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1 Introduction

In real-life dynamic interactions, unawareness of players regarding the relevant actions
available to them is at least as prevalent as uncertainty regarding other players’ strategies,
payoffs or moves of nature. Players frequently become aware of actions they (or other
players) could have taken in retrospect, when they can only re-evaluate the past actions
chosen by partners or rivals who were aware of those actions from the start, and hence
re-assess their likely future behavior. Yet, while uncertainty can be captured within the
standard framework of extensive-form games with imperfect information, unawareness
and mutual uncertainty regarding awareness require an extension of this framework.

Such an extension is the first task of the current paper.

At first, one may wonder why the standard framework would not suffice. After all, if
a player is unaware of an action which is actually available to her, then for all practical
purposes she cannot choose it. Why wouldn’t it be enough simply to truncate from the

tree all the paths starting with such an action?

The reason is that the strategic implications of unawareness of an action are distinct
from the unavailability of the same action. To see this, consider the following standard
“battle-of-the-sexes” game (where Bach and Stravinsky concerts are the two available

choices for each player)

augmented by a dominant Mozart concert for player 1I:

1]
B S M

Bl 31 0,0 0,4

I's| 0,0 1,3 0,4

M| 0,0 0,0 2,6

The new game is dominance solvable, and (M,M) is the unique Nash equilibrium.

Suppose that the Mozart concert is in a distant town, and II can go there only if player

I gives him her car in the first place: Here, if player I doesn’t give the car to player II,
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player II may conclude by forward induction that player I would go to the Bach concert
with the hope of getting the payoff 3 (because by giving the car to II, player I could have
achieved the payoff 2). The best reply of player II is to follow suit and attend the Bach
concert as well. Hence, in the unique rationalizable outcome, player I is not to give the

car to player II and to go to the Bach concert.!

But what if, instead, the Mozart concert is in town but player II is initially unaware
of the Mozart concert, while player I can enable player II to go to the concert simply by
telling him about it? If player II remains unaware of the Mozart concert, then neither
does he conceive that player I could have told him about the Mozart concert, and in
particular he cannot carry out any forward-induction calculation. For him, the game is
a standard battle-of-the-sexes game, where both actions of player I are rationalizable.

This strategic situation is depicted in Figure 2.

The strategic situation is not a standard extensive-form game (more on this in Section
2.6 below). If player I chooses not to tell player II about the Mozart concert, then player
II's information set (depicted in blue) consists of a node in a simpler game —namely the

one-shot battle-of-the-sexes with no preceding move by player I.

This is a simple example of the general novel framework that we define in Section 2 for
dynamic interaction with possibly mutual unawareness of actions, generalizing standard
extensive-form games. The framework will not only allow modeling of situations in which
one player is certain that another player is unaware of portions of the game tree, as in the
above example, but also of situations in which a player is uncertain regarding the way
another player views the game tree, as well as situations in which the player is uncertain
regarding the uncertainties of the other player about yet other players’ views of the game

tree, and so forth.

For a discussion of forward induction in battle-of-the-sexes games see van Damme (1989).
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In fact, this framework allows not just for unawareness but also for other forms of
misconception about the structure of the game. Section 6 specifies further properties
obtaining in generalized extensive-form games where the only source of players ‘miscon-
ception’ is unawareness and mutual unawareness of available actions and paths in the
game. Since we focus on this type of unawareness, most of the examples in the paper
satisfy the further properties specified in Section 6. Nevertheless, modeling awareness of

unawareness does require the general framework in Section 2, as explained at its end.

In this new framework, for each information set of a player her strategy specifies —
from the point of view of the modeler — what the player would do if and when that
information set of hers is ever reached. In this sense, a player does not necessarily ‘own’
her full strategy at the beginning of the game, because she might not be initially aware
of all of her information sets. That’s why a sensible generalization of Pearce’s (1984)

notion of extensive-form rationalizability is non-trivial.

In Section 3 we put forward a modified definition, prove existence, and show the
sense in which it coincides with extensive-form rationalizability in standard extensive-

form games.

We focus here on a rationalizability solution concept rather than on some notion of
equilibrium. While an equilibrium is ideally interpreted as a rest-point of some dynamic
learning or adaptation process, or alternatively as a pre-meditated agreement or expec-
tation, we find it difficult to carry over such interpretations to a setting in which every

increase of awareness is by definition a shock or a surprise. Once a player’s view of



the game itself is challenged in the course of play, it is hard to justify the idea that a

convention or an agreement for the continuation of the game are readily available.

We chose to focus on extensive-form rationalizability because it embodies forward
induction reasoning. If an opponent makes a player aware of some relevant aspect of
reality, it is implausible to dismiss the increased level of awareness as an unintended
consequence of the opponent’s behavior. Rather, the player should try to rationalize
the opponent’s choice, re-interpret the opponent’s past behavior, and try to infer from
it the opponent’s future moves. Extensive-form rationalizability indeed captures a ‘best

rationalization principle’ (Battigalli, 1997).

With rationalizability, generalized games are necessary for properly modeling un-
awareness; trying to model unawareness by having the unaware player assigning prob-
ability zero to the contingency of which she is unaware might give rise to a completely
different rationalizable behavior, which does not square with unawareness in the proper

sense of the word. To see this consider the following example.

A Decision Maker (DM) has to choose between two policies, ag and a;. Before choos-
ing she gets a recommendation from an expert via a narrow communication channel,
through which the expert can recommend either “0” or “1”. The expert makes the rec-
ommendation after observing the state of nature, which may be either ~, or 7, and which
the DM does not see. The interests of the expert and the DM are completely aligned:
They each bear a cost of 1 if ay is implemented when the state of nature is vy or vice
versa. The expert furthermore bears a cost of 10 from “lying”, i.e. from recommending

“0” when the state of nature is 7; or recommending “1” when the state of nature is y.

Assume the DM is aware only of the state 7y and unaware of +;. The dynamic

interaction is hence modeled by the generalized game in Figure 3.

In this generalized game the only extensive-form rationalizable strategy of the DM is
to always implement the policy ag: she does not conceive of a contingency that would
make the policy a; superior to ag even if she hears from the expert the recommendation
“1”; in such a case she regrettably concludes that the expert behaved in an irrational

way and bore the cost of “lying”.

However, if we were to model the DM alternatively as being aware of «; but assigning
probability zero to it, the strategic interaction would be modeled by the standard game

in Figure 4.

In this game the unique extensive-form rationalizable strategy of the DM is to choose
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ao upon hearing “0” from the expert, but to implement a; upon hearing the recommen-
dation “1”7. Indeed, extensive-form rationalizability requires the DM to base her choice
on a system of beliefs about the expert’s strategies with which at every information set
of hers she maintains a belief that best rationalizes the choices of the expert which could
have led to that information set. In particular, upon hearing the recommendation “1”
from the expert, the only way for the DM to rationalize it is to assume that the state of
nature is nevertheless v, where recommending “1” is strictly dominant for the expert;

and in 7, the optimal choice for the DM is a;.

Conceptually, upon hearing the surprising recommendation “1” both choices of the
DM have their internal logic. The former gives priority to “only 7o is conceivable”,
the latter to the rationality of the expert. But in the latter case, if initially the DM is
genuinely unaware of v, there is no reason why the DM would conceive precisely of v, and

not of some alternative description ~; of nature that would also rationalize the expert’s



recommendation “1”; some such conceptualizations 7} need not necessarily induce the
DM to adopt the expert’s recommendation. Generalized games lend themselves also
to modeling such misconceptions that may arise upon a surprise, as demonstrated in

Figure 5. Here, the DM’s rationalizable strategy is to choose ay also upon hearing the

Figure 5:
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(surprising) recommendation “1” | because the DM believes this recommendation was
strictly dominant for the expert but that her interest and those of the expert are now

opposed.

Our framework for dynamic interaction under unawareness seems to be simpler than
the one proposed by Halpern and Régo (2006) and Régo and Halpern (2007), in which

they investigated the notions of Nash and sequential equilibrium, respectively.?

2The simplification obtained in our framework is due to the fact that our initial building block is
a tree representing physical moves, with information sets defined only in the sub-trees which represent
subjective views of the game (and subjective views thereof, etc.); in contrast, Halpern and Régo (2006)
had information sets defined already in their basic tree. As a result, not all sub-trees could be consid-
ered, and Halpern and Régo (2006) had to postulate additional conditions relating the information sets
in sub-trees to those of the basic tree.
Our framework is also more parsimonious than the one proposed by Feinberg (2009). Feinberg (2009)
defines unawareness with analogous properties both for static and dynamic games, by explicit unbounded
sequences of mutual “views” of the game. In his dynamic setting, a view is identified with a decision
node. This means that even a standard extensive-form game has to be described in Feinberg (2009) by
infinitely many copies of the the same game tree, specifying explicitly how each player views the game
in each of her decision nodes; how each player views, in each of her decision node, the way in which each
other player views the game in each of their decision nodes; etc. In our setting such an infinite replication



1.1 Related Literature

Our framework for dynamic interaction under unawareness seems to be significantly sim-
pler than the one proposed by Halpern and Régo (2006) and Régo and Halpern (2007),
in which they investigated the notions of Nash and sequential equilibrium, respectively.
The simplification obtained in our framework is due to the fact that our initial building
block is a tree representing physical moves, with information sets defined only in the
sub-trees which represent subjective views of the game (and subjective views thereof,
etc.); in contrast, Halpern and Régo (2006) had information sets defined already in their
basic tree. As a result, not all sub-trees could be considered, and Halpern and Régo
(2006) had to postulate additional conditions relating the information sets in sub-trees

to those of the basic tree.

Our framework is also more parsimonious than the one proposed by Feinberg (2009).
Feinberg (2009) defined unawareness with analogous properties both for static and dy-
namic games, by explicit unbounded sequences of mutual “views” of the game. In his
dynamic setting, a view is identified with a decision node. This means that even a
standard extensive-form game has to be described in Feinberg (2009) by infinitely many
copies of the the same game tree, specifying explicitly how each player views the game
in each of her decision nodes; how each player views, in each of her decision node, the
way in which each other player views the game in each of their decision nodes; etc. In
our setting such an infinite replication is avoided, since our definition of information sets

encapsulates, by its design, all these mutual points of view.?

Li (2006) considered a model for dynamic unawareness with perfect information, in
which at each decision node a player may have a subjective view of the game tree. Her

model is more restricted than ours, since it requires there to be one particular default

is avoided, since our definition of information sets encapsulates, by its design, all these mutual points of
view.

Another important difference is that Feinberg (2009) does not define perfect recall, and this might
hamper the extension of known solution concepts such as sequential equilibrium or extensive-form ra-
tionalizability that rely on perfect recall. Extensive-form rationalizability is the focal solution concept
that we extend, define, and analyze in our paper, and to this effect we extend the definition of perfect
recall to our setting.

3 Another important difference is that Feinberg (2009) does not define perfect recall, and this might
hamper the extension of known solution concepts such as sequential equilibrium or extensive-form ra-
tionalizability that rely on perfect recall. Extensive-form rationalizability is the focal solution concept
that we extend, define, and analyze in our paper, and to this effect we extend the definition of perfect
recall to our setting.



path of which all players are commonly aware, and since it does not allow for imperfect

information.

Ozbay (2007) studied sender-receiver games, in which an ‘announcer’ can make an
unaware decision maker aware of more states of nature before the decision maker takes
an action. Such games can also be naturally formulated as a particular instance of
our framework. For these games Ozbay studied an equilibrium notion incorporating
forward-induction reasoning. Filiz-Ozbay (2007) studied a related setting in which the
aware announcer is a risk neutral insurer, while the decision maker is a risk averse or
ambiguity averse insuree. At equilibrium, the insurer does not always reveal all relevant

contingencies to the insuree.

In a companion paper, Heifetz, Meier and Schipper (2011a) we introduce a refine-
ment of extensive-form rationalizability, called prudent rationalizability, and show that
it rules out less plausible outcomes in examples due to Pearce (1984) and Ozbay (2007).
We apply to a model of verifiable communication of Milgrom and Roberts (1986) and
show that prudent rationalizability implies full unraveling of information in their model.
Yet, if the receiver is unaware of a dimension, then full unraveling does not need to oc-
cur. Thus, this is yet another example in which unawareness has strategic implications
which are genuinely different than those implied by asymmetric information. In another
companion paper, Heifetz, Meier and Schipper (2011b), we characterize extensive-form
rationalizability (resp. prudent rationalizability) in generalized extensive-form games by
iterated elimination of conditional strictly (resp. weakly) dominated strategies in the

associated generalized normal-form game.?

Our aim is to provide a general framework for modeling misperceptions about the
availability of actions in dynamic strategic situations. Different kinds of perception biases
among players in games have been a popular topic in the recent literature on behavioral
game theory. For instance, in static games Eyster and Rabin (2005) analyze players
with correct conjectures about opponents’ actions but misperceptions about how those
opponents’ actions are correlated with the opponents’ information. In multi-stage games
with moves of nature, Jehiel (2005) studies players that bundle nodes at which other
players choose into “analogy classes”, correctly anticipate the average behavior for each
analogy class, and thus may have misperceptions about how others’ behavior is related

others’ information. Recently there has been a renaissance of non-equilibrium iterative

4Currently we are unaware of further papers focusing directly and explicitly on dynamic
games with unawareness. The literature on unawareness in general is growing fast — see e.g.
http://www.econ.ucdavis.edu/faculty /schipper /unaw.htm



solution concepts in behavioral game theory like level-k thinking and related models (e.g.
Stahl and Wilson, 1995, Camerer, Hu and Chong, 2004, Crawford and Iriberri, 2007).
Note that our iterative solution concept, extensive-form rationalizability, does not only

provide behavioral predictions in the limit but also at every finite level of rationalization.

2 Generalized extensive-form games

To define a generalized extensive-form game I', consider first, as a building block, a finite
game with perfect information and simultaneous moves ® with a set of players I, a set of
decision nodes Ny, active players I,, at node n with finite action sets A¢ of player i € I,
(for n € Np), chance nodes Cjy, and terminal nodes Z, with a payoff vector (p7),.; € R’
for the players for every z € Z,. The nodes Ny = Ny U Cy U Z, constitute a tree,
i.e. they are partially ordered by a precedence relation < with which the (No, <) is an
arborescence (that is, the predecessors of each node in Ny are totally ordered by <), for
e, Ay at
n and n’s immediate successors, and there is a unique node in Ny with no predecessors

— the root of the tree.

each decision node n € Ny there is a bijection 1, between the action profiles [ |

2.1 Partially ordered set of trees

Consider now a family T of subtrees of Ny. A subtree is defined by a subset of nodes
N} C Ny for which (]Vo, <) is also a tree (i.e. an arborescence in which a unique node

has no predecessors). For two subtrees 77, 7" € T we write
T/ < T//

to signify that the nodes of T" constitute a subset of the nodes of T”.

One of the trees 77 € T is meant to represent the modeler’s view of the paths of
play that are objectively feasible.> Each other tree T' € T represents the feasible paths
of play as subjectively viewed by some player at some node in Ti; or as the frame of

mind attributed to the player at some node of T} by another player (or even by the same

SWe follow here the terminology of Osborne and Rubinstein (1994) and Dubey and Kaneko (1984).

SIn generalized extensive-form games modeling unawareness (see Section 2.5 below), T} will coincide
with Ny. In more general applications including delusion (like in the game of Figure 5 above) or awareness
of unawareness (see Section 2.6 below) Ny may include additional nodes not in 7;. In such a case Ny
need be one of the trees in T.

10



player at a later stage of the game, after her awareness regarding the feasible paths has
evolved), whose own frame of mind regarding the feasible paths is represented by yet
another 7" € T; and so forth.

Denote by NI the set of nodes in which player i € I is active in the tree T' € T, and
by Ni = Urer N

We require three properties:

1. All the terminal nodes in each tree T' € T are copies of nodes in Z;.

2. For every tree T' € T, every node n € T and every active player i € [,, there exists a
subset of actions A% C A such that 1, maps the action profiles AT =]._, A%T

onto n’s successors in 7.

i€ln

3. If for two decision nodes n, n’ € NI (i.e. i € I,N1I,) it is the case that A° NA?, #£ (),
then Azl - 14;/.7

Property 1 is needed to ensure that each terminal node of each tree T' € T is associated
with well defined payoffs to the players. Property 2 means that at every node n € T the
actions available to each active player ¢ € I, are independent of the actions the other
active players choose at n (and hence AL = [Lc I, AbT is a product set). Property 3
means that i’s active nodes NI are partitioned into equivalence classes, such that the
actions available to player i are identical within each equivalence class and disjoint in
distinct equivalence classes. It will be needed for the definition of information sets which

follows shortly.®
In each tree T' € T denote by np the copy in T of the node n € N, whenever the copy

of n is part of the tree T, with the caveat that if the move a! leads from n to n’/, then
a' leads also from the copy nr to the copy n%. Denote by N the union of all decision
nodes in all trees T" € T, by C' the union of all chance nodes, by Z the union of terminal
nodes, and by N = N U C U Z (copies ny of a given node n in different subtrees T' are

distinct from one another, so that N is a disjoint union of sets of nodes).

"Sometimes the modeler may want to impose an additional property: If in a subtree 7" € T the
probabilities of reaching 7y, ... 7 € N from the chance node ¢ € C are p?* > 0,...,p™ > 0 but some of
these nodes do not appear in a subtree 77 < T", then the probabilities of reaching the remaining nodes
emanating from ¢ are renormalized in so as to sum to 1 in 7. We do not impose this property here
since it may be natural in some contexts but unnatural in others.

8The idea will be that in a given tree T, each action will correspond only to one view the player can
have regarding the way the dynamic interaction has evolved that far, and will hence be available at (all

the nodes of) a unique information set.

11



In what follows, when refering to a node in NV we will typically avoid the subscript T

when no confusion may arise. For a node n € N we denote by 7}, the tree containing n.

2.2 Information sets

In standard extensive-form game, an information set m; (n) of a player i is both (1) the
set of nodes that the player considers as possible at n, and (2) the set of nodes in which
the player has the same state of mind as in the nodes which she considers as possible at

n.

In generalized games the two notions need not coincide: at a node n of the tree
T, € T, the player may conceive the feasible paths to be described by a differernt tree
T" € T, and in particular to conceive the possible nodes 7; (n) she may currently be in
to be a subset of 7" rather than of 7,,, and in such case n will not be contained in m; (n).
The information set 7; (n) thus generalizes (1) above; the set of nodes (2) at which the
player conceives 7; (n) to be possible may include additional nodes which belong to trees

outside the tree 7" containing m; (n).

Formally, for each decision node n € N, define for each active player ¢ € I, an

information set m; (n) with the following properties:

10 Confinement: ; (n) C T for some tree 7.
I1 No-delusion given the awareness level: If m;(n) C T, then n € m;(n).
12 Introspection: If n’ € m; (n) then m; (n') = m; (n).

I3 No divining of currently unimaginable paths, no expectation to forget currently
conceivable paths: If n’ € m; (n) C T (where 77 € T is a tree) and there is a path
n',...,n” € T" such that i € I, N L,» then m; (n") C T".

14 No imaginary actions: If n’ € 7; (n) then A’, C A?.

I5 Distinct action names in disjoint information sets: For a subtree T', if n,n’ € T and
Al = A!, then 7; (n') = m; (n).

16 Perfect recall: Suppose that player 7 is active in two distinct nodes n; and ny,
and there is a path nqy,ns,...,n; such that at n; player i takes the action a;. If
n’ € m; (ny), then there exists a node n} # n' and a path n,ni,...,n, = n’ such

that m; (n}) = m; (n1) and at n player i takes the action a;.

12



The following figures (Figure 6) illustrate properties 10 to I6.
Properties (I1), (I2), (I4), and (I5) are standard for extensive-form games, and prop-

erties (I0) and (I6) generalize other standard properties of extensive-form games to our
generalized setting. The essentially new property is (I3). At each information set of a
player, property (I3) confines the player’s anticipation of her future view of the game to
the view she currently holds (even if, as a matter of fact, this anticipation is about to be

shuttered as the game evolves).

We denote by H; the set of i’s information sets in all trees. For an information set
hi € H;, we denote by T}, the tree containing h;. For two information sets h;, h; in a
given tree T, we say that h; precedes h/ (or that h] succeeds h;) if for every n’ € h/ there
is a path n,...,n’ in T such that n € h;. We denote h; ~> h!.

Remark 1 The following property is implied by I2 and 14: Ifn',n” € h; where h; = m; (n)
is an information set, then A, = A!,,.
Proof. 1If n’,n” € h; where h; = m;(n) is some information set, then by introspection
(I2) we must have ;(n') = m;(n”) = m;(n). Hence by (I14) A?, C A!, and A', C A’,. O

If n € h; we write also Ay, for A%.

Remark 2 Properties 10, 11, 12 and 16 imply no absent-mindedness: No information

set h; contains two distinct nodes n,n’ on some path in some tree.

Proof. Suppose by contradiction that there exists an information set h; with a
node n € h; such that some other node in h; precedes n in the tree T,. Denote by
n’ the first node on the path from the root to n that is also in h;. By I1 we have
n’ € m; (n') = h; = m (n), and by perfect recall I6 there exists a path n” = n/,....n, =n/,
such that at n” player ¢ had the same state of mind as in n’, i.e. m;(n”) = m;(n’). By I1,

we have n” € m;(n”) = m;(n') = h; and n” is a predecessor of n/, a contradiction. O

The perfect recall property 16 and Remark 2 guarantee that with the precedence
relation ~~ player i’s information sets H; form an arborescence: For every information
set h, € H;, the information sets preceding it {h; € H; : h; ~ h.} are totally ordered by

o
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Figure 6: Properties 10 to 16
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For trees T, 7" € T we denote T' — T’ whenever for some node n € T and some
player ¢ € I, it is the case that m; (n) C T". Denote by < the transitive closure of .
That is, T < T" if and only if there is a sequence of trees T,T",...,T” € T satisfying
T—T — - =T

2.3 Generalized games

A generalized extensive-form game I' consists of a partially ordered set T of subtrees of
a tree Ny satisfying properties 1-2 above, along with information sets m; (n) for every

neT,TeT and1 € I,, satisfying properties 10-16 above.

For every tree T' € T, the T'-partial game is the partially ordered set of trees including
T and all trees 7" in I' satisfying 7" < T”, with information sets as defined in I". A T-

partial game is a generalized game, i.e. it satisfies all properties 1-2 and I0-I6.
We denote by H! the set of i’s information sets in the T-partial game.

For example, for the generalized game I' in Figure 5, the tree Ny appears below in
Figure 7. N starts by nature choosing between 7, (following which ag is the optimal
action for both players), v, (following which a; is optimal for both) or 7/ (following which
ag is optimal for the Decision Maker (DM) but suboptimal for the Expert (E)).

Figure 7:

0,0 -1,-10,-10-1,-11 -1,-11 0,-10-1,-1 0,0 0,-11 -1,-10 0,-1 ~-1,0

However, in the generalized game I' of Figure 5 the tree which represents the physical
paths of the game is not Ny but rather T}, which appears in the upper left part of Figure 5.
Moreover, N is none of the trees in T = {T}, T, T3} of I', and hence Ny does not appear

in Figure 5.

In T if the Expert, after learning nature’s move, announces ‘0, the DM is unaware of
the fact that nature could have chosen +;. The DM’s frame of mind is hence represented

by the tree T3 at the bottom of figure 5. According to the DM’s conception there she
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does not miss any information, and her information set is a singleton. This single node is
also the unique node considered as possible by the DM at T} after hearing the message ‘0’
(and hence the two arrows going from T downwards to that singleton in T3). Moreover,
under this frame of mind T3, by which only =, is feasible, the DM conceives that she

would have a singleton information set in T3 even if E were to announce ‘1’.

The truth of the matter, as portrayed in the tree of physical paths T}, is different.
If E announces ‘1’, the DM gets to believe that nature could have chosen not between
70 and y; (as was actually the case) but rather between 7, and ;. This is portrayed by
the fact that after hearing ‘1’ in 77, the nodes that the DM considers as possible are in
T, the tree in the upper left part of figure 5. The information set of the DM in 75 after
hearing ‘1’ contains two nodes, corresponding to the two possible choices of nature that

the DM considers as possible there — vy and ~.

Moreover, in this state of mind the DM is surprised, in the sense that she realizes
that had she heard ‘0’ from the Expert, she would not suspect that nature could choose
anything beyond ~y. This is reflected by the fact that in 75, the information set of the
DM had she heard ‘0’ is contained in T3.

The Tij-partial game is the entire game I' with the set of trees {77,T5,73}. The
Tr-partial game consists only of the trees {T%,T3}. The Tj-partial game is a standard

extensive-form game with the unique tree 7.

2.4 Strategies

A (pure) strategy
s; €5; = H Ahi

h;,€H;

for player ¢ specifies an action of player i at each of her information sets h; € H;. Denote

by
s=1]s
Jjel

the set of strategy profiles in the generalized extensive-form game.

If s; = (ahi)hieHi € 5;, we denote by

S; (hl) = Qp,

7

the player’s action at the information set h;.
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With the strategy s;, at node n € N; define the player’s action at n to be s; (m; (n)).
Thus, the strategy s; specifies what player ¢ does at each of her active nodes n € N;,
both in case n € m; (n) and in case m; (n) is a subset of nodes of a tree which is distinct

than the tree T}, to which n belongs.

As Rubinstein (1991) pointed out, even in standard extensive-form games the inter-
pretation of the notion of a strategy is involved: an action prescribed by a strategy at an
information set which is excluded by an earlier move of that very strategy is implicitly
interpreted in game theory as the beliefs the other players entertain regarding the player’s

move if that information set were reached.

A similar interpretation pertains even more forcefully in generalized games. In a
generalized game I" only the tree T} € T represents the physical paths in the game; every
other tree in T represents the subjective view of the feasible paths in the mind of a player,
or the view of the feasible paths that a player believes that another player may have in
mind, etc. Moreover, as the actual game in 7T} evolves, a player may become aware of
paths of which she was unaware earlier, and the way she views the game may alter as

well.

Thus, in generalized extensive-form games, a strategy cannot be conceived as an
ex ante plan of action, both for the reason elaborated by Rubinstein (1991) and the
additional reasons above. Formally, a strategy s; of player 7 is a list of answers to
the questions “what would the player do if h; were the set of nodes she considered as
possible?” for h; € H;. This list of answers should be interpreted as follows. For every
given frame of mind 7' € T that player ¢ may entertain about the feasible paths (a frame
of mind which ¢ actually has at some node in the actual game tree T3, or attributed to @
by player j at some node of T} [at which j’s frame of mind may be yet another 7" € T},
etc.),

1. for every information set m; (n) C T the action s; (m; (n)) should be interpreted as
the action that player ¢ actually takes at n under the strategy s;, if and when n is

reached; and

2. for every information set m; (n”) C T" # T the action s; (m; (n”)) should be inter-
preted as the action that player ¢ would have taken at n” if her frame of mind were
T” rather than T'. This means that when player j considers as possible that the
node n” can be reached, j believes that under the strategy s; player ¢ would take

the action s; (m; (n”)) at n”, if and when n” were reached.
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For a strategy s; € S; and a tree T' € T, we denote by s! the strategy in the T-partial
game induced by s; (i.e., s7 (h;) = s; (h;) for every information set h; of player ¢ in the
T-partial game). If R; C S, is some set of strategies of player i, denote by R! the set of
strategies induced by R; in the T-partial game. The set of ¢’s strategies in the T-partial
game is thus denoted by S¥. Denote by ST =[]
T -partial game.

jel SjT the set of strategy profiles in the
We say that a strategy profile s = (s;),.; € S reaches a node n € T if the players’

actions s; (m; (n')),.; , and nature’s moves in the nodes n’ € T' lead to n with a positive
probability. Notice that by property (I4) (“no imaginary actions”), s; (m; (n'));c; is
indeed well defined: even if m; (n') ¢ T for some n’ € T', the action profile s; (m; (n')) ¢, |
is an action profile which is actually available in T" to the active players j € I, at n'.
We say that a strategy profile s € S reaches the information set h; € H; if s reaches

some node n € h;.

We say that the strategy s; € S; reaches the information set h; if there is a strategy
profile s_; € S_; of the other players such that the strategy profile (s;,s_;) reaches h;.
Otherwise, we say that the information set h; is excluded by the strategy s;.

Similarly, we say that the strategy profile s_; € S_; reaches the information set h; if
there exists a strategy s; € S; such that the strategy profile (s;, s_;) reaches h;.

As is the case also in standard games, for every given node, a given strategy profile of
the players induces a distribution over terminal nodes in each tree, and hence an expected

payoff for each player in the tree.

For an information set h;, let s;/ 5? denote the strategy that is obtained by replacing
actions prescribed by s; at the information set h; and its successors by actions prescribed

by 3;. The strategy s;/ 55“ is called an h;-replacement of s;.
The set of behavioral strategies is

I 2.

hieHi

To exemplify the above definitions, consider again the game of figure 5. The Expert
(E) has two information sets in 77, two information sets in 75, and one information set
in T3. The following therefore describes a strategy sg of the expert: ‘0 after vq in T7; ‘1’
after v in T1; ‘07 after 4o in Ty; ‘17 after 7} in Ty; ‘0’ after o in T5.

What about the DM? She has no information sets contained in 73 (!), one information
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set in Ty (with two nodes in it) and two singleton information sets in 73. The following

therefore describes a strategy spys of the DM: play ag in every information sets.

The profile of strategies (sg, spy) described above induces the following actual paths

in Tli

1. If nature chooses 7y, the path is (79, ‘0, ag). Notice that after v, ‘0’ in T3, we
read the choice of the DM by following the arrow that leads to her information set

down in T35, and check her choice with the strategy sp there.

2. If nature chooses 1, the path is (71,°1’, ag). After 71,1 in T}, we read the choice of
the DM by following the arrow that leads to her information set, which this time

is in T5.

Observe that the Expert is never actually (in 77) deluded to think that the strategic
interaction is described by the Ty-partial game, nor is he ever actually (in 77) unaware
so as to think that the strategic interaction is described by T3. Thus, the moves of sg in
T5 (in particular after nature chooses 7], which can never actually happen in reality, i.e.
in 77) describe the DM’s belief about the Expert’s choice that led to her information set
if she believes that the Expert is using the strategy 5% — the restriction of the strategy
sg to the Ty-partial game. Under any solution concept we would need indeed to analyze
what the DM believes at her information set in T, about the Expert’s past actions that
have led her to that information set, and those past moves are determined by a strategy
of the expert in the Tr-partial game. This is the reason that we need to define a strategy
at all the information sets of each player, including those in which he will never actually
move: the latter parts of the strategy become the object of contemplation and analysis
of the other player (or players) when they are deluded or unaware of parts of the actual

game.

2.5 Unawareness

Generalized games can describe many types of games with subjective reasoning. In a
generalized game, a player cannot imagine that she can take an action which is physically
unavailable to her (property 14), but at a given information set 7; (n) she can nevertheless
imagine that in a succeeding information set she will have an action which is actually
nowhere available in the tree 7}, as in the example of Figure 8. Furthermore, she can

imagine that along the path of play another player will forget the history of play, i.e.
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that at a later information set this other player will imagine he is playing in a game tree
which is completely unrelated to the game tree he imagined at an earlier stage along the
path.

Since our main motivation is to analyze games with unawareness rather than games
with arbitrary kinds of subjective reasoning, it is worthwhile spelling out additional
properties of generalized games in which the only reason for players’ misconception of
the game is unawareness (and mutual unawareness) of available actions. In extensive-form
games with unawareness the set of trees T forms a join semi-lattice under the inclusion
partial order relation <. The maximal tree in this join semi-lattice is the modeler’s

objective description of feasible paths of play.

The following additional properties parallel properties of static unawareness structures
in Heifetz, Meier and Schipper (2006).°

U0 Confined awareness: If n € T and i € I, then m;(n) CT" with 7" < T.

Ul Generalized reflexivity: If 77" < T, n € T, m;(n) C T" and T" contains a copy ng+ of

n, then np € m;(n).
U2 Introspection: If n’ € m;(n) then m;(n') = m;(n). (Le. property 12.)

U3 Subtrees preserve awareness: If n € T, n € m;(n), T < T’, and T contains a copy

nr of n, then ny € m(nr).

U4 Subtrees preserve ignorance: If T <X T" <T" n € T"” m;(n) C T and 7" contains

the copy ny of n, then m; (nyp) = m; (n).

U5 Subtrees preserve knowledge: If T < T <T" n e T”, m;(n) CT" and T contains

the copy nr of n, then 7; (ny) consists of the copies that exist in T of the nodes of

5 (n)
The following remark is analogous to Remark 3 in Heifetz, Meier and Schipper (2006).
Remark 3 U5 implies US.

Proof. Ifne T’ ,ne€m(n), T X T’ and T contains a copy nr of n, then by U5 m;(nr)
must consist of the copies that exist in 7" of the nodes of m;(n). Since by assumption

n € m;(n) and the copy nr exists in T, we must have ny € m;(nr). d

9The number of each property corresponds to the respective property in Heifetz, Meier and Schipper
(2006).
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Remark 4 U0 implies 10. Ul implies I1.
Remark 5 U0 is equivalent to 10 and T — T" implies T" <X T.

Proof. 10 and T »— T" implies 7" < T are equivalent to if there exists n € T and i € I,
such that m;(n) CT' then T" <X T. O

All these properties are static properties in the sense that they relate nodes on one tree
with copies of those nodes in another tree. One may wonder about dynamic properties
of unawareness. The following property states that a player can not become unaware

during the play.

DA Awareness may only increase along a path: If there is a path n,...,n’ in some
subtree 7" such that player i is active in n and n/, and m; (n) C T while m; (n’) C T’
then 77 = T.

Recall that 13 is the only completely new property imposed on information sets in

generalized games.

Remark 6 Suppose that U0 to U2 hold. Then DA if and only if 13.

Proof. More precisely, we will show first that if I1 holds, then I3 implies DA. Second,
if U0 and 12 holds, then DA implies I3. This implies the result by Remark 4.

If n,...,n’ is path in T" such that i € I,, N I,,, m;(n) C T while m;(n") C 7" then by I1
we have n € m;(n) C T. Then by I3, m;(n') C T, which implies DA.

If n € m(n) C T and n/,...,n" is path in T such that ¢ € I, N I,» then by 12,
mi(n') = m(n) and thus by DA if pi;(n”) C T” then T" = T'. By U0, if n” € T" then
mi(n”) CT" with T” < T". Hence T” = T’, which implies 13. O

2.6 Awareness of unawareness

In some strategic situations a player may be aware of her unawareness in the sense
that she is suspicious that something is amiss without being able to conceptualize this
‘something’. Such a suspicion may affect her payoff evaluations for actions that she knows
are available to her. More importantly, she may take actions to investigate her suspicion

if such actions are physically available.
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To model awareness of unawareness some of the trees may include imaginary actions
as placeholders for actions that a player may be unaware of and terminal nodes/evaluations
of payoffs that reflect her awareness of unawareness. (The approach of modeling aware-

ness of unawareness by “imaginary moves” was proposed by Halpern and Reégo, 2006.)

Consider the example in Figure 8. In both right and left trees, player 1 can decide

Figure 8: Game form with awareness of unawareness

raise 2's
suspicion

b

whether or not to raise the suspicion of player 2. If he does not, then player 2 can decide
between two actions. Since in this case player 2’s information set is in the lower tree,
she does not even realize that player 1 could have raised her suspicion. If player 1 raises
player 2’s suspicion, then player 2’s information set is in the left tree. She must decide
whether to investigate her suspicion or not. If she doesn’t, then she can decide between
two actions but this time she realizes that player 1 raised her suspicion (and could have
refrained from doing so); and that she could have chosen to investigate, in which case she
may have had ‘something’ else to do, that she cannot conceptualize in advance. Once she
investigates, she becomes aware of two more actions and her information set is in the right
tree. She also realizes that player 1 initially raised her suspicion without being explicitly
aware of those actions of hers by himself. Note that before she decides whether or not to
investigate, she is not modeled as anticipating to be in the right tree, because she cannot

conceptualize the nature of the actions she reveals if and when she investigates.
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2.7 The connection to standard extensive-form games

Harsanyi (1967) showed how to transform games with asymmetric information into games
with imperfect information about a move of nature. Can a similar idea be used to
transform any generalized extensive-form game into a standard extensive-form game?
Given a generalized extensive-form game I with a partially ordered set of trees T, one
could define the transformation of I' to be the extensive-form game with an initial move

of nature, in which nature chooses one of the trees in T.

Notice, however, that the resulting structure would not be a standard extensive-form
game. To see this, notice that every standard extensive-form game has the following
property (E): the equivalence class of nodes in which a player considers as possible a
given possibility set of nodes is identical with that possibility set; this set is called an
information set of the player, and in all of its nodes the player has the same set of
available actions. In contrast, in the transformation considered above for games with
misperceptions, this equivalence class may be a strict super-set of the possibility set. For
example, when the generalized game in Figure 9(a) is transformed so as to have an initial
move of nature, the possibility set for the (unique) player is the right node, while the

equivalence class contains both the right and left node.

Figure 9:

nature nature

a/ bl ¢
af/ am a
(b)

(a)

(c)

Thus, if after adding the initial move of nature the information sets are defined to be
synonymous with the possibility sets, the resulting game would be non-standard, because
for some information set there may be additional nodes outside it in which the player
considers it as possible (as in Figure 9(b), where in the left node the player considers
only the right node as possible). If, in contrast, we choose the alternative definition, by
which an information set is the equivalence class in which a player has a particular set

of nodes that she considers as possible, the resulting game would again be non-standard,
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this time because the actions available to the player in the nodes of a given information
set might not be identical across these nodes (as in Figure 9(c), where in the left node
the player has more available actions than in the right node, even though both are within

the same information set).!?

There is also another aspect that prevents the above transformation from yielding
a standard extensive-form game. In a standard extensive-form game each player has

11 Using Bayes rule, the player therefore

a full-support prior on the moves of nature.
has a well-defined belief about nature at each stage of the game. In contrast, in the
above transformation each player ascribes probability 1 only to one of the initial moves
of nature; moreover, along the path of play the player may switch completely the move
of nature in which she confides even if nothing in the path of play itself imposed such a
switch. Such a switch corresponds to a node in the generalized game in which the player is
de fined as becoming aware of new aspects of the dynamic interaction; such an increase
of awareness may occur even when the physical path of play per se did not imply a
surprise, and may have also been compatible with the player’s previous conception of the
game. Thus, if we do add an initial move of nature to connect the trees of the generalized
game, the player’s (evolving) belief about nature cannot be encapsulated within an initial
probabilistic belief about nature, and must be represented explicitly by a belief system

as part of the definition of the game.

Adding an initial move of nature has a further conceptual drawback. In classical
extensive-form games the implicit assumption is that the players understand the entire
structure of the dynamic interaction as embodied in the game tree.!? Assigning prob-
ability zero to some move of nature is still compatible with realizing what could have
happened if this zero-probability move were nevertheless to materialize. This is concep-
tually distinct from being completely unaware of a subset of paths in the game, and it is
the latter concept that we want to model here. Moreover, as we have seen in the example

of the introduction (Figures 3 and 4), it may lead to behavioral predictions different from

10Tn this example of a game with a single player who is unaware of her action ¢, one could obviously
describe the game simply as a single-person decision problem between a and b. This would not be
possible, however, in more complex games like the one in Figure 2. There, one cannot do away with any
of the nodes in the upper tree or in the lower tree; if these two trees are joined by a preceding move
of nature, then when player 1 doesn’t tell player 2 about the Mozart concert, player 2’s information set
becomes non-standard.

U Moreover, in the classical definition of an extensive-form game the priors of the different players
about nature are actually identical, i.e. the players have a common prior about nature.

12For instance, Myerson (1991, p. 4) puts forward explicitly the tenet that game theory deals with
intelligent players, where “a player in the game is intelligent if he knows everything that we know about
the game and he can make any inference about the situation that we can make.”
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unawareness.

Thus, standard extensive-form games are neither technically fit (without further gen-
eralization) for modeling behavior under dynamic misperceptions and unawareness, nor
do they convey the appropriate conceptual apparatus for modeling such interactions,

hence the need for our definition of generalized games.!?

3 Extensive-form rationalizability

Pearce (1984) defined extensive-form (correlated) rationalizable strategies by a procedure
of an iterative elimination of strategies. The idea behind the definition involves a notion
of forward induction. In generic perfect-information games, rationalizable strategy pro-
files yield the backward induction outcome, though they need not be subgame-perfect
equilibrium strategies (Reny 1992, Battigalli 1997).

In what follows we extend this definition to generalized extensive-form games.
A belief system of player i
b= (b (h)yem, € [T A (55)
h,€H;

T*?l’) about the other players’ strategies in

—1

is a profile of beliefs - a belief b; (h;) € A (S

the Tj,-partial game, for each information set h; € H;, with the following properties

e b; (h;) reaches h;, i.e. b; (h;) assigns probability 1 to the set of strategy profiles of
the other players that reach h;.

o If h; precedes hl (h; ~ hl) then b; (k) is derived from b; (h;) by Bayes rule whenever
possible.

Denote by B; the set of player ¢’s belief systems.

BEven if one nevertheless prefers to model such interactions using an initial move of nature and
generalizing accordingly the notions of information sets and beliefs about nature in standard extensive-
form games, the properties (I0)-(I6) of our definition constitute restrictions on the structure of such
“extended” standard games that are needed in order to guarantee e.g. that the expectations of each
player about future paths are dynamically consistent (property I3) and perfect recall is well-defined
(property 16).
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For a belief system b; € B;, a strategy s; € S; and an information set h; € H;, define
player i’s expected payoff at h; to be the expected payoff for player i in T, given b; (h;),

the actions prescribed by s; at h; and its successors, assuming that h; has been reached.

We say that with the belief system b; and the strategy s; player i is rational at the
information set h; € H; if there exists no action aj € Ay, such that only replacing the
action s; (h;) by aj,, results in a new strategy s; which yields player i a higher expected
payoff at h; given the belief b; (h;) on the other players’ strategies SZL'

We now turn to define extensive-form rationalizability in generalized extensive-form

games.'4

Definition 1 (Extensive-form Rationalizable strategies) Define, inductively, the

following sequence of belief systems and strategies of player i.
B} = B;

R} = {s; € S;: there exists a belief system b; € B}

with which for every information set h; € H; player i is rational at h;

B = {b; € Bf‘l . for every information set h;, if there exists some profile of the other
players’ strategies s_; € R¥ ' = H#i Rf’l such that s_; reaches h;, then b; (h;) assigns
probability 1 to Rk_LT}”}

—i
RF = {s; € S;: there exists a belief system b; € BF with which for every information set

h; € H; player i is rational at h;}

1The following definition generalizes Battigalli’s (1997) definition of (correlated) extensive-form
strategies, which he proved to be equivalent to that of Pearce (1984), with the a slight modification: our
definition requires an extensive-form rationalizable strategy s; to be optimal w.r.t. some belief also at
information sets which are excluded by the actions of s; at some preceding information set.
This means that in standard extensive-form games our definition refines the Pearce-Battigalli definition,
but gives rise to the same plans of action. (A plan of action of a player is an equivalence class of her
strategies which are identical in all the player’s information sets that are not excluded by any of these
strategies.)
Another slight difference between the definition here and that of Battigalli (1997) for standard extensive-
form games is that for a given belief system and a strategy s;, at an information set h; not excluded
earlier by s; Battigalli compares s; to all its h;-replacements, while we restrict attention only to ‘local’ h;-
replacements which alter s; solely at h;. By the one-deviation principle (see e.g. Perea, 2002), for a given
belief system b; a strategy s; is dominated by no h;-replacement at no information set h; unexcluded by
s; if and only if s; is dominated by no ‘local’ h;-replacement at no information set h; unexcluded by s;.
Hence, in standard extensive-form games, at each iteration of the inductive definition below the plans
of actions of the surviving strategies are identical to those surviving Battigalli’s definition.
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The set of player i’s extensive-form rationalizable strategies is
R = RY.
k=1

The definition captures rationality and common strong belief in rationality (Battigalli
and Siniscalchi, 2002): At each information set, a rationalizable strategy should be op-
timal vis-a-vis some belief over the opponents strategy; if the information set is reached
by some tuple of optimal opponents’ strategies (vis-a-vis some beliefs of theirs), then the
player’s belief is further required to be concentrated on such tuples; if, furthermore, the
information set is reached by some tuple of the opponents’ strategies which are optimal
vis-a-vis a belief system of theirs concentrated on optimal strategies of their opponents,

the player’s belief should concentrated on those tuples; and so forth.

In other words, along each feasible path of play, in the first information set an ac-
tive player believes that all her opponents will behave rationally, will believe that their
opponents will behave rationally, etc. If at some information set in the game all the
opponents’ strategy profiles which could lead to that information set fail this ideal con-
dition, the player seeks a best rationalization (Battigalli, 1996) which could have led to

that information set.

For example, if player ¢ has a unique opponent j, who has only two strategies that
lead to an information set of i—s’ which is strictly dominated for j, and s; which is
optimal for j but only under a belief of j that ¢ is (or was, or will be) irrational, then
at that information set i is required to believe that in the sequel j will continue to
employ s; (because s; embodies a better rationalization of j’s past behavior than does
s). Forward induction reasoning then implies that from that information set onwards, i
’s rationalizable strategy should be optimal vis-a-vis s;, unless a further information set
h; is reached which is compatible only with s’; at h; player i has no choice but to revert

to the belief that j is irrational, and react accordingly.

The definition of this solution concept for generalized extensive-form games highlights
the need to define the notion of a strategy as we did, by the actions taken not only at
the tree T7 which represents the physical paths of the game, but also at all the other
trees T' € T. True, to track the physical paths compatible with profiles of extensive-form
rationalizable strategies it is enough to look at their restrictions to 7). However, at each
given node n € T in which player 7 is active, the set of nodes m; (n) that she considers as

possible is a subset of her subjective view of the feasible paths T%,,), and at that point

27



she can only contemplate her strategy in terms of the 77, -partial game. Furthermore,
in order to rank the opponents’ strategies according to their rationality, player ¢ has to
weigh them in the terms the opponents conceive the game, i.e. in the T-partial games
which represent their subjective view of the strategic interaction within the T%, ,-partial
game (which may be different than the actual subjective views the opponents have on

the game at various nodes of 77); and so forth.

This means that profiles of extensive-form rationalizable strategies have a different
significance in their different domains. In 7} they define paths which could actually be
realized; for n € T} for which 17,y # 11, in T}, () these profiles define paths conceived
as feasible by player i when the actual node at Ty is n; for n’ € Tr, () for which Tr () #
Tri(n)s I Tr (nry these profiles define paths that at node n € T} player ¢ conceives player j
to conceive as possible if and when n' is reached in 7’s subjective view of the game Tr, ();

etc.
Remark 7 RF C R¥™ for every k > 1.

Proof. Consider s; € R¥. By definition, s; is rational at each of player i’s informa-
tion sets given some belief system b; € B¥. Since B¥ C BF™! s, is also be rational at

each of player 4’s information sets given a belief system in B¥~! namely given b;. Hence
si € R O

Proposition 1 The set of rationalizable strategies is non-empty.

The proof is in the appendix.

It may be instructive to compare explicitly the extensive-form rationalizablity strate-

gies in our battle-of-the-sexes example from the introduction (Figures 1 and 2).1

Remark 8 In the Bach-Stravinsky-Mozart example with unavailability of actions from
the introduction (Figure 1) both players have a unique rationalizable strategy while in the
Bach-Stravinsky-Mozart example with unawareness (Figure 2), no player has a unique

rationalizable strategy.

The proof is contained in the appendix.

15We thank an anonymous referee for this suggestion.
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When we compare these examples, then the main difference arises from the the lack
of forward induction of player II under unawareness. In the Bach-Stravinsky-Mozart
example with unawareness (Figure 2), player II can not forward induce anything from
the action “don’t tell” taken by player I since former is unaware of this action. Yet,
in the Bach-Stravinsky-Mozart example with the unavailability of an action (Figure 1)
player IT can forward induce from the action “don’t give the car” player I’s intention to
go to the Bach concert. In other words, awareness of an available action (providing the
car for going to the Mozart concert) and certainty that it hasn’t been taken has stronger

strategic implications than unawareness of the very same action.

In the Bach-Stravinsky-Mozart example with unawareness (Figure 2), the rational-
izable outcome is not unique. This is in contrast to the example with unavailability of
actions instead, where there is a rationalizable outcome. However, there exist also games
where with unavailability of actions there are more rationalizable outcomes than with
unawareness of the same actions. Such an example is presented in Heifetz, Meier, and
Schipper (2011b).

A  Proofs

A.1 Proof of Proposition 1

We proceed by induction.

B} is non-empty. Indeed, to construct a belief system b;, for each information set
h; with no predecessors (according to the precedence relation ~) in the arborescence of
information sets H;, assign to player i a full-support belief b; (h;) on the other players’
strategies SZ” that reach h;. The full-support guarantees that Bayes rule is applicable

for deriving the beliefs of player ¢ in all her remaining information sets.

Suppose, by induction, we have already shown that BF is non-empty. We have to
show that RF is non-empty. For a typical belief system b; € BF we have to construct a
strategy s; € RF, i.e. a strategy with which player 4 is rational at each of her information
sets H; given the belief system b;. Since H; is an arborescence, it is standard to construct

such a strategy s; by backward induction on H;.

To complete the induction step, observe that B¥™ is non-empty, because by definition

it singles out a non-empty subset of BF.
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Now, since player 4’s set of strategies S; is finite and by Remark 7 RF™ C RF for
every k > 1, for some ¢ we eventually get R¢ = R for all i € I and hence B = B/
for all « € I. Inductively,

0 4R =R = R =

and therefore

R®=(\Ri =R #
k=1

as required.

A.2 Proof of Remark 8

Note first that a strategy for player I in the game of Figure 1 is a function that prescribes
an action at the root of the tree and each matrix whereas in the game of Figure 2 it is a
function that prescribes an action at the root of the tree, the left and right matrices in
the upper tree as well as an action in the lower matrix. Consequently, the belief systems

of player II differ accordingly in those examples.

To make the differences and similarities between the examples more transparent, we

will derive the extensive-form rationalizable strategies for both examples side-by-side.

At the first level, any strategy is rational for player
I except all strategies that prescribe going to the
Mozart concert after “don’t give”. For player II,
both the Bach concert and the Stravinsky con-
cert are rational if player I does not give him the
car. If player I does give him the car, then only
the Mozart concert is rational since it is a domi-
nant action conditional on being the right matrix.
Thus,

R}I = {(BaM)7(S’M)}a

where the first component of a strategy refers to
player II’s action in the left matrix and the second

refers to the right matrix.
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At the first level, any strategy is rational for player
I except all strategies that prescribe going to the
Mozart concert after “don’t tell”. For player II,
both the Bach concert and the Stravinsky concert
are rational if he is unaware of the Mozart concert.
If he is aware of the Mozart concert, then only this
concert, is rational since it is a dominant action

conditional of being in the right matrix. Thus,
R}I = {(M7 B)7 (M’ S)} ’

where the first component of a strategy refers to
player II’s action in the right matrix and the sec-

ond refers to the lower matrix.



At the second level, player I is certain that player
IT will go to the Mozart concert when given the car.
Thus, any second level rational strategy for player
I must prescribe going to the Mozart concert after
“give the car”. Not giving the car to player IT and
going to the Stravinsky concert is dominated by
giving the car to player II and going to the Mozart
concert. Not giving player II the car and going to
the Bach concert is rational for player I assuming
that she believes with probability at least % that
player II will go to the Bach concert. Giving the
car to player IT and going to the Mozart concert is
rational for player I if she believes with probability
at least % that player IT would go to the Stravinsky

if not given the car. To summarize,
R? :{ (“don’t give”, B, M), (“give”, B, M) }

where the second (resp. third) component of the
strategy vector refers to player I’s choice after his-
tory “don’t give” (resp. “give”). For player II,
R?, = R}, since the deletion of M in the left ma-
trix for player I at the first level does not influence
the optimality of any strategy of player II because
when player I takes M any of player II's actions
yields the same payoff in the left matrix.

At the second level, player I is certain that player
IT will go to the Mozart concert when told about it.
Thus, any second level rational strategy for player
I must prescribe going to the Mozart concert af-
ter “don’t tell”. Not telling player II about the
Mozart concert and going to the Stravinsky con-
cert is dominated by telling player II about the
Mozart concert and going to the Mozart concert.
Not telling player IT about the Mozart concert and
going to the Bach concert is rational for player I as-
suming that she believes with probability at least
1 that (the unaware) player II will go to the Bach
concert. Telling player II about the Mozart con-
cert and going to the Mozart concert is rational
for player I if she believes with probability at least
% that player II would go to the Stravinsky con-
cert if not told about the Mozart concert. In the
lower tree, both players are unaware of the Mozart
concert. Going to Bach is rational for player I if
she believes with probability at least i that player
IT goes to Bach as well. Going to the Stravin-
sky convert is rational for player I if she believes
with probability at least % that player IT goes to
This is just the standard Battle-of-

Sexes game. To summarize,

o

where the second (resp. third) component of the

Stravinsky.

(“don’t tell”, B, M, B), (“tell”, B, M, B),
(“don’t tell”, B, M, S), (“tell”, B, M, S)

strategy vector refers to player I’s choice after his-
tory “don’t tell” (resp. “tell”), and the last com-
ponent denotes the action in the lower subtree.
For player II, note that his strategy does not pre-
Hence, the
deletion of M in the left matrix for player I at the

scribe an action in the left matrix.

first level has no effect on the optimality of of any
strategy of player II. Thus R?, = R},.

So far, the arguments are analogous in both examples. A difference arises at the third level for player

II. For player I, any second level strategy is also third level rational for player I since in both examples

no strategies of player IT have been eliminated at the second level.



At the third level, when player II is not given the
car, he can “forward induce” that player I will
go to the Bach concert. This is because any sec-
ond level rational strategy of player I prescribes
the Bach concert after the history “don’t give the

car”.

Consequently, a third level rational strat-
egy of player II must prescribe going to the Bach

concert as well when not given the car. Thus,

Rip ={(B,M)}.

At the fourth level, if player I gives the car to
player II, then latter will go to the Bach concert.
Otherwise, if player I does not give the car to
player II, then latter will go to the Mozart con-
cert. Since player I strictly prefers to the Mozart
concert together with player II, any fourth level
rational strategy of player I must involve her not
giving the car to player II. Thus,

R% = {(“don’t give”, B, M)} = R’;, for all & > 4.

Hence, the extensive-form rationalizable strategies

are
7 = {(“don’t give”, B, M)},
R7; ={(B,M)}.
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