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Abstract
Using a novel three-phase model based upon a conditional autoregressive Wishart (CAW)
framework for the realized (co)variances of the US Dow Jones and the German stock in-
dex DAX, we analyze intra-daily volatility spillovers between the US and German stock
markets. The proposed model explicitly accounts for three distinct intraday periods
resulting from the non-synchronous and partially overlapping opening hours of the two
markets. We find evidence of significant short-term volatility spillovers from one intra-
day period to the next within both markets (‘heat-wave effects’) as well as across the
two markets (‘meteor-shower effects’). Furthermore, we find that during the subprime
crisis the general persistence of short-term volatility shocks is considerably higher and
the spillovers effects between the US and the German stock markets are significantly
larger than before the crisis, indicating substantial volatility contagion effects.
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1 Introduction

A common finding of empirical studies devoted to asset-return variances and covariances

across international financial markets is their high degree of contemporaneous and tempo-

ral interdependence. This interdependence, which plays an important role for international

portfolio allocation and financial risk management, is often attributed to information trans-

missions across financial markets. This view is based upon the hypothesis that the arrival

process of economic news and the trading dynamics in response to news are key determi-

nants of the short-run dynamics of asset-return volatility (see, e.g., Kyle, 1985). Against the

background of an apparently increasing integration of international financial markets it is in-

teresting to see to what extend a volatility shock generated by news in one market spills over

onto the volatility observed in the next market to trade. As noted by Hamao et al. (1990) and

Wongswan (2006), such spillovers could represent a causal phenomenon across markets that

trade sequentially; alternatively they could reflect shocks which are generated by news rele-

vant to the global economy and impinging concurrently on the volatility across international

markets. Similarly, it is of interest whether those spillover effects are more pronounced during

periods of very high volatility associated with severe financial crises like that of 2007-2009.

While this crisis had its origin in the US sub-prime mortgage market, it spread out increasing

the volatility across international financial markets above and beyond a level which can be

explained by a ‘regular’ fluctuation. A potential channel of such a volatility contagion is that

an initially local crisis in one country generates news that prompt investors to fundamentally

reassess the general vulnerability of other national markets (see, e.g., Bekaert, et al., 2011).

The strand of empirical literature concerned with volatility spillovers on international fi-

nancial markets goes back to the early papers of Engle, et al. (1990) and Hamao, et al.

(1990), in which GARCH models fitted to intra-day returns are used to measure the volatility

transmissions from one period to the next within markets (‘heat waves’) and across markets
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(‘meteor showers’). The former study uses four intra-day returns per day of the yen-US dollar

exchange rate associated with four distinct geographic market segments with non-synchronous

trading hours (Tokyo, Europe, New York, Pacific), and reports significant spillovers between

the different market segments, indicating that volatility in international markets behaves like

a meteor shower. Hamao, et al. (1990) rely on close-to-open and open-to-close returns and

find spillovers from the US to the Japanese stock market but not conversely.

More recent studies examining volatility transmissions between international markets use

high-frequency return data in order to construct realized variances or ranges between the

largest and smallest log prices as precise estimates for the volatility of low-frequency returns

and model those estimates directly. This offers the advantage that those volatility measures

are typically more informative about the true volatility than the corresponding conditional

variances obtained from GARCH models, which leads to an improved inference about volatil-

ity transmissions across markets. Such approaches are found, e.g., in Engle, et al. (2012),

Bubák, et al. (2011) for markets with synchronous trading hours and in Melvin and Melvin

(2003), Dimpfl and Jung (2012), Chiang and Wang (2011), for markets with nonsynchronous

business hours. The study of Engle, et al. (2012) uses a multivariate multiplicative error model

(MEM) for the vector of daily volatilities approximated by the daily ranges and applies this

approach to measure the volatility transmissions across eight East Asian stock markets and

to examine changes in the transmission mechanism during the 1997-1998 East Asian crisis.

In order to analyze the short-term interdependence of the realized variances for the exchange

rates of four European currencies against the US dollar, Bubák, et al. (2011) propose a mul-

tivariate version of the heterogeneous autoregressive (HAR) model of Corsi (2009). Melvin

and Melvin (2003) investigate volatility spillovers of the Deutsche mark-US dollar and yen-

US dollar exchange rate across geographical market segments, while Dimpfl and Jung (2012)

examine spillovers across the stock markets in Europe, the US and Japan. Both studies rely

on structural vector autoregressive (VAR) models for the realized volatilities accounting for
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the time differences in trading hours of the markets under consideration. Using a range-based

conditional autoregressive volatility model for the stock markets of the G7 countries, Chi-

ang and Wang (2011) examine changes in the volatility transmission mechanism due to the

subprime mortgage crises.

In the present paper, we investigate the short-term interdependence of the realized vari-

ances and covariance of the US Dow Jones and the German stock index DAX. For this pur-

pose, we propose a novel sequential phase model accounting for the three distinct geographical

intra-day trading periods of the US and German stock market: (1) the Germany-US trading

overlap period, (2) the US-only trading period, and (3) the Germany-only trading period.

Our approach consists of three separate reduced-form time-series specifications, one for each

intra-day period. For the covariance matrix of the Germany-US trading overlap period we use

the Conditional Autoregressive Wishart (CAW) model of Golosnoy, et al. (2012) extended to

include the lagged variances of the other two intra-day periods as additional covariates. The

two variances of the US-only and the Germany-only trading periods are assumed to follow a

corresponding conditional autoregressive Gamma distribution, which obtains from the CAW

model for the covariance matrix as a natural marginal specification for the variances. The

resulting sequential three-phase model facilitates a detailed analysis of the short-term causal

effects of news generating intra-day volatility in one market onto subsequent trading on this

and the other market, i.e. both meteor-shower and heat-wave effects. We supplement this

analysis of the direct causal effects by an impulse-response analysis, which provides informa-

tion not only about the direct but also the indirect effects of volatility shocks. As such, the

impulse-response analysis also accounts, e.g., for the indirect effect of a volatility shock during

the afternoon trading on the German market on its volatility at the next morning via the US

trading which has taken place in the meantime. In addition, we use our framework in order

to investigate whether the short-term volatility transmission mechanism is significantly dif-

ferent during the recent subprime crisis than before and after the crisis which would indicate
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volatility contagion effects.

By accounting for the interdependence between the variances as well as the covariance

our approach differs from existing empirical studies on volatility transmissions across stock

markets with overlapping trading hours like those of Engle, et al. (2012), Dimpfl and Jung

(2012) and Chiang and Wang (2011), which solely investigate the dynamic interdependence

of variance measures. As such, our approach allows to account for two potential channels of

volatility spillovers, namely, via a direct volatility transmission from one market to the other

through its variance and via an indirect transmission through its covariance. Furthermore, our

approach explicitly accounts for the contemporaneous interdependence between the variances

during the overlapping trading periods which is ignored in the studies of Engle, et al. (2012)

and Dimpfl and Jung (2012). In order to properly identify the direct causal effects of news on

subsequent volatility on the domestic and foreign markets, it is critical to explicitly account for

the indirect effects transmitted via the covariance and for the contemporaneous dependence

among the variances.

The rest of the paper is organized as follows. In Section 2, we describe the schedule of

trading hours of the German and US stock market and the adjustments made to remove long-

run trend effects from the realized variance and covariance series. In Section 3, we introduce

the sequential three-phase model and discuss its properties. In Section 4, we present the

design of the impulse response analysis for our three phase model. The empirical results are

presented in Section 5, while Section 6 concludes.

2 Trading Times, Data and Adjustments

In our analysis of the short-term volatility spillovers for the German and US stock market

on the intra-daily basis we account for their non-synchronous opening hours, leading to three

distinct intra-day trading periods. The different trading intervals in Central European Time
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(CET) associated with different trading regimes are illustrated in Figure 1. Assume that a

global business day t starts with the opening of the New York Stock Exchange at 3:30 pm

CET. From 3:30 pm to 5:30 pm the US and German stock market are simultaneously open.

This joint trading period of two hours length is referred to as period 1 of a trading day. In

period 2 which lasts from 5:30 pm to 10:00 pm, only the US market is open. The last interval

of a trading day referred to as period 3, starts at 9:30 am when the German market opens

and ends with the re-opening of the US market at 3:30 pm.

To model the dynamic process of intra-daily volatilities accounting for this chronolog-

ical ordering of overlapping and non-overlapping trading periods we propose a sequential

three-phase model, which treats the volatility for the three intra-day periods separately by

specifying three dynamic reduced-form models, one for each intra-day period. In order to

obtain volatility measures for the three intra-day periods, we use high-frequency data to con-

struct realized variances and covariances as direct estimates of the corresponding variances

and covariances of returns. Our data consists of synchronized 1-minute prices sampled with

previous-tick interpolation for the German stock index DAX and the US Dow Jones industrial

index (DJ). The sample period begins at January 2, 1996 and ends on December 29, 2010

covering T = 3645 trading days. For intra-day period 1 the realized covariance matrix for the

DAX and DJ can be computed as V (us,g)
t,1 = ∑n1

i=1 yt,iy
′
t,i, where y′t,i = (y(us)

t,i , y
(g)
t,i ) is the vector

of the DJ and DAX log returns computed for the 5-minute interval i in period 1 of trading

day t. The number of 5-minute intervals in this period is n1 = 24. In the sequel, the diagonal

(variance) elements of the period-1 realized covariance matrix V (us,g)
t,1 are denoted by v(us)

t,1 and

v(g)
t,1 and the off-diagonal (covariance) element by v(us,g)

t,1 . The realized variance of the DJ in pe-

riod 2 and that of the DAX in period 3 can be computed analogously as v(us)
t,2 = ∑n2

i=n1+1[y(us)
t,i ]2

and v(g)
t,3 = ∑n3

i=n2+1[y(g)
t,i ]2, respectively, where the number of 5-minute intervals for the second

period is n2−n1 = 54 and that for the third period n3−n2 = 78. These realized variance and

covariance measures are further refined by averaging over subsampling subgrids per intra-day
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period in order to cope with market microstructure noise (see, Zhang, et al., 2005). Finally,

the realized variances and covariances of the three intra-day periods are normalized by the

length of the respective intra-day period.

Figure 2 shows the time series plots of the resulting realized (co)variances for the three

intra-day periods. These plots reveal a common cyclical long-term behavior across the five

variance and covariance time series with its largest peak during the subprime crisis starting

in 2008. A number of authors attribute those long-term shifts in the volatility to changes in

the global macroeconomic and financial environment and interpret them as evidence against

global stationarity – see, e.g., Engle, et al. (2009) and the literature cited therein1. In order

to capture those long-run movements Engle and Rangel (2008), Engle, et al. (2009) and

Hafner and Linton (2010) use component volatility models with a long-run and a short-run

component, where the former is associated with the state of the economy while the latter

is related to day-to-day liquidity concerns and the arrival of news process triggering trading

activities in response to news. Here we are not interested to explain or model the long-term

volatility rather than the short-term volatility transmission between the two stock markets

from one intra-day period to the next. Therefore, we remove the common long-run shifts

from the realized (co)variances prior to the analysis of the short-term patterns. For this

purpose we follow Hafner and Linton (2010) and use a nonparametric kernel procedure to

estimate the long-run components of the covariance matrix V (us,g)
t,1 and the variances v(us)

t,2 and

v(g)
t,3. The corresponding estimates for the long-run components of the three intra-day periods

are obtained as

Mt,1 =
∑T
s=1K( t−s

hT
) · V (us,g)

t,1∑T
s=1K( t−s

hT
)

, mt,2 =
∑T
s=1K( t−s

hT
) · v(us)

t,2∑T
s=1K( t−s

hT
)

, mt,3 =
∑T
s=1K( t−s

hT
) · v(g)

t,3∑T
s=1K( t−s

hT
)

, (1)

1For an initial investigation, we fitted our model proposed in Section 3 below to the raw realized
(co)variances V (us,g)

t,1 , v(us)
t,2 and v(g)

t,3 and found that they can not be represented by a covariance stationary
specification due to an explosive behavior in their conditional means.
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respectively, where h denotes the bandwidth and K(·) is a scalar-valued kernel function. Here

we use a two-sided quartic kernel function and set the bandwidth to h = 0.05, such that about

10% of the data are used for local averaging2. Note that we use the same weighting scheme

and bandwidth for all five variance and covariance time series, which imposes implicitly a

common pattern in the long-run dynamics for all of them. This restriction could be justified

by the finding that the long-run movements of the five time series appear to be very similar

(see Figure 2).

To detrend the realized (co)variances, we normalize them by their estimated long-run

components given by Equation (1) and plotted in Figure 2. In particular, the detrended

realized covariance matrix for intra-day period 1, denoted by R(us,g)
t,1 , obtains as

R(us,g)
t,1 = C−1

t,1 V
(us,g)
t,1 (C−1

t,1 )′, with Mt,1 = Ct,1C
′
t,1, (2)

where Ct,1 is the lower-triangular Cholesky factor of the period-1 long-run component Mt,1.

The detrended realized variances of the intra-day periods 2 and 3 are constructed analogously

by

r(us)
t,2 = v(us)

t,2 /mt,2, r(g)
t,3 = v(g)

t,3/mt,3, (3)

respectively.

Figure 3 shows the plots of the detrended realized variance and covariance time series

and reveals that the normalization make them more homogeneous. This allows us to focus

on the short-term dynamic structure under the assumption of global stability. Descriptive

statistics for the detrended realized (co)variance series are provided in Table 1. The mean of

the variances is close to unity and that of the covariance close to zero, which is to be expected

given the normalization rule given by Equations (2) and (3). The empirical distribution of the
2We also experimented with other values for the bandwidth ranging from 0.025 to 0.075. However, the

qualitative results of our analysis of the short-term volatility patterns reported below remain essentially
unchanged for those alternative values of the bandwidth.
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variances is leptokurtic and slightly skewed to the right while that of the covariance is skewed

to the left. The Ljung-Box statistics including 50 lags indicate strong serial correlation.

3 Econometric Specification

To model the short-term dynamic structure of the volatility of the US and German stock

market related to the news arrival process and to analyze the information transmission effects

between and within markets, we use a sequential three-phase approach for the detrended

volatility of the three intra-day periods given by {R(us,g)
t,1 , r(us)

t,2 , r
(g)
t,3}Tt=1. Since the sequentially

ordered intra-day periods are non-overlapping, the volatility originating from previous intra-

day periods is a pre-determined variable for the current period. This suggests the following

sequential factorization of the conditional joint density of (R(us,g)
t,1 , r(us)

t,2 , r
(g)
t,3) given the informa-

tion set Ft−1 available at the end of day t− 1:

f(R(us,g)
t,1 , r(us)

t,2 , r
(g)
t,3|Ft−1) = f(R(us,g)

t,1 |Ft−1) · f(r(us)
t,2 |R

(us,g)
t,1 ,Ft−1) · f(r(g)

t,3|r
(us)
t,2 , R

(us,g)
t,1 ,Ft−1). (4)

Based upon this natural decomposition of the daily joint distribution, we specify three separate

reduced form models, one for each of the three intra-day periods designed to measure the

volatility transmission effects for the two stock markets from one intra-day period to the

coming ones.

3.1 Period 1: Germany-US trading overlap

We start to detail our specification for the covariance matrix of period 1, R(us,g)
t,1 . A particular

convenient and flexible dynamic specification for this symmetric positive definite matrix of

dimension 2 × 2 is provided by the CAW model proposed by Golosnoy, et al. (2012), which

assumes a central Wishart distribution for R(us,g)
t,1 |Ft−1. The specific CAW model for R(us,g)

t,1
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adopted here includes preceding period-2 and period-3 variances as additional explanatory

variables and takes the form

R(us,g)
t,1 |Ft−1 ∼ W2(ν1, St,1/ν1), (5)

St,1 = G1G
′
1 +

q1∑
i=1

q̄1∑
`=1

Ai`,1R
(us,g)
t−i,1A

′
i`,1 +

p1∑
i=1

p̄1∑
`=1

Bi`,1St−i,1B
′
i`,1 +

z1∑
i=1

z̄1∑
`=1

Di`,1R̄
(us,g)
t−i D

′
i`,1, (6)

where W2 denotes the law of a central Wishart distribution for a 2 × 2 matrix, ν1 > 2 is

the scalar degree of freedom, and St,1/ν1 represents the 2 × 2 positive definite scale matrix,

such that the conditional mean is E(R(us,g)
t,1 |Ft−1) = St,1. In the linear autoregressive recursion

for the conditional mean (6), which resembles the BEKK-GARCH specification of Engle and

Kroner (1995), R̄(us,g)
t = diag(r(us)

t,2 , r
(g)
t,3) is a diagonal matrix containing the variances of period

2 and 3, and G1, Ai`,1, Bi`,1 and Di`,1 are 2 × 2 parameter matrices, where G1 has a lower-

triangular form. While the summation limits (q1, p1, z1) determine the number of lagged terms,

the limits (q̄1, p̄1, z̄1) control the generality of the process. The most general process ensures

that the number of parameters in the matrices Ai`,1, Bi`,1 and Di`,1 is equal to the number of

marginal effects of the different elements in the lagged R(us,g)
t,1 , St,1, and R̄(us,g)

t matrices on the

distinct elements in St,1. However, the model as specified is unidentified. Sufficient conditions

for identification are given by Engle and Kroner (1995, Proposition 2.3). For a model with

(q̄1, p̄1, z̄1) = (1, 1, 1), for example, these conditions are that the main diagonal elements of

G1 and the first diagonal element for each of the matrices Ai1,1, Bi1,1 and Di1,1 are restricted

to be positive.

The contemporaneous dependence of the volatility for the two markets implied by the CAW

model becomes manifest in the behavior of the conditional covariance matrix of the realized

(co)variance, denoted by Var[vec(R(us,g)
t,1 )|Ft−1)]. Under the conditional Wishart distribution
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in Equation (5) this conditional covariance matrix is (see Muirhead, 1982)

Var[vec(R(us,g)
t,1 )|Ft−1)] = 1

ν1
(I +K44)(St,1 ⊗ St,1), (7)

where I is the identity matrix, vec(·) denotes the operator that stacks all columns of a matrix

into a vector, and K44 is the commutation matrix defined so that K44vec(W ) = vec(W ′) for

any 4× 4 matrix W .

As discussed in Golosnoy, et al. (2012), the CAW model (5)-(6) can be interpreted as a

state-space model with St,1 as a state variable measured by the observable matrix R(us,g)
t,1 so

that St,1 can be regarded as the ‘true’ integrated covariance matrix of period 1 for a broad

class of continuous-time stochastic volatility processes approximated by R(us,g)
t,1 (see Barndorff-

Nielsen and Shephard, 2004). The dynamic specification assumed for St,1 is designed to

capture complex dynamic interactions across the covariance and variances for the returns of

the US and German stock market of period 1 as well as their dependencies from the preceding

variances for the corresponding returns of periods 2 and 3. It is easy to see that the direct

volatility spillover effects from one market to future trading periods of the other market are

directed by the non-diagonal elements in Ai`,1, Bi`,1 and Di`,1 parameter matrices. For a

specification with q1 = q̄1 = z1 = z̄1 = 1 and p1 = 0 with parameter matrices G1 = (g·jk),

A11,1 = (a·jk) and D11,1 = (d·jk), for example, the conditional mean of the period-1 DJ

variance s(us)
t,1 obtains from Equation (6) as

s(us)
t,1 = g2

·11 + a2
·11r

(us)
t−1,1 + 2a·11a·12r

(us,g)
t−1,1 + a2

·12r
(g)
t−1,1 + d2

·11r
(us)
t−1,2 + d2

·12r
(g)
t−1,3. (8)

Hence, the effect of a shock in the period-3 DAX variance r(g)
t−1,3 to the next period-1 DJ vari-

ance is directed by d·12 and that of a shock in the period-1 DAX variance r(g)
t−1,1 by a·12, respec-

tively. However, note that the contemporaneous correlation among the period-1 (co)variances

r(g)
t−1,1, r(us)

t−1,1 and r(us,g)
t−1,1 (see Equation 7) implies that the shock in the period-1 DAX variance
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r(g)
t−1,1 can spill over onto the next day period-1 DJ variance also indirectly via the variance

r(us)
t−1,1 and the covariance r(us,g)

t−1,1.

3.2 Periods 2 and 3: US-only and Germany-only trading

Since the conditional Wishart distribution assumed for the period-1 realized covariance matrix

R(us,g)
t,1 implies that its diagonal variance elements follow a conditional Gamma distribution it

is natural to assume such a conditional Gamma distribution also for the realized variances

of period 2 and 3. The particular reduced form model used for the period-2 DJ variance

r(us)
t,2 including preceding period-1 covariance matrices and period-3 variances as additional

explanatory variables takes the form

r(us)
t,2 |R

(us,g)
t,1 ,Ft−1 ∼ G(ν2/2, 2st,2/ν2), (9)

st,2 = g2 + d′0,2R
(us,g)
t,1 d0,2 +

q2∑
i=1

ai,2r
(us)
t−i,2 +

p2∑
i=1

bi,2st−i,2 +
z2∑
i=1

d′i,2R
(us,g)
t−i,1di,2 +

w2∑
i=1

ci,2r
(g)
t−i,3, (10)

where G denotes the law of a Gamma distribution, ν2/2 is the shape parameter of the Gamma

distribution, and 2st,2/ν2 represents its scale parameter such that st,2 is the conditional mean,

i.e., st,2 = E(r(us)
t,2 |R

(us,g)
t,1 ,Ft−1) . The linear autoregressive recursion for st,2 given by Equa-

tion (10) is characterized by the scalar parameters g2, ai,2, bi,2, ci,2, which are restricted to be

positive, and the two-dimensional parameter vectors di,2. As mentioned in the context of

the CAW model above, st,2 can be interpreted as the true integrated variance of period 2

measured by r(us)
t,2 . The direct volatility transmission effects from the German stock market

to the period-2 DJ volatility are driven by the second elements of the vectors di,2 and the

parameters ci,2. Additionally, we have an indirect transmission of an impulse in the period-1

DAX variance r(g)
t−i,1 through its contemporaneous correlation with period-1 DJ variance r(us)

t−i,1

and the corresponding covariance r(us,g)
t−i,1.
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The final component of our sequential three-phase model for the volatility of the US and

German stock market consists of a reduced form specification for the period-3 variance of the

DAX r(g)
t,3, which takes a similar form as that for the period-2 DJ variance, namely

r(g)
t,3|r

(us)
t,2 , R

(us,g)
t,1 ,Ft−1 ∼ G(ν3/2, 2st,3/ν3), (11)

st,3 = g3 + d′0,3R
(us,g)
t,1 d0,3 + c0,3r

(us)
t,2 +

q3∑
i=1

ai,3r
(g)
t−i,3 +

p3∑
i=1

bi,3st−i,3 +
z3∑
i=1

d′i,3R
(us,g)
t−i,1di,3 +

w3∑
i=1

ci,3r
(us)
t−i,2.

(12)

Here the spillover parameters are given by the first elements of the two-dimensional vectors

di,3 and the coefficients ci,3 driving the direct transmission effects.

3.3 Model properties, estimation and diagnostics

The three-phase model introduced in Equations (5)-(12) is expected to accommodate a large

variety of dynamic patterns in the process of intra-day realized variances and covariances.

In order to obtain the stability conditions of this process ensuring the existence of the sta-

tionary mean, we use its VARMA representation. Let rt = (vech(R(us,g)
t,1 )′, r(us)

t,2 , r
(g)
t,3)′ and

st = (vech(St,1)′, st,2, st,3)′, where vech(·) denotes the operator that stacks the lower triangular

portion, including the diagonal of a matrix, into a vector. Then the system of interdependent

recursions (6), (10), and (12) from one day to the next can be written as (see, Golosnoy, et

al., 2012)

st = g + ∆0rt +
q∑
i=1
Airt−i +

p∑
i=1
Bist−i, (13)

where g is a 5-dimensional vector and ∆0, Ai, Bi are 5×5 matrices which are straightforward

functions of the parameters characterizing the three recursions. The lag orders are q =

max{q1, z1, q2, z2, w2, q3, z3, w3} and p = max{p1, p2, p3}. Next we exploit that rt can be

written as rt = st + υt, where υt is a martingale difference with E(υt) = 0 and E(υtυ′s) = 0 for
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all s 6= t so that the VARMA representation of rt obtains as

rt = g∗ +
max{p,q}∑
i=1

(A∗i + B∗i )rt−i −
p∑
i=1
C∗i υ∗t−i + υ∗t , (14)

where g∗ = (I − ∆0)−1g, A∗i = (I − ∆0)−1Ai, B∗i = (I − ∆0)−1Bi, C∗i = B∗i (I − ∆0) and

υ∗t = (I − ∆0)−1υt. It follows that the three-phase model is stable with a stationary mean

E(rt) = [I−∑max{p,q}
i=1 (A∗i +B∗i )]−1g∗ if and only if all eigenvalues of the matrix ∑max{p,q}

i=1 (A∗i +

B∗i ) are less than 1 in modulus (see, e.g. Lütkepohl, 2005).

The parameter vector θ of the three-phase model (5)-(12) is made up of the coefficients in

the autoregressive specifications for the conditional means St,1, st,2, and st,3 plus the degree

of freedom ν1 and shape parameters ν2 and ν3. They can be estimated by maximizing the

log-likelihood function

L(θ) =
T∑
t=1

ln f(R(us,g)
t,1 |Ft−1) +

T∑
t=1

ln f(r(us)
t,2 |R

(us,g)
t,1 ,Ft−1) +

T∑
t=1

ln f(r(g)
t,3|r

(us)
t,2 , R

(us,g)
t,1 ,Ft−1). (15)

Since there are no parametric restrictions across the log-likelihood components for the three

intra-day periods, we can maximize the complete log-likelihood by separately maximizing the

three components provided in Equation (15).

For identification of the orders for each of the three model components, that is (q1, p1, z1, q̄1, p̄1, z̄1)

for the period-1 CAW specification, (q2, p2, z2, w2) for the period-2 Gamma model, and (q3, p3, z3, w3)

for the period-3 Gamma model, we use Schwarz’s (1978) information criterion. The order iden-

tification is supplemented by diagnostic checks based upon the standardized Pearson residuals.

For the period-1 CAW model they obtain as

(u(us)
t,1 , u

(us,g)
t,1 , u(g)

t,1)′ = Var[vech(R(us,g)
t,1 )|Ft−1)]−1/2

{
vech(R(us,g)

t,1 )− E[vech(R(us,g)
t,1 )|Ft−1]

}
, (16)

where Var[vech(R(us,g)
t,1 )|Ft−1)]−1/2 is the inverse Cholesky factor of the conditional covariance
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matrix of vech(R(us,g)
t,1 ), given in Equation (7). The Pearson residuals for the period-2 and

period-3 Gamma specifications are constructed analogously by

u(us)
t,2 =

r(us)
t,2 − E(r(us)

t,2 |R
(us,g)
t,1 ,Ft−1)

Var(r(us)
t,2 |R

(us,g)
t,1 ,Ft−1)1/2 , u(g)

t,3 =
r(g)
t,3 − E(r(g)

t,3|r
(us)
t,2 , R

(us,g)
t,1 ,Ft−1)

Var(r(g)
t,3|r

(us)
t,2 , R

(us,g)
t,1 ,Ft−1)1/2 , (17)

respectively. The corresponding conditional variances are given as

Var(r(us)
t,2 |R

(us,g)
t,1 ,Ft−1) =

2s2
t,2

ν2
, Var(r(g)

t,3|r
(us)
t,2 , R

(us,g)
t,1 ,Ft−1) =

2s2
t,3

ν3
. (18)

For a correctly specified model, these residuals are serially uncorrelated and not predictable

by past realized (co)variances. In order to test this implication, we regress each of the residual

series u(·)
t,· on a constant and past realized (co)variances of all three intra-day periods and test

the joint hypothesis that all coefficients other than the constant are equal to zero by using

the F -statistic.

4 Impulse-Response Analysis

The marginal effects given by the entries of ∆0, Ai, and Bi in Equation (13) measure the

direct causal impact of volatility shocks on future variances. However, as noted earlier, there

are also indirect volatility transmission channels. In order to examine the compound effect of

volatility shocks in one market on subsequent volatility in both markets we use an impulse-

response (IR) analysis. Since our three-phase volatility model is nonlinear the standard IR

technique à la Sims (1980) developed for linear time series models is not applicable. Hence,

we rely on the nonlinear IR strategy of Gallant, et al. (1993) which involves a comparison of

forecasts obtained when perturbing the vector of conditioning arguments in the conditional

density (conditional mean profile) to baseline forecasts produced without such a perturbation

(baseline profile). Using this approach we analyze the effects of shocks to the DJ and DAX
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variances appearing in the three different intra-day periods, i.e., shocks to r(us)
t,1 , r(g)

t,1, r(us)
t,2 , and

r(g)
t,3, by tracing them period by period through the system.

To simplify the notation for the following presentation we replace the two time indices

used for the (co)variances, i.e. the index for the trading day t ∈ {1, 2, ..., T} and that for the

intra-day period for a given trading day m ∈ {1, 2, 3}, by a single time index for the sequence

of consecutive intra-day periods, say, τ = τ(t,m) such that τ ∈ {1, 2, ..., 3T}; next we set

rτ =


(r(us)
τ , r(us,g)

τ , r(g)
τ )′, if τ is a Germany-US overlap period τ(t, 1)

r(us)
τ , if τ is a US-only trading period τ(t, 2)

r(g)
τ , if τ is a Germany-only trading period τ(t, 3)

, (19)

and denote the lags of rτ+1 by xτ = (r′τ , r′τ−1, ...)′. Then the j-step-ahead forecast, j = 1, 2, ...,

at time period τ of the (co)variance rτ+j for a given value of the conditioning arguments x is

r̂j(x) = E(rτ+j|xτ = x). (20)

Under our three-phase model, those forecasts are easily obtained by recursion based upon

the conditional expectations (6), (10) and (12). Let δ denote a perturbation to the contem-

poraneous value of rτ and define x0 = (µ̂′, µ̂′, µ̂′, ....)′ and x+ = (µ̂′ + δ′, µ̂′, µ̂′, ....)′, where µ̂

denotes the sample means of rτ associated with the three periods. Note that δ and µ̂ represent

3-dimensional vectors for period 1 and scalars for periods 2 and 3. Then the impulse response

is defined in terms of the relative net effect of a perturbation δ, i.e.,

{
[̂rj(x+)− r̂j(x0)]./r̂j(x0)

}∞
j=1
, (21)

where ./ denotes the element-wise division.

In the application below, we set δ for a period-2 DJ shock and a period-3 DAX shock to
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unity, which is roughly one sample standard deviation of r(us)
t,2 , and r(g)

t,3. In order to specify

the vector δ for a typical shock of unity to one of the period-1 variances accounting for

the contemporaneous correlation structure among the period-1 variables, we follow Gallant et

al. (1993) and rely on conditional expectations. In particular, when considering a perturbation

of unity to the period-1 DJ variance r(us)
τ , then the remaining entries of the vector δ are specified

such that the corresponding elements of µ̂ + δ are equal to the conditional expectations of

r(us,g)
τ and r(g)

τ given the value for r(us)
τ . These conditional expectations are approximated by the

non-parametric Nadaraya-Watson kernel smoother with a rule-of-thumb bandwidth selection

(see, e.g., Li and Racine 2007, p. 66ff). We construct (1−α) percent confidence bands around

the IR function by drawing a sample of 10,000 simulated values for the parameter vector θ

from the asymptotic distribution of the ML estimator for θ. For each simulated θ value we

compute the IR function and put an interval around the IR function obtained for the ML

estimates, just wide enough to include (1 − α) percent of the simulated IR functions (see,

Gallant, et al. 1993).

5 Empirical Results

5.1 Parameter estimates and marginal effects

Table 2 reports the ML parameter estimates for the three-phase model given by Equations

(5), (6) and (9)-(12) fitted to the full sample data described in Section 2 together with

the results of diagnostic checks on the standardized residuals defined in Equations (16) and

(17). The orders of the model components have been selected using the Schwarz-information

criterion and are given by (q1, p1, z1, q̄1, p̄1, z̄1) = (2, 3, 1, 1, 1, 2) for the period-1 component,

(q2, p2, z2, w2) = (2, 3, 0, 1) for the period-2 component and (q3, p3, z3, w3) = (2, 3, 0, 0) for the

period-3 component.
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The largest eigenvalue of the estimated characteristic matrix ∑3
i=1(A∗i +B∗i ) (see Equation

14) is given by 0.92 indicating that the short-term volatility process of the German and US

stock market across the three intra-day periods is stable in mean, though with a fairly high

persistence in the conditional mean. The results of the F -test for residual predictability using

50 lags reveals that the model successfully accounts for the joint dynamics of the DAX and

DJ volatility. The standardized residuals for all three intra-day periods pass the F -test at

the 1% significance level. Further increasing the model order beyond the Schwarz-preferred

specification did not significantly improve the results of the diagnostic checks.

Table 3 reports the implied ML estimates of the marginal effects, which are given by the

elements of the matrices ∆0, Ai and Bi in the vector representation of the three-phase model

(see Equation 13). They reveal evidence for both heat-wave and meteor-shower effects. Across

all intra-day periods the variances of both markets depend significantly on their own lags (heat

waves) as well as on the lagged variances of the other market (meteor showers). Next, we

find that the covariance of the DAX and DJ returns in period 1 (r(us,g)
t,1 ) has a significant

effect on the subsequent period-3 and period-1 DAX variances. Since this covariance itself

depends significantly on lagged DJ and DAX variances, it appears to be a further volatility

transmission channel in addition to the transmission directly through the variances.

In order to analyze the immediate causal impact of variance shocks, we provide in Figure

4 a diagram of the marginal effects of each intra-day variance on the next-period variance

of the respective domestic and foreign market together with the associated estimates taken

from Table 3. The diagram reveals that variance shocks in each intra-day period have a

significant effect on the next-period variance of the home market. Furthermore, it appears

that the importance of those heat-wave effects depends on the currency of the transmitted

information: more recent domestic news from the immediately preceding intra-day period is

more important than older domestic news from a period separated by a non-trading period.

Next, we also find for both stock markets significant causal effects of news which has gener-
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ated volatility abroad. In general, those meteor-shower effects are somewhat smaller than the

heat-wave effects. Similar to the heat waves, the importance of the meteor showers critically

depends on the currency of the information and, additionally, on whether the news is from a

period with or without a trading overlap. Specifically, news causing volatility on the German

market during the trading-overlap period 1 does not have a significant direct causal effect on

the DJ variance in the next trading period 2. This implies that the volatility impulse of global

news hitting the markets when they are simultaneously trading is transmitted immediately

during period 1 via the US variance to the subsequent US trading, which reflects the US econ-

omy’s leading role for international stock markets. In sharp contrast to the DAX volatility of

the joint-trading period 1, the DAX volatility in period 3 when the US market is closed has a

relatively strong and significant causal effect on the next day period-1 DJ variance. Note that

this effect of the DAX shock on the period-1 US volatility is even larger than the period-1

US response to a domestic shock from the previous trading period. This relatively strong

impact of the period-3 DAX volatility is consistent with the result reported by Dimpfl and

Jung (2012), that the European markets morning trading has significant impact on the US

volatility. It can be explained by the fact that during period 3 the German market processes

and aggregates global news generated after the closing of the US market (including news from

the Asian markets), which hit the US market when re-opening at the next day in period 1 as

new information.

Turning to the causal importance of the US market for the German volatility, we find

a significant marginal effect of the US volatility in period 2 when the German market is

closed on the DAX variance in the next trading period. Interestingly, this effect from the

US to the German market appears to be significantly smaller than the corresponding effect

of the German to the US market, namely the impact of a period-3 DAX shock on the next

period-1 DJ volatility. This seems to contradict the general assessment that it is the US stock

market which is the leading market. However, this apparent contradiction can be resolved by
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accounting for the fact that news generating US volatility in period 2 hits the German market

with a time delay, which is caused by the time gap between the closing of the US market and

the opening of the German market, and after the news is processed by the trading on the

Asian markets; in contrast, the news generating DAX volatility in period 3 arrives the US

market immediately without such a time delay.

Taken all together, we can conclude that the short-run volatility dynamics of the German

and US stock market are driven by both heat-wave and meteor-shower effects and that the

importance of their immediate impacts on the next period to trade critically depends on how

current the corresponding news is.

5.2 Impulse-response analysis

Although the marginal effects discussed above are suggestive about the impact of volatility

shocks on the future volatility on the home and foreign market, they do not provide the

complete picture. In particular, consider, e.g., a shock on the DAX volatility in period 1. Its

direct impact on the subsequent volatility of the US market in period 2 and on the German

market in period 3 is measured by the respective marginal effects. However, the period-1 DAX

shock may also influence the period-2 US volatility indirectly, namely through a simultaneous

change of the period-1 US variance and the covariance. Similarly, there is an indirect effect

of the period-1 on the period-3 DAX volatility via an increase of the period-2 US volatility.

Information about the compound impact consisting of the direct and indirect effects of shocks

on subsequent volatility is provided by the IR function defined in Section 4. The values of the

perturbation δ and of the conditioning argument for the base case x0 = (µ̂′, µ̂′, µ̂′, ....) which

we used to compute the IR functions according to Equation (21) are summarized in Table 4.

Figure 5 displays the multi-period IR functions tracing trading period by trading period

the response to volatility shocks occurring in the three different intra-day phases. Shocks in
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all periods lead to significant responses on the respective home and foreign market which die

out approximately after two months. In general, the responses of both markets to domestic

shocks are larger than to foreign shocks. Next we note that the immediate responses after

one trading period essentially confirm the results gleaned from the immediate marginal effects

discussed above. A notable exception is the significant spillover of a period-1 DAX shock onto

the DJ volatility, while the corresponding direct marginal effect was found to be negligible (see

Figure 4). This implies that the period-1 DAX volatility influences the subsequent US trading

only indirectly via its contemporaneous correlation with the period-1 DJ variance. Hence,

it appears that spillovers of shocks occurring on the German market during trading-overlap

periods onto the subsequent US trading mainly reflect global news impinging concurrently on

the volatility of both markets, rather than a causal phenomenon.

5.3 Impact of the subprime crisis

Recent studies, including those of Bubak, et al. (2011), Chiang and Wang (2011) and Engle,

et al. (2012) report evidence for significant changes of the dynamic volatility transmission

mechanism on international financial markets during financial crises. This finding and the

enormous impact of the recent subprime crisis on the international financial markets suggest

to treat the period during the subprime crisis covered by our sample differently from the

periods before and after the crisis. For this purpose we allow for structural changes in the

volatility spillover mechanism modeled by the three-phase specification. A potential source

of such changes could be the boost of intensity at which news hits the international financial

markets when entering a turbulent crisis period – especially for news from the country where

the crisis originated. Additionally, those changes could also reflect an increase of the time

of trading it takes to settle the differences in the traders’ interpretation of news within and

across regional markets, which can be expected due to a higher level of general uncertainty

and the increased amount of information to be processed during crisis episodes.
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In order to analyze the effects of the subprime crisis on the short-term volatility trans-

mission mechanism, we extent our model specification and allow the parameter values to be

different during the crises than before and after the crises, while using the same orders for

the three model components as selected in Section 5.1 above. This is implemented by means

of a subprime crisis dummy, say CRt, i.e. by defining the ith parameter of the model as

θi = (1 − CRt) · θi0 + CRt · θi1 for all i, where θi0 denotes the value of the parameter before

and after the crisis and θi1 is the value during the crisis. Following Bekaert, et al. (2011),

we define the subprime crisis to start at August 2007 and to end March 2009, shown as the

dark-gray shaded area in Figures 2 and 3.

The ML estimation results for this extended three-phase model reveal that the inclusion

of the subprime-crisis dummy substantially improves the fit of the model. The p-value of the

likelihood-ratio test of the null hypothesis that the parameter values during the crisis period

are equal to those before and after the crisis equals 8.4 · 10−14, indicating a strong rejection of

the null. Next we find that the parameter estimates (not presented here) imply a significant

increase of the largest eigenvalue of the characteristic matrix (see Equation 14) from 0.90

during the non-crisis periods to 0.96 during the crisis. Hence, the crisis leads to a substantial

rise of the general persistence of volatility shocks in the German and US stock market.

Figure 6 provides the estimates of the immediate marginal effects of domestic and foreign

volatility shocks on the next-period variances for both the non-crisis and the crisis period.

The results indicate that before and after the crisis those effects remain typically very close to

those obtained under the model specification without a crisis-dummy (see Figure 4). Next, the

comparison between the marginal effects obtained for the non-crisis periods and those during

the crisis reveals that the crisis had a major impact on the short-term volatility transmission

mechanism. In particular, the crisis is associated with a substantial strengthening of the

meteor-shower effects, e.g. the size of the marginal effect of the period-3 DAX variance on the

subsequent period-1 DJ variance increased during the crisis by 10% and that of the period-2
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DJ on the period-3 DAX variance by even 58%. Obviously, this particularly large increase

of the immediate causal effect of the DJ on the DAX variance, dominating the increase of

the causal effects of the DAX on the DJ variance, reflects the fact that the subprime crisis

had its origin in the US subprime mortgage market and spread out across international stock

markets via various economic and financial links, including mortgage-backed securities widely

held by financial firms all over the world. Due to those links the investors’ need to closely

monitor the US market increased during the crisis in order to gather new critical information

about investments in the German market. This in turn might have significantly intensified

the causal effects in particular of US business news on the volatility in the German market.

We also note that our results concerning the meteor-shower effects during the crisis and the

non-crisis periods are in line with the findings of Diebold and Yilmaz (2009) and Engle, et

al. (2012) who also report a substantial strengthening of the inter-market volatility linkages

of regional markets induced by financial crises.

In Figure 7 we provide the IR functions of shocks occurring in the three intra-day periods

obtained for the crisis and non-crisis periods. Here we use the same values of the perturbation

and of the conditioning arguments for the base case as selected in Section 5.2 (see Table 4).

Note that Figure 7 does not display confidence bands for the crisis period. The reason for

this is that the volatility model is very close to non-stability during the crisis episode, as

indicated by the largest eigenvalue of the characteristic matrix given by 0.96. Hence, using

the asymptotic normal distribution of the ML-estimator in order to simulate artificial values

of the model parameters for the construction of the confidence bands (as described in Section

4) often leads to simulated values violating the stability condition. The comparison of the

IR functions during the crisis with those for non-crisis periods shows that the crisis leads to

a substantial increase of the time it takes for volatility shocks to die out. This is fully in

line with our finding that during the crisis episode the largest eigenvalue of the characteristic

matrix is well above its value before and after the crisis. As mentioned above, this general
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rise of persistence in the volatility process could reflect an intensified information clustering

and/or an increase of time needed by the investors to process and interpret new information.

In particular, while the looming crisis initially appeared to be a local phenomenon bound to

the US market of subprime mortgages, it became progressively evident that this crisis has a

global dimension. International financial markets experienced a clustering of news concerning

the potential devaluation of various investments, which finally culminated in the Lehman

Brothers Inc. bust of 2008. This intensified news clustering was accompanied by a large and

long lasting uncertainty about the crisis implications on the real and financial sector of the

global economy, which hindered a fast interpretation and pricing of news across international

financial markets.

6 Conclusion

A novel sequential three-phase model is proposed in order to assess the short-term interdepen-

dence of the realized variances and covariance of the non-synchronously traded US Dow Jones

and German DAX stock market indices. Our model contributes to the literature by explicitly

accounting for the chronological ordering of overlapping and non-overlapping trading periods.

Moreover, our approach embodies the realized covariance as an additional indirect trans-

mission channel for volatility shocks and accounts for the contemporaneous interdependence

between the (co)variances during partially overlapping trading times.

Considering the 15-year period from 1996 to 2010, we remove the common long-run trend

from the realized (co)variance series and focus on the analysis of short-run volatility trans-

mission patterns. Besides the analysis of direct marginal effects, an impulse response analysis

serves for the quantification of compound (direct and indirect) effects of volatility shocks

onto volatilities in subsequent periods. Our empirical results show that both own market

heat-weave and cross market meteor-shower effects are present across all intra-day trading
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periods. In general, the impact of heat-wave effects is larger than of meteor-shower effects.

Furthermore, we find that the importance of those effects critically depends on the informa-

tion currency, that means more recent news appear to be more important than older news.

Finally, we find considerable changes in the short-run volatility transmission mechanism dur-

ing the recent subprime crisis period with a substantially stronger persistence of volatility

shocks. The subprime crisis period shows up with much more pronounced meteor-shower

effects of volatility shocks from the U.S. market, where the crisis originates, to the German

market volatility.
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Table 1. Descriptive statistics for detrended realized variances
and covariance.

Period 1 Period 2 Period 3
r(us)

t,1 r(g)
t,1 r(us,g)

t,1 r(us)
t,2 r(g)

t,3

Mean 0.97 0.95 0.00 0.95 0.96
Std. dev. 1.06 1.02 0.42 1.40 1.05

Skewness 8.54 8.38 −1.15 23.39 10.33
Kurtosis 132.03 142.46 117.88 912.44 191.98

Minimum 0.07 0.04 −8.29 0.06 0.02
Maximum 24.77 26.57 8.91 60.71 27.55

LB(50) 2003.2311 2092.11 138.80 849.12 1969.47
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Table 2. ML-Parameter Estimates for the BIC selected sequential three-phase CAW model.

Period-1 component

param. estimate param. estimate param. estimate
A11,1 .346∗ .004 A21,1 .344∗ −.032

.023 .355∗ −.079∗ .221∗

B11,1 .001 −.001 B21,1 .087 .066 B31,1 .274∗ −.011
−.001 .001 .030 .277∗ −.018 .390∗

D11,1 .504∗ .598∗ D12,1 ?? ??
−.075∗ .139∗ .223∗ .650∗

ν1 9.864∗

Period-2 component

param. estimate param. estimate param. estimate
a1,2 .136∗ a2,2 .094∗
b1,2 <.001 b2,2 .122∗ b3,2 .119∗
c1,2 .141∗
d′0,2 .618∗ −.020
ν2 6.370∗

Period-3 component

param. estimate param. estimate param. estimate
a1,3 .217∗ a2,3 .066∗
b1,3 .102 b2,3 .035 b3,3 .129∗
c0,3 .161∗
d′0,3 .186∗ .421∗
ν3 8.307∗

Log-lik.: -6217.12 BIC: 12861.22 Max. eigenvalue: 0.92

p-values for F -test on residual predictability (50 lags)

u(us)
t,1 u(g)

t,1 u(us,g)
t,1 u(us)

t,2 u(g)
t,3

0.037 0.015 0.105 1.000 0.825

Note: selected model orders are (q1, p1, z1, q̄1, p̄1, z̄1)=(2,3,1,1,1,2) in period 1; (q2, p2, z2, w2)=(2,3,0,1) in
period 2; (q3, p3, z3, w3)=(2,3,0,0) in period 3; ?? indicates identifying restrictions setting parameter values
to zero. The max. eigenvalue refers to the estimated matrix

∑max(p,q)
i=1 (A∗i + B∗i ) in Equation (14); ∗ denotes

significance at the 1% level.
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Table 3. ML-Estimates of the marginal effects for the BIC selected sequential three-phase model.

Period-1 component

Depend.
Variable s

(us)
t−1,1 s

(g)
t−1,1 s

(us,g)
t−1,1 r

(us)
t−1,1 r

(g)
t−1,1 r

(us,g)
t−1,1 r

(us)
t−1,2 r

(g)
t−1,3

s
(us)
t,1 <.001 <.001 <.001 .120∗ <.001 .003 .254∗ .357∗

s
(g)
t,1 <.001 <.001 <.001 <.001 .126∗ .016 .055∗ .442∗

s
(us,g)
t,1 <.001 <.001 <.001 .008 .001 .123∗ −.038∗ .083∗

s
(us)
t−2,1 s

(g)
t−2,1 s

(us,g)
t−2,1 r

(us)
t−2,1 r

(g)
t−2,1 r

(us,g)
t−2,1

s
(us)
t,1 .008 .004 .012 .119∗ .001 −.022
s

(g)
t,1 <.001 .077∗ .017 .006 .049∗ −.035∗

s
(us,g)
t,1 .003 .018 .026 −.027∗ −.007 .079∗

s
(us)
t−3,1 s

(g)
t−3,1 s

(us,g)
t−3,1

s
(us)
t,1 .075∗ <.001 −.006
s

(g)
t,1 <.001 .152∗ −.014
s

(us,g)
t,1 −.005 −.004 .107∗

Period-2 component

Depend.
Variable s

(us)
t−1,2 r

(us)
t−1,2 r

(g)
t−1,3 r

(us)
t,1 r

(g)
t,1 r

(us,g)
t,1

s
(us)
t,2 <.001 .136∗ .141∗ .382∗ <.001 −.025

s
(us)
t−2,2 r

(us)
t−2,2 r

(g)
t−2,3 s

(us)
t−3,2

s
(us)
t,2 .122∗ .094∗ <.001 .119∗

Period-3 component

Depend.
Variable s

(g)
t−1,3 r

(us)
t,2 r

(g)
t−1,3 r

(us)
t,1 r

(g)
t,1 r

(us,g)
t,1

s
(g)
t,3 .102 .162∗ .217∗ .035∗ .177∗ .157∗

s
(g)
t−2,3 r

(us)
t−1,2 r

(g)
t−2,3 s

(g)
t−3,3

s
(g)
t,3 .035 <.001 .066∗ .129∗

Note: the marginal effects are given by the elements of the coefficient matrices ∆0, Ai and Bi characterizing
the vector representation of the three-phase model – see Equation (13); ∗ denotes significance at the 1% level.
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Table 4. Shock scenario of the impulse response analysis.

Shock µ̂′ δ′

(us) (us,g) (g) (us) (us,g) (g)

period-1 DAX 0.97 0.00 0.95 0.69 0.07 1
period-1 DJ 0.97 0.00 0.95 1 −0.02 0.63
period-2 DJ 0.95 1
period-3 DAX 0.96 1
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Period 1 2 3

DJ

DAX

CET 3:30 pm 5:30 pm 10:00 pm 9:00 am 3:30 pm

R
(us,g)
t,1 r

(us)
t,2 r

(g)
t,3

Figure 1. Daily trading hours for the US (DJ) and the German (DAX) stock markets.
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Figure 4. Estimates of the direct marginal effects of intra-day variances on the next-period variance at home
and abroad; ∗ denotes significance at the 1% level.

35



0
25

50
75

10
0

2040

percentage

Re
sp

on
se

 o
f D

J t
o 

pe
rio

d−
1 

DJ

0
25

50
75

10
0

2040

percentage

Re
sp

on
se

 o
f D

J t
o 

pe
rio

d−
1 

DA
X

0
25

50
75

10
0

2040

percentage

Re
sp

on
se

 o
f D

J t
o 

pe
rio

d−
2 

DJ

0
25

50
75

10
0

2040

percentage

Re
sp

on
se

 o
f D

J t
o 

pe
rio

d−
3 

DA
X

0
25

50
75

10
0

2040
percentage

Re
sp

on
se

 o
f D

AX
 to

 p
er

iod
−1

 D
AX

0
25

50
75

10
0

2040

percentage

Re
sp

on
se

 o
f D

AX
 to

 p
er

iod
−2

 D
J

0
25

50
75

10
0

2040

percentage

Re
sp

on
se

 o
f D

AX
 to

 p
er

iod
−3

 D
AX

Fi
gu

re
5.

Es
tim

at
ed

IR
fu
nc

tio
ns

co
m
pu

te
d
ac
co
rd
in
g
to

Eq
ua

tio
n
(2
1)
.
T
he

da
sh
ed

lin
es

in
di
ca
te

99
%

co
nfi

de
nc

e
bo

un
ds
.

36



Figure 6. Estimates of the direct marginal effects of intra-day variance on the next-period variance at home
and abroad during non-crisis periods and during the subprime crisis (bold numbers); * significant at the 1%

level.
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