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Abstract 
 
This paper analyses monthly hours worked in the US over the sample period 1939m1 – 
2011m10 using a cyclical long memory model; this is based on Gegenbauer processes and 
characterised by autocorrelations decaying to zero cyclically and at a hyperbolic rate along 
with a spectral density that is unbounded at a non-zero frequency. The reason for choosing 
this specification is that the periodogram of the hours worked series has a peak at a frequency 
away from zero. The empirical results confirm that this model works extremely well for hours 
worked, and it is then employed to analyse their relationship with technology shocks. It is 
found that hours worked increase on impact in response to a technology shock (though the 
effect dies away rapidly), consistently with Real Business Cycle (RBC) models. 
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1. Introduction 

This paper proposes a modelling approach for US hours worked, specifically average weekly 

hours in manufacturing. This is an important variable since it can be seen as an indicator of the 

state of the economy. Authors such as Glosser and Golden (1997) argue that firms tend to 

respond to business cycle conditions by decreasing or increasing hours worked, before hiring or 

laying off workers. 

Although the relationship between business cycles and hours worked and their response 

to technology shocks has been extensively investigated, this is still a controversial issue. Gali 

(1999), Francis and Ramey (2005) and Gali and Rabanal (2004 - GR) found that, contrary to the 

implications of Real Business Cycle (RBC) models, they decline in response to a technology 

shock. These results were challenged, among others, by Christiano, Eichenbaum and Vigfusson 

(2003 - CEV) who presented evidence that instead hours worked increase following a technology 

shock.1 Both types of studies use similar empirical (VAR) frameworks, the crucial difference 

between them being in the treatment of the hours worked variable. In particular, the former 

authors model it as a nonstationary I(1) variable whilst the latter assume that it is a stationary I(0) 

process. More recently, Gil-Alana and Moreno (2009) allow the order of integration of hours 

worked to be fractional, i.e. I(d), and find that the value of d depends on the specific series 

examined, although in general it lies in the interval between 0 and 1. They also find that per 

capita hours fall on impact in response to a technology shock. 

 All three approaches taken in the studies mentioned above implicitly assume a high 

degree of persistence in hours worked that should result in a large peak in the periodogram (or in 

any other estimate of the spectral density function) at the zero frequency. The model used in the 

present study is instead based on Gegenbauer processes and is characterised by autocorrelations 

decaying to zero cyclically and at a hyperbolic rate along with a spectral density that is 

                                                           

1 For further evidence, see Gambetti, 2005 and Pesavento and Rossi, 2005. 
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unbounded at a non-zero frequency. The reason for choosing this specification is that the 

periodogram of the hours worked series is found not to exhibit a peak at the zero frequency, as 

implied by the previous models, but instead at a frequency away from zero, which can be 

captured by Gegenbauer processes as explained in the following section. Our results confirm that 

this model works extremely well for hours worked, and it is then employed to analyse their 

relationship with technology shocks, finding a positive (though rapidly dying away) effect of 

such shocks, as suggested by Real Business Cycle (RBC) models. 

 The outline of the paper is as follows. Section 2 briefly describes the different types of 

long range dependence or long memory models used here. Section 3 presents the data. Section 4 

discusses the empirical results and their implications for the debate on the relationship between 

hours worked and technology shocks, while Section 5 contains some concluding remarks. 

 

2. A cyclical I(d) model 

For the purposes of the present study, we define an I(0) process {xt, t = 0, ±1, …} as a 

covariance stationary process with spectral density function, f(λ), that is positive and finite at any 

frequency. Alternatively, it can be defined in the time domain as a process such that the infinite 

sum of the autocovariances is finite. This includes a wide range of model specifications such as 

the white noise case, the stationary autoregression (AR), moving average (MA), and stationary 

ARMA models.  

In general, the I(0) condition is a pre-requisite for statistical inference in time series 

analysis. However, a series might be nonstationary, i.e. the mean, the variance or the 

autocovariances may change over time. For this case specifications with stochastic trends have 

usually been adopted, under the assumption that the first differenced process is stationary I(0), 

and thus valid statistical inference can be drawn after differencing once. More specifically, xt is 

said to be I(1) if: 
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,...,2,1t,ux)L1( tt ==−                   (1) 

where L is the lag operator (Lxt = xt-1) and ut is I(0) as defined above. If ut is ARMA(p, q), then 

xt is said to be an ARIMA(p, 1, q) process. 

The above model has been extended in recent years to the fractional case, since the 

differencing parameter required to render a series stationary I(0) is not necessarily an integer 

(usually 1) but might also have a fractional value. In this context, xt is said to be I(d) if:  

   ...2,1,t,uxL)(1 tt
d ==−  ,                (2) 

with xt = 0, t ≤  02, and ut is again I(0). Note that the polynomial on the left-hand-side of equation 

(2) can be expanded, for all real d, as 
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Thus, if d in (2) is an integer value, xt will be a function of a finite number of past observations, 

while, if d is not an integer, xt depends upon values of the time series in the distant past, and the 

higher the value of d is, the higher the level of dependence is between the observations. 

 If d > 0 in (2) xt displays long range dependence (LRD) or long memory. There are two 

definitions of LRD, one in the time domain and the other in the frequency domain.  The former 

states that given a covariance stationary process {xt, t = 0, ±1, … }, with autocovariance function 

E[(xt –Ext)(xt-j-Ext)] = γj, xt displays LRD if 

∑
−=

∞→
T
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jT γlim  

                                                           

2 This condition is required for the Type II definition of fractional integration. For an alternative definition (Type I) 
see Marinucci and Robinson (1999). 
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is infinite. A frequency domain definition may be as follows. Suppose that xt has an absolutely 

continuous spectral distribution, and therefore a spectral density function, denoted by f(λ), and 

defined as 

∑ ≤<−=
∞

−∞=j
j jf .,cos

2
1)( πλπλγ
π

λ  

Then, xt displays LRD if the spectral density function has a pole at some frequency λ in the 

interval [0, π], i.e., 

,],0[,as,)(f ** π∈λλ→λ∞→λ       (3) 

(see McLeod and Hipel, 1978). Most of the empirical literature has focused on the case when the 

singularity or pole in the spectrum occurs at the zero frequency (λ* = 0). In fact, the I(d) model, 

defined as in (2), is characterised by a spectral density function which is unbounded at the origin. 

However, there might be cases when the singularity or pole in the spectrum occurs at other 

frequencies, for instance the spectrum might have a single pole at a frequency other than zero. 

Then the process still displays the property of LRD but the autocorrelations have a cyclical 

structure with slow decay. This is the case of the Gegenbauer processes defined as: 

,...,2,1t,ux)LLwcos21( tt
d2

r ==+−       (4)  

where wr and d are real values, and ut is I(0). For practical purposes we define wr = 2πr/T, with r 

= T/c, and thus c indicates the number of time periods per cycle, while r stands for the frequency 

with a pole or singularity in the spectrum of xt (λ*). Note that if r = 0 (or c = 1), the fractional 

polynomial in equation (4) becomes (1 – L)2d, which is the polynomial associated to the common 

case of fractional integration at the long run or zero frequency.  

 Gray et al. (1989, 1994) showed that the polynomial in (4) can be expressed in terms of 

the Gegenbauer polynomial, such that, denoting μ = cos wr, for all d ≠  0, 
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(see Magnus et al., 1966, Rainville, 1960, etc. for further details on Gegenbauer polynomials). 

Gray et al. (1989) showed that xt in (4) is (covariance) stationary if d < 0.5 for │μ = cos wr│< 1 

and if d < 0.25 for│μ│= 1. 

The type of process described in (4) was introduced by Andel (1986) and subsequently 

analysed by Gray, Zhang and Woodward (1989, 1994),   Chung (1996a,b), Gil-Alana (2001) and 

Dalla and Hidalgo (2005) among others.3 

 

3. The dataset 

The series examined here is the average number of hours worked per week by production 

workers in US manufacturing industries, monthly, over the sample period 1939m1 – 2011m10; 

the source is the Current Employment Statistics (CES) monthly survey of the US Bureau of 

Labor Statistics.  

We analyse both seasonally adjusted and unadjusted data (HWSA11 and HWNSA11 

respectively) for the whole sample period and also for a shorter sample ending in 2007m4 

(HWSA07 and HWNSA07) in order to establish whether the 2007/8 crisis had an impact on 

hours worked. 

                                                           

3 LRD also admits processes with multiple poles or singularities in the spectrum (k-factor Gegenbauer processes -  
see Giraitis and Leipus, 1995; Woodward et al., 1998; etc.) but these are beyond the scope of the present study. 
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[Insert Figure 1 about here] 

Figure 1 displays the time series plots of both the seasonally adjusted and unadjusted 

series ending in 2011, which move very closely over time. It also shows the correlograms, which 

exhibit a clearly cyclical pattern. The periodograms, also displayed in the same figure, have the 

highest peak at frequency 7, as opposed to the zero frequency, which suggests that the I(d) and 

I(1) specifications estimated by other authors are not appropriate, and also that cycles have a 

length of approximately T/7  = 124.85 months, i.e. around ten and a half years. The 

periodograms of the series ending in 2007 (not reported) have the highest value at frequency 6, 

namely T/6  =136.66 month ( ≈ 11.3 years / cycle). These values imply longer cycles than those 

normally observed, typically with a periodicity between 6 and 10 years.4  

 

4. Empirical results 

As a first step we estimate the order of integration of the series using a standard I(d) model, i.e. 

assuming that the peak of the spectrum occurs at the long run or zero frequency. In other words, 

we consider a model such as (2) where xt can be the errors in a regression model of the form: 

     ,...,2,1t,xzy tt
T

t =+β=        (5) 

where yt is the observed time series (hours worked), β is a (kx1) vector of unknown coefficients, 

and zt is a set of weakly exogenous variables or deterministic terms that might include an 

intercept (i.e., zt = 1), an intercept with a linear time trend (zt = (1, t)T), or any other type of 

deterministic processes.  

We estimate the fractional differencing parameter d using the Whittle function in the 

frequency domain (Dahlhaus, 1989), and also employ a testing procedure developed by 
                                                           

4 Burn and Mitchell (1946), Romer (1986, 1994), Stock and Watson (1998), Diebold and Rudebusch (1992), Canova 
(1998), Baxter and King (1999), King and Rebelo (1999) among others showed that the average length of the cycle 
is approximately six years. 
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Robinson (1994), which has been shown to be the most efficient one in the context of fractional 

integration. This method, based on the Lagrange Multiplier (LM) principle, tests the null 

hypothesis Ho: d = do in (2) and (5) for any real value do and has several advantages over other 

approaches. First, it allows to test for any real value of do, therefore encompassing both the 

stationary (d < 0.5) and nonstationary (d ≥  0.5) hypotheses. Moreover, the limiting distribution 

is N(0, 1) and this standard behaviour holds independently of the regressors used in the 

regression model (5) and the type of model for the I(0) disturbances ut in (2). Finally, it is the 

most efficient method in the Pitman sense against local departures from the null (see Robinson, 

1994).5 

[Insert Table 1 about here] 

 Table 1 displays the (Whittle) estimates of d (and the 95% confidence bands 

corresponding to the non-rejection values of d using Robinson’s (1994) method) in the model 

given by equations (2) and (5) with zt in (5) equal to ( 1, t)T, t ≥  1, 0 otherwise, i.e., 

,...,2,1t,ux)L1(,xty tt
d

t10t ==−+β+β=  (6) 

assuming that ut in (6) is white noise, AR(1), AR(2), seasonal AR(1) and finally adopting the 

exponential model of Bloomfield (1973) respectively. The latter is a non-parametric approach to 

modelling the I(0) disturbances that approximates ARMA structures with a small number of 

parameters and has been widely employed in the context of fractional integration (see Gil-Alana, 

2004). In all cases we consider the three standard approaches of no regressors (β0 = β1 = 0 a 

priori in (6)), an intercept (β0 unknown and β1 = 0 a priori) and an intercept with a linear trend 

(β0 and β1 unknown). 

 The results suggest that there is no need to include a time trend, the intercept being 

sufficient to describe the deterministic part of the processes in all cases. When modelling the 

                                                           

5 Wald tests of fractional integration based on a similar approach to Robinson’s (1994) have been proposed by 
Lobato and Velasco (2007). Their method, however, requires an efficient estimate of d and therefore Robinson’s 
(1994) approach seems more attractive, at least computationally. 
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disturbances as a white noise, the estimates of d are in the interval (0.5, 1), implying 

nonstationarity and mean reverting-behaviour. They are higher for the seasonally adjusted data 

and also slightly higher for the sample ending in 2011. When ut is specified as an AR(1) process 

the same result holds for the unadjusted data; however, for the adjusted ones, d is slightly above 

1 and the unit root null cannot be rejected at the 5% level. For the AR(2) model the estimated 

values of d are strictly above 1, unlike in the seasonal AR case where all the estimates are below 

1. Finally, when employing the non-parametric approach of Bloomfield (1973) d is strictly above 

1 for the seasonally adjusted data, and slightly below 1 (the unit root null not being rejected) in 

the case of the unadjusted data. Thus, the results change substantially depending on the 

specification of the error term. 

 We further investigate this issue by employing the parametric approach of Robinson 

(1994) described above assuming that the disturbances are white noise and autocorrelated in 

turn. In particular, we consider the set-up given by (6), testing Ho: d = do, for do-values from 0 to 

2 with 0.001 increments in the case of white noise errors, and from -1.500 to 0.500 for AR(1) 

and AR(2) ut. In other words, the tested (null) model is: 

,...,2,1,)1(,10 ==−++= tuxLxty tt
d

tt oββ  

with I(0) ut. Because the estimates of β1 were found to be statistically insignificant in all cases, 

we remove the time trend from the above equation. In general we should expect a monotonic 

decrease in the value of the test statistic with respect to the values of do. Such monotonicity is a 

consequence of the one-sided alternatives employed in this procedure. Thus, for example, we 

would expect that if Ho: d = do is rejected with do = 0.250 against the alternative Ha: d > 0.250, 

an even stronger rejection occurs when testing Ho with do = 0.200. 

[Insert Figure 2 about here] 
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 We focus here on the series HSA11 using the model with an intercept. Similar results 

were obtained for the remaining three series. Figure 2(i) shows the values of the test statistic for 

the case of uncorrelated errors, and also displays the critical values (flat lines) of the testing 

procedure.6 It can be seen that there is a monotonic decrease in the value of the test statistic with 

the values of do for which Ho cannot be rejected (also displayed in Table 1) ranging between 

0.868 and 0.935. Thus, the unit root null hypothesis (i.e., d = 1) is marginally rejected in favour 

of mean reversion. 

 In the case of autocorrelated errors (see Figures 2(ii) and (iii)), monotonicity is not found 

in the values of the test statistic with respect to d: we obtain non-rejection values when d is close 

to 0 and 1 but rejection ones in between. This may be explained by the low power of this method 

if the roots of the AR polynomials are close to the unit circle. In fact, this is typical of all 

parametric procedures as a result of the competition between the fractional differencing 

parameter and the AR parameters in describing time dependence. When employing higher AR 

orders essentially the same results are obtained. However, this might also reflect model 

misspecification as argued in Gil-Alana and Robinson (1997) and in the present study as well: 

the classical I(d) model (even with positive integer degrees of differentiation) may not be a valid 

one to describe the behaviour of hours worked given the fact that the periodograms do not 

exhibit their highest values at the smallest (zero) frequency. Consequently, in what follows we 

consider the cyclical I(d) specification given by equation (4). In order to avoid distortions 

produced by the deterministic terms we use demeaned data (although the results are very similar 

to those obtained with the raw data), and apply again Robinson’s (1994) method, which is very 

general since it allows to test stationary and nonstationary hypotheses, with one or more integer 

or fractional orders of integration of arbitrary order anywhere on the unit circle in the complex 

plane. 
                                                           

6 Values between the two flat lines indicate non-rejections of the null hypothesis. 
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[Insert Tables 2, 3 and 4 about here] 

 Table 2 displays the estimated parameters of d and c (wr = 2π/c) in (4), assuming that the 

disturbances are white noise. The values of c are 137 (which correspond to 11.4 years per cycle) 

for the two series ending in 2007, and 125 and 124 (approximately a 10-year cycle) for the 

seasonally adjusted and unadjusted data ending in 2011. This is consistent with the shape of the 

periodograms, the highest values occurring at frequency 6 for HWSA07 and HWNSA07 and at 

frequency 7 for HWSA11 and HWNSA11 (T(=820)/6 = 136.66, and T(=874)/7 = 124.85 

respectively). Regarding the estimated values of d, these are above 0 but below 0.5, implying 

stationarity but mean-reverting behaviour. Very similar results are obtained under the 

assumption of autocorrelated errors (Tables 3 and 4): in these cases the values range between 0.4 

and 0.5 for the seasonally adjusted data and between 0.3 and 0.4 for the unadjusted ones. Several 

diagnostic tests conducted on the residuals of the estimated models suggest that the AR(1) 

structure is sufficient to describe the short-run dynamics of the series.7 

Next we investigate the relationship between technology shocks and hours worked. On 

the basis of the above evidence that supports the cyclically I(d) specification for hours worked, 

and assuming that technology shocks are exogenous in this context, we consider the following 

model, 

,...,2,1t,ux)LLwcos21(,xzy tt
d2

rttt ==+−+β+α=       (7) 

where yt is once more hours worked and zt is the productivity series measured as output per hour. 

 In what follows we use two definitions of productivity. In particular, we employ the same 

variables as in Gali and Rabanal (GR, 2004) and Christiano et al. (CEV, 2003). Both GR and 

CEV work with quarterly data. However, while GR use data from the non-farm business sector, 

CEV employ data from all businesses, including farming activities. We perform our analysis 

                                                           

7 Box-Pierce Q-statistics indicate that the models including AR(1) disturbances (see Table 3) are free of additional 
serial correlation. 
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with both variables, which were collected from the Federal Reserve Bank of St. Louis database 

(FRED). Non-farm business sector productivity is measured as output per hour of all persons 

(OPHNFB is the ID of the series). Non-farm business hours are computed as the ratio between 

the non-farm business sector hours of all persons (HOANBS) and the civilian non-institutional 

population over the age of 16 (CNP16OV). Total business productivity is measured as the output 

per hour of all persons (OPHPBS). Our dataset runs from the first quarter of 1948 to the fourth 

quarter of 2004. Using monthly seasonally unadjusted and adjusted hours worked we also 

construct quarterly series for the same sample period. Plots of the four series (productivity using 

the GR and CEV definitions respectively and seasonally adjusted/unadjusted hours worked, for 

1948q1-2004q4) are displayed in Figure 3. 

[Insert Figure 3 about here] 

 The two hours worked series behave in a very similar way, being relatively stable across 

the sample period, whilst the two productivity series are increasing over time. Tables 5 and 6 

display the estimates of d along with those of the intercept (α) and the slope (β) in a model 

including hours worked (yt) and productivity (zt) assuming that the regression errors are I(d) and 

the d-differenced process is white noise, AR and Bloomfield respectively. In other words, the 

model is now: 

,...,2,1t,)0(Iu,ux)L1(,xzy ttt
d

ttt =≈=−+β+α=       (7) 

implying the existence of a pole or singularity in the spectrum at the zero frequency. Tables 5 

and 6 present the results for seasonally unadjusted and adjusted hours worked respectively. 

Starting with the former (in Table 5) we notice that the estimates of d range between 0.405 (CEV 

with AR(1)) and 0.525 (CEV with white noise) and the two hypotheses of integer degrees of 

differentiation (i.e., d = 0 and d = 1) are decisively rejected in all cases. In general the results are 

very similar for the two productivity series (CEV and GR). Also, the estimates of the slope 

coefficient β are all positive though not statistically different from zero. 



 12 

[Insert Tables 5 and 6 about here] 

 Table 6 displays the results for the seasonally adjusted data. Here we observe large 

variability in the estimates of d depending on the specification of the I(0) disturbances. However, 

unlike in the previous case, the estimates of β are now all significantly positive implying that on 

impact hours worked increase in response to a technology shock, in line with the findings of 

CEV (2003). It is noteworthy that the results presented in these two tables are based on the case 

when the spectrum is unbounded at the origin, a feature whose presence is not supported by the 

empirical evidence presented below. 

[Insert Figure 4 about here] 

 Figure 4 displays the periodograms for the two hours worked series employed for this 

part of the analysis, i.e., for the sample period 1948q1 – 2004q4. It can be seen that now the 

highest peak occurs at frequency 6, implying cycles of approximate length of T/6 ≈ 38 quarters 

or roughly 9.5 years. In what follows, we consider the model given by equation (4) again with 

white noise and correlated (AR(1), AR(2) and Bloomfield) errors. The results, for seasonally 

unadjusted and adjusted hours worked respectively, are reported in Tables 7 and 8. 

[Insert Tables 7 and 8 about here] 

The estimated value of c (not reported) is 38 in all cases, consistently with the 

periodograms displayed in Figure 4, whilst the estimated values of d are in all cases in the 

interval (0, 1) but smaller than for the seasonally unadjusted data (in Table 7), implying long 

memory and mean reverting behaviour.8 These figures also show that, when using the cyclical 

I(d) specifications, hours worked increase in response to a technology shock and this happens for 

both seasonally adjusted and unadjusted hours worked. Next we investigate which of the 

potential models for the disturbances is the most adequate for the two series examined. We 

perform various diagnostic tests on the residuals which suggest that the model with AR(1) 
                                                           

8 For the seasonally unadjusted data, the estimated values of d range between 0.123 and 0.272, whilst for the 
seasonally adjusted ones the variability is much higher, the values ranging between 0.068 and 0.705. 
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disturbances is the most appropriate one for both series (CEV and GR) and both adjusted and 

unadjusted data. We then consider a 1-standard error technology shock and estimate the impulse 

responses of the selected model for each series. The results are displayed in Figure 5.  

[Insert Figure 5 about here] 

It can be seen that on impact the effect is positive and statistically significant in all four 

cases, and more sizeable for the GR series. However, after two years it becomes negligible and it 

disappears in the long run in all cases. In other studies the cyclical pattern in hours worked is 

modelled as a simple AR(2) processes with complex roots (see, e.g., Bernardi et al., 2008) which 

produce autocorrelations (and impulse responses) decaying at an exponential rate. When using 

our approach the rate of decay is hyperbolic, i.e. much slower, and given the length of the cycles 

in this context, it does not produce in the short run a clear cyclical pattern in the figures. 

 

5. Conclusions 

This paper analyses monthly hours worked in the US over the sample period 1939m1 – 2011m10 

using a cyclical I(d) model based on Gegenbauer processes, which are characterised by a spectral 

density function unbounded at a non-zero frequency. The motivation for adopting this type of 

framework is the observation that the periodogram of the hours worked series has a peak at a 

frequency away from zero. This is in contrast to the models normally found in the literature (e.g., 

Gali, 1999; Christiano, Eichenbaum and Vigfusson, 2003; Gil-Alana and Moreno, 2009) that, 

although differing in the degree of integration assumed for hours worked, are all based on hours 

worked being a highly persistent series with a peak at the zero frequency in the spectrum.  

The evidence presented here suggests that such a specification is not empirically 

supported, our chosen framework being the most suitable one for capturing the cycle length in 

the case of hours worked, with the cycles having a periodicity of about ten years, and the order 
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of integration of the series being positive though smaller than 0.5, implying stationary and mean-

reverting behaviour.  

When including productivity as a weakly exogenous variable further evidence is obtained 

supporting the Gegenbauer model, the order of integration again being in the interval (0, 0.5). 

Moreover, hours worked are found to increase on impact in response to a technology shock 

(although its effects disappear after two years). This result is consistent with the findings of 

Christiano, Eichenbaum and Vigfusson (2003), despite the use of a completely different 

methodology, and represents an important contribution towards settling the ongoing debate on 

the relationship between hours worked and technology: it shows that, when the shape of the 

periodogram is duly taken into account by specifying an appropriate statistical model, a positive 

rather than negative effect of technology shocks on hours worked is estimated, consistently with 

Real Business Cycle (RBC) models. 
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Figure 1: Time series plots (hours worked), correlograms and periodograms 
Non-seasonally adjusted data, NSAD Seasonally adjusted data, SAD 

  

Correlogram of NSAD Correlogram of SAD 

  

Periodogram of NSAD Periodogram of SAD 

  
The thick lines in the correlograms represent the 95% confidence band for the null hypothesis of no autocorrelation.  
In the periodograms, the horizontal axis refers to the discrete Fourier frequencies λj = 2πj/T, j = 1, …, T/2. 
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Table 1: Estimates of d based on an I(d) model with the singularity at the 0-frequency 
Disturbances Series No regressors An intercept A linear trend 

 
 
 

White noise 

HWSA07 
0.996 

(0.956,   1.042) 
0.899 

(0.868,   0.935) 
0.900 

(0.869,   0.935) 

HWNSA07 
0.981 

(0.942,   1.027) 
0.745 

(0.713,   0.781) 
0.748 

(0.717,   0.783) 

HWSA11 
0.998 

(0.959,   1.045) 
0.903 

(0.873,   0.938) 
0.904 

(0.874,   0.938) 

HWNSA11 
0.984 

(0.946,   1.028) 
0.748 

(0.717,   0.784) 
0.751 

(0.721,   0.786) 
 
 
 

AR (1) 

HWSA07 
1.351 

(1.268,   1.446) 
1.038 

(0.988,   1.093) 
1.037 

(0.989,   1.093) 

HWNSA07 
1.285 

(1.186,   1.389) 
0.868 

(0.822,   0.921) 
0.870 

(0.824,   0.921) 

HWSA11 
1.352 

(1.271,   1.446) 
1.045 

(0.997,   1.100) 
1.045 

(0.997,   1.099) 

HWNSA11 
1.281 

(1.180,   1.380) 
0.870 

(0.823,   0.922) 
0.871 

(0.825,   0.922) 
 
 

 
AR (2) 

HWSA07 
1.887 

(1.724,   2.031) 
1.175 

(1.089,   1.268) 
1.173 

(1.089,   1.266) 

HWNSA07 
1.866 

(1.710,   2.042) 
1.102 

(1.001,   1.226) 
1.101 

(1.001,   1.224) 

HWSA11 
1.886 

(1.721,   2.055) 
1.185 

(1.099,   1.276) 
1.184 

(1.099,   1.274) 

HWNSA11 
1.861 

(1.712,   2.074) 
1.103 

(1.003,   1.223) 
1.102 

(1.003,   1.221) 
 
 
 
Seasonal AR (1) 

HWSA07 
0.999 

(0.959,   1.047) 
0.903 

(0.871,   0.938) 
0.903 

(0.872,   0.939) 

HWNSA07 
0.979 

(0.938,   1.024) 
0.759 

(0.721,   0.802) 
0.760 

(0.723,   0.803) 

HWSA11 
1.002 

(0.964,   1.047) 
0.907 

(0.876,   0.942) 
0.908 

(0.877,   0.942) 

HWNSA11 
0.981 

(0.941,   1.027) 
0.766 

(0.729,   0.808) 
0.767 

(0.730,   0.809) 
 
 
 
Bloomfield  (1) 

HWSA07 
1.008 

(0.948,   1.091) 
1.108 

(1.034,   1.195) 
1.107 

(1.034,   1.194) 

HWNSA07 
0.999 

(0.934,   1.082) 
0.938 

(0.872,   1.016) 
0.939 

(0.873,   1.017) 

HWSA11 
1.011 

(0.946,   1.079) 
1.121 

(1.047,   1.202) 
1.114 

(1.046,   1.200) 

HWNSA11 
1.003 

(0.943,   1.091) 
0.939 

(0.872,   1.012) 
0.939 

(0.873,   1.014) 
The estimates are the Whittle estimates of d and the values in parentheses are the 95% confidence band of the non-
rejection values using Robinson’s (1994) method. In bold, the significant cases with the deterministic terms. 
HWSA07 and HWNSA07 stands respectively for hours worked, seasonally adjusted and unadjusted, ending in 
2007m4. 
HWSA11 and HWNSA11 stands respectively for hours worked, seasonally adjusted and unadjusted, ending in 
2011m10. 
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Figure 2: Test statistic (Robinson, 1994) for different do-values 

i)    White noise disturbances 

 
 
 ii)    AR(1) disturbances 

 
 
 iii)    AR(2) disturbances 

 
 
 On the horizontal axis are the values of d under Ho, and on the vertical one the values of the test  statistic; the bold 
lines refer to the 95% non-rejection bands. 
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Table 2: Estimates of the parameters in the model given by equation (4) with white noise ut 

Series c (months) c/12 (years) d (95% interval) 

HWSA07 137 11.416 0.419 
(0.394,   0.450) 

HWNSA07 137 11.416 0.343 
(0.318,   0.373) 

HWSA11 125 10.416 0.421 
(0.397,   0.452) 

HWNSA11 124 10.333 0.343 
(0.319,   0.374) 

The values in parentheses are the 95% confidence band of the non-rejection values of d using Robinson (1994). 
 
 

Table 3: Estimates of the parameters in the model given by equation (4) with AR(1) ut 
Series c (months) c/12 (years) d (95% interval) AR coef. 

HWSA07 137 11.416 0.479 
(0.433,   0.533) 

-0.209 

HWNSA07 136 11.333 0.390 
(0.347,   0.441) 

-0.175 

HWSA11 125 10.416 0.482 
(0.436,   0.535) 

-0.212 

HWNSA11 125 10.416 0.388 
(0.345,   0.439) 

-0.163 

The values in parentheses are the 95% confidence band of the non-rejection values of d using Robinson (1994). 
 
 

Table 4: Estimates of the parameters in the model given by equation (4) with Bloomfield ut 
Series c (months) c/12 (years) d (95% interval) Bloomf. c. 

HWSA07 137 11.416 0.419 
(0.403,   0.437) 

-0.093 

HWNSA07 137 11.416 0.343 
(0.326,   0.361) 

-0.089 

HWSA11 125 10.416 0.420 
(0.404,   0.439) 

-0.082 

HWNSA11 125 10.416 0.343 
(0.326,   0.361) 

-0.077 

The values in parentheses are the 95% confidence band of the non-rejection values of d using Robinson (1994). 
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Figure 3: Time series plots of hours worked and GR and CEV productivity series 

NSA Hours Worked SA Hours Worked 

  
GR Productivity CEV Productivity 

  
NSA and SA stand respectively for non-seasonally adjusted and seasonally adjusted data. 
GR stands for the productivity series used in Gali and Rabanal (2004)., whilst CEV is the productivity series used by 
Christiano et al. (2003). 
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Table 5: Estimates of the relationship between hours worked and productivity using an I(d) 
specification for the error term (Seasonally unadjusted hours worked) 

  d 
(95% conf. interval) 

α  
(t-value) 

β  
(t-value) 

Short run par. 

 
White noise 

CEV 0.525 
(0.436,   0.641) 

39.85071 
(71.7345) 

0.00791 
(0.91655) 

--- 

GR 0.523 
(0.435,   0.637) 

40.75346 
(70.7800) 

0.71560 
(1.0770) 

--- 

 
AR(1) 

CEV 0.405 
(0.181,   0.620) 

39.81537 
(94.9110) 

0.00705 
(1.25671) 

0.163 

GR 0.408 
(0.174,   0.617) 

40.5726 
(121.9811) 

0.59901 
(1.3651) 

0.158 

 
AR(2) 

CEV 0.492 
(0.299,   0.956) 

39.8419 
(97.9311) 

0.00753 
(1.19703) 

0.079,  -0.057 

GR 0.500 
(0.298,   0.929) 

40.70159 
(101.982) 

0.67994 
(1.4450) 

0.068,  -0.062 

 
Bloomf. 

CEV 0.413 
(0.272,   0.612) 

39.81771 
(94.2940) 

0.00707 
(1.24201) 

0.159 

GR 0.412 
(0.272,   0.607) 

40.57617 
(121.3546) 

0.60178 
(1.3681) 

0.161 

In parentheses, in the 3rd column, the 95% confidence bands for the non-rejection values of d; in the 4th and 5th 
columns, the corresponding t-values. 
 
 
 
Table 6: Estimates of the relationship between hours worked and productivity using an I(d) 
specification for the error term (Seasonally adjusted hours worked) 

  d 
(95% conf. interval) 

α 
(t-value) 

β  
(t-value) 

Short run par. 

 
White noise 

CEV 0.994 
(0.866,   1.146) 

38.51816 
(43.908) 

0.05922 
(2.395) 

--- 

GR 0.968 
(0.849,   1.116) 

45.67521 
(26.384) 

5.36218 
(3.042) 

--- 

 
AR(1) 

CEV 0.245 
(0.091,   0.390) 

39.80768 
(193.225) 

0.00906 
(3.563) 

0.740 

GR 0.245 
(0.092,   0.388) 

40.73681 
(342.447) 

0.73619 
(3.710) 

0.738 

 
AR(2) 

CEV xxx xxx xxx Xxx 

GR xxx xxx xxx Xxx 

 
Bloomf. 

CEV 0.555 
(0.368,   0.852) 

39.84810 
(123.258) 

0.00984 
(1.856) 

0.519 

GR 0.550 
(0.372,   0.859) 

41.00297 
(114.785) 

0.92400 
(2.296) 

0.519 

In parentheses, in the 3rd column, the 95% confidence band for the non-rejection values of d; in the 4th and 5th 
columns, the corresponding t-values.  In bold, significant coefficients for the slope term. xxx indicates that 
convergence is not achieved. 
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Figure 4: Periodograms of NSA and SA Hours Worked series (1948q1 – 2004q4) 

NSA Hours Worked SA Hours Worked 

  
On the horizontal axis the discrete Fourier frequencies λj = 2πj/T, j = 1, …, T/2. 
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Table 7: Estimates of the relationship between hours worked and productivity using a 
cyclical I(d) specification for the error term (Seasonally unadjusted hours worked) 

  d 
(95% conf. interval) 

α  
(t-value) 

β  
(t-value) 

Short run par. 

 
White noise 

CEV 0.238 
(0.170,   0.330) 

39.57827 
(87.851) 

0.00900 
(1.937) 

xxx 

GR 0.239 
(0.172,   0.332) 

40.49730 
(211.408) 

0.77002 
(1.918) 

xxx 

 
AR(1) 

CEV 0.188 
(0.110,   0.306) 

39.65396 
(117.780) 

0.00812 
(1.966) 

0.179 

GR 0.187 
(0.108,   0.309) 

40.47605 
(282.42) 

0.66808 
(2.021) 

0.180 

 
AR(2) 

CEV 0.272 
(0.148,   0.460) 

30.50404 
(71.635) 

0.00989 
(1.974) 

0.015,  -0.093 

GR 0.270 
(0.146,   0.459) 

40.51716 
(177.390) 

0.85784 
(1.689) 

0.018,  -0.091 

 
Bloomf. 

CEV 0.123 
(0.001,   0.281) 

39.70797 
(165.988) 

0.00754 
(2.556) 

0.307 

GR 0.124 
(0.002,   0.282) 

40.46488 
(388.985) 

0.59925 
(2.529) 

0.310 

In bold, significant coefficients for the slope term.  
 
 
 
 
Table 8: Estimates of the relationship between hours worked and productivity using a 
cyclical I(d) specification for the error term (Seasonally adjusted hours worked) 

  d 
(95% conf. interval) 

α  
(t-value) 

β  
(t-value) 

Short run par. 

 
White noise 

CEV 0.489 
(0.394,   0.610) 

38.52378 
(34.374) 

0.02463 
(1.875) 

xxx 

GR 0.486 
(0.394,   0.604) 

41.10432 
(95.498) 

2.43490 
(2.284) 

xxx 

 
AR(1) 

CEV 0.071 
(-0.054,   0.184) 

39.76926 
(266.937) 

0.00942 
(5.111) 

0.799 

GR 0.068 
(-0.043,   0.182) 

40.71395 
(63.2416) 

0.74526 
(5.133) 

0.803 

 
AR(2) 

CEV 0.705 
(0.513,   0.874) 

36.74870 
(18.240) 

0.05298 
(2.192) 

-0.202, -0.241 

GR 0.705 
(0.531,   0.854) 

42.07008 
(31.068) 

3.76092 
(2.217) 

-0.215, -0.238 

 
Bloomf. 

CEV 0.204 
(0.052,   0.457) 

39.72078 
(160.421) 

0.00982 
(3.237) 

0.659 

GR 0.215 
(0.059,   0.454) 

40.72335 
(368.549) 

0.84427 
(3.288) 

0.629 

In bold, significant coefficients for the slope term.  
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 Figure 5: Impulse responses of a 1-standard error technology shocks to hours worked 

CEV - Seasonally adjusted GR – Seasonally adjusted 

  
CEV - Seasonally unadjusted GR – Seasonally unadjusted 

  
The dotted line represents the response to a 1-standard error technology shock. The thin lines are the 95% 
confidence intervals. 
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