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Abstract

A version of the Second Fundamental Theorem of Welfare Eco-

nomics that applies to a money-free environment, in which a set of

indivisible goods needs to be matched to some set of agents, is estab-

lished. In such environments, “trade” can be identified with the set

of hierarchical exchange mechanisms defined by Papai (2000). Papai

(2000)’s result - that any such mechanism yields Pareto-optimal al-

locations - can be interpreted as a version of the First Fundamental

Theorem of Welfare Economics for the given environment. In this

note, I show that for any Pareto-optimal allocation and any hierarchi-

cal exchange mechanism one can find an initial allocation of ownership

rights, such that the given Pareto-optimal allocation arises as a result

of trade.

∗Max Planck Institute for Research on Collective Goods, Kurt-Schumacher-Str. 10,

D-53113 Bonn, Germany. Phone: 49+228+9141670 Fax: 49+228+9141670
†I would like to thank Martin Hellwig and Anne-Katrin Roesler for their comments.
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The First Fundamental Theorem of Welfare Economics provides con-

ditions under which every equilibrium of competitive markets is Pareto-

optimal. The Second Fundamental Theorem gives some conditions under

which every Pareto-optimal allocation can be sustained as a competitive equi-

librium. Both theorems apply to markets with divisible goods and money.

The present note is concerned with an analogue of the Second Fundamental

Theorem of Welfare Economics for a money-free environment in which some

indivisible goods need to be matched to agents.

The problems considered here are known as “housing problems”. A hous-

ing problem (N,K,R) consists in two finite sets of objects, henceforth called

houses, and of agents, K and N , respectively, and R : = (R1, · · · , Rn) a pro-

file of (strict) preferences of all agents over the houses. The partial profiles

of the preferences of the agents in M ⊂ N and the remainder are denoted by

RM , R−M , respectively. Agent i’s most preferred element in K according to

Ri is denoted by top(Ri). Finally, as usual Pi denotes the strict part of Ri.

An allocation defined as any injective function from the smaller set of K

and N to the larger one. In terms of substance, an allocation is such that

no agent obtains more than one house, some agents do not obtain houses

if and only if there are more agents than houses (| N |>| K |), and some

houses remain unmatched if and only if there are more houses than agents

(| K |>| N |). An allocation is denoted as a vector x : = (x1, · · · , x|N |)
with the understanding that xi denotes the house matched to agent i, where

xi = ∅ denotes the case in which i does not obtain a house for the given

allocation. Agents are assumed to care only about their own matches and to

prefer any house to no house. As a shorthand, preferences over allocations

are also denoted by Ri with the understanding that xRx′ holds if and only

if xiRix
′
i.

Any function from K to N is called an assignment. According to an

assignment, multiple houses might be mapped to the same agent. If | N |≥|
K | the set of allocations is a subset of the set of assignments. Otherwise

allocations are such that some houses remain unmatched, which is ruled out

for assignments.

Let R be the set of all profiles R. A social-choice function f maps any

profile R ∈ R to an allocation f(R). The houses that are matched to the
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agents in M under allocation f(R) are denoted by fM(R). A mechanism Γ

is a direct revelation mechanism if the agents’ strategies consist in directly

revelations of rankings over the available houses to the designer. The outcome

of direct revelation mechanism Γ when agents claim the preference profile R

is denoted as Γ(R), the social choice rule that maps any profile of preferences

R ∈ R to Γ(R) is denoted by fΓ. If the rule fΓ satisfies some property X,

then the mechanism Γ is said to satisfy this property X.

To develop an analogue of the Second Fundamental Theorem of Wel-

fare Economics, a definition of “trade” that is appropriate for the present

environment is needed. Papai (2000)’s hierarchical exchange mechanisms

provide a natural candidate for this purpose. A hierarchical exchange mech-

anism specifies a system of ownership rights and determines allocations as

the outcomes of free trade for the given ownership rights. The system of

ownership rights consists in an initial assignment of all houses to the agents

and a set of inheritance rules for the houses. Ownership rights in hierarchical

exchange mechanisms are such that each house is always owned by someone.

The inheritance rule solves the problem of the ownership of multiple houses

before the termination of the mechanism: observe that there is a tension be-

tween the following two requirements. On the one hand, the class of trading

mechanisms should be general and therefore allow for a wide variety of initial

ownership structures, which should in particular comprise the case that some

agent starts out owning multiple houses. On the other hand, the mechanism

needs to result in an allocation, meaning that no agent is allowed to obtain

more than one house. Papai (2000) elegantly solves this problem with the

definition of inheritance rules that prescribe how the houses whose owners

leave the market should be distributed to the remaining agents. In hierar-

chical exchange mechanisms, trade is identified with a sequence of trading

cycles.

Serial dictatorships and Gale’s top trading cycles mechanism are special

cases of hierarchical exchange mechanisms (for housing problems with |K| =
|N |). In the case of a serial dictatorship, some agent starts out owning

all houses. His appropriation of one of the houses can be interpreted as

the formation of a trading cycle of length one. The inheritance rule then

prescribes that a next agent inherits the entire remainder of houses. In
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Gale’s top trading cycles mechanism, each agent starts out owning exactly

one house. All agents are then asked to point to the owners of their most

preferred house. At least one cycle forms. All agents in this cycle trade

houses. The remaining agents repeat the procedure with the set of remaining

houses. Inheritance rules do not play any role in Gale’s top trading cycles

mechanism, as there are no owners of multiple houses.

Formally, Papai (2000) defines hierarchical exchange mechanisms as lists

of inheritance trees Γ = (Γa(V,Q,L,H))a∈K . Each inheritance tree Γa(V,Q,L,H)1

is a rooted tree where V is the set of vertices, and Q ⊂ V × V is the set of

arcs. The function L : V → N labels each vertex with an individual, the

function H : Q→ K labels each arc with a house. The root of the tree Γa is

labeled with the initial owner of a, say this is agent i. The labels on the arcs

following this vertex denote agent i’s possible matches. If agent i is matched

to house b, then the label of vertex following on the arc with the label b

determines the next owner of a. Continuing in this way, one can determine

all the potential inheritances by following the appropriate arcs.2

To qualify as inheritance trees, the trees have to satisfy a set of technical

conditions specified by Papai (2000, p. 1409). These conditions ensure, for

example, that no agent appears twice on the same inheritance path. Since

the present note does not make explicit use of these conditions, they are

not stated here. Hierarchical exchange mechanisms are group-strategyproof

in the sense that for all R, there do not exist M ⊂ N and R̃M such that

fΓ(R̃M , R−M)RMfΓ(R) and fΓ
M(R̃, R−M)M 6= fΓ

M(R). The fact is established

as part of the main characterization result in Papai (2000, p. 1425). A mech-

1I replace Papai (2000)’s definition of an inheritance tree Γa(V,Q) which presumes

the labeling functions L,H by an expression that explicitly lists the labeling functions:

Γa(V,Q,L,H). This allows me to define the concept of permutations of roles for hierar-

chical exchange mechanisms.
2In terms of this formalism, Gale’s top trading cycles mechanisms can be defined

through any list of inheritance trees Γ = (Γa(V,Q,L,H))a∈K with the feature that no

two roots are labeled with the same agent. This implies that each agent starts out owning

exactly one house. The inheritance rule consequently plays no role, which in turn implies

that any list of inheritance trees with the named feature defines the same to trading cy-

cles mechanisms. Conversely, the root of every tree of a serial dictatorship mechanism is

labeled with the same agent. Every vertex ensuing on the initial node is labeled with the

second dictator and so forth.
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anism is considered strategyproof if the condition of group-strategyproofness

holds for all singleton “groups” M . A mechanism is called Pareto-optimal if

any outcome x = Γ(R) of the mechanism is Pareto-optimal according to the

profile of preferences R. The sets of agents and houses eliminated in the tth

round of the mechanism are denoted by Wt(R) and Ft(R), respectively.

The outcome of a hierarchical exchange mechanism can be calculated

sequentially as follows: first, eliminate all agents and houses in the first set

of top trading cycles W1(R) and F1(R); their matches are fΓ
W1(R)(R). The

allocation for all other agents N \W1(R) can be calculated as the outcome

of a submechanism Γ′, which is defined through a set of inheritance trees

×a∈K′Γ
′
a(Q

′, V ′,L′,H′) that have been reduced as follows. Let vi be a vertex

such that L(vi) ∈ W1(R) and let a be the match of L(vi) under the first set of

top trading cycles, let H(vi, vj) = a, in words, let (vi, vj) be the arc following

vi that is labeled with L(vi)’s match. Replace vi and the corresponding

subtree by the vj and the following subtree (keeping the labels of the latter

subtree). The rationale behind this step in the construction of the inheritance

trees Γ′a(Q
′, V ′,L′,H′) is that agents in W1(R) have already been matched to

houses and therefore can no longer inherit any houses. Whenever they would

inherit a house according to some inheritance tree, that is, whenever their

name would appear as the label on some vertex vi in one of the remaining

trees, the house that they would inherit is passed on to the agent that follows

on the arc labeled that agent’s match. Once there is no more vertex for an

agent in W1(R) left, go on to eliminate all arcs that are labeled with houses in

F1(R) and their ensuing subtrees. This latter step can be explained through

the observation that the case that some agent not in W1(R) is matched to a

house in F1(R) is irrelevant; these houses have all been already matched in

the first round. It is a purely technical matter to show that a submechanism

Γ′ satisfies the defining properties for hierarchical exchange mechanism given

by Papai (2000, p. 1409).

With this definition of hierarchical exchange mechanisms in hand, one

can now state an analogue for the First Fundamental Theorem of Welfare

Economics as

Theorem 1 Any hierarchical exchange mechanism Γ = (Γa(V,Q,L,H))a∈K
is strategyproof and Pareto-optimal.
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Proof Theorem 1 is a part of the main result of Papai (2000, p. 1425) and

proven by her. �

The main result of the present note is, in a sense, the converse of Theorem

1. In tune with the Second Fundamental Theorem of Welfare Economics, I

claim that for any Pareto-optimal allocation x in a housing problem (N,K,R)

and any structure of ownership given by some hierarchical exchange mecha-

nisms one can find a way to assign the given ownership rights to the agents

such that x is the outcome of the mechanism. To formalize this idea, we

need to distinguish between the ownership structure defined through a mech-

anism and the initial assignment of ownership rights for a given hierarchical

exchange mechanism Γ = (Γa(V,Q,L,H))a∈K . I view the trees together with

the labels denoting houses (Γ = (Γa(V,Q, ·,H))a∈K) as the given structure

of ownership. The labeling function L represents a particular assignment

defined by the mechanism. Any allocation of initial ownership in a hierarchi-

cal exchange mechanism can be achieved through a permutation of the roles

played by the agents.

Definition 1 A permutation of roles p consists of a bijection p : N →
N . A permutation of roles p induces a permuted hierarchical exchange

mechanism p(Γ) which is defined through p(Γ) = ×a∈KΓa(V,Q, p ◦ L,H).

A mechanism and its permutation foresee the same types of ownership

rights over houses. The only differences between a hierarchical exchange

mechanism Γ and a permutation of the mechanism p(Γ) lies in the permuta-

tion of the roles played by the agents. The main result of the note can now

be stated as:

Theorem 2 Let x be a Pareto-optimal allocation in a housing problem (N,K,R).

Fix a hierarchical exchange mechanism Γ. Then there exists a permutation

of roles p such that x is the outcome of p(Γ).

The proof of this result is based on the idea that in each Pareto optimum

there is some agent i who obtains his most preferred house out of the grand

set top(Ri). If the initial assignment is such that this agent starts out owning

this house, he will form a trading cycle of length one by pointing to himself,
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leaving the mechanism. Since x is Pareto-optimal, there exists an agent j

who is matched to his most preferred house xj out of the remaining houses.

Ownership rights on the remainder of houses are arranged such that, after the

elimination of the first agent, this agent j becomes the owner of xj. The proof

proceeds inductively until all ownership rights have been determined. To

make this proof work, I first need to show that the outcome of a hierarchical

exchange mechanism does not depend on the order in which top trading

cycles are eliminated. (According to Papai (2000)’s definition all cycles that

form in some stage t eliminated simultaneously.) I do so in the next two

lemmata.

Definition 2 An assignment rule f is group-nonbossy if for all R ⊂ R,

M ⊂ N , and R̃M , fM(R) = fM(R̃M , R−M) implies f(R) = f(R̃M , R−M).

Group-nonbossiness ensures that groups cannot change the assignment

for agents that do not belong to the group, by reporting different preferences

without changing their own. If one restricts the groups M in the definition

to singletons, one obtains the standard definition of nonbossiness (as defined,

for example, by Papai (2000, p. 1422)).

Lemma 1 Any hierarchical exchange mechanism is group-nonbossy.

Proof Suppose there existed a profile of preferences R, a hierarchical ex-

change mechanism Γ, a subset M ⊂ N , and R̃M such that fΓ
M(R) = fΓ

M(R̃M , R−M)

holds, but fΓ(R) 6= fΓ(R̃M , R−M). The latter implies that there is some j /∈
M such that fΓ

j (R) 6= fΓ
j (R̃M , R−M). Now consider the group M ′ = M∪{j}.

First, consider the case in which fΓ
j (R̃M , R−M)Pjf

Γ
j (R). Then the hierarchi-

cal exchange mechanism is not group-strategyproof, as the agents in M ′ can

improve the utility of one of its members (namely j), while keeping the util-

ity of all other members constant through misrepresenting their preferences

(R̃M for the members of M and the truthful Rj for agent j). If, on the other

hand, fΓ
j (R)Pif

Γ
j (R̃M ′ , R−M ′), the same argument holds true for the same

group if the true preferences of agents are (R̃M , R−M) and the agents in M

misrepresent them to be RM . This yields a contradiction with the character-

ization result proved by Papai (2000, p. 1425), which states that hierarchical

exchange rules are group-strategyproof. �
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Lemma 2 The order of elimination of top trading cycles does not matter.

Proof Suppose there exists a mechanism Γ and some preference profile R,

such that Γ(R) eliminates several cycles at some stage, say t. Suppose in that

stage there are two groups of cycles involving the agents in N1 and N2 so

N1 ∪N2 = Wt(R), and suppose that the allocation following the hierarchical

exchange rule, as defined by Papai (2000) fΓ(R), differs from the allocation

when the cycle(s) involving the agents in N1 are eliminated before the cycle(s)

involving the agents in N2. Now fix a house a∗ ∈ Ft(R) that is being matched

to an agent in N1 according to fΓ(R) and construct a preference profile R̃ such

that R̃i = Ri for i /∈ N2 and a∗R̃ia for all i ∈ N2 and all houses a 6= a∗ and

aR̃ib⇔ aRib for all houses a, b 6= a∗ (meaning the only difference between R

and R̃ is that the agents in N2 rank a∗ at the top under R̃). Observe that for

all stages z < t the mechanism Γ induces the exact same trading cycles under

R and under R̃. At stage t only the agents in N1 form top trading cycles:

N1 = Wt(R̃) and fΓ
N1

(R) = fΓ
N1

(R̃). The agents in N2 form top trading cycles

in the next stage: N2 ⊂ Wt+1(R̃) and fΓ
N2

(R) = fΓ
N2

(R̃). However, by the

assumption that the elimination of top trading cycles matters, the matches

to agents that have not yet left the mechanism N∗ = N \ (
⋃t

z=1 Wt(R)) must

change, that is, fΓ
N∗(R) 6= fΓ

N∗(R̃). This contradicts Lemma 1, which shows

that hierarchical exchange rules must be group-nonbossy. �

We are no ready to prove Theorem 2:

Proof Start of the Induction:

|N | = 2. Note that we must have x1 = top(R1) or x2 = top(R2) for x to

be Pareto-optimal. Choose p such that an agent i who is matched top(Ri)

according to x is the initial owner of top(Ri). He forms a trading cycle of

length one pointing to top(Ri), the other agent obtains his most preferred

house out of the reminder, so x is the outcome of p(Γ).

Step of the Induction:

Suppose the claim holds for |N | = m.

Now take a housing problem with |N | = m + 1.
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Fix a Pareto-optimal allocation x. Assume w.l.o.g. that top(R1) = x1 =

a. Let j be the initial owner of a and consider the permutation p with

p(1) = j, p(j) = 1 and p(i) = i for i 6= 1, j. Now observe that - restricted to

K \ {a} and N \ {1} - x′ = (x2, · · · , xn) is also a Pareto-optimal allocation.

By the hypothesis of the induction we can find a permutation p′ on the set

of roles N \ {j} such that for submechanism Γ′, that arises when eliminating

agent 1 and house a in first round from p(Γ), the outcome of p′Γ′ is x′ when

presuming that agent j assumed the role of agent 1 before the permutation

p′. Define a permutation p : N → N such that p(j) = j and p(i) = p′(i)

otherwise. Now consider the mechanism (p ◦ p)(Γ). According to (p ◦ p)(Γ),

agent 1 is the initial owner of house a, since top(R1) = x1 = a agent 1 forms

a top trading cycles by pointing to his own house a. By Lemma 2, this

cycle can be eliminated, before any other possibly existing cycles without

any change of the outcome of the hierarchical exchange rule. Once this cycle

is eliminated we are left with the (sub)mechanism p′Γ′, which according to its

definition, yields the outcome (x2, · · · , xn) for the remainder of the agents.

�

The theorem is an extension of the Second Welfare Theorem to an envi-

ronment with indivisible goods such that each agent should be matched to

at most one object. It says that, for any system of property rights and any

Pareto optimum, there exists an allocation of these property rights to agents,

such that the given Pareto optimum is the outcome of free trade among the

agents. The definition of property rights used in this note is very general. It

requires that each house is always owned by someone. It solves the problem

that agents might own multiple houses by the assumption of fixed inheritance

processes that prescribe the next owner of a house when the current owner

leaves the market with a house. Papai (2000)’s hierarchical exchange mecha-

nisms arguably describe the most general class of allocation mechanisms for

housing problems that can be considered as derived from the assignment of

property rights together with free trade.

In the literature, large sets of subclasses of hierarchical exchange mecha-

nisms have been characterized by Ma (1994), Svensson (1999), Ergin (2000),

Miyagawa (2002), Ehlers et al. (2002), Ehlers and Klaus (2004), Kesten

(2009), Sonmez and Unver (2006), Ehlers and Klaus (2007), and Velez (2008).
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So the result presented here of course extends to all these. Serial dictator-

ships and the top trading cycles mechanism are also cases of hierarchical

exchange mechanisms. Restricted to these two special cases, the Theorem of

the present note has been shown by Abdulkadiroglu and Sonmez (1998).

Pycia and Unver (2009) characterize a superclass of hierarchical exchange

mechanisms. They drop the requirement of reallocation-proofness from Papai

(2000)’s theorem. The class they obtain differs from hierarchical exchange

mechanism in that agents now cannot only be owners of houses, but also

“brokers”. These brokers also have control rights over houses; however, these

control rights do not include the right to appropriate a house. Pycia and

Unver (2009) clearly delineate a difference between ownership and brokerage

of a house; it seems appropriate not to consider this superclass of hierarchical

exchange mechanisms as mechanisms that can be considered to be derive from

solely from the assignment of ownership rights and free trade.
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