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Abstract

In this paper, a new class of weighted generalized beta distribution
of the second kind (WGB2) is presented. The construction makes use of
the “conservability approach” which includes the size or length-biased
distribution as a special case. The class of WGB2 is used as descriptive
models for the distribution of income. The results that are presented
generalizes the generalized beta distribution of second kind (GB2). The
properties of these distributions including behavior of hazard functions,
moments, variance, coefficients of variation, skewness and kurtosis are
obtained. The moments of other weighted distributions that are related
to WGB2 are obtained. Other important properties including entropy
(generalized and beta) which are measures of the uncertainty in this
class of distributions are derived and studied.
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1 Introduction

The generalized beta distribution of the second kind (GB2) is a very flexible
four-parameter distribution. It captures the characteristics of income distri-
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14 Weighted Generalized Beta Distribution

bution including skewness, peakness in low-middle range, and long right hand
tail. This distribution, therefore provides good description of income distribu-
tion [8]. The GB2 also includes several other distributions as special or limiting
cases, such as generalized gamma (GG), Dagum, beta of the second kind (B2),
Singh-Maddala (SM), gamma, Weibull and exponential distributions.

The probability density function (pdf) of the generalized beta distribution
of the second kind (GB2) is given by:

fGB2(y; a, b, p, q) =
ayap−1

bapB(p, q)[1 + (y
b
)a]p+q

for y > 0, and 0 otherwise, (1)

where a, p, q are shape parameters and b is scale parameter, B(p, q) = Γ(p)Γ(q)
Γ(p+q)

is the beta function, and a, b, p, q are positive real values.
The kth− order moments of GB2 are given by [9]:

EGB2

(
Y k
)

=
bkΓ(p+ k

a
)Γ(q − k

a
)

Γ(p)Γ(q)
. (2)

The moments exist if −ap < k < aq.
Weighted distribution provides an approach to dealing with model specifi-

cation and data interpretation problems. It adjusts the probabilities of actual
occurrence of events to arrive at a specification of the probabilities when those
events are recorded. Fisher [3] first introduced the concept of weighted distri-
bution, in order to study the effect of ascertainment upon estimation of fre-
quencies. Rao [14] unified concept of weighted distribution and use it to iden-
tify various sampling situations. Cox [1] and Zelen [18] introduced weighted
distribution to present length biased sampling. Patil [12] used weighted dis-
tribution as stochastic models in the study of harvesting and predation. The
usefulness and applications of weighted distribution to biased samples in vari-
ous areas including medicine, ecology, reliability, and branching processes can
also be seen in Nanda and Jain [10], Gupta and Keating [5], Oluyede [11] and
in references therein.

Suppose Y is a non-negative random variable with its natural pdf f(y; θ),
θ is a parameter, then the pdf of the weighted random variable Y w is given by:

fw(y; θ, β) =
w(y, β)f(y; θ)

ω
, (3)

where the weight function w(y, β) is a non-negative function, that may depend
on the parameter β, and 0 < ω = E(w(Y, β)) <∞ is a normalizing constant.

In general, consider the weight function w(y) defined as follows:

w(y) = ykelyF i(y)F
j
(y). (4)



Yuan Ye, Broderick O. Oluyede and Mavis Pararai 15

Setting k = 0; k = j = i = 0; l = i = j = 0; k = l = 0; i → i − 1;
j = n − i; k = l = i = 0 and k = l = j = 0 in this weight function, one at
a time, implies probability weighted moments, moment-generating functions,
moments, order statistics, proportional hazards and proportional reversed haz-
ards, respectively, where F (y) = P (Y ≤ y) and F (y) = 1−F (y). If w(y) = y,
then Y ∗ = Y w is called the size-biased version of Y .

This paper introduces a new class of weighted generalized beta distribution
of the second kind (WGB2). The WGB2 is defined in Section 2, along with a
discussion of related statistical properties. Section 3 considers the moments of
WGB2 and several special cases. The generalized entropy and related economic
indexes are presented in Section 4. In section 5, we present Renyi entropy for
GB2 and WGB2 respectively.

2 Weighted Generalized Beta Distribution of

the Second Kind

In particular, if we set l = i = j = 0 in the weight function (4), then we
have w(y) = yk. With the moments of GB2 in equation (2) we can obtain the
corresponding pdf of weighted generalized beta distribution of the second kind
(WGB2):

g
WGB2

(y; a, b, p, q, k) =
ykf(y; a, b, p, q)

E(Y k)

=
ykayap−1Γ(p)Γ(q)

bapB(p, q)[1 + (y
b
)a]p+q · bkΓ(p+ k

a
)Γ(q − k

a
)

=
ayap+k−1

bap+kB(p+ k
a
, q − k

a
)[1 + (y

b
)a]p+q

, (5)

where y > 0, a, b, p, q > 0 and −ap < k < aq. WGB2 has one more parameter
k compared to GB2.

The graphs of the pdf are given below:
Figure 1 depicts the pdf of WGB2 as the parameter k changes for repre-

sentative values of the parameters a, b, p, q : a = 1, b = 2, p = 4, q = 6 for
k = 0, 1, 2, 3, 4. We observe that: as the value of k increases, the “height” of
the pdf becomes lower, and the pdf is more skewed right. The parameter k
controls the shape and skewness of the density.

In order to further understand WGB2 with weight function w(y) = yk, we
discuss some related properties, including the cumulative distribution function
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Figure 1: pdf of WGB2 (a = 1, b = 2, p = 4, q = 6)

(cdf), hazard function, monotonicity properties and elasticity.

The cdf of WGB2 is given by:

G
WGB2

(y; a, b, p, q, k) =

∫ y

0

ayap+k−1

bap+kB(p+ k
a
, q − k

a
)[1 + (y

b
)a]p+q

dy

= 1− I[1+( y
b

)a]−1

(
p+

k

a
, q − k

a

)
, (6)

where Ix(α, β) = Bx(α,β)
B(α,β)

is the incomplete beta function, y > 0, a, b, p, q > 0
and −ap < k < aq.

The graphs of the cdf of WGB2 are given below in Figure 2.

Figure 2: cdf of WGB2 (a = 1, b = 2, p = 4, q = 6)
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Figure 2 depicts the cdf of WGB2 as the parameter k changes for repre-
sentative values of the parameters a, b, p, q : a = 1, b = 2, p = 4, q = 6 for
k = 0, 1, 2, 3, 4. We observe that as the value of k increases, the cdf increases
slowly.

In Tables 1 and 2, some percentiles of WGB2 are presented. In particular,
the 50th, 75th, 90th and 95th percentiles of WGB2 are given. The percentiles
increases as b, p increases, and decreases as a, q increases with fixed k.

Table 1: Percentiles of WGB2 with k = 1

a b p q 50th 75th 90th 95th
2.5 2.5 2.5 2.5 2.8986 3.7767 4.8844 5.7719
3 2.7696 3.4467 4.2578 4.8812

3.5 2.6949 3.2474 3.8859 4.3624
4 2.6477 3.1152 3.6411 4.0254

2.5 2.5 2.5 2.5 2.8986 3.7767 4.8844 5.7719
3 3.4784 4.532 5.8613 6.9262

3.5 4.0581 5.2873 6.8380 8.0806
4 4.6378 6.0427 7.8150 9.2348

2.5 2.5 2.5 2.5 2.8986 3.7767 4.8844 5.7719
3 3.1113 4.0262 5.1868 6.1196

3.5 3.3043 4.2542 5.4644 6.439
4 3.4818 4.4649 5.7217 6.7363

2.5 2.5 2.5 2.5 2.8986 3.7767 4.8844 5.7719
3 2.6265 3.3533 4.2249 4.8932

3.5 2.4265 3.0555 3.7831 4.3233
4 2.2713 2.8314 3.4619 3.9189

The hazard function of WGB2 is given by:

h
WGB2

(y; a, b, p, q, k) =
g
WGB2

(y; a, b, p, q, k)

G
WGB2

(y; a, b, p, q, k)

=
g
WGB2

(y; a, b, p, q, k)

1−G
WGB2

(y; a, b, p, q, k)

=
ayap+k−1[1 + (y

b
)a]−(p+q)

bap+kB(p+ k
a
, q − k

a
)I[1+( y

b
)a]−1(p+ k

a
, q − k

a
)
,

for y > 0, a, b, p, q > 0 and −ap < k < aq.

The graphs of the hazard functions are given below in Figure 3.
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Table 2: Percentiles of WGB2 with k = 2

a b p q 50th 75th 90th 95th
2.5 2.5 2.5 2.5 3.3966 4.5133 6.0133 7.281
3 3.0834 3.8815 4.8820 5.6804

3.5 2.9126 3.5359 4.2819 4.855
4 2.8084 3.3212 3.9151 4.3592

2.5 2.5 2.5 2.5 3.3966 4.5133 6.0133 7.281
3 4.0759 5.416 7.2160 8.7372

3.5 4.7552 6.3186 8.4187 10.1935
4 5.4346 7.2213 9.6214 11.6495

2.5 2.5 2.5 2.5 3.3966 4.5133 6.0133 7.281
3 3.6141 4.7791 6.3507 7.6818

3.5 3.8136 5.0242 6.6628 8.053
4 3.9987 5.2524 6.9541 8.3998

2.5 2.5 2.5 2.5 3.3966 4.5133 6.0133 7.281
3 3.0045 3.8736 4.9623 5.8277

3.5 2.7349 3.4591 4.3246 4.9849
4 2.5343 3.1631 3.8892 4.4269

Figure 3: Hazard functions of WGB2
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Next we study the monotonicity properties and discuss the income-shared
elasticity of WGB2. In order discuss monotonicity of WGB2, we take the
logarithm of its pdf:

ln(g
WGB2

(y; a, b, p, q, k)) = lnC+(ap+k−1)(lny− lnb)−(p+q)ln

[
1+

(
y

b

)a]
,

where C is a constant. Note that

∂lng
WGB2

(y; a, b, p, q, k)

∂y
=

(ap+ k − 1)ba − (aq − k + 1)ya

y(ba + ya)
,

where y > 0, b, p, q > 0, and−ap < k < aq, so aq − k + 1 > 0. It follows
therefore that

∂lng
WGB2

(y; a, b, p, q, k)

∂y
> 0⇔ y < b

(
ap+ k − 1

aq − k + 1

) 1
a

,

∂lng
WGB2

(y; a, b, p, q, k)

∂y
= 0⇔ y = b

(
ap+ k − 1

aq − k + 1

) 1
a

,

∂lng
WGB2

(y; a, b, p, q, k)

∂y
< 0⇔ y > b

(
ap+ k − 1

aq − k + 1

) 1
a

.

The mode of WGB2 is y0 = b

(
ap+k−1
aq−k+1

) 1
a

.

The income-share elasticity is defined as −yg
′
(y)

g(y)
, where g

′
(y) = dg(y)

dy
. See

Esteban [2] for additional details. The derivative of g
WGB2

(y; a, b, p, q, k) with
respect to y is given by:

g
′

WGB2
(y) =

[
ayap+k−1

bap+kB(p+ k
a
, q − k

a
)[1 + (y

b
)a]p+q

]′
=

a

bB(p+ k
a
, q − k

a
)

[(
y

b

)ap+k−1[
1 +

(
y

b

)a]−(p+q)]′
=

ayap+k−2[ap+ k − 1− (p+ q) ya

ba+ya
]

bap+kB(p+ k
a
, q − k

a
)[1 + (y

b
)a]p+q

.

The income-share elasticity of WGB2 is given by:

δG
WGB2

(y; a, b, p, q, k) =
−yg′WGB2(y; a, b, p, q, k)

gWGB2(y; a, b, p, q, k)

= (p+ q)
ya

ba + ya
− ap− k + 1. (7)
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3 Moments of WGB2 and Related Special Cases

3.1 Moments

The non central (jth) moment of WGB2 is given by:

EGWGB2
(Y j) =

∫ ∞
0

yjgWGB2(y)dy

=

∫ ∞
0

yjayap+k−1

bap+kB(p+ k
a
, q − k

a
)[1 + (y

b
)a]p+q

dy

=
abj−1

B(p+ k
a
, q − k

a
)

∫ ∞
0

(
y

b

)ap+k+j−1[
1 +

(
y

b

)a]−(p+q)

dy

=
abj−1

B(p+ k
a
, q − k

a
)

∫ ∞
0

[(
y

b

)a]p+ a
k

+ j
a
− 1
a
[
1 +

(
y

b

)a]−(p+q)

dy.

Let (y
b
)a = t, then y = bt

1
a , dy = b

a
t
1
a
−1dt, and

EGWGB2
(Y j) =

bj

B(p+ k
a
, q − k

a
)

∫ ∞
0

tp+
a
k

+ j
a
−1(1 + t)−(p+q)dt

=
bjB(p+ k

a
+ j

a
, q − k

a
− j

a
)

B(p+ k
a
, q − k

a
)

. (8)

The mean and variance of the WGB2 distribution are given by:

µG
WGB2

= EG
WGB2

(Y ) =
bB(p+ k

a
+ 1

a
, q − k

a
− 1

a
)

B(p+ k
a
, q − k

a
)

, (9)

and

V arG
WGB2

(Y ) = EG
WGB2

(Y 2)− (EG
WGB2

(Y ))2

= b2

[
B(p+ k+2

a
, q − k+2

a
)

B(p+ k
a
, q − k

a
)
−
(
B(p+ k+1

a
, q − k+1

a
)

B(p+ k
a
, q − k

a
)

)2]
(10)

respectively.
The coefficient of variation (CV) is given by:

CV =

√
V arG

WGB2
(Y )

µG
WGB2

=

√
B(p+ k+2

a
, q − k+2

a
)B(p+ k

a
, q − k

a
)

B2(p+ k+1
a
, q − k+1

a
)

− 1. (11)

Similarly, the coefficient of skewness (CS) and coefficient of kurtosis (CK)
are given by:

CS = E

[(
Y − µ
σ

)3]
=
E[Y 3]− 3µE[Y 2] + 2µ3

σ3
, (12)



Yuan Ye, Broderick O. Oluyede and Mavis Pararai 21

and

CK = E

[(
Y − µ
σ

)4]
=
E[Y 3]− 4µE[Y 3] + 6µ2E[Y 2]− 3µ4

σ4
, (13)

where

µ = µG
WGB2

, σ =
√
V arG

WGB2
(Y ), E[Y 2] =

b2B(p+ k
a

+ 2
a
, q − k

a
− 2

a
)

B(p+ k
a
, q − k

a
)

,

E[Y 3] =
b3B(p+ k

a
+ 3

a
, q − k

a
− 3

a
)

B(p+ k
a
, q − k

a
)

, E[Y 4] =
b4B(p+ k

a
+ 4

a
, q − k

a
− 4

a
)

B(p+ k
a
, q − k

a
)

.

Since we have obtained the mode, mean, variance, CV, CS and CK of
WGB2, we can set the values of the parameters a, b, p, q and compute the
values of these quantities in Tables 3 and 4.

Table 3: The mode, mean, variance, CV, CS and CK of WGB2 when k = 1

a b p q mode mean variance CV CS CK
2.5 2.5 2.5 2.5 2.5 3.187619 2.072506 0.451629 -13.398078 22.993346
3 2.5 2.954545 1.132674 0.360215 -21.542438 11.61182

3.5 2.5 2.824413 0.723843 0.301227 -32.416597 8.227137
4 2.5 2.743821 0.50716 0.259547 -46.503715 6.672292

2.5 2.5 2.5 2.5 2.5 3.187619 2.072506 0.451629 -13.398078 22.993346
3 2.5 3.825143 2.984408 0.451629 -14.081444 22.99334

3.5 2.5 4.462667 4.062111 0.451629 -14.569562 22.993346
4 2.5 5.100191 5.305615 0.451629 -14.935651 22.993346

2.5 2.5 2.5 2.5 2.5 3.187619 2.072506 0.451629 -13.398078 22.993346
3 2.6891 3.417945 2.263706 0.440195 -14.444185 23.727663

3.5 2.8602 3.627291 2.45092 0.431601 -15.321162 24.322348
4 3.0171 3.820056 2.634649 0.424905 -16.067381 24.813225

2.5 2.5 2.5 2.5 2.5 3.187619 2.072506 0.451629 -13.398078 22.993346
3 2.3242 2.829373 1.287897 0.401098 -16.618157 11.383826

3.5 2.1852 2.580454 0.91433 0.370557 -19.08715 7.988561
4 2.0715 2.394085 0.702145 0.350005 -20.958808 6.438066
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Table 4: The mode, mean, variance, CV, CS and CK of WGB2 when k = 2

a b p q mode mean variance CV CS CK
2.5 2.5 2.5 2.5 2.8445 3.8378 3.9325 0.5167 -10.6613 137.0961
3 2.7339 3.3379 1.7017 0.3908 -18.6434 20.2011

3.5 2.6695 3.0807 0.9626 0.3185 -29.3114 11.2619
4 2.6286 2.9287 0.6268 0.2703 -43.1653 8.2368

2.5 2.5 2.5 2.5 2.8445 3.8378 3.9325 0.5167 -10.6613 137.0961
3 3.4134 4.6054 5.6628 0.5167 -11.0601 137.0961

3.5 3.9824 5.3729 7.7077 0.5167 -11.345 137.0961
4 4.5513 6.1405 10.0672 0.5167 -11.5587 137.0961

2.5 2.5 2.5 2.5 2.8445 3.8378 3.9325 0.5167 -10.6613 137.0961
3 3.0314 4.0802 4.305 0.5085 -11.1588 140.504

3.5 3.2024 4.303 4.6694 0.5022 -11.5722 143.2584
4 3.3607 4.5097 5.0268 0.4972 -11.9217 145.5293

2.5 2.5 2.5 2.5 2.8445 3.8378 3.9325 0.5167 -10.6613 137.0961
3 2.6116 3.2846 1.9893 0.4294 -15.0613 19.4437

3.5 2.4342 2.9348 1.2665 0.3835 -18.6267 10.6813
4 2.2929 2.6874 0.9093 0.3548 -21.4601 7.7605

From the tables, we observe the following:
1) When k = 1, mode increases as p increases, decreases as q increases, and
does not change as a, b increases; when k = 2, mode increases as b, p increases,
decreases as a, q increases.
2) Mean, variance decreases as a, q increases, increases as b, p increases.
3) CV decreases as a, p, q increases, and does not change as b increases.
4) CS decreases as a, b, p, q increases.
5) CK decreases as a, q increases, increases as p increases, and does not change
as b increases.

3.2 Special cases

WGB2 includes several other distributions as special or limiting cases, such
as weighted generalized gamma (WGG), weighted beta of the second kind
(WB2), weighted Singh-Maddala (WSM), weighted Dagum (WD), weighted
gamma (WG), weighted Weibull (WW) and weighted exponential (WE) dis-
tributions.

We can also obtain the jth moments of these distributions with the weight
function w(y) = yk.4

4In the special cases, one should consider the restrictions on the values of k and j.
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Figure 4: Graph Tree

• Weighted Singh-Maddala ( p = 1 )

EGWSM
(Y j) =

bjB(1 + k
a

+ j
a
, q − k

a
− j

a
)

B(1 + k
a
, q − k

a
)

. (14)

• Weighted Dagum ( q = 1 )

EGWD
(Y j) =

bjB(p+ k
a

+ j
a
, 1− k

a
− j

a
)

B(p+ k
a
, 1− k

a
)

. (15)

• Weighted Beta of the Second Kind ( a = 1 )

EGWB2
(Y j) =

bjB(p+ k + j, q − k − j)
B(p+ k, q − j)

. (16)

• Weighted Generalized Gamma ( b = q
1
αβ as q →∞ )

EGWGG
(Y j) =

βjΓ(p+ k
a

+ j
a
)

Γ(p+ k
a
)

. (17)

• Weighted Fisk ( p = 1, q = 1 )

EGWF
(Y j) =

bjB(1 + k
a

+ j
a
, 1− k

a
− j

a
)

B(1 + k
a
, 1− k

a
)

. (18)



24 Weighted Generalized Beta Distribution

• Weighted Gamma ( a = 1, b = q
1
αβ as q →∞ )

EGWG
(Y j) =

βjΓ(p+ k + j)

Γ(p+ k)
. (19)

• Weighted Weibull ( p = 1, b = βq
1
a as q →∞ )

EGWW
(Y j) =

βj(k + j)Γ(k
a

+ j
a
)

kΓ(k
a
)

. (20)

• Weighted Exponential ( a = p = 1, b = βq
1
a as q →∞ )

EGWE
(Y j) =

βj(k + j)!

k!
. (21)

4 Generalized Entropy

Generalized entropy (GE) is widely used to measure inequality trends and
differences. It is primarily used in income distribution. Kleiber and Kotz [7]
derived Theil index for GB2 and Singh-Maddala model.

The generalized entropy (GE) I(α) is defined as:

I(α) =
vαµ

−α − 1

α(α− 1)
, α 6= 0, α 6= 1, (22)

where vα =
∫
yαdF (y), µ ≡ E(Y ) is the mean, and F (y) is the cumulative dis-

tribution function (cdf) of the random variable Y. The bottom-sensitive index
is I(−1), and the top-sensitive index is I(2).

The mean logarithmic deviation (MLD) index is given by:

I(0) = limα→0I(α) = logµ− v0. (23)

and Theil index is:

I(1) = limα→1I(α) =
µ

v1

− logµ. (24)
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The generalized entropy of GB2 is given by Jenkins [6] as:

I(α) =
B(p+ α

a
, q − α

a
)B−α(p+ 1

a
, q − 1

a
)−B1−α(p, q)

α(α− 1)B1−α(p, q)
, α 6= 0, α 6= 1,

with

I(0) = Γ

(
p+

1

a

)
+ Γ

(
q − 1

a

)
− Γ(p)− Γ(q)− ψ(p)

a
− ψ(q)

a
,

and

I(1) =
ψ(p+ 1

a
)

a
−
ψ(q − 1

a
)

a
− Γ

(
p+

1

a

)
− Γ

(
q − 1

a

)
+ Γ(p) + Γ(q).

From our previous discussions about WGB2, vα and µ are given by:

vα =
bαB(p+ k

a
+ α

a
, q − k

a
− α

a
)

B(p+ k
a
, q − k

a
)

, and µ =
bB(p+ k

a
+ 1

a
, q − k

a
− 1

a
)

B(p+ k
a
, q − k

a
)

,

respectively.

Consequently, the generalized entropy of WGB2 is given by:

I(α) =
B(p+ k

a
+ α

a
, q − k

a
− α

a
)B−α(p+ k

a
+ 1

a
, q − k

a
− 1

a
)−B1−α(p+ k

a
, q − k

a
)

α(α− 1)B1−α(p+ k
a
, q − k

a
)

,

(25)
where α 6= 0 and α 6= 1. Note that I(α) does not depend on the scale param-
eter b.

When α = 0 or α = 1, set m(α) = vαµ
−α − 1, n(α) = α(α − 1), then

I(α) = m(α)
n(α)

. By L’Hopital’s rule, we have I(0) = −m′(0), I(1) = m
′
(1),

m
′
(α) = (µ−α)

′
vα + (µ−α)v

′

α, (µ−α)
′
= −µ−αlogµ,

and

v
′

α = vα[
ψ(p+ k

a
+ α

a
)

a
−
ψ(q − k

a
− α

a
)

a
+ logb], where ψ(z) =

Γ
′
(z)

Γ(z)
.

The MLD index and Theil index, I(0) and I(1) of WGB2 are:

I(0) = log
B(p+ k+1

a
, q − k+1

a
)

B(p+ k
a
, q − k

a
)
−
ψ(p+ k

a
)

a
−
ψ(q − k

a
)

a
, (26)
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and

I(1) =
ψ(p+ k+1

a
)

a
−
ψ(q − k+1

a
)

a
− log

B(p+ k+1
a
, q − k+1

a
)

B(p+ k
a
, q − k

a
)

(27)

respectively. Note that I(0) and I(1) does not depend on the scale parameter b.

We select the values of the parameters a, p, q and compute the bottom-
sensitive index (I(-1)), top-sensitive index (I(2)), mean logarithmic deviation
(MLD) index (I(0)) and Theil index (I(1)) in Tables 5 and 6.

Table 5: Generalized entropy of WGB2 with k = 1

a p q I(-1) I(2) I(0) I(1)
2.5 2.5 2.5 0.0891 0.102 0.0841 0.2544
3 0.0594 0.0649 0.0572 0.2649

3.5 0.0426 0.0454 0.0414 0.2569
4 0.0322 0.0337 0.0315 0.2433

2.5 2.5 2.5 0.0891 0.102 0.0841 0.2544
3 0.0826 0.0969 0.0791 0.2497

3.5 0.0779 0.0931 0.0754 0.2464
4 0.0745 0.0903 0.0726 0.2438

2.5 2.5 2.5 0.0891 0.102 0.0841 0.2544
3 0.0759 0.0804 0.0712 0.5079

3.5 0.0678 0.0687 0.0633 0.701
4 0.0622 0.0613 0.058 0.8568

From the tables, we observe that:
1) I(-1), I(2) and I(0) decreases as a, p, q increases, and does not change as b
increases, since these indexes do not depend on the scale parameter b.
2) There is no specific pattern for I(1), however I(1) increases as the parameter
a increases for the chosen values of parameters p and q.
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Table 6: Generalized entropy of WGB2 with k = 2

a p q I(-1) I(2) I(0) I(1)
2.5 2.5 2.5 0.102 0.1335 0.0981 -0.0294
3 0.0649 0.0764 0.0633 0.0908

3.5 0.0454 0.0507 0.0446 0.1389
4 0.0337 0.0365 0.0333 0.1579

2.5 2.5 2.5 0.102 0.1335 0.0981 -0.0294
3 0.0969 0.1293 0.0942 -0.033

3.5 0.0931 0.1261 0.0913 -0.0357
4 0.0903 0.1236 0.089 -0.0379

2.5 2.5 2.5 0.102 0.1335 0.0981 -0.0294
3 0.0804 0.0922 0.0767 0.3079

3.5 0.0687 0.0735 0.0651 0.5465
4 0.0613 0.063 0.0579 0.7308

5 Renyi Entropy

Renyi [15] extended the concept of Shannon’s entropy and is defined as
follows:

Iα(β) =
1

1− β
log

(∫ ∞
0

fβ(y)dy

)
, β > 0, β 6= 1. (28)

Renyi entropy is important in information theory, probability and statistics
as a measure of uncertainty, and tends to Shannon entropy as β → 0.

5.1 Renyi Entropy of GB2

Recall the pdf of GB2 distribution is given by:

fGB2(y; a, b, p, q) =
ayap−1

bapB(p, q)[1 + (y
b
)a]p+q

for y > 0, and 0 otherwise

Note that:

fβGB2(y; a, b, p, q) =

(
a

bB(p, q)

)β[(
y

b

)a]β(p− 1
a

)[
1 +

(
y

b

)a]−β(p+q)

,

where y > 0, a, b, p, q > 0, β > 0. Let (y
b
)a = t, then dy = b

a
t
1
a
−1, and∫ ∞

0

fβGB2(y; a, b, p, q)dy =

(
a

b

)β−1
1

Bβ(p, q)

∫ ∞
0

tβp−
β
a

+ 1
a
−1

(
1

t+ 1

)β(p+q)

=

(
a

b

)β−1B(βp− β
a

+ 1
a
, βq + β

a
− 1

a
+ 2)

Bβ(p, q)
.
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Consequently, Renyi entropy for GB2 simplifies to:

IR(β) = log

(
b

a

)
− βlogB(p, q)

1− β
+
B(βp− β

a
+ 1

a
, βq + β

a
− 1

a
+ 2)

1− β
, (29)

for a, b, p, q > 0, β > 0, β 6= 1.

5.2 Renyi Entropy of WGB2

Recall the pdf of WGB2 distribution is given by:

g
WGB2

(y; a, b, p, q, k) =
ayap+k−1

bap+kB(p+ k
a
, q − k

a
)[1 + (y

b
)a]p+q

(30)

for y > 0, a, b, p, q, k > 0, and −ap < k < aq. Note that:

gβw(y; a, b, p, q, k) =
(a
b
)β[(y

b
)a]βp+

βk
a
−β
a [1 + (y

b
)a]−β(p+q)

Bβ(p+ k
a
, q − k

a
)

for a, b, p, q > 0, −ap < k < aq, β > 0, β 6= 1. Let (y
b
)a = t, then dy = b

a
t
1
a
−1,

and∫ ∞
0

gβw(y)dy =
(a
b
)β−1

Bβ(p+ k
a
, q − k

a
)

∫ ∞
0

(
1− 1

1 + t

)βp+βk
a
−β
a

+ 1
a
−1(

1

1 + t

)βq−βk
a

+β
a
− 1
a

+2−1

dt

=
(a
b
)β−1B(βp+ βk

a
− β

a
+ 1

a
, βq − βk

a
+ β

a
− 1

a
+ 2)

Bβ(p+ k
a
, q − k

a
)

.

Consequently, Renyi entropy for WGB2 reduces to:

IR(β) = log

(
b

a

)
−
βlogB(p+ k

a
, q − k

a
)

1− β
+
logB(βp+ βk

a
− β

a
+ 1

a
, βq − βk

a
+ β

a
− 1

a
+ 2)

1− β
,

(31)
for a, b, p, q > 0, −ap < k < aq, β > 0, β 6= 1.

We select values of the parameters a, b, p, q and compute Renyi entropy
for different values of the parameter β in Tables 7 and 8.

From the tables we observe the following:
1) When k = 1: for β < 1, Renyi entropy increases as b, q increases; for β > 1,
Renyi entropy increases as b increases, and decreases as a, p, q increases.
2) When k = 2: for β < 1, Renyi entropy increases as a, b increases; for β > 1,
Renyi entropy increases as b increases, and decreases as a, p, q increases.
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Table 7: Renyi entropy of WGB2 with k = 1

a b p q β = 0.25 β = 0.5 β = 0.75 β = 1.25 β = 1.5
2.5 2.5 2.5 2.5 0.0043 0.53 4.5354 -17.6808 -13.5768
3 -0.0921 0.421 4.4616 -17.9609 -13.8119

3.5 -0.1795 0.3199 4.3792 -18.1696 -13.9942
4 -0.2599 0.2266 4.2964 -18.3358 -14.1437

2.5 2.5 2.5 2.5 0.0043 0.53 4.5354 -17.6808 -13.5768
3 0.1866 0.7124 4.7177 -17.4985 -13.3945

3.5 0.3407 0.8665 4.8719 -17.3444 -13.2404
4 0.4743 1 5.0054 -17.2108 -13.1068

2.5 2.5 2.5 2.5 0.0043 0.53 4.5354 -17.6808 -13.5768
3 -0.0843 0.5318 5.027 -19.6824 -15.0812

3.5 -0.169 0.5261 5.4507 -21.4444 -16.4077
4 -0.25 0.5158 5.8225 -23.0191 -17.5949

2.5 2.5 2.5 2.5 0.0043 0.53 4.5354 -17.6808 -13.5768
3 0.1044 0.8711 5.7364 -20.3785 -15.4183

3.5 0.1848 1.1532 6.75 -22.702 -17.0128
4 0.251 1.3931 7.6272 -24.7466 -18.4216

6 Concluding Remarks

In this paper, the weighted generalized beta distribution of the second kind
(WGB2) is presented. We showed that WGB2 includes several other distri-
butions as special and limiting cases. The limiting and special cases include
weighted generalized gamma (WGG), weighted beta of the second kind (WB2),
weighted Singh- Maddala (WSM), weighted Dagum (WD), weighted gamma
(WG), weighted Weibull (WW) and weighted exponential (WE) distributions
as well as their unweighted or parent versions. Statistical properties of the
weighted generalized beta distribution of the second kind (WGB2) including
the cdf, hazard functions, monotonicity, and income-share elasticity are also
presented. The moments of WGB2 as well as the mean, variance, coefficient
of skewness and coefficient of kurtosis are presented. Some results on the
generalized entropy and Renyi entropy of WGB2 are also presented.
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Table 8: Renyi entropy of WGB2 with k = 2

a b p q β = 0.25 β = 0.5 β = 0.75 β = 1.25 β = 1.5
2.5 2.5 2.5 2.5 -0.1758 0.1726 3.6929 -16.5623 -12.9325
3 -0.2436 0.1417 3.846 -17.231 -13.4088

3.5 -0.311 0.091 3.9028 -17.6653 -13.7291
4 -0.3764 0.0329 3.9124 -17.9732 -13.9639

2.5 2.5 2.5 2.5 -0.1758 0.1726 3.6929 -16.5623 -12.9325
3 0.0065 0.355 3.8752 -16.38 -12.7502

3.5 0.1607 0.5091 4.0294 -16.2259 -12.596
4 0.2942 0.6427 4.1629 -16.0923 -12.4625

2.5 2.5 2.5 2.5 -0.1758 0.1726 3.6929 -16.5623 -12.9325
3 -0.2704 0.1397 4.0278 -18.1282 -14.1235

3.5 -0.3602 0.1046 4.3179 -19.5189 -15.1831
4 -0.4454 0.0686 4.5734 -20.7701 -16.1377

2.5 2.5 2.5 2.5 -0.1758 0.1726 3.6929 -16.5623 -12.9325
3 -0.0429 0.6121 5.2145 -19.9289 -15.2229

3.5 0.0616 0.9675 6.4713 -22.7763 -17.173
4 0.1466 1.2651 7.5436 -25.2522 -18.8767
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