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Abstract

Rodrigues-Neto (2009) has shown that a given specification of posteri-
ors of different players in an incomplete-information setting is compatible
with a common prior if and only if the posteriors satisfy the so-called cycle
equations. This note shows that, if, for any player, any element of the
partition of the this player has a nonempty intersection with any element
of the partition of any other player, then it suffices to verify the cycle
equations for all cycles of length 4 or less.

Key Words : Belief systems, consistency, common priors, cycle equa-
tions.

JEL: D82, D83.

1 The Basic Idea

In a recent note, Rodrigues-Neto [4] has developed an algebraic approach to
verifying whether a given specification of posteriors for different players is com-
patible with a common prior.1 The algebraic approach provides an alternative
to the syntactic approach of [1], as well as the semantic approaches that are
based on separation theorems ([3], [6]) or on limits of iterated expectations in
Markov chains ([5]). In a model with finitely many players and a finite state
space, the algebraic approach requires the verification that the posteriors satisfy
a given set of equations, the so-called cycle equations. This note shows that, if,
for any two different players, any element of the partitions of the first player has
a nonempty intersection with any element of the partitiion of the second player,
then it is actually enough to verify these equations for cycles of length 4 or less.

∗For helpful discussions and comments, I thank Sophie Bade, Christoph Engel, Yossi Fein-
berg, Alia Gizatulina, and Christian Hellwig.

1For a similar result, see Proposition 4 in Hellman and Samet [2].
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The procedure for verifying that posteriors are compatible with a common prior
is thus further simplified.
To understand the contribution, consider Figure 1, a version of Rodrigues-

Neto’s meet-join diagram. There are two players and nine states of nature.
The different states are entered in a square matrix so as to reflect the players’
information partititions. Player 1’s partition corresponds to the rows of the
matrix, player 2’s partition to the columns. The column to the left of the
matrix indicates the elements of player 1’s partition, the row at the top the
elements of player 2’s partition.

Figure 1

In this figure, an oriented horizontal edge leads from one state to another
state in the same row; an oriented vertical edge leads from one state to another
state in the same column. A cycle is given by a sequence of connected horizontal
and vertical edges that leads back to the initial state. An example is given by
the sequence of arrows in the figure that lead from state 1 to state 3, from state
3 to state 6, from state 6 to state 5, from state 5 to state 8, from state 8 to state
7, and from state 7 back to state 1.
The different oriented edges are given different weights. The weight of an

edge leading from a state ω1 to a state ω2 is defined as the posterior probability
of the state ω2, as seen by the player who is unable to distinguish between ω1
and ω2. Thus, in Figure 1, the weight of edge 1 → 3 is equal to the posterior
probability of state 3, as seen from the perspective of player 1 when he knows
that the state belongs to the set {1, 2, 3}. The weight of the reverse edge 3→ 1
is equal to the posterior probability of state 1 from the perspective of player 1
when the state belongs to {1, 2, 3}.
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A cycle equation requires that the product of the weights of edges along
a given cycle be the same as the product of the weights of edges along the
reverse cycle. Thus, in Figure 1, the product of weights of edges in the cycle
1 → 3 → 6 → 5 → 8 → 7 → 1 must be the same as the product of weights of
edges in the reverse cycle 1 → 7 → 8 → 5 → 6 → 3 → 1. This requirement is
nontrivial because the weight assigned to any one edge is usually not the same
as the weight assigned to the reverse edge. For example, there is no reason
why, in Figure 1, the weights of the edges 1 → 3 and 3 → 1, i.e. the posterior
probabilities of states 3 and 1, as seen from the perspective of player 1 when
the state belongs to {1, 2, 3}, should be the same.
Rodrigues-Neto [4] shows that a given system of posteriors for different

agents is compatible with a common prior if and only if the cycle equation
is satisfied for every cycle. This note shows that, for an interesting class of case,
the condition of Rodrigues-Neto is satisfied if and only if the cycle equation is
satisfied for every cycle of length 4 or less.
The reason is that the different cycle equations are not independent. For

any longer cycle, the validity of the cycle equation is implied by the validity of
the cycle equations for shorter cycles. Thus, in the two-player example of Figure
1, validity of the cycle equation for the cycle 1 → 3 → 6 → 5 → 8 → 7 → 1,
which has six edges, is implied by the cycle equations for the three cycles shown
in Figure 2, namely, 1 → 3 → 6 → 4 → 1, 1 → 4 → 5 → 2 → 1, and
1→ 2→ 8→ 7→ 1, all of which have four edges.

Figure 2

We can think of the cycle 1 → 3 → 6 → 5 → 8 → 7 → 1 in Figure 1
as being "mimicked" by the cycle 1 → 3 → 6 → 4 → 1 → 4 → 5 → 2 →
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1 → 2 → 8 → 7 → 1, which is obtained by joining the three shorter cycles
1 → 3 → 6 → 4 → 1, 1 → 4 → 5→ 2→ 1, and 1 → 2 → 8 → 7→ 1 in Figure
2. The word "mimicked" here must be taken with a grain of salt. Some of the
edges of the cycle in Figure 1, namely 6 → 5 and 5 → 8, are not also edges of
the cycles in Figure 2. Moreover, some of the edges of the cycles in Figure 2 are
not also edges of the cycle in Figure 1. However, the "missing" edges 6→ 5 and
5→ 8 in the cycle 1→ 3→ 6→ 5→ 8→ 7→ 1 in Figure 1 have counterparts
in the shorter cycles that have exactly the same weights and therefore make
exactly the same contributions to the cycle equation. Specifically, the weights
of the edges 6→ 5 in Figure 1 and 4→ 5 in Figure 2 are the same; they are both
given by the conditional probability that player 1 assigns to the state 5 given the
information that the state belongs to the set {4, 5, 6}. Similarly, the weights of
the edge 5→ 8 in Figure 1 and 2→ 8 in Figure 2 are also the same. Once these
equivalences are taken into account, the "excess" of edges in Figure 2 over the
cycle 1→ 3→ 6→ 5→ 8→ 7 → 1 in Figure 1 is seen to be redundant in the
sense that, e.g., the edges 4 → 1 and 1 → 4 just neutralize each other because
their combined contributions to the two sides of the cycle equation is exactly the
same. Therefore, the cycle equation for the cycle 1→ 3→ 6→ 5→ 8→ 7→ 1
in Figure 1 is equivalent to the cycle equation for the more roundabout cycle
1→ 3→ 6→ 4→ 1→ 4→ 5→ 2→ 1→ 2→ 8→ 7→ 1 in Figure 2, which in
turn is implied by the cycle equations for the shorter cycles 1→ 3→ 6→ 4→ 1,
1→ 4→ 5→ 2→ 1, and 1→ 2→ 8→ 7→ 1.
This finding reflects a general principle, which is applicable whenever a cycle

with more than four edges can be mimicked in this way by a combination of
shorter cycles.
A mimicking of longer cycles by combinations of shorter cycles is not always

possible. An example is provided by the six-edge cycle 1→ 2→ 3→ 4→ 5→
6→ 1 in Figure 3. Whereas in Figures 1 and 2, each element of the partition of
player 2 can be reached from each element of the partition of player 1, and vice
versa, in Figure 3, for example, the element {2, 3} of the partition of player 2
cannot be reached from the element {5, 6} of player 1.2

2At first sight, the notion that certain elements of the partition of player 2 cannot be
reached from a given element of the partition of player 1 seems to depend on the particular
representation of states, events, and information in Figure 3. For suppose that we add three
states, (Row 1, Column 3), (Row 2, Column 1), (Row 3, Column 2), to the six-state model of
Figure 2, while maintaining the interpretation of rows and columns as representing the players’
respective partitions. Then the element Column 2 of player 2’s partition can be reached from
the element Row 3 of player 1’s partition. However, in this extended model, conditional
probabilities of the state (Row 3, Column 2) from the perspectives of both players must be
equal to zero. If conditional probabilities can be equal to zero, the mimicking operation in
Figure 1 does not work. For example, if, in Figure 1, both player 1 and player 2 assign
conditional probability zero to state 4, then the cycle equation for the roundabout cycle
1 → 3 → 6 → 4 → 1 → 4 → 5 → 2 → 1 → 2 → 8 → 7 → 1 is trivially satisfied but this
does not permit any inference about the cycle equation for 1 → 3 → 6 → 5 → 8 → 7 → 1.

Rodrigues-Neto [4] assumes that all relevant conditional probabilities are strictly positive.
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Figure 3

If each element of a player’s partition can be reached from each element of
any other player’s partition, such a constellation cannot arise. In the following,
I will show that any specification of posteriors which satisfies this condition is
compatible with a common prior if and only if the cycle equation is satisfied for
every cycle of length 4 or less.

2 Formal Statement and Proof of the Result

The framework of the formal analysis is the same as in Rodrigues-Neto [4]. There
are J players j = 1, ..., J. There are also n possible states of nature ω = 1, ..., n.
Each player j’s information is characterized by a partition Πj = {πj1, ..., π

j

ℓj
}

of the state space S = {1, 2, ..., n}. A posterior for player j is a vector θj =
(θj1, ...θ

j
n), where, for each state ω, θ

j
ω > 0 is the posterior probability that

player j assigns to the state ω when he is informed that the true state belongs
to the unique element πj(ω) of the partition Πj that contains ω. For any set
π
j
k ∈ Π

j, obviously,
∑

ω∈π
j

k
θjω = 1.

The posteriors θ1, θ2, ..., θJ are compatible with a common prior µ if and
only if, for all j and all ω,

θjω =
µ(ω)∑

ω′∈πj(ω) µ(ω
′)
. (1)

The question is under what conditions on θ1, θ2, ..., θJ such a prior exists.
To answer this question, Rodrigues-Neto introduces the concepts of (ori-

ented) edge and cycle. An edge is an ordered triple (j, ωp, ωq) such that ωp
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and ωq are two states belonging to the same element of player j’s partition, i.e.
πj(ωp) = πj(ωq). A cycle is a finite sequence of edges, {(jk, ωkp , ω

k
q)}

K
k=1 such

that, for k = 1, ...K−1, ωkq = ω
k+1
p and, moreover, ωKq = ω

1
p. The opposite of the

edge (j, ωp, ωq) is the edge (j, ωq, ωp) that involves the same player but has the
order of states reversed. The opposite of the cycle {(j1, ω1p, ω

1
q), ..., (j

K , ωKp , ω
K
q )}

is the cycle {(jK , ωKq , ω
K
p ), ..., (j

1, ω1q , ω
1
p)} that is obtained by taking the oppo-

sites of the edges (j1, ω1p, ω
1
q), ..., (j

K , ωKp , ω
K
q ) and reversing their order.

The oriented edge (j, ωp, ωq) is given the weight θ
j
ωq
. Note that this weight

is independent of ωp. Independence of ωp reflects the fact that the conditional
probability which player j assigns to the state ωq is the same for all states ωp
that belong to the same element πj(ωq) as the state ωq itself.
Given the weights θjωq for different edges, the product of weights of edges in

the cycle {(jk, ωkp , ω
k
q)}

K
k=1 is

K∏

k=1

θ
jk

ωkq
, the product of weights for the opposite

cycle,
K∏

k=1

θ
jk

ωkp
. The following result is proved in Rodrigues-Neto [4].

Proposition 1 (Rodrigues-Neto) The posteriors θ1, θ2, ..., θJ are compatible
with some common prior µ if and only if the cycle equation

K∏

k=1

θ
jk

ωkq
=

K∏

k=1

θ
jk

ωkp
. (2)

holds for every cycle {(jk, ωkp, ω
k
q )}

K
k=1.

Building on this result, I obtain:

Proposition 2 Assume that, for all players j, k �= j, all πj ∈ Πj and all
πk ∈ Πk, πj ∩ πk �= ∅. Then the posteriors θ1, θ2, ..., θJ are compatible with
some common prior µ if and only if the cycle equation (2) holds for every cycle
{(jk, ωkp, ω

k
q )}

K
k=1 with K ≤ 4.

Proof. Trivially, the result of Rodrigues-Neto implies that, the posteriors
θ1, θ2, ..., θJ are compatible with a common prior µ, then the cycle equation (2)
must hold for every cycle {(jk, ωkp, ω

k
q)}

K
k=1 with K ≤ 4. To prove that, under

the additional assumption on the partitions Π1, ...,ΠJ , the converse is also true,
I will show that, if the cycle equation (2) holds for every cycle {(jk, ωkp, ω

k
q)}

K
k=1

with K ≤ 4, then it also holds for every cycle {(jk, ωkp, ω
k
q)}

K
k=1 with K > 4.

The argument proceeds by induction on K. Suppose that the cycle equation
holds for every cycle {(jk, ωkp, ω

k
q)}

K′

k=1 with K
′ ≤ K − 1, and consider any

cycle {(jk, ωkp, ω
k
q)}

K
k=1 with K edges. Fix some ̂ �= j3. Using the assumption

that πj ∩ πk �= ∅ for all πj ∈ Πj and all πk ∈ Πk, for all j and k �= j, let
ω̂ be an element of πj

3

(ω3p) ∩ π
̂(ωKq ). Since π

j3(ω3p) = πj
3

(ω3q), ω̂ is also an

element of πj
3

(ω3q) ∩ π
̂(ωKq ). Thus, (j

3, ω3p, ω̂), (̂, ω̂, ω
K
q ), (̂, ω

K
q , ω̂), (j

3, ω̂, ω3q)
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are all admissible edges. If, in the cycle {(jk, ωkp, ω
k
q )}

K
k=1, the edge (j

3, ω3p, ω
3
q)

is replaced by the four edges (j3, ω3p, ω̂), (̂, ω̂, ω
K
q ), (̂, ω

K
q , ω̂), and (j

3, ω̂, ω3q),
the result is a K + 3-edge cycle.3 This K + 3-edge cycle is made up of two
shorter cycles, the four-edge cycle (j1, ω1p, ω

1
q), (j

2, ω2p, ω
2
q), (j

3, ω3p, ω̂), (̂, ω̂, ω
K
q ),

and the K−1-edge cycle (̂, ωKq , ω̂), (j
3, ω̂, ω3q), (j

4, ω4p, ω
4
q), ..., (j

K , ωKp , ω
K
q ). By

the induction hypothesis, each of these shorter cycles satisfies the cycle equation.
Thus,

θ
j1

ω1q
· θj

2

ω2q
· θj

3

ω̂ · θ
̂

ωKq
= θ̂ω̂ · θ

j3

ω3p
· θj

2

ω2p
· θj

1

ω1p

and

θ
̂

ω̂ ·
K∏

k=3

θ
jk

ωkq
=

K∏

k=4

θ
jk

ωkp
· θj

3

ω̂ · θ
̂

ωKq
.

Upon multiplying these equation by each other and rearranging terms, one
obtains

θ
j3

ω̂ · θ
̂

ωKq
· θ̂ω̂ ·

K∏

k=1

θ
jk

ωkq
= θ̂ω̂ · θ

j3

ω̂ · θ
̂

ωKq
·
K∏

k=1

θ
jk

ωkp
.

The validity of (2) for the cycle {(jk, ωkp, ω
k
q )}

K
k=1 follows immediately. The

induction is thereby complete.

If we think of the state as a vector ω = (t1, ..., tJ) of "types" tj of the different
players, the assumption that any element of any player’s partition intersects any
element of any other player’s partition is equivalent to the assumption that the

state space is equal to the product
J∏

j=1

T j of type spaces for the different players,

so that, for any j and k �= j and any types tj ∈ T
j and tk ∈ T

k, upon observing
that his own type is tj, player j cannot completely rule out the possibility that
player k’s type is tk. Types may be correlated, but not to such an extent that
the observation of a player’s own type allows him to reduce the set of types
that are considered to be possible for other agents. For any model exhibiting
such a product structure, Proposition 2 asserts that th egiven posteriors are
compatible with a common prior if and only if the cycle equations hold for any
cycles of length 4 or less.
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