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Abstract

We extend existing estimators for duration data that sdifteen non-random sample selection
to allow for time-varying covariates. Rather than a contum#time duration model, we propose a
discrete-time alternative that models the effects of saraplection at the time of selection across
all subsequent years of the resulting spell. Propertieeegstimator are compared to those of a
naive discrete duration model through Monte Carlo analysisiadicate that our estimator outper-
forms the naive model when selection is non-trivial. We thpply this estimator to the question
of the duration of monetary regimes and find evidence thairigg selection into pegs leads to

faulty inferences.



1 Introduction

The consequences of non-random sample selection have been kmong political scientists for
quite some time. A growing body of literature exists thatwwoents the consequences of ignor-
ing sample selection and that demonstrates its effects oarmlerstanding of real-world political
phenomena, including voter turnout, interest group lobgyipublic opinion, and the outcome
of international crises. As the methodological tools artérests of political scientists have de-
veloped, we have extended our studies into situations wiesting techniques for correcting
selection bias do not fit the question in hand. Specificaig, last decade has seen a dramatic
rise in the use of duration models to explain the time untiitigal events occur, including regime
transitions, the confirmation of political nominees, posittaking by elected representatives and
the duration of cabinets in parliamentary democraciesotimhately, until recently there has been
no way to deal with issues of sample selection in these aret dilration analyses, despite many
theoretical advances that indicate that selection shcaila doncern.

In response to this gap, researchers have proposed a chapleroaches for dealing with sam-
ple selection issues in the duration context. Prieger (206&s copulae (see, e.g., Smith 2003) to
bind together two marginal distributions while Boehmke, Bjoand Shannon (2006) use bivariate
distributions to accomplish the same task. The latter destnates through Monte Carlo analy-
sis that ignoring sample selection issues can result irediparameter estimates when estimating
naive duration models — including the exponential, Weibaid Cox — on data that suffer from
selectivity.

While political scientists are already applying these estors (e.g., Beardsley and Asal 2009;
Long, Nordstrom and Baek 2007), one significant shortconsripat they do not allow for time-
varying covariates, despite the fact that many, perhaps, rmpplications of duration models in-
volve explanatory factors that change over the course afiglesspell. Unfortunately, extending
existing models to permit time varying covariates are cocaptd by the move from a single
stochastic component for the entire duration to a seriesesht— one for each interval of a spell
(e.g., each year or day). Even without the sample selectaorponent, any (parametric) duration
model that allows for time-varying covariates (hereaff&/Cs) models the probability of failure

within each interval of a spell, rather than the continucasand at each point in time.



Given this difference between estimators for time-invatrieovariates and those for TVCs,
developing an estimator that accounts for sample seleatiaturations with TVCs requires a
different approach than that used for continuous-time tthiwa without TVCs. In this paper we
develop such an estimator. Our approach reflects the desoegtire of failure within an interval
by joining probit models for selection and duration. Whilevimg to a discrete duration model
means that we do not model duration dependence directlyghrthe parametric shape of the
error distribution (e.g., Weibull, log-normal), duratidependence is still easily modeled through
the inclusion of appropriate variables measuring timeesaspell begins. We allow the error in the
selection equation from the year the spell begins to be ledeet with the errors in each interval
for the subsequent spell; we also assume that despite thmslatmon, errors within a spell are
uncorrelated with each other. In order to permit greateitflity, we allow the correlation to decay
over time so that the effect of selection may decrease oeecdhrse of a spell as an observation
moves farther away from the circumstances at the time o€sete This assumption both extends
the applicability of our estimator and also likely fits witnpirical reality: the conditions that help
engender selection will generally have a large effect eamlyn the ensuing duration process, but
their effect will often decrease over time as circumstamctesnge and new forces swamp the initial
conditions.

In order to evaluate the usefulness of our proposed estimaperform a series of Monte
Carlo simulations comparing its results to those obtainethfnaive discrete-time duration esti-
mators. We vary both the initial correlation as well as ite raf decay. Our results provide strong
support for our new estimator, which outperforms the nastieator in terms of bias and root
mean squared error whenever the correlation is non-trivial

We then apply our estimator to the study of the duration of etaxry regimes. A recent view
holds that the decline in the average duration of peggedaggshrates in the early 1990s was
likely caused by the increasing global integration of capiarkets (Obstfeld and Rogoff 1995).
We argue that the kind of countries that adopt pegs diffanftioee general population of countries.
In fact, our correction for sample selection finds evidermesestent with the idea that unobserved
factors that lead a country to choose a peg also make thatrgomore likely to drop out of

that peg. Such evidence is consistent with the idea thattaesruse only short-term criteria



to judge the benefits and costs of pegs or systematicallyrastimate their ability to maintain
a peg. Further, correcting for non-random sample sele@lso changes our inferences about
key explanatory factors. In particular, we find a greatee fol political factors such as political
stability, and a reduced role for economic factors such sexrve accumulation. These findings are
consistent with the idea that reserves may merely be a signia¢ resolve of a country to defend

a peg rather than being the means to the end of defense ofghe pe

2 Existing Estimatorsfor Duration Data with Selection

Non-random sample selection is a problem for standard agiisibecause unobserved factors that
influence the duration (or, more generally, the quantitylntérest also influence whether or not
that observation makes it into the sample at all. When theticeiship exists, the value of the
dependent variable of interest is related to the selectioogss, since it depends on both the sys-
tematic and the unobserved stochastic components. Oblsaless of the dependent variables are
therefore not representative, even for the observed sarBpleause the dependent variable is un-
representative, parameter estimates are biased, evee@iteolling for individual characteristics
through independent variables. The severity of the proldepends on the correlation between
explanatory factors in the selection and outcome equatigvisen they are correlated, this gen-
erally induces correlation between the error term in theagqo of interest and the independent
variables. Thus an additional assumption is violated aadbias is generally exacerbated. In more
complicated models, bias in one parameter can lead to bahan parameters.

A common solution for selection bias involves modeling thkestion process and estimating
its parameters while simultaneously estimating the patarsef the equation of interest (e.qg.,
Heckman 1976 and 1979; Dubin and Rivers 1990). In these casesonditions on the selection
process when estimating the quantity of interest. With @@y specified selection equation,
these estimators generally produce consistent paranstierages.

Boehmke, Morey and Shannon (2006) build on these results Wlaj@ng an estimator for
duration data with possible non-random sample selectibeyTise a bivariate exponential distri-
bution to link the discrete outcome of the selection equitdh the continuous duration outcome

of interest. This estimator is then extended to allow forb#iduration dependence. The deriva-



tion parallels that used to correct for selection bias witoatinuous (Heckman 1976, 1979) or a
discrete (Maddala 1983; Dubin and Rivers 1990) dependerahlar By jointly modeling the se-
lection and duration processes, consistent estimatedtaimed. An alternate approach is taken by
Prieger (2002), which uses copulae to combine a probit seteequation with a Weibull duration
equation.

In these estimators, the duration component corresponasdotinuous-time duration model
with time-invariant covariate’. Yet many applications of duration models involve TVCs. For
example, the duration of cabinets may depend on economiorgence, which changes from
month-to-month or year-to-year; the duration of militadzinterstate disputes may depend on
the losses taken by each side or by the actions of third gattti&t try to intervene. Standard
continuous-time duration models can be easily modified lemalor TVCs by partitioning each
spell into intervals during which included covariates do cltange. These intervals may be days,
months, or years depending on the frequency with which e@bsgeralues change. The likelihood
of each spell is then calculated with the product of the plodibg of surviving each interval given
survival until that interval, until the last period, whiclorttributes either a discrete probability
of failure if failure is observed or a discrete probabilitiy survival if the observations is right-
censored.

In essence, then, estimating a continuous-time duratiotleineith TVCs is quite the same
as estimating a discrete-time duration model. The two mdfardnces arise from the distribu-
tional assumptions regarding the error terms — parametntituous time models often assume
a Weibull distribution whereas discrete ones assume atiogis normal distribution — and the
treatment of duration dependence, which is accomplisheiditty through the distribution in
continuous models and explicitly through the possibleusidn of covariates relating to time in
the discrete-time models.

The move to TVCs therefore changes the structure of the e#timia such a way as to make it
difficult to apply existing solutions for sample selectioittwduration data. Partitioning each spell

into different components and then calculating the prditgluf failure in each interval changes

1See Box-Steffensmeier and Jones (2004) for more informatoduration models in general.
2If the precise moment of failure is observed, then the lastr@l contributes the density of the time of failure
given survival until that interval.



the data generating process from one in which each spell lsaggke stochastic component to
one in which each interval of each spell has its own stoah&stm. This makes it impossible to
directly apply existing solutions for non-random samplieston in duration models. Further, it
makes it difficult to extend existing solutions since one nuasrelate the unobserved terms at the
time of selection with potentially more than one unobsenesth for each interval in the duration
of the subsequent spell. This leads us to propose an akethatgh related, form of the estimator

that allows for both sample selection and time-varying caves.

3 Modeling Sample Selection in Discrete-Time Durations

Given the complications just outlined and the discretenmgatfithe duration process, we move from
previous estimators’ use of continuous-time duration netiediscrete-time duration models. As
with previous estimators, we continue to model the selagiimcess as a discrete outcome, but
also model the duration process as a discrete outcome. @mmesarvation has selected into the
duration process, then, we assume that we observe a diswlatator for failure for each interval
of the corresponding spell. This estimator therefore has imlcommon with discrete versions of
the Heckman model (Dubin and Rivers 1990; Maddala 1983),diber than observing a single
outcome (e.g., whether an individual registers to vote ahdther registered individuals turn out
on election day), we observe a series of zeros for each aitére individual survives followed by
a single one corresponding to failure in the last intervahefspell.

In the standard extension of the Heckman model for dichotenoaitcomes, the two stochastic
components are allowed to have non-zero correlation inrameapture possible non-random
sample selection. This involves a straightforward apgibbeeof, for example, the bivariate normal
distribution. If all of our durations were observed for omge interval, we too could apply this
estimator (though we would not have TVCs if that were the caBeix because our duration is
measured as a vector of zeros followed by a one (or a termémalia the case of right-censoring),
there are a series of stochastic terms — one for each peritlteaingoing spell — that could
possibly be correlated with unobserved components at the ¢f selection. This necessitates
modifying the standard dichotomous selection estimatactmunt for the duration structure.

In the following section we propose such an estimator bywatig the stochastic term in the



selection equation at the time of entry to be correlated Wi¢ghstochastic terms for each interval
of the resulting duration. Basically, this means that thec# of unobserved variables influencing
selection persist over the entire duration of the ensuied,dqut that errors across periods in a spell
are not correlated. This leads to an estimator that invadvesmbination of a sample selection
model for a discrete outcome to account for the first period gpell with the same model for

stochastic truncation in subsequent periods.

4 Derivation of the Likelihood Function

In order to derive the full likelihood, we first describe thedextion and duration equations sepa-
rately and then discuss how we link the two to account for ipesson-random sample selection.
Both equations are represented with standard binary outcooolels.

For the selection equation, Iét indicate whether an individual, selects into the duration
sample and let the probability that = 1 depend on some vector of covarialés. Assume a

standard threshold model as follows:

Cr = Wiy+mn; (1)
1 ifCr >0,
Ci = {O otherwise. (2)

Ultimately, we will use the bivariate normal to link the ursgloved components, which makes the
selection equation a standard probit model. This set upeistical to that used in most selection
estimators.

The duration equation is modeled in a similar way, but sineemust model duration in each
interval of a given spell, we add a subscript for time,The length of time represented by each
increment of is determined by the largest unit of time such that covasiate constant within that
interval. In most political science applicatiortsyill represent days, months or years. Failure is
measured by the binary varialdtg, which indicates whether individuéb duration ends at time
Let7; correspond to the final interval @6 spell. ThusY;;, equals one and all other realizations of

Y;; are zerd® We assume that the duration depends on a vector of covarigiesit least some of

3Right-censoring is handled trivially by this model. Ratiiean ending with a one, right-censored observations
merely end with a zero in the last interval when censoringicec



which vary over intervals of time. Duration is therefore ratadl using a discrete outcome model,

which is common for discrete event history analyses (sge,Box-Steffensmeier and Jones 2004):

Vi = XuB+eu; 3
1 ifY; >0,
Yi = { 0 otherwise. (4)

Sample selection occurs when the duration data are notwessésr observations witld; = 0.
This means that all values &f; for an entire spell go unobserved.

To put these two pieces together into a single estimator,astiipn the data into three groups.
The first group involves all cases that do not select in, tikersé group represents the first interval
of a duration spell for cases that select in, and the thirdgrepresents all additional intervals of
the spell for observations that have selected in and suhthefirst interval. We partition the data
in this way to facilitate construction of the likelihood. &te moment of selection, observations
contribute two pieces of information: that they select id amether they survive the first interval.
Observations that survive the first interval are alreadynto have selected in and this informa-
tion has already been incorporated into the likelihood,h&y tonly contribute information about
whether they survive additional intervals given that thayénalready selected in.

Put into probability statements, then, the three piecesirg”; = 0|W;), Pr(C; = 1,Y;; =
ya | Wi, Xi), andPr(Y;, = v |Wi, X;, C; = 1,1 < t). The likelihood of the data can be written out

as the product of these three components:

Pr(Y,C) = H Pr(C; = 0|W;) x H Pr(C; = 1, Y = ya| Wi, Xa) (5)
Ci=0 Ci=1
x ] Pr(¥a = yulWi, X, Ci = 1). (6)
Ci=1,t>1

Taken separately, the first two terms constitute a sele@stimator for discrete outcomes that
includes data for observations that select in as well asttieat do not. The third term represents
a selection estimator for stochastic truncation, whicludes only information about individuals
that select in. Our likelihood is therefore a combinationtved commonly used estimators that
individually represent the different types of informatitvat an observation contributes.

Once assumptions are made about the distribution of thetenras and the functional form of

the estimator, these densities and probabilities can deglypcalculated and a likelihood function
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can be specified. Here, we assume that the stochastic teenge@erated according to a bivariate
normal distribution with correlatiop; = Corr(n;, €;;). This is a key assumption. First, as the sub-
script indicates, we allow the correlation to change ovaetiSecond, we assume that the duration
errors from different intervals of a spell are not corretiatgth each other. This second assumption
means that selection bias is captured entirely througletadion of the error terms in each interval
of time with the selection equation error term at the timeeadéstion; no additional information is
gained during the course of a duration. We make this resgietssumption because to allow for
correlation across the stochastic terms for each intemalgiven spell would essentially involve a
much more complicated time-series cross-sectional moilelautocorrelation, which has proved
difficult to estimate without restrictive assumptidhs.

The first assumption of non-constant correlation is madebfah substantive and statistical
reasons. Constant correlation over time results in a limithenmaximal absolute correlation in
order to maintain semi-positive definiteness of the covagamatrix for the selection equation
error and the sequence of duration equations stochastis2ewhile all covariance matrices must
meet this condition, the structure of the one used for tHisnasor means that satisfying it depends
solely on the value of the correlation parameter. For exantpis just means that whén = 1,
giving a2 x 2 covariance matrix, that the correlation can not be gre&tan bne. With longer
spells, however, the maximal correlation decreases armhies quite low.

To allow more flexibility, then, we assume that the correlatilecays exponentially over time.
Substantively, this implies that unobserved factors ingblkection process become less and less
important over the course of spell. We do allow some flexipih the decay process, however, by
parameterizing it as followsy; = po exp(—d(t — 1)), wherep, describes the correlation between
the errors from the selection equation and the first inteov/sthe spell and > 0 allows the rate
of decay to vary. Figure 1 presents examples of the resutiimgelation over time for different
values ofpy, andd. Note that wher is large, the correlation goes to zero after only five periods
but when it is small, the correlation is still nontrivial @ftL5 periods. Of course, there is a tradeoff

between the two parameters: large initial correlationshvave to decay faster whereas small ones

4see Pang (2008) for a recent discussion and a promising Bayasproach.
SWhen the correlation is constant ovEmperiods the determinant of the covariance matrix is 7'p?, leading to
an upper bound on the correlation|pf < /1/T.



can persist for long periods of time.
[Figure 1 about here]

While this parameterization extends the maximal spell lengdoes so by assuming that the
correlation decreases over time. We believe that this gsomhas some intuitive appeal: while
unobserved components that influence selection may a haxeng selationship with unobserved
components early on in a spell, it seems reasonable to aghathat relationship will weaken
over time as the conditions present at selection receddhetpast and contemporaneous unob-
served events take precedence. Even with the assumptemalimal initial correlation still
depends on the length of the observed spells, but now it &gertis on the rate of decay. Specifi-
cally, with a maximal spell length df, the restriction on the maximal initial correlation is

ml < ¢ S @
Figure 2 displays this relationship for four different vaduof the decay parameter and different

maximal spell lengths.
[Figure 2 about here]
With the bivariate normal assumption, we can write out theesponding likelihood by calcu-
lating each of the component probabilities, whéfe) represents the cumulative standard normal
density andb(zy, 2o, p;) represents the cumulative bivariate standard normal gengh correla-

tion p; at timet.
Pr(C; = 0[W;) = Pr(Wiy +m < 0|W;), (8)
= O(—Wy); (9)

Pr(C; =1,Y, =1|{W;, X;1) = PI"(VVN +n; >0, Xn8+ €1 > 0|VVi>Xil)7 (10)

= Pr(m > Wiy, en > —XaB|Wi, Xa), (11)
= Pr(n; < Wiy, en < XuB|Wi, Xa), (12)
= O(Wiy, XuB, po); (13)
Pr(C; =1,Yu = 0|W;, Xa) = ®(Wiy, —XufB, —po); (14)
Pr(Y, = 1|W;, X3, C; = 1) = Pr(C: P_)r(lévyi_l‘;‘%/lj(w’ (15)
_ (Wi, Xiuf3, 1) : (16)

O(W;v)
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(Wi, =X, —pt)
D (W)

Pr(nt = 0|‘/I/i7Xit7 CZ = 1) (17)
Substituting these probabilities into the likelihood ftion, we arrive at at the following:

E("Y?ﬁ?p?f)/‘Y? C7X7W) =

[T @(=Wimn)' =% [®(Wiy, =X 8, —po) " ®(Wyy, Xia 3, po) ]

i (20,—Xap —pt>>1—”ff (200X m)‘”“] - (19)

C;

X

t=2
Note that the value dil’; that obtains when selection occurs is held constant thimutghe entire

ensuing spell. Even if one has data on hidiwchanges over time, the likelihood requires that one
only use the value from the moment of selection since it glesithe necessary information about

the probability of selection.

5 MonteCarlo Analysis

In this section, we examine the performance of our estimaative to a discrete event history
model through Monte Carlo simulation. This allows us to estduts performance relative to a
common alternative for a particular set of parameter values

The data are generated such that in the first period we obgstependent variablesY;;

andW;, for each of 1000 individuals, generated according to tiieviang multivariate normal

(W) ~ o ((57) on V) (19)

We hold the values dfi” fixed for the duration of the spell (i.e., at the values thaaobat the time

distribution:

of selection), which is right-censored after twenty pesidout the values ok’ change over time

to allow for time-varying covariates in the duration eqaataccording to the following formula:
Xit = Xij—1 + 0.25 + vy,

fort > 1 and withy;, ~ N(0,0.1%). Among the selected observations, the correlation betireen
two independent variable tends to be a bit lower than thassesito 0.6 or 0.5 depending on the

value ofp,.
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Using these data, we then generate a varialdlethat indicates whether an individual selects
into a duration spell.

o {1 if —0.5+1x W, +m >0, (20)

0 otherwise.

Given these parameter values, about thirty-five percertiefridividuals select into the duration
process.

Finally, we generate the discrete duration outcoig according to the following equations:

}/,; = —1 + 05 X Xit + €it > O, (21)
1 ifY;; >0andC; =1,
Y, = 0 ifY; <0andC; =1, (22)

ifC; =00rY,; 1 #0.

Note that we assume a single failure per selection eveng ohservations fail in the duration
process they exit the risk set. Because the valuesdfrend larger over time, the failure rate does
not drop too much since observations with larger values teffidil sooner. While the failure rate
depends on the correlation of the error terms, this setugsleaa failure rate around twenty-two
percent whem, is zero; the rate per year either decreases or increasesrmoesiiepending on the
sign of pg. Combined with the initial selection of 350 observation®itite duration process, we
end up with about 1200 to 1800 individual-year observatiartee duration equation, depending
on the specific value of the correlation.

Finally, we must parameterize the correlation structurer dime in order to introduce non-
random sample selection into the duration process. Simcedirelation at time is parameterized
asp, = po exp(—d(t — 1)), we must specify values for both the initial correlatippand the decay
parametery. Because the value of the decay parameter, in combinatidritmetmaximal duration
length of twenty years, bounds the maximal correlation, weaur simulations for three different
values: 0, 0.3, and 0.4. We also vary the initial correlattmm -0.75 to 0.75 by increments of
0.25. Note thap, = 0 corresponds to a situation with no non-random sample sehedtor each
combination of the two parameters, we check whether the mabgorrelation is exceeded, then
omit invalid combinations from our simulations. For exampihens = 0.1, the absolute value of
the correlation can not exceed 0.3.

The Monte Carlo simulations are performed by holding theesf the independent variables

constant for the entire simulation, drawing new values efdtror terms for each trial, calculating

11



the values ol’; andYj;, and estimating two models: our FIML likelihood in Equatid@ and a
naive probit discrete time duration model on the observedpsa of spells. In both models we
cluster the standard errors on individuals. In total, we5@@ trials for each set of values of the
error correlation and decay parameters.

[Figure3Here]

Figure 3 summarizes the results for the parameter of maseist, the slope coefficient, through
kernel density plots of the estimates for different cotielaand decay parameters. The darker
kernel density plot represents the results for the FIMLnestor while the lighter plot represents
the naive probit results. The decay parameter varies acodgsins while the correlation changes
across rows. The vertical line indicates the true paramtere of 0.5. This figure shows that the
FIML estimates suffer from little to no bias whereas the jirestimates exhibit a clear bias —
up to twenty-five percent — when there is non-zero corratatfeurther, there appears to be little
difference in the variability of the two estimates.

[Table 1 Herel]

Tables 1 and 2 report the results of our simulations in motaildend for all parameter values.
Table 1 focuses on the parameters from the equation of siterfeereas Table 2 focuses on the
FIML estimator’s additional parameters and the selectoume¢ion. The top two panels in Table 1
present the estimates of the slope coefficigntyhile the bottom two panels compare those for the
intercept term. Consistent with the plots just reviewed réseilts provide evidence in favor of our
FIML estimator. The naive probit model always producesnestes further from the true value,
with the over- or under-estimation of the slope coefficigapraaching twenty-five percent. Note
that the bias increases with the correlation for a given ohtkecay. In addition, it also increases
with slower rates of decay for a given amount of correlatginge the correlation remains larger
over the course of the duration. There does seem to be a ctist iform of a slightly larger
sampling standard deviation of the estimates, which is mqirssing given the greater complexity

of the estimator. But when we combine bias and variance tlrtugroot mean squared error, the

%In these simulations we did not restrict the maximal cotietagiven the estimated decay rate, but estimates
rarely violated this condition. For most combinations afgb two parameters, over 95% of our estimates satisfied the
condition. With larger correlations this dropped to aro@0&b, but our Monte Carlo results are quite similar to those
reported if we exclude these cases. Of course, this rastribas no effect on the bias of the naive estimates to which
we compare our estimator.

12



FIML model outperforms the naive model for both parametdrenever the correlation is not zero.
The results for the intercept show similar levels of bias #gnedFIML model is again preferred by
RMSE criterion for all non-zero levels of correlation.

[Table 2 Herel]

Table 2 presents the results for the selection equatiomyeas and the correlation and decay
parameters. The FIML estimator provides accurate estswadttne former for all combinations of
correlation and decay parameters. It also provides accestimates for the correlation parame-
ter. It does not perform as well for the decay parameter, kewasvith large deviations from the
true value. These deviations are relatively small compéoetie standard deviations, however,
particularly for smaller true values. Given that these galaorrespond to very fast decay in the
correlation, it is not surprising that these estimatesese precise. In light of the accuracy of the
estimates for the other parameters, however, these findmg®t appear to undermine the value

of our proposed estimator.

6 TheDuration of Exchange Rate Regimes

In this section we attempt to explain the length of peggedhanrge rate regimes with the selection
corrected duration estimator developed above. Althougbapezr we are aware of in the literature
on peg duration has investigated selection effects, sefech unobservables may be an important
problem.

Obstfeld and Rogoff (1995) argued that ‘credibility’ was #ey to maintaining a peg, that
credibility was becoming increasingly hard to earn in theefaf global capital flows, and that it was
“hard to quantify” the political reasons some nations hadersaccess than others in maintaining
pegs. Many countries during the 1990s abandoned peggesi ahtetermediate “hardness” in
the midst of financial turbulence and financial crises. Théipal costs of defending pegs were
seemingly too high, and countries found it increasingljicitt to generate the credibility needed
to maintain a pegged exchange rate (Obstfeld and Rogoff 19898y a limited group of economies
were willing to subordinate monetary autonomy to the dedesfsa fixed exchange rate regime.

The prognosis was grim for the ability of countries to maimfaxed exchange rate regimes as

of the mid-1990s, and many economists took the view thatrmgeiate pegs were increasingly
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short-lived as global capital markets burgeoned. Howevaralful of exceptional countries had
managed to maintain pegged exchange rate regimes for |trayefive years. For these countries,
Obstfeld and Rogoff noted that one political factor “thougfi@llt to quantify, is that all potential
ruling groups...share a strong consensus on the primadyedfxted-rate commitment” (Obstfeld
and Rogoff 1995, pp. 87-88).

Klein and Shambaugh (2008) recently offered a revisionetnof peg duration. They accept
that the data show that most pegs break after a short penndhéy also note that a significant
proportion of peg spells (30 percent) have in fact lastedéornthan five years. Klein and Sham-
baugh estimate a hazard model for exchange rate peg spetteltiag for duration dependence
and the length of the preceding float spell but not for oth@nemic or political fundamentals.
They find evidence for positive duration dependence—thgdoa peg lasts, the less likely it is to
break. Also, longer periods of floating, prior to a peg spaig associated with shorter pegs and
short preceding floats are associated with longer peg spells

Our reading of the this and other related literature on pegtdchn is that political factors
and unobservable, hard to quantify factors related to ibikty’ are at play in determining the
longevity of a peg spell. A couple of thought experimentsittastrate how selection could matter.

First, there may be a relationship between the (perceivaitifysand/or willingness to sustain
an exchange rate peg and the choice of whether to opt intochdkaehange rate in the first place. If
so, then empirical work on the duration of pegs should accfmurselection effects before making
inferences about the determinants of duration. Certairstgpeountries that have an unobservable
or hard to measure ability to sustain a peg, or those whichebtp gain the most, or lose the least,
from a peg are the types of countries that might select a fixedange rate in the first place.

Alternatively, weaker countries might select into pegsislpossible that short-run political
considerations rather than solid fundamentals tip coesinto pegs. Exchange rate based stabi-
lizations are often viewed (or recommended) as quick arsttfe means of eliminating volatility.

In the medium term it is possible that other political goald aoncerns trump original policy. Also,
policy makers may systematically underestimate any ofaheviing: the ability of capital markets
to terminate exchange rate pegs, the ability to deal witl surcattack, or the ability to maintain

macroeconomic policy consistent with the peg commitmerte@ion is operative in all of these
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cases. Pegs would be more likely to fail again for reasortsatieshard to quantify.

Surprise changes to the environment are a component ofg¢bessiion in Obstfeld and Rogoff.
There they seem to suggest that it was increasingly difftcuéistablish sufficient credibility to
maintain a peg as of the mid-1990s in the midst of rising classler capital flows. Perhaps the
series of spectacular currency crashes in the 1990s wasranig@&xperience for countries since
they may not have anticipated the ease with which internatioapital markets could put them
to the test via speculative attacks. Fixed exchange ratestive conventional policy prescription
for most countries post-Bretton Woods, through the EMS stdd@riropean Monetary Union and
even during the early years of the ‘Washington Consensushasaas for stabilization, but policy
makers were slow to realize the disruptive capacity of dlobpital markets until after 1997-98.

Quite obviously, the durability of an exchange rate peg ddpen large part on the policy,
preferences and the political capabilities of countriesuiccessively maintain their peg from year-
to-year. Forward looking expectations and perceptions difigans and economic actors that
influence policy and unobservable but related factors cmiflldence the decision to join or not in
the first place.

Sturzenegger, Levy-Yeyati and Reggio (2007) find that séyal#tical factors are important
in explaining why countries adopt fixed exchange rates. rTé&@dence supports the idea that
stable and strong governments are more likely to adopt aipeg they will be able to take actions
consistent with a peg even if this implies eliminating a defar example. Also they show that a
government with higher numbers of veto players are les$ylilkeadopt a peg. Such divisions in
the policy making process could make adopting a peg moreuliffiout they could also be related
to the ability to appropriately adjust in the face of a shdakpeg were to be adopted.

In the political science literature, a significant amountedearch has focused on credibility
and political factors in explaining the demise of curreneg® Leblang and Satyanath (2008) and
Leblang and Bernhard (2000) find evidence that politicalabgity and political uncertainty are
significant determinants of currency crises. Leblang artgled®ath argue that this type of result
is consistent with a model where a speculative attack is rikesy when agents have a wider
range of beliefs about government policy. Leblang and Seiya(2008) also examine the idea

that divided governments characterized by uncertain pFates and delays in decision making
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are more likely to have high costs of responding to shocksfiedhgovernments in their samples
are found to be less likely to have a currency crisis sincg tag respond to shocks with greater
resolve.

We analyze these issues in terms of both exchange rate repiniee and duration while also
controlling for the possibility that these factors are etated with unobservables. Such an em-
pirical strategy relates directly to the discussion abdwethe context of the political theories of
currency crises discussed above, it could be the case tliahsi@ize up the expected benefits
and costs of joining a peg which include the possibility oluarency crisis when making the ex-
change rate regime choice. These costs and benefits woldddiep the expected duration of the
spell (i.e., the likelihood of a currency crisis or changepolicy preferences in the future due to
economic of political change). And these in turn could batesl to the political and economic
characteristics of a country at the time of choosing to ofat anpegged exchange rate regime.

For instance, assume politicians want to avoid the econaisitption and political fallout
that currency crises entail or disdain the idea of a majoicpdlip-flop in the proceeding years.
Then it would be expected that only politicians or governtaghat view themselves as capable
and willing to take the necessary actions to defend a pegdavapt in. Alternatively, politicians
that have (unobservable) short time horizons or who neeglid exchange rate based-stabilization
for short-term political gain may be more likely to opt in l@so they may more easily fall out of

their pegs.

6.1 Methodsand Data

The variable to be explained is the duration of a pegged exgshaate spell, and we apply our
estimator to do so. Our data include information on whetlmemtries establish a peg and how
long that peg is maintained. Because countries can start plegs in any year, our selection
equation is itself a duration model. This involves only a aniextension to our likelihood since a
discrete duration model can be estimated with any apprepdliacrete choice model. To adapt our

estimator, one only needs to subscript the selection emuadiriables by timé.

Crucially, one must use the values of the independent Vasdiom the selection equation that obtain at the time
of selection when calculating the likelihood for the enspeell. Even if these variables change over time, it is their
values at the moment of selection that provides informadioout the unobserved components at the time of selection.
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We use the Klein and Shambaugh de facto classification fospells to analyze the issue of
duration® Klein and Shambaugh’s measure classifies a country as hayeg during a calendar
year if the end of month exchange rate stayed within a bant2§f against another reference
currency in each month of a calendar year and over the co@itbatoyear. They argue that the
assignment of countries to pegs is robust to the choice ahiith. This data set is unlike the well
known Reinhart and Rogoff (2004) de facto classification beeauthe Klein and Shambaugh data
parity changes mean a peg spell has ended. Reinhart and Rogafftstheir data so that one-time
parity changes do not end a spell. In this way, the variabknatysis for Reinhart and Rogoff is
smoothed exchange rate policy rather than any particutdrage rate.

Our data cover 1973 to 2000 and include pegged exchangepwaite that begin after 1972.
During this time period, we have 334 instances of peggedangh rate spells from 125 different
countries. These regimes last an average of 3.7 years widdamduration of one year, including
sixty-four ongoing spells in 2000.

The selection model includes openness to trade, the lbgadt GDP, whether the country has
a large inflation in the recent past, whether a country hatticésns on the capital account, and
the number of years since 1973The economic determinants we include in the duration model
are: GDP growth, trade openness, the trade deficit (data themiFS—International Financial
Statistics), international reserves relative to impdfS(data), and the time in years since the spell
begant®

For the political determinants of regime duration we inellameasure of political stability
and a measure of divided government. The political stgbileriable indicates the amount of
recent turnover in the government from the Database ofifallitnstitutions (Beck et al. 2003).

This variable measures the extent of turnover in the keystmtimakers of a government in any

8t has become well known in the 1990s that countries’ actxeth@nge rate policies differ from what they report to
the IMF or announce to the public. Since what matters is nattyblicy makers say but what actually happens, many
authors have now turned to looking at what actually happéméue exchange rate via such de facto classifications.

®Openness (i.e., exports plus imports divided by GDP and BR®PPPP-adjusted GDP come from the Penn World
Tables. The large inflation indicator is 1 if a country had eefy falling exchange rate, which would typically be
associated with high inflation, as defined in Reinhart andoRdgetween the current year and 1950. The measure of
capital account openness is from Chinn and Ito (2006).

OMany of the variables that we wanted to include were missiradrost half the cases. This problem is exacerbated
here since when a variable that is included in the selectiolton is missing in the year a duration begins, the entire
duration is omitted. The variables we were forced to omilude trade balance, reserves, capital controls, openness
to capital flows, and political changes.
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one year. We also include a variable from the same data semthasures the extent to which
the executive controls the legislature. This divided gougnt measure is equal to 1 if the chief
executive’s party is in control of the legislature and 0 otvise!' Both variables are lagged by

one year to avoid simultaneity issues.

6.2 Results

Table 3 presents the results from three different models:fitlst provides estimates from our
duration with selection estimator while the latter two gmrtsseparate models of the decision to
start a peg and the duration of observed pegs. Consider fsefults from the former. For the
selection equation we find that size and past experiencema&thaller countries are more likely to
adopt a peg although the coefficient on the log of GDP bare$ges weak significancg & .103).
Also, countries that had high inflation or moved from a peg tiveely falling peg” in the past are
significantly less likely to choose a peg. Other variablesraot statistically significant. For the
duration model the only statistically significant variaidepolitical instability. A large turnover
in the previous year is associated with a higher likelihobdroexit from a peg with a p-value of
.036. The fact that other variables are not statisticafipisicant does not mean there is not other
information available: a comparison of the probit duratioodel that does not control for selection
and the probit model that does reveals some interestingaton.

[Table3Here]

Importantly, our results indicate that accounting for fpllesnon-random sample selection mat-
ters for understanding the duration of exchange rate pegsseldifferences manifest themselves
in a number of ways. First, the estimate of the correlationvben the selection model and the
duration model is positive and significant at the .05 Ié¢eThe parameter value indicates a cor-
relation of 0.81 between the errors for the equation modédl decision to start a peg and the
error for first year of the duration of a new spell. The sigaifitdecay parameter indicates that this
correlation decreases over the course of that spell. ledses by about half each year, dropping to

0.46 in the second year and 0.26 in the third year. Furtheliagtion of Equation 7 indicates that

1These are the variables labeled STABS and ALLHOUSE, resdgtand are the same variables used in Leblang
and Satyanath (2008).

2In order to facilitate estimation we use the inverse of FisshZ transformation so that, lies between -1 and 1
and an exponential transformation so thad positive.
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this combination of parameter values corresponds to a geiinleé covariance matrix (the longest
observed spell is 26 years). Note that of the 164 pegs in aimason sample, 98 end in the their

first year and that almost 143 have ended by their third {#@hus the selection effect has a strong
influence on almost every peg since it is largest exactly whest pegs are ending.

The positive correlation between the error term in the domahodel and the selection equation
supports the idea that countries implement pegs that, ththugy may be difficult to maintain,
offer immediate short-term gains that offset the highebpholity of failure over time. It is also
evidence against the idea that only countries that are ggroor more capable for unobservable
reasons choose to implement pegs.

Accounting for selection changes the interpretation ofdfiect of a number of variables on
the duration of pegged exchange rates. First, the coeffitderthe reserves ratio is negative and
significant at the .10 level in the naive probit model£ .052) but is not near significance in the
selection modely{ = 0.24). Note that the change in significance results mainly froraduction
in the magnitude of the coefficient rather than an inflatiothe standard error. Accounting for
non-random sample selection appears to eliminate induoedlation between reserves and un-
observed factors. Second, the opposite occurs for padlitisgability, which becomes significant
at the .05 level once we account for selection (the p-valles dmmo0.141 to = .036). This is
compatible with the idea that political factors matter mitr@n the economic ability to maintain a
peg with reserve backing. Without controlling for selentit appears that the impact of economic
variables is overstated.

Third, after accounting for selection there remains no ifigant duration dependence. Al-
though the naive probit indicates negative duration depeoel, it appears that this result is almost
entirely driven by unobservables rather than duration deeece per se. Fourth, a direct compar-
ison of the two models also provides evidence for our esomét likelihood ratio test comparing
the combined likelihoods of the two independent models édikelihood of the combined model
produces a3 test statistic value of 24.3, which hag &alue less than .00%.

[Figure4 Here]

13\We lose the other 169 pegs in our data set due to missing daizh v8 particularly problematic in this context. If
a covariate explaining selection is missing at the time tfyethe entire spell is lost since we need to include its@alu
when calculating the likelihood contribution for each sedpsent year of the associated spell.

14The formula for the test statistic is2((—213.092 — 497.228) — (—698.165)).
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In order to better illustrate the differences in the findingsgure 4 plots the hazard function
for exchange rate pegs from the naive and selection modeilstiore. We hold all independent
variables fixed at their median values, with the exceptiotiroé, which we increase from the
first year of a spell up to fifteen years. Because the naive pnobiel exhibits negative duration
dependence, the hazard steadily decreases over time. Tatedunodel with selection, however,
exhibits two competing forces with different effects: ongn the insignificant, but positive, effect
of duration dependence, the other from the decay of theip@sibrrelation over time. In order
to better distinguish these two forces, we predicted thaftakoth accounting for and ignoring
the effect of duration dependence. The lighter dashed $iolates the effect of the correlation as
it decays over time and shows how the hazard decreases wnsespAfter about eight years, the
correlation is basically zero and the hazard remains coheteer time. The black dashed line then
incorporates the estimate of duration dependence, whichewodest at first, ultimately pushes
the hazard to start increasing after about six years. Givahmost of the observed pegs in our
sample end in the first few years, this figure shows that theemaiodel tends to understate the
chance that a peg will fail in the first year by almost 0.1, &t overstates it for the next few

years by about the same amount.

7 Discussion and Conclusions

In this paper we discuss the problem of extending existitignasors for duration models that al-
low for non-random selection to cases with time-varyingaz@ates. This extension is not straight-
forward and, we believe, is best handled by moving from cwaus-time duration models like
the Weibull to discrete-time duration models. Here we uselivariate normal distribution to
construct a full-information maximum likelihood estimatessentially combining standard mod-
els for stochastic truncation and stochastic censorinly iitary dependent variables of interest.
Monte Carlo simulation shows that our estimator generaltpeiorms a naive discrete time dura-
tion estimator when the correlation is nontrivial. An engat application of this estimator to the
duration of pegged exchange rate regimes shows that thenmesf non-random sample selection
greatly influences our conclusions about which factorsenatt

As demonstrated in our empirical application, it is stréfigtward to extend our estimator to
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allow for a discrete time duration process in the selectguméion. An individual has the chance
to begin the duration process at different points in timeuthh all information about selection
occurs in the period in which they ultimately enter the doraprocess. Many political science
applications of this sort raise an additional issue: regpbatvents. For example, countries may
select into conflicts, see the conflicts end, but then setgotnew conflicts in the future. Our
estimator would allow for this and many of the covariatedshadjustments for repeated events
(see, e.g., Box-Steffensmeier and Zorn 2002).

Repeated events suggest the possibility not only of repesgksittion into events, but also
from events back to the selection process. That is, cosntniay select into spells of conflict,
but when they end them they also select back into spells afgpeAccounting for this would
greatly complicate our estimator. If the initial spell ofnflict must condition on factors at the time
of selection, then the subsequent spell of peace would lwagertdition on factors at the end of
conflict and factors at the time of selection into that confli€ven this simple case would involve
a trivariate distribution, with the dimensions continuteggrow with the number of spells. While
the believe this would be a useful extension to develop igpibint we believe it would be difficult
to get estimates in most practical situations.

We also want to consider alternate approaches that treanthieserved heterogeneity through
correlated random effects. This approach has been useaéoaje panel selection estimators for
continuous outcomes of interest (e.g., Kyriazidou 199Ta998). One might be able to extend
these estimators to allow for discrete outcomes of inter€e important difference involves
the timing of the selection mechanism, however: panel telemodels assume that the selection
process occurs each period whereas our estimator assuwsthé®titurs at the beginning of a spell.
Certainly one could think of empirical applications in whittvould be best to model the selection
process as re-occurring in each period of an ongoing spethis approach may prove valuable
on its own. Extending it to allow for a single selection demsfor each spell would correspond
more closely to the structure of out estimator and, we beligxould apply to a wider variety of

empirical situations in political science.
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Table 1. Monte Carlo Simulation Results Comparing FIML Estondb Probit Discrete Duration Estimator, Varying the Decay
Parameter and the Error Correlation

Error Correlation
Decay -0.75 -05 -0.25 0.0 0.25 0.5 075 -0.75 -05 -0.25 0.0 0.25 5 0. 0.75
Parameter FIML Duration (Slope) Naive Probit Duration (Slope)
0.1 Mean 0.518 0.502 0.510 0.575 0.502 0.457
SD 0.057 0.052 0.059 0.044 0.043 0.046
RMSE 0.060 0.052 0.060 0.087 0.043 0.063
0.3 Mean 0.517 0.507 0.498 0.506 0.518 0.628 0.562 0.500 0.453 0.408
SD 0.056 0.053 0.054 0.053 0.049 0.044 0.043 0.046 0.043 0.045
RMSE 0.059 0.054 0.055 0.054 0.052 0.136 0.076 0.046 0.063 0.102
1.0 Mean| 0.510 0.505 0.496 0.503 0.507 0.507 0.509.611 0.580 0.541 0.503 0.464 0.416 0.374
SD| 0.054 0.055 0.054 0.052 0.052 0.048 0.04D2.048 0.047 0.046 0.044 0.046 0.045 0.043
RMSE| 0.055 0.055 0.054 0.052 0.052 0.049 0.04®.121 0.093 0.062 0.044 0.059 0.095 0.133
FIML Duration (Intercept) Naive Probit Duration (Intercept
0.1 Mean -1.016 -0.997 -0.976 -1.187 -0.999 -0.819
SD 0.118 0.093 0.120 0.048 0.044 0.046
RMSE 0.529 0.506 0.491 0.688 0.501 0.322
0.3 Mean -0.995 -0.996 -0.994 -0.998 -1.004 -1.261 -1.131 -1.000 -0.871 -0.729
SD 0.108 0.097 0.092 0.096 0.077 0.047 0.045 0.045 0.045 0.044
RMSE 0.507 0.506 0.503 0.507 0.510 0.762 0.632 0.502 0.373 0.233
1.0 Mean|-0.995 -0.993 -0.980 -1.004 -1.010 -1.018 -1.014.208 -1.146 -1.076 -1.003 -0.923 -0.840 -0.747
SD| 0.077 0.083 0.081 0.094 0.079 0.072 0.06@0.048 0.049 0.046 0.045 0.046 0.046 0.050
RMSE| 0.501 0.500 0.487 0.513 0.517 0.523 0.5149€.710 0.648 0.577 0.505 0.425 0.344 0.252

Notes. Results based on 100 trials, with 1000 units and spells @asigmto 20 periods. Estimates from a handful of trials that
failed to converge are excluded. Holes represent infeasibinbinations of correlation and decay parameters. Sesr ffap

additional details.
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Table 2: Monte Carlo Simulation Results for Selection Equeind Selection Parameters, Varying the Decay Parametehariiror

Correlation
Error Correlation
Decay -0.75 -05 -0.25 0.0 025 05 075 -0.75 -05 -0.25 0.0 0.25 5 0. 0.75
Parameter Selection Equation (Slope) Selection Equation (Intefcept
0.1 Mean 1.009 1.004 1.002 -0.502 -0.502 -0.497
SD 0.064 0.062 0.065 0.052 0.047 0.049
RMSE 0.064 0.062 0.065 0.501 0.500 0.505
0.3 Mean 1.003 1.003 1.007 1.003 1.005 -0.501 -0.504 -0.500 -0.501 -0.504
SD 0.065 0.064 0.066 0.061 0.059 0.052 0.051 0.050 0.051 0.048
RMSE 0.065 0.064 0.066 0.061 0.059 0.501 0.499 0.503 0.502 0.499
1.0 Mean| 1.002 1.000 1.006 1.002 1.003 1.002 1.00@.504 -0.500 -0.500 -0.502 -0.503 -0.501 -0.500
SD| 0.060 0.063 0.060 0.065 0.062 0.062 0.060.046 0.051 0.051 0.047 0.048 0.049 0.051
RMSE| 0.060 0.063 0.060 0.065 0.062 0.062 0.060.498 0.502 0.502 0.500 0.499 0.501 0.502
Correlation Parameter Correlation Decay Parameter
0.1 Mean -0.251 0.005 0.243 -1.785 -1.249 -3.383
SD 0.155 0.166 0.194 3.368 5.761 6.656
RMSE 0.155 0.166 0.194 3.407 5.856 6.744
0.3 Mean -0.514 -0.266 -0.007 0.259 0.528 -1.025 -0.934 -1.026 -1.395 -1.494
SD 0.141 0.140 0.169 0.174 0.206 0.656 2.354 5.446 3.919 0.694
RMSE 0.142 0.141 0.169 0.174 0.208 0.679 2.369 5.449 3.924 0.754
1.0 Mean|-0.762 -0.514 -0.283 0.000 0.258 0.529 0.76D.031 0.168 0.194 -0.922 -0.263 -0.117 -0.285
SD| 0.420 0.138 0.127 0.163 0.154 0.276 0.833.096 1.295 2.035 4.705 3.120 0.802 0.428
RMSE| 0.420 0.138 0.131 0.163 0.154 0.278 0.834.096 1.306 2.045 4.794 3.131 0.811 0.514

Notes. Results based on 100 trials, with 1000 units and spells asigmto 20 periods. Estimates from a handful of trials that
failed to converge are excluded. Holes represent infeasibinbinations of correlation and decay parameters. Sesr ffap
additional details.



Table 3: FIML Duration and Selection Estimator versus Ndebit Estimates of Pegged Ex-
change Rate Regime Initiation and Duration, 1960-2004

FIML Duration Naive Probit
and Selection Duration Selection
Coef. SE Coef. SE Coef. SE
Selection
Trade Openness 0.028  0.279 0.036  0.285
GDP (log) —0.048  0.029 —0.047  0.031
Recent Hyperinflation —0.383%x 0.115 —0.430%* 0.127
Unified Government (Lagged) 0.080 0.115 0.063  0.117
Stability (Lagged) 0.106  0.153 0.129  0.153
Capital Account Openness | —0.004  0.046 —0.016  0.055
Time 0.024  0.033 0.032  0.036
Time Squared —0.000  0.001 —0.001  0.001
constant —0.320  0.801 —0.351  0.828
Duration
Trade Openness —0.092  0.380 —0.268  0.500
GDP Growth 0.613 0.504  0.808 0.679
Reserves/Imports —0.386  0.331 —0.722% 0.372
Exports/Imports (logged) —0.045 0.172  0.012  0.256
Stability (Lagged) 0.440% 0.210  0.370  0.251
Unified Government (Lagged)—0.074  0.161 —0.175  0.200
Spell Time 0.035 0.034 —0.182%x 0.038
constant —1.168%x 0.315  0.250  0.336
Correlation
F~1(p) 1.151%% 0.248
p 0.818+x 0.082
In(9) —0.548% 0.239
) 0.578%* 0.138
Observations 1628 353 1439
Final Log-likelihood -698.165 -213.092 -497.228

Notes.* indicatesp < .10 with a two-tailed test; ** indicateg < .05. Standard errors clus-
tered on country. Likelihood ratio test for two independeqtiations versus constrained
FIML estimator:x3 = 24.3 (p = .0000053).
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Figure 1. Examples of Correlation Over Time, Varying Init@rrelation and Decay Parameter
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Notes.p; = poexp(—d(t — 1)).
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Figure 2: Maximal Absolute Correlation in the First Periocadbpell by Maximum Spell Length,
for Different Rates of Decay
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Figure 3: Kernel Density Plots of Slope Coefficient Estimditesr Monte Carlo Analysis, Varying
Initial Correlation and Correlation Decay Rate
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Notes. Constructed from results reported in Table 1. The first patamisted is the correlation
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Figure 4: Predicted Hazards for Pegged Exchange Rate Reginatidns
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Notes. Constructed from results reported in TalBle All variables held constant at the median
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