoring occurs.
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which vary over intervals of time. Duration is therefore modeled using a discrete outcome model,

which is common for discrete event history analyses (see, e.g., Box-Steffensmeier and Jones 2004):

Y ∗

it = Xit� + �it; (3)

Yit =

{

1 if Y ∗

it > 0,
0 otherwise.

(4)

Sample selection occurs when the duration data are not observed for observations withCi = 0.

This means that all values ofYit for an entire spell go unobserved.

To put these two pieces together into a single estimator, we partition the data into three groups.

The first group involves all cases that do not select in, the second group represents the first interval

of a duration spell for cases that select in, and the third group represents all additional intervals of

the spell for observations that have selected in and survived the first interval. We partition the data

in this way to facilitate construction of the likelihood. Atthe moment of selection, observations

contribute two pieces of information: that they select in and whether they survive the first interval.

Observations that survive the first interval are already known to have selected in and this informa-

tion has already been incorporated into the likelihood, so they only contribute information about

whether they survive additional intervals given that they have already selected in.

Put into probability statements, then, the three pieces are: Pr(Ci = 0∣Wi), Pr(Ci = 1, Yi1 =

yi1∣Wi, Xi), andPr(Yit = yit∣Wi, Xi, Ci = 1, 1 < t). The likelihood of the data can be written out

as the product of these three components:

Pr(Y,C) =
∏

Ci=0

Pr(Ci = 0∣Wi)×
∏

Ci=1

Pr(Ci = 1, Yi1 = yi1∣Wi, Xit) (5)

×
∏

Ci=1,t>1

Pr(Yit = yit∣Wi, Xit, Ci = 1). (6)

Taken separately, the first two terms constitute a selectionestimator for discrete outcomes that

includes data for observations that select in as well as those that do not. The third term represents

a selection estimator for stochastic truncation, which includes only information about individuals

that select in. Our likelihood is therefore a combination oftwo commonly used estimators that

individually represent the different types of informationthat an observation contributes.

Once assumptions are made about the distribution of the error terms and the functional form of

the estimator, these densities and probabilities can be explicitly calculated and a likelihood function
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can be specified. Here, we assume that the stochastic terms are generated according to a bivariate

normal distribution with correlation�t = Corr(�i, �it). This is a key assumption. First, as the sub-

script indicates, we allow the correlation to change over time. Second, we assume that the duration

errors from different intervals of a spell are not correlated with each other. This second assumption

means that selection bias is captured entirely through correlation of the error terms in each interval

of time with the selection equation error term at the time of selection; no additional information is

gained during the course of a duration. We make this restrictive assumption because to allow for

correlation across the stochastic terms for each interval in a given spell would essentially involve a

much more complicated time-series cross-sectional model with autocorrelation, which has proved

difficult to estimate without restrictive assumptions.4

The first assumption of non-constant correlation is made forboth substantive and statistical

reasons. Constant correlation over time results in a limit onthe maximal absolute correlation in

order to maintain semi-positive definiteness of the covariance matrix for the selection equation

error and the sequence of duration equations stochastic terms.5 While all covariance matrices must

meet this condition, the structure of the one used for this estimator means that satisfying it depends

solely on the value of the correlation parameter. For example, this just means that whenT = 1,

giving a 2 × 2 covariance matrix, that the correlation can not be greater than one. With longer

spells, however, the maximal correlation decreases and becomes quite low.

To allow more flexibility, then, we assume that the correlation decays exponentially over time.

Substantively, this implies that unobserved factors in theselection process become less and less

important over the course of spell. We do allow some flexibility in the decay process, however, by

parameterizing it as follows:�t = �0 exp(−�(t− 1)), where�0 describes the correlation between

the errors from the selection equation and the first intervalof the spell and� ≥ 0 allows the rate

of decay to vary. Figure 1 presents examples of the resultingcorrelation over time for different

values of�0 and�. Note that when� is large, the correlation goes to zero after only five periods,

but when it is small, the correlation is still nontrivial after 15 periods. Of course, there is a tradeoff

between the two parameters: large initial correlations will have to decay faster whereas small ones

4see Pang (2008) for a recent discussion and a promising Bayesian approach.
5When the correlation is constant overT periods the determinant of the covariance matrix is1 − T�2, leading to

an upper bound on the correlation of∣�∣ ≤
√

1/T .
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can persist for long periods of time.

[Figure 1 about here.]

While this parameterization extends the maximal spell length, it does so by assuming that the

correlation decreases over time. We believe that this assumption has some intuitive appeal: while

unobserved components that influence selection may a have a strong relationship with unobserved

components early on in a spell, it seems reasonable to assumethat that relationship will weaken

over time as the conditions present at selection recede intothe past and contemporaneous unob-

served events take precedence. Even with the assumption, the maximal initial correlation still

depends on the length of the observed spells, but now it also depends on the rate of decay. Specifi-

cally, with a maximal spell length ofT , the restriction on the maximal initial correlation is

∣�0∣ ≤

√

1− exp(−2�)

1− exp(−2�T )
. (7)

Figure 2 displays this relationship for four different values of the decay parameter and different

maximal spell lengths.

[Figure 2 about here.]

With the bivariate normal assumption, we can write out the corresponding likelihood by calcu-

lating each of the component probabilities, whereΦ(z) represents the cumulative standard normal

density andΦ(z1, z2, �t) represents the cumulative bivariate standard normal density with correla-

tion �t at timet.

Pr(Ci = 0∣Wi) = Pr(Wi + �i ≤ 0∣Wi), (8)

= Φ(−Wi); (9)

Pr(Ci = 1, Yi1 = 1∣Wi, Xi1) = Pr(Wi + �i > 0, Xi1� + �i1 > 0∣Wi, Xi1), (10)

= Pr(�i > −Wi, �i1 > −Xi1�∣Wi, Xi1), (11)

= Pr(�i ≤ Wi, �i1 ≤ Xi1�∣Wi, Xi1), (12)

= Φ(Wi,Xi1�, �0); (13)

Pr(Ci = 1, Yi1 = 0∣Wi, Xi1) = Φ(Wi,−Xi1�,−�0); (14)

Pr(Yit = 1∣Wi, Xit, Ci = 1) =
Pr(Ci = 1, Yi1 = 1∣Wi, Xit)

Pr(Ci = 1∣Wi)
, (15)

=
Φ(Wi,Xit�, �t)

Φ(Wi)
; (16)
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Pr(Yit = 0∣Wi, Xit, Ci = 1) =
Φ(Wi,−Xit�,−�t)

Φ(Wi)
. (17)

Substituting these probabilities into the likelihood function, we arrive at at the following:

ℒ(, �, �, ∣Y,C,X,W) =
∏

i

Φ(−Wi)
1−Ci

[

Φ(Wi,−Xi1�,−�0)
1−Yi1Φ(Wi,Xi1�, �0)

Yi1

]Ci

×

[

Ti
∏

t=2

(

Φ(Wi,−Xit�,−�t)

Φ(Wi)

)1−Yit
(

Φ(Wi,Xit�, �t)

Φ(Wi)

)Yit

]Ci

. (18)

Note that the value ofWi that obtains when selection occurs is held constant throughout the entire

ensuing spell. Even if one has data on howW changes over time, the likelihood requires that one

only use the value from the moment of selection since it provides the necessary information about

the probability of selection.

5 Monte Carlo Analysis

In this section, we examine the performance of our estimatorrelative to a discrete event history

model through Monte Carlo simulation. This allows us to evaluate its performance relative to a

common alternative for a particular set of parameter values.

The data are generated such that in the first period we observeindependent variables,Xi1

andWi, for each of 1000 individuals, generated according to the following multivariate normal

distribution:
(

Xi1

Wi

)

∼ MVN

((

−0.5
0

)

,

[

1 0.7
0.7 1

])

(19)

We hold the values ofW fixed for the duration of the spell (i.e., at the values that obtain at the time

of selection), which is right-censored after twenty periods, but the values ofX change over time

to allow for time-varying covariates in the duration equation according to the following formula:

Xit = Xit−1 + 0.25 + �it,

for t > 1 and with�it ∼ N(0, 0.12). Among the selected observations, the correlation betweenthe

two independent variable tends to be a bit lower than this, closer to 0.6 or 0.5 depending on the

value of�0.
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Using these data, we then generate a variable,Ci, that indicates whether an individual selects

into a duration spell.

Ci =

{

1 if −0.5 + 1×Wi + �i > 0,
0 otherwise.

(20)

Given these parameter values, about thirty-five percent of the individuals select into the duration

process.

Finally, we generate the discrete duration outcome,Yit, according to the following equations:

Y ∗

it = −1 + 0.5×Xit + �it > 0, (21)

Yit =

⎧

⎨

⎩

1 if Y ∗

it > 0 andCi = 1,
0 if Y ∗

it ≤ 0 andCi = 1,
. if Ci = 0 or Yit−1 ∕= 0.

(22)

Note that we assume a single failure per selection event; once observations fail in the duration

process they exit the risk set. Because the values ofXit trend larger over time, the failure rate does

not drop too much since observations with larger values tendto fail sooner. While the failure rate

depends on the correlation of the error terms, this setup leads to a failure rate around twenty-two

percent when�0 is zero; the rate per year either decreases or increases overtime depending on the

sign of�0. Combined with the initial selection of 350 observations into the duration process, we

end up with about 1200 to 1800 individual-year observationsin the duration equation, depending

on the specific value of the correlation.

Finally, we must parameterize the correlation structure over time in order to introduce non-

random sample selection into the duration process. Since the correlation at timet is parameterized

as�t = �0 exp(−�(t−1)), we must specify values for both the initial correlation,�0 and the decay

parameter,�. Because the value of the decay parameter, in combination with the maximal duration

length of twenty years, bounds the maximal correlation, we run our simulations for three different

values: 0, 0.3, and 0.4. We also vary the initial correlationfrom -0.75 to 0.75 by increments of

0.25. Note that�0 = 0 corresponds to a situation with no non-random sample selection. For each

combination of the two parameters, we check whether the maximal correlation is exceeded, then

omit invalid combinations from our simulations. For example, when� = 0.1, the absolute value of

the correlation can not exceed 0.3.

The Monte Carlo simulations are performed by holding the values of the independent variables

constant for the entire simulation, drawing new values of the error terms for each trial, calculating
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the values ofCi andYit, and estimating two models: our FIML likelihood in Equation18 and a

naive probit discrete time duration model on the observed sample of spells. In both models we

cluster the standard errors on individuals. In total, we ran500 trials for each set of values of the

error correlation and decay parameters.6

[Figure 3 Here.]

Figure 3 summarizes the results for the parameter of most interest, the slope coefficient, through

kernel density plots of the estimates for different correlation and decay parameters. The darker

kernel density plot represents the results for the FIML estimator while the lighter plot represents

the naive probit results. The decay parameter varies acrosscolumns while the correlation changes

across rows. The vertical line indicates the true parametervalue of 0.5. This figure shows that the

FIML estimates suffer from little to no bias whereas the probit estimates exhibit a clear bias —

up to twenty-five percent — when there is non-zero correlation. Further, there appears to be little

difference in the variability of the two estimates.

[Table 1 Here.]

Tables 1 and 2 report the results of our simulations in more detail and for all parameter values.

Table 1 focuses on the parameters from the equation of interest whereas Table 2 focuses on the

FIML estimator’s additional parameters and the selection equation. The top two panels in Table 1

present the estimates of the slope coefficient,�, while the bottom two panels compare those for the

intercept term. Consistent with the plots just reviewed, theresults provide evidence in favor of our

FIML estimator. The naive probit model always produces estimates further from the true value,

with the over- or under-estimation of the slope coefficient approaching twenty-five percent. Note

that the bias increases with the correlation for a given rateof decay. In addition, it also increases

with slower rates of decay for a given amount of correlation,since the correlation remains larger

over the course of the duration. There does seem to be a cost inthe form of a slightly larger

sampling standard deviation of the estimates, which is not surprising given the greater complexity

of the estimator. But when we combine bias and variance through the root mean squared error, the

6In these simulations we did not restrict the maximal correlation given the estimated decay rate, but estimates
rarely violated this condition. For most combinations of these two parameters, over 95% of our estimates satisfied the
condition. With larger correlations this dropped to around80%, but our Monte Carlo results are quite similar to those
reported if we exclude these cases. Of course, this restriction has no effect on the bias of the naive estimates to which
we compare our estimator.
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FIML model outperforms the naive model for both parameters whenever the correlation is not zero.

The results for the intercept show similar levels of bias andthe FIML model is again preferred by

RMSE criterion for all non-zero levels of correlation.

[Table 2 Here.]

Table 2 presents the results for the selection equation parameters and the correlation and decay

parameters. The FIML estimator provides accurate estimates of the former for all combinations of

correlation and decay parameters. It also provides accurate estimates for the correlation parame-

ter. It does not perform as well for the decay parameter, however, with large deviations from the

true value. These deviations are relatively small comparedto the standard deviations, however,

particularly for smaller true values. Given that these values correspond to very fast decay in the

correlation, it is not surprising that these estimates are less precise. In light of the accuracy of the

estimates for the other parameters, however, these findingsdo not appear to undermine the value

of our proposed estimator.

6 The Duration of Exchange Rate Regimes

In this section we attempt to explain the length of pegged exchange rate regimes with the selection

corrected duration estimator developed above. Although nopaper we are aware of in the literature

on peg duration has investigated selection effects, selection on unobservables may be an important

problem.

Obstfeld and Rogoff (1995) argued that ‘credibility’ was thekey to maintaining a peg, that

credibility was becoming increasingly hard to earn in the face of global capital flows, and that it was

“hard to quantify” the political reasons some nations had more success than others in maintaining

pegs. Many countries during the 1990s abandoned pegged rates of intermediate “hardness” in

the midst of financial turbulence and financial crises. The political costs of defending pegs were

seemingly too high, and countries found it increasingly difficult to generate the credibility needed

to maintain a pegged exchange rate (Obstfeld and Rogoff 1995). Only a limited group of economies

were willing to subordinate monetary autonomy to the defense of a fixed exchange rate regime.

The prognosis was grim for the ability of countries to maintain fixed exchange rate regimes as

of the mid-1990s, and many economists took the view that intermediate pegs were increasingly
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short-lived as global capital markets burgeoned. However ahandful of exceptional countries had

managed to maintain pegged exchange rate regimes for longerthan five years. For these countries,

Obstfeld and Rogoff noted that one political factor “though difficult to quantify, is that all potential

ruling groups...share a strong consensus on the primacy of the fixed-rate commitment” (Obstfeld

and Rogoff 1995, pp. 87-88).

Klein and Shambaugh (2008) recently offered a revisionist view of peg duration. They accept

that the data show that most pegs break after a short period, but they also note that a significant

proportion of peg spells (30 percent) have in fact lasted longer than five years. Klein and Sham-

baugh estimate a hazard model for exchange rate peg spells controlling for duration dependence

and the length of the preceding float spell but not for other economic or political fundamentals.

They find evidence for positive duration dependence–the longer a peg lasts, the less likely it is to

break. Also, longer periods of floating, prior to a peg spell,are associated with shorter pegs and

short preceding floats are associated with longer peg spells.

Our reading of the this and other related literature on peg duration is that political factors

and unobservable, hard to quantify factors related to ‘credibility’ are at play in determining the

longevity of a peg spell. A couple of thought experiments canillustrate how selection could matter.

First, there may be a relationship between the (perceived) ability and/or willingness to sustain

an exchange rate peg and the choice of whether to opt into a fixed exchange rate in the first place. If

so, then empirical work on the duration of pegs should account for selection effects before making

inferences about the determinants of duration. Certain types of countries that have an unobservable

or hard to measure ability to sustain a peg, or those which expect to gain the most, or lose the least,

from a peg are the types of countries that might select a fixed exchange rate in the first place.

Alternatively, weaker countries might select into pegs. Itis possible that short-run political

considerations rather than solid fundamentals tip countries into pegs. Exchange rate based stabi-

lizations are often viewed (or recommended) as quick and effective means of eliminating volatility.

In the medium term it is possible that other political goals and concerns trump original policy. Also,

policy makers may systematically underestimate any of the following: the ability of capital markets

to terminate exchange rate pegs, the ability to deal with such an attack, or the ability to maintain

macroeconomic policy consistent with the peg commitment. Selection is operative in all of these
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cases. Pegs would be more likely to fail again for reasons that are hard to quantify.

Surprise changes to the environment are a component of the discussion in Obstfeld and Rogoff.

There they seem to suggest that it was increasingly difficultto establish sufficient credibility to

maintain a peg as of the mid-1990s in the midst of rising cross-border capital flows. Perhaps the

series of spectacular currency crashes in the 1990s was a learning experience for countries since

they may not have anticipated the ease with which international capital markets could put them

to the test via speculative attacks. Fixed exchange rates were the conventional policy prescription

for most countries post-Bretton Woods, through the EMS stageof European Monetary Union and

even during the early years of the ‘Washington Consensus’ as ameans for stabilization, but policy

makers were slow to realize the disruptive capacity of global capital markets until after 1997-98.

Quite obviously, the durability of an exchange rate peg depends in large part on the policy,

preferences and the political capabilities of countries tosuccessively maintain their peg from year-

to-year. Forward looking expectations and perceptions by politicians and economic actors that

influence policy and unobservable but related factors couldinfluence the decision to join or not in

the first place.

Sturzenegger, Levy-Yeyati and Reggio (2007) find that several political factors are important

in explaining why countries adopt fixed exchange rates. Their evidence supports the idea that

stable and strong governments are more likely to adopt a peg since they will be able to take actions

consistent with a peg even if this implies eliminating a deficit for example. Also they show that a

government with higher numbers of veto players are less likely to adopt a peg. Such divisions in

the policy making process could make adopting a peg more difficult, but they could also be related

to the ability to appropriately adjust in the face of a shock if a peg were to be adopted.

In the political science literature, a significant amount ofresearch has focused on credibility

and political factors in explaining the demise of currency pegs. Leblang and Satyanath (2008) and

Leblang and Bernhard (2000) find evidence that political instability and political uncertainty are

significant determinants of currency crises. Leblang and Satyanath argue that this type of result

is consistent with a model where a speculative attack is morelikely when agents have a wider

range of beliefs about government policy. Leblang and Satyanath (2008) also examine the idea

that divided governments characterized by uncertain preferences and delays in decision making
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are more likely to have high costs of responding to shocks. Unified governments in their samples

are found to be less likely to have a currency crisis since they can respond to shocks with greater

resolve.

We analyze these issues in terms of both exchange rate regimechoice and duration while also

controlling for the possibility that these factors are correlated with unobservables. Such an em-

pirical strategy relates directly to the discussion above.In the context of the political theories of

currency crises discussed above, it could be the case that nations size up the expected benefits

and costs of joining a peg which include the possibility of a currency crisis when making the ex-

change rate regime choice. These costs and benefits would depend on the expected duration of the

spell (i.e., the likelihood of a currency crisis or changes in policy preferences in the future due to

economic of political change). And these in turn could be related to the political and economic

characteristics of a country at the time of choosing to opt into a pegged exchange rate regime.

For instance, assume politicians want to avoid the economicdisruption and political fallout

that currency crises entail or disdain the idea of a major policy flip-flop in the proceeding years.

Then it would be expected that only politicians or governments that view themselves as capable

and willing to take the necessary actions to defend a peg would opt in. Alternatively, politicians

that have (unobservable) short time horizons or who need a rapid exchange rate based-stabilization

for short-term political gain may be more likely to opt in butalso they may more easily fall out of

their pegs.

6.1 Methods and Data

The variable to be explained is the duration of a pegged exchange rate spell, and we apply our

estimator to do so. Our data include information on whether countries establish a peg and how

long that peg is maintained. Because countries can start their pegs in any year, our selection

equation is itself a duration model. This involves only a minor extension to our likelihood since a

discrete duration model can be estimated with any appropriate discrete choice model. To adapt our

estimator, one only needs to subscript the selection equation variables by time.7

7Crucially, one must use the values of the independent variables from the selection equation that obtain at the time
of selection when calculating the likelihood for the entirespell. Even if these variables change over time, it is their
values at the moment of selection that provides informationabout the unobserved components at the time of selection.
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We use the Klein and Shambaugh de facto classification for pegspells to analyze the issue of

duration.8 Klein and Shambaugh’s measure classifies a country as havinga peg during a calendar

year if the end of month exchange rate stayed within a band of±2% against another reference

currency in each month of a calendar year and over the course of that year. They argue that the

assignment of countries to pegs is robust to the choice of bandwidth. This data set is unlike the well

known Reinhart and Rogoff (2004) de facto classification because in the Klein and Shambaugh data

parity changes mean a peg spell has ended. Reinhart and Rogoff smooth their data so that one-time

parity changes do not end a spell. In this way, the variable ofanalysis for Reinhart and Rogoff is

smoothed exchange rate policy rather than any particular exchange rate.

Our data cover 1973 to 2000 and include pegged exchange rate spells that begin after 1972.

During this time period, we have 334 instances of pegged exchange rate spells from 125 different

countries. These regimes last an average of 3.7 years with a median duration of one year, including

sixty-four ongoing spells in 2000.

The selection model includes openness to trade, the logarithm of GDP, whether the country has

a large inflation in the recent past, whether a country had restrictions on the capital account, and

the number of years since 1973.9 The economic determinants we include in the duration model

are: GDP growth, trade openness, the trade deficit (data fromthe IFS–International Financial

Statistics), international reserves relative to imports (IFS data), and the time in years since the spell

began.10

For the political determinants of regime duration we include a measure of political stability

and a measure of divided government. The political stability variable indicates the amount of

recent turnover in the government from the Database of Political Institutions (Beck et al. 2003).

This variable measures the extent of turnover in the key decision makers of a government in any

8It has become well known in the 1990s that countries’ actual exchange rate policies differ from what they report to
the IMF or announce to the public. Since what matters is not what policy makers say but what actually happens, many
authors have now turned to looking at what actually happenedto the exchange rate via such de facto classifications.

9Openness (i.e., exports plus imports divided by GDP and PPP)and PPP-adjusted GDP come from the Penn World
Tables. The large inflation indicator is 1 if a country had a freely falling exchange rate, which would typically be
associated with high inflation, as defined in Reinhart and Rogoff between the current year and 1950. The measure of
capital account openness is from Chinn and Ito (2006).

10Many of the variables that we wanted to include were missing in almost half the cases. This problem is exacerbated
here since when a variable that is included in the selection equation is missing in the year a duration begins, the entire
duration is omitted. The variables we were forced to omit include trade balance, reserves, capital controls, openness
to capital flows, and political changes.
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one year. We also include a variable from the same data set that measures the extent to which

the executive controls the legislature. This divided government measure is equal to 1 if the chief

executive’s party is in control of the legislature and 0 otherwise.11 Both variables are lagged by

one year to avoid simultaneity issues.

6.2 Results

Table 3 presents the results from three different models: the first provides estimates from our

duration with selection estimator while the latter two present separate models of the decision to

start a peg and the duration of observed pegs. Consider first the results from the former. For the

selection equation we find that size and past experience matter. Smaller countries are more likely to

adopt a peg although the coefficient on the log of GDP barely misses weak significance (p = .103).

Also, countries that had high inflation or moved from a peg to a“freely falling peg” in the past are

significantly less likely to choose a peg. Other variables are not statistically significant. For the

duration model the only statistically significant variableis political instability. A large turnover

in the previous year is associated with a higher likelihood of an exit from a peg with a p-value of

.036. The fact that other variables are not statistically significant does not mean there is not other

information available: a comparison of the probit durationmodel that does not control for selection

and the probit model that does reveals some interesting information.

[Table 3 Here.]

Importantly, our results indicate that accounting for possible non-random sample selection mat-

ters for understanding the duration of exchange rate pegs. These differences manifest themselves

in a number of ways. First, the estimate of the correlation between the selection model and the

duration model is positive and significant at the .05 level.12 The parameter value indicates a cor-

relation of 0.81 between the errors for the equation modeling the decision to start a peg and the

error for first year of the duration of a new spell. The significant decay parameter indicates that this

correlation decreases over the course of that spell. It decreases by about half each year, dropping to

0.46 in the second year and 0.26 in the third year. Further, application of Equation 7 indicates that

11These are the variables labeled STABS and ALLHOUSE, respectively, and are the same variables used in Leblang
and Satyanath (2008).

12In order to facilitate estimation we use the inverse of Fischer’s Z transformation so that�0 lies between -1 and 1
and an exponential transformation so that� is positive.
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this combination of parameter values corresponds to a permissible covariance matrix (the longest

observed spell is 26 years). Note that of the 164 pegs in our estimation sample, 98 end in the their

first year and that almost 143 have ended by their third year.13 Thus the selection effect has a strong

influence on almost every peg since it is largest exactly whenmost pegs are ending.

The positive correlation between the error term in the duration model and the selection equation

supports the idea that countries implement pegs that, though they may be difficult to maintain,

offer immediate short-term gains that offset the higher probability of failure over time. It is also

evidence against the idea that only countries that are stronger or more capable for unobservable

reasons choose to implement pegs.

Accounting for selection changes the interpretation of theeffect of a number of variables on

the duration of pegged exchange rates. First, the coefficient for the reserves ratio is negative and

significant at the .10 level in the naive probit model (p = .052) but is not near significance in the

selection model (p = 0.24). Note that the change in significance results mainly from a reduction

in the magnitude of the coefficient rather than an inflation inthe standard error. Accounting for

non-random sample selection appears to eliminate induced correlation between reserves and un-

observed factors. Second, the opposite occurs for political instability, which becomes significant

at the .05 level once we account for selection (the p-value goes from0.141 to = .036). This is

compatible with the idea that political factors matter morethan the economic ability to maintain a

peg with reserve backing. Without controlling for selection, it appears that the impact of economic

variables is overstated.

Third, after accounting for selection there remains no significant duration dependence. Al-

though the naive probit indicates negative duration dependence, it appears that this result is almost

entirely driven by unobservables rather than duration dependence per se. Fourth, a direct compar-

ison of the two models also provides evidence for our estimator. A likelihood ratio test comparing

the combined likelihoods of the two independent models to the likelihood of the combined model

produces a�2
2 test statistic value of 24.3, which has ap value less than .001.14

[Figure 4 Here.]

13We lose the other 169 pegs in our data set due to missing data, which is particularly problematic in this context. If
a covariate explaining selection is missing at the time of entry, the entire spell is lost since we need to include its value
when calculating the likelihood contribution for each subsequent year of the associated spell.

14The formula for the test statistic is−2((−213.092− 497.228)− (−698.165)).
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In order to better illustrate the differences in the findings, Figure 4 plots the hazard function

for exchange rate pegs from the naive and selection models over time. We hold all independent

variables fixed at their median values, with the exception oftime, which we increase from the

first year of a spell up to fifteen years. Because the naive probit model exhibits negative duration

dependence, the hazard steadily decreases over time. The duration model with selection, however,

exhibits two competing forces with different effects: one from the insignificant, but positive, effect

of duration dependence, the other from the decay of the positive correlation over time. In order

to better distinguish these two forces, we predicted the hazard both accounting for and ignoring

the effect of duration dependence. The lighter dashed line isolates the effect of the correlation as

it decays over time and shows how the hazard decreases in response. After about eight years, the

correlation is basically zero and the hazard remains constant over time. The black dashed line then

incorporates the estimate of duration dependence, which, while modest at first, ultimately pushes

the hazard to start increasing after about six years. Given that most of the observed pegs in our

sample end in the first few years, this figure shows that the naive model tends to understate the

chance that a peg will fail in the first year by almost 0.1, but then overstates it for the next few

years by about the same amount.

7 Discussion and Conclusions

In this paper we discuss the problem of extending existing estimators for duration models that al-

low for non-random selection to cases with time-varying covariates. This extension is not straight-

forward and, we believe, is best handled by moving from continuous-time duration models like

the Weibull to discrete-time duration models. Here we use the bivariate normal distribution to

construct a full-information maximum likelihood estimator, essentially combining standard mod-

els for stochastic truncation and stochastic censoring with binary dependent variables of interest.

Monte Carlo simulation shows that our estimator generally outperforms a naive discrete time dura-

tion estimator when the correlation is nontrivial. An empirical application of this estimator to the

duration of pegged exchange rate regimes shows that the presence of non-random sample selection

greatly influences our conclusions about which factors matter.

As demonstrated in our empirical application, it is straightforward to extend our estimator to
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allow for a discrete time duration process in the selection equation. An individual has the chance

to begin the duration process at different points in time, though all information about selection

occurs in the period in which they ultimately enter the duration process. Many political science

applications of this sort raise an additional issue: repeated events. For example, countries may

select into conflicts, see the conflicts end, but then select into new conflicts in the future. Our

estimator would allow for this and many of the covariate-based adjustments for repeated events

(see, e.g., Box-Steffensmeier and Zorn 2002).

Repeated events suggest the possibility not only of repeatedselection into events, but also

from events back to the selection process. That is, countries may select into spells of conflict,

but when they end them they also select back into spells of peace. Accounting for this would

greatly complicate our estimator. If the initial spell of conflict must condition on factors at the time

of selection, then the subsequent spell of peace would have to condition on factors at the end of

conflict and factors at the time of selection into that conflict. Even this simple case would involve

a trivariate distribution, with the dimensions continuingto grow with the number of spells. While

the believe this would be a useful extension to develop, at this point we believe it would be difficult

to get estimates in most practical situations.

We also want to consider alternate approaches that treat theunobserved heterogeneity through

correlated random effects. This approach has been used to generate panel selection estimators for

continuous outcomes of interest (e.g., Kyriazidou 1997, Vella 1998). One might be able to extend

these estimators to allow for discrete outcomes of interest. One important difference involves

the timing of the selection mechanism, however: panel selection models assume that the selection

process occurs each period whereas our estimator assumes that it occurs at the beginning of a spell.

Certainly one could think of empirical applications in whichit would be best to model the selection

process as re-occurring in each period of an ongoing spell, so this approach may prove valuable

on its own. Extending it to allow for a single selection decision for each spell would correspond

more closely to the structure of out estimator and, we believe, would apply to a wider variety of

empirical situations in political science.
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Table 1: Monte Carlo Simulation Results Comparing FIML Estimator to Probit Discrete Duration Estimator, Varying the Decay
Parameter and the Error Correlation

Error Correlation
Decay -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75
Parameter FIML Duration (Slope) Naive Probit Duration (Slope)
0.1 Mean 0.518 0.502 0.510 0.575 0.502 0.457

SD 0.057 0.052 0.059 0.044 0.043 0.046
RMSE 0.060 0.052 0.060 0.087 0.043 0.063

0.3 Mean 0.517 0.507 0.498 0.506 0.518 0.628 0.562 0.500 0.453 0.408
SD 0.056 0.053 0.054 0.053 0.049 0.044 0.043 0.046 0.043 0.045

RMSE 0.059 0.054 0.055 0.054 0.052 0.136 0.076 0.046 0.063 0.102
1.0 Mean 0.510 0.505 0.496 0.503 0.507 0.507 0.5090.611 0.580 0.541 0.503 0.464 0.416 0.374

SD 0.054 0.055 0.054 0.052 0.052 0.048 0.0420.048 0.047 0.046 0.044 0.046 0.045 0.043
RMSE 0.055 0.055 0.054 0.052 0.052 0.049 0.0430.121 0.093 0.062 0.044 0.059 0.095 0.133

FIML Duration (Intercept) Naive Probit Duration (Intercept)
0.1 Mean -1.016 -0.997 -0.976 -1.187 -0.999 -0.819

SD 0.118 0.093 0.120 0.048 0.044 0.046
RMSE 0.529 0.506 0.491 0.688 0.501 0.322

0.3 Mean -0.995 -0.996 -0.994 -0.998 -1.004 -1.261 -1.131 -1.000 -0.871 -0.729
SD 0.108 0.097 0.092 0.096 0.077 0.047 0.045 0.045 0.045 0.044

RMSE 0.507 0.506 0.503 0.507 0.510 0.762 0.632 0.502 0.373 0.233
1.0 Mean -0.995 -0.993 -0.980 -1.004 -1.010 -1.018 -1.010-1.208 -1.146 -1.076 -1.003 -0.923 -0.840 -0.747

SD 0.077 0.083 0.081 0.094 0.079 0.072 0.0600.048 0.049 0.046 0.045 0.046 0.046 0.050
RMSE 0.501 0.500 0.487 0.513 0.517 0.523 0.5140.710 0.648 0.577 0.505 0.425 0.344 0.252

Notes.Results based on 100 trials, with 1000 units and spells lasting up to 20 periods. Estimates from a handful of trials that
failed to converge are excluded. Holes represent infeasible combinations of correlation and decay parameters. See paper for
additional details.
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Table 2: Monte Carlo Simulation Results for Selection Equation and Selection Parameters, Varying the Decay Parameter andthe Error
Correlation

Error Correlation
Decay -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75
Parameter Selection Equation (Slope) Selection Equation (Intercept)
0.1 Mean 1.009 1.004 1.002 -0.502 -0.502 -0.497

SD 0.064 0.062 0.065 0.052 0.047 0.049
RMSE 0.064 0.062 0.065 0.501 0.500 0.505

0.3 Mean 1.003 1.003 1.007 1.003 1.005 -0.501 -0.504 -0.500 -0.501 -0.504
SD 0.065 0.064 0.066 0.061 0.059 0.052 0.051 0.050 0.051 0.048

RMSE 0.065 0.064 0.066 0.061 0.059 0.501 0.499 0.503 0.502 0.499
1.0 Mean 1.002 1.000 1.006 1.002 1.003 1.002 1.000-0.504 -0.500 -0.500 -0.502 -0.503 -0.501 -0.500

SD 0.060 0.063 0.060 0.065 0.062 0.062 0.0600.046 0.051 0.051 0.047 0.048 0.049 0.051
RMSE 0.060 0.063 0.060 0.065 0.062 0.062 0.0600.498 0.502 0.502 0.500 0.499 0.501 0.502

Correlation Parameter Correlation Decay Parameter
0.1 Mean -0.251 0.005 0.243 -1.785 -1.249 -3.383

SD 0.155 0.166 0.194 3.368 5.761 6.656
RMSE 0.155 0.166 0.194 3.407 5.856 6.744

0.3 Mean -0.514 -0.266 -0.007 0.259 0.528 -1.025 -0.934 -1.026 -1.395 -1.494
SD 0.141 0.140 0.169 0.174 0.206 0.656 2.354 5.446 3.919 0.694

RMSE 0.142 0.141 0.169 0.174 0.208 0.679 2.369 5.449 3.924 0.754
1.0 Mean -0.762 -0.514 -0.283 0.000 0.258 0.529 0.7670.031 0.168 0.194 -0.922 -0.263 -0.117 -0.285

SD 0.420 0.138 0.127 0.163 0.154 0.276 0.8331.096 1.295 2.035 4.705 3.120 0.802 0.428
RMSE 0.420 0.138 0.131 0.163 0.154 0.278 0.8341.096 1.306 2.045 4.794 3.131 0.811 0.514

Notes.Results based on 100 trials, with 1000 units and spells lasting up to 20 periods. Estimates from a handful of trials that
failed to converge are excluded. Holes represent infeasible combinations of correlation and decay parameters. See paper for
additional details.
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Table 3: FIML Duration and Selection Estimator versus NaiveProbit Estimates of Pegged Ex-
change Rate Regime Initiation and Duration, 1960-2004

FIML Duration Naive Probit
and Selection Duration Selection
Coef. SE Coef. SE Coef. SE

Selection
Trade Openness 0.028 0.279 0.036 0.285
GDP (log) −0.048 0.029 −0.047 0.031
Recent Hyperinflation −0.383∗∗ 0.115 −0.430∗∗ 0.127
Unified Government (Lagged) 0.080 0.115 0.063 0.117
Stability (Lagged) 0.106 0.153 0.129 0.153
Capital Account Openness −0.004 0.046 −0.016 0.055
Time 0.024 0.033 0.032 0.036
Time Squared −0.000 0.001 −0.001 0.001
constant −0.320 0.801 −0.351 0.828

Duration
Trade Openness −0.092 0.380 −0.268 0.500
GDP Growth 0.613 0.504 0.808 0.679
Reserves/Imports −0.386 0.331 −0.722∗ 0.372
Exports/Imports (logged) −0.045 0.172 0.012 0.256
Stability (Lagged) 0.440∗ 0.210 0.370 0.251
Unified Government (Lagged)−0.074 0.161 −0.175 0.200
Spell Time 0.035 0.034 −0.182∗∗ 0.038
constant −1.168∗∗ 0.315 0.250 0.336

Correlation
F−1(�) 1.151∗∗ 0.248
� 0.818∗∗ 0.082
ln(�) −0.548∗ 0.239
� 0.578∗∗ 0.138
Observations 1628 353 1439
Final Log-likelihood -698.165 -213.092 -497.228

Notes.* indicatesp ≤ .10 with a two-tailed test; ** indicatesp ≤ .05. Standard errors clus-
tered on country. Likelihood ratio test for two independentequations versus constrained
FIML estimator:�2

2 = 24.3 (p = .0000053).
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Figure 1: Examples of Correlation Over Time, Varying InitialCorrelation and Decay Parameter
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Figure 2: Maximal Absolute Correlation in the First Period ofa Spell by Maximum Spell Length,
for Different Rates of Decay
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Figure 3: Kernel Density Plots of Slope Coefficient Estimatesfrom Monte Carlo Analysis, Varying
Initial Correlation and Correlation Decay Rate
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Figure 4: Predicted Hazards for Pegged Exchange Rate Regime Durations
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