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Brothers in Arms: Cooperation in Defence

David Hugh-Jones and Ro’i Zultan

September 24, 2010

Abstract

In experiments, people behave more cooperatively when they are aware

of an external threat, while in the field, we observe surprisingly high levels

of cooperation and altruism within groups in conflict situations such as civil

wars. We provide an explanation for these phenomena. We introduce a

model in which different groups vary in their willingness to help each other

against external attackers. Attackers infer the cooperativeness of a group

from its members’ behaviour under attack, and may be deterred by a group

which bands together against an initial attack. Then, even self-interested

individuals may behave cooperatively when threatened, so as to mimic more

cooperative groups. By doing so, they drive away attackers and increase

their own future security. We argue that a group’s reputation is a public

good with a natural weakest-link structure. We test the implications of our

model in a laboratory experiment.

Keywords: cooperation, conflict, defence, signaling

JEL Classification: C73, C92, D74
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1 Introduction

. Many people behave altruistically towards strangers, even when they are in

anonymous, short-term or one-shot interactions. This presents a puzzle for social

and biological scientists, because altruism – helping another at a cost to oneself –

ought to be selected against. While various explanations have been proposed, in

this paper, we focus on one particular aspect of the puzzle: that altruistic behavior

increases in the face of an external threat. For example, Bornstein and Ben-Yossef

(1994) showed in a laboratory experiment that group members’ contributions to a

public good increased when they were made aware of a rival group, even though

this group could not affect their payoffs in any way. Hargreaves-Heap and Varo-

ufakis (2002) split participants into two groups and created a situation in which

one group suffered discrimination; subsequently, pairs of members of that group

cooperated more often in a Prisoner’s Dilemma than pairs from the other group.

Related phenomena exist in the field. Defence is a canonical example of a “public

good”, whose provision benefits not only the providers, but also free-riders who

contribute nothing. Economic theory predicts that defence will be underprovided

unless the state enforces contributions. However, in many civil wars, people fight

for their group against other groups, in the absence of state coercion. Some people

may be coerced into participation by other group members. While we do not

underestimate this aspect of the phenomenon, we do not believe that it can be a

general explanation for everybody’s participation, and in many historical episodes

it seems unlikely to have played a large role. For instance, the risks from taking an

active part in the French Resistance, or the Provisional IRA during the Troubles,

were surely much higher than any risk one’s own side might impose for not taking
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part. On a more everyday level, humans appear to become more supportive of their

in-group when they face an external threat. To give some examples: there was a

large increase in blood donations after the September 11 attacks (Glynn et al.,

2003). There is a well-known “rally round the flag” effect in which expressed

support for political incumbents increases after a military or terrorist attack (Baker

and Oneal, 2001). Lastly, in a recent study of the Israeli small claims court, show

that Jewish judges were more likely to find in favour of a Jewish plaintiff against

an Arab defendant on the day after a terrorist attack (while Arab judges were more

likely to find in favour of the Arab defendant).

Social psychologists have long been aware of this phenomenon, and have argued

that “war with outsiders... makes peace inside” (Sumner, 1906; Campbell, 1965).

Social identity theorists explain that individuals’ sense of group identity is in-

creased by perceived threats to the group (Stephan and Stephan, 2000). While

these theories offer insight, they give only a proximate, not an ultimate expla-

nation. We still do not know how humans might have evolved a psychological

mechanism that responds to external threats by increasing group identity (and

hence encouraging altruistic behaviour, with associated costs to one’s own fit-

ness). Indeed, the same question arises in biology, since some species seem to

help unrelated conspecifics against predators: examples include defensive rings,

mobbing of predators and alarm calls (Edmunds, 1974).

A common explanation for altruistic behaviour is that individuals are in long-

term relationships, in which present help will be reciprocated in the future, while

not helping may end the relationship and lose the benefits of future cooperation

(Trivers, 1971; Rubinstein, 1979; Axelrod and Hamilton, 1981). However, we
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believe this is not the whole explanation for cooperation in defence, for various

reasons. First, as mentioned above, we observe such cooperation in short-term

laboratory interactions. Second, in real-world episodes of group defence, the im-

mediate cost of cooperation is often an immediate risk of injury or death, which is

likely to outweigh the future benefits of any reciprocal behaviour by those helped.

Lastly, we observe defensive helping in animals, but very few examples of recip-

rocal altruism have been found in the biological world.

In this paper we suggest a mechanism that may allow helping behavior to evolve

among individuals who belong to the same group nominally, but have no other

meaningful interaction, when those individuals come under attack by, for exam-

ple, a rival ethnic group, or a biological predator. The logic is that of signalling.

The argument runs as follows:

1. Groups vary in their willingness to cooperate against attackers. This can

be for a variety of reasons. In the social world, some groups may indeed

be engaged in long-term cooperative relationships, and may help each other

both because they expect helping to be reciprocated in future, and because

they will suffer from the loss of a partner (Eshel and Shaked, 2001). Hunter-

gatherer communities, who acquire food by cooperative game hunting, are

an example. Other groups, such as small farmers, may be composed of indi-

vidually self-sufficient households without a direct incentive to cooperate.

Biologically, some groups may be composed of closely related kin, with

high mutual altruism, while others are made up of unrelated individuals.

2. Attackers are opportunistic: they attack in order to acquire group mem-

bers’ resources (or, in the case of biological predators, for food). They are
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therefore more willing to attack group members if they expect low levels of

cooperation in defence. Conversely, if they expect a strong defence from a

group, they may prefer to engage in an alternative, less risky activity, or to

find a different group to attack.1

3. Because of the previous point, attackers have an interest in finding out the

type of group they are facing. However, they are not always able to observe

a group’s level of cooperativeness from the outside. Instead, they will find

it optimal to make one or more initial attacks, in order to gauge the cooper-

ativeness of a particular group. They can then decide whether to continue

attacking or to break off.

4. As a result, all group members have an interest in appearing cooperative, at

least during the initial stages of an attack. By doing so, they may deter the

attacker, and prevent future attacks which would eventually fall on them-

selves. In game-theoretic terms, less cooperative groups have an incentive

to pool with more cooperative groups.

We model this logic in a simplified setup. Some groups (henceforth hunters)

participate in social interaction, and will therefore help their fellows who come

under attack, whereas other groups (henceforth gatherers) have weak intragroup

connections and therefore are not motivated to help their peers. An attacker makes

one or more attacks on a group; during each attack, the (randomly selected) target

individual may be helped by another randomly selected individual, at a cost to the

helper which the helper privately observes. After each attack, the attacker may

1We treat attackers as single self-interested agents, thus abstracting away from two-sided group
conflicts. This would be an interesting extension to the theory.
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break off and attack a new group.

When the maximum number of rounds is large enough, this model has a unique

equilibrium that survives a natural refinement. The equilibrium has the following

characteristics. First, for any group size, so long as individuals are patient enough,

helping behaviour can be sustained, even for arbitrarily large costs. Second, the

costs borne by defenders in mutual aid may be larger than the actual benefit pro-

vided to the helped individual. These two results come from the same fact: the

motivation to help is provided not by the benefit to the target, but by the deter-

rence effect of driving off an attacker; so, the relevant benefit is the difference

between being attacked and being left alone, summed over all future rounds. We

believe that the second result in particular may help to explain how, in human con-

flicts, seemingly trivial incidents such as insults of a group member may lead to

disproportionate responses.2 Third, it is irrelevant what proportion of the groups

are actually hunters: this can be arbitrarily small. Fourth, cooperation among the

gatherers becomes less likely in the face of repeated attacks.3

Lastly, cooperation is subject to sudden collapses: if a single individual does not

help, then everyone else stops helping. This is closely tied to the signalling logic

of the game. An individual who doesn’t help provides a certain signal to the at-

tacker that he is facing gatherers, not hunters. Afterwards the attacker can no

longer be deterred, and this removes the incentive for other group members to

help. Again, there is a real-world analogue in conflict behaviour. In turn, the fact

that not helping causes others not to help in future strengthens the motivation to

2Many examples of this can be found in Horowitz (2001). Stephan and Stephan (2000) discuss
“symbolic threats” from a social psychological point of view.

3In equilibrium, the attacker moves on at once after observing a single episode of helping, so
this statement holds for off-path behaviour.
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help. One might expect that group reputation, like defense itself, would be a pub-

lic good and therefore be underprovided. However, in our model the reputation

good is “produced” using a weakest-link technology, since a single uncoopera-

tive action undermines the defenders’ reputation. Also, if the signalling logic

of cooperation in defence increases the sensitivity of individuals’ to each oth-

ers’ behaviour, then this ought to be observable in laboratory experiments. This

prediction goes beyond the standard social psychology claim that group identity

increases in response to threat. We can therefore use it to test our theory.

Some of the field evidence discussed above, such as ethnocentrism in court judg-

ments, is hard to rationalize as optimal self-interested behaviour. However, the

theory can be viewed either as a direct game-theoretic rationalization of helping

behaviour within conflict, or, more indirectly, as describing a possible logic be-

hind the evolution of psychological dispositions to cooperate when threatened by

attack. That is, these dispositions may have evolved in strategic situations like

those of the model, in which small groups faced opportunist external enemies and

needed to deter them. If so, these evolved dispositions might still work the same

way in larger and more specialized modern societies (cf. Cosmides and Tooby,

1992).4 In our experiment, we examine how sensitive cooperation is to specific

strategic aspects of the situation.

In an extension to the model (section 5), we extend our logic to public goods

games which are played among defenders before the attacker decides to attack.

Thus, we can rationalize the evidence for increased in-group cooperation in the

4Note that, since the model generates predictions about the dynamics of cooperation under
threat, beyond existing work in social psychology, we cannot be accused of merely explaining
existing data with a “just-so story”.
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face of external threats, described above.

We believe our paper may be of interest to the following groups.

First, students of conflict, including economists and political scientists, who seek

microfoundations for voluntary participation in collective violence. Ideas from

game theory have long been found useful to political scientists; notable exam-

ples include the Security Dilemma (Jervis, 1978; Posen, 1993) and the divide-the-

dollar model of war (Fearon, 1995). But there has been a fundamental block to the

wider acceptance of these explanations: collective conflicts seem to violate indi-

vidual rationality, because they involve individuals voluntarily cooperating (per-

haps at great risk) to gain a collective benefit.5 We offer a possible explanation.

Second, biologists seeking explanations for the evolution of cooperation in de-

fence. Signaling explanations of altruism are well-known in theoretical biology

(Zahavi, 1975; Gintis, Smith and Bowles, 2001). In these models helping behav-

ior is a costly signal of individual quality, which benefits the individual helper by

(e.g.) making him or her a more attractive partner for reproduction. By contrast,

in ours, helping behaviour signals a fact about the group, and benefits the whole

group.

Lastly, economic theorists interested in reputation-building may be interested in

our model. Previous work has examined reputation-building in repeated games,

either with one patient player against an infinite set of short-run players, or with

two patient players. Here, we introduce group reputation – since types are per-

fectly correlated within groups – in a dynamic setup (cf. Healy 2007). The

5For example: “... any act by an individual against a large group,... is inherently irrational in
the Olsonian sense“ (Petersen, 2002); “...pursuit of individual self-interest does not explain torture,
murder or risking one’s own life in battle” (Kaufman, 2001).
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modelling technique in the literature is to assume that a (small) proportion of

the reputation-building players is a “Stackelberg type” who always plays the ac-

tion that gives him the long-term best response, assuming the other players best

respond. Similarly, our “hunter types” play so as to maximize the welfare of their

group.

2 Model

The “defenders” are a large population of groups of size N.

An attacker makes one or more attacks on a randomly chosen member (the “tar-

get”) of a randomly chosen group. Another randomly chosen member of the same

group (the “supporter”) may assist the target at a cost c to its own fitness. The

attack costs the defender A and gives the attacker a benefit of A if the helper does

not help, and costs the defender/benefits the attacker a < A if the helper helps. We

normalize defender per-round welfare so that it is 1, or 0 after a successful attack.6

A proportion π of the groups are “hunters”, meaning that their members always

help the target; the rest are “gatherers”. Several different interpretations are possi-

ble. Hunters may be altruistic towards one another, perhaps because they are ge-

netically related, while gatherers are purely self-interested. Alternatively, hunters

may be in long-term relationships, beyond the scope of the attack episode, and

able to enforce cooperation by conditioning their future behaviour on play dur-

ing the attack episode, whereas gatherers do not expect to interact after the attack

6We could assume that defenders are killed and removed from the game. This would strengthen
our results by providing another reason for unrelated defenders to help: after a successful attack,
the group size shrinks and the helper is more likely to be targeted in future.
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episode.

After every attack, the attacker may stay, or may costlessly move to a different

group, from a large population of groups. (So large that the chance of returning

to the same group later is effectively 0.) However the attacker may make no more

than T attacks on any one group.7 Defenders and attackers share a discount rate δ .

There are N defenders in each group. The individual cost of helping c is random

and drawn independently in each round from C⊂R+, with cdf Φ(C)=Pr(c≤C).

We assume this is continuous. Only the supporter observes c in each round. We

assume that

Φ(C̄)< 1, where C̄ =
δ

1−δ

A
N
. (1)

The defenders and the attacker observe the history of attacks within a given group,

and whether the target was helped in each case.

3 Equilibrium analysis8

The set of histories of length t is H t = {0,1}t , where 1 indicates that the defender

was helped, with typical element ht . (Write H 0 = /0.) The set of all histories is

H =
⋃T

t=0 H t . A strategy for the attacker is ζ : H → [0,1], giving the proba-

bility of playing stay after each history. (We will often write ζ (h) ∈ {stay,move}

for clarity: i.e., define stay = 1 and move = 0.) A pure strategy for a (gatherer)

7We use finite repetitions so as to avoid folk-theorem style results where there are multiple
equilibria even if the attacker does not condition on defender behaviour: we want to focus on the
stark case where repeated play among defenders alone could not sustain cooperation. This also
enables us to find a unique equilibrium.

8Since the hunters are non-strategic actors, the following analysis deals strictly with gatherers.
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defender is σ : H ×C→ {0,1}, giving the probability of helping.9 (Hunters are

not strategic actors: they are assumed to always help.) The attacker’s subjective

probability that he is facing a group of hunters is µ : H → [0,1].

Define pt as the t-length history of 1s, i.e. the t-length history in which supporters

always helped, and let p0 = /0. Let P = {p0, p1, p2, ...}. We call these “histories

of (perfect) helping”. We look for the following equilibrium strategies.

• If the defender has always been helped in the past, the attacker moves to

a different group. Otherwise, the attacker attacks the same group forever.

Thus ζ (h) = move if h ∈P and ζ (h) = stay otherwise.

• Defenders help at round t (after a history ht−1) if and only if (1) all previous

defenders have helped (2) c is less than a finite cutpoint Ct . Formally,σ(ht−1,c)=

1 if ht ∈P and c≤Ct ; σ(ht−1,c) = 0 otherwise.

Notice in particular that the attacker moves after observing a single episode of

helping. Because of this, histories p2, p3, ... are off the equilibrium path. In or-

der to ensure reasonable attacker beliefs at these histories, we use the sequential

equilibrium concept.

Proposition 1. For T high enough, the game has a Sequential Equilibrium of the

above form (along with appropriate beliefs).

The remainder of this section gives the proof.

9Technically a defender could condition behaviour on his own costs of helping in previous
rounds when he was a supporter. Allowing this would not affect our results.
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3.1 Supporter behaviour

Given the attacker’s strategy, and other defenders’ strategies, if at round t ht /∈P

then a supporter’s play does not affect future events in the game (future supporters

will never help, and the attacker will always stay). Since c > 0 it is never optimal

to help.

If at round t, ht ∈P , then the supporter’s behaviour determines future play. Help-

ing will cause the attacker to move and not helping will cause the attacker to stay

and all future supporters not to help. Thus helping is optimal if

1− c+
T−t

∑
s=1

δ
s ≥ 1+

T−t

∑
s=1

δ
s(1− A

N
)

equivalently

c≤Ct =
δ −δ T−t+1

1−δ

A
N
. (2)

Ct is decreasing in t, and in particular, CT = 0. Also, since Ct <
δ

1−δ

A
N = C̄, there

is always positive probability that the supporter does not help.

3.2 Attacker behaviour

Given these cutpoints, we can calculate the attacker’s beliefs. The initial belief

µ( /0) = π . Since only gatherers fail to help, µ(ht) = 0 unless ht ∈P .10

Write V (ht) for the attacker’s equilibrium value after a history ht , and V = V ( /0).

Also, write

VS(ht)

10This is shown for beliefs off the path of play in Lemma 5, where the sequential equilibrium
refinement is used.
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for the attacker’s value after ht if he stays, and subsequently plays his equilibrium

strategy.

Equilibrium strategies give

V (ht) =VS(ht) =
T−t−1

∑
s=0

δ
sA+δ

T−tV , if ht /∈P. (3)

In other words, after observing any non-helping, the attacker stays and receives A

per round until the number of rounds is up.

Otherwise,V (ht) =V since the attacker moves (or has just arrived). To show that

these are a best response, we can apply the One-Shot Deviation Principle: to

check if a strategy is a best response, we need only compare it against deviations

involving a single action at one information set.11 Thus, we need to show that

V (ht)≥V if ht /∈P,

so that after observing a failure to help, it is optimal for the attacker to stay. This

is true by (3) and the fact that V ≤ ∑
∞
s=0 δ sA given that the attacker’s maximum

per-round payoff is A. We also need to show that

V ≥VS(ht) if ht ∈P (4)

so that after observing helping it is optimal for the attacker to move rather than to

stay. The right hand side here is the counterfactual value from staying for a further

11Hendon, Jacobsen and Sloth (1996) prove the principle for Sequential and Perfect Bayesian
Equilibrium.
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attack. This can be calculated as

VS(ht)= µ(ht)[a+δV ]+(1−µ(ht)){Φ(Ct+1)[a+δV ]+ (1−Φ(Ct+1))[A+δV ((ht ,0))]} if ht ∈P.

Here, the first term is the value if one is facing hunters: the supporter helps, so

the attacker receives a and then moves at once. Similarly, if the attacker is fac-

ing gatherers but the supporter’s cost drawn is lower than the cutpoint, then the

supporter helps, the attacker receives a and moves. Finally, if the cost is higher

than the cutpoint, the attacker receives A and the game proceeds. In equilibrium,

applying (3),

V ((ht ,0)) =VS((ht ,0)) =
T−t−2

∑
s=0

δ
sA+δ

T−t−1V

and plugging this into the previous equation gives

VS(ht) = [µ(ht)+(1−µ(ht))Φ(Ct+1)][a+δV ] · · · (5)

+(1−Φ(Ct+1))[
T−t−1

∑
s=0

δ
sA+δ

T−tV ] if ht ∈P.

We now show that for T high enough, (4) holds given defender behaviour. First,

we show that after enough rounds, it always holds. This is simply because the

attacker’s subjective probability that he is facing a group of hunters becomes in-

creasingly close to certainty after observing enough rounds of cooperation.

Lemma 1. For M large enough (4) holds for t > M.

Proof. First observe that V > a+δV since the attacker’s minimum payoff in the

first round is a and since the attacker receives A with strictly positive probability

14
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in equilibrium. Therefore, if µ(ht) is close enough to 1, (5) will be less than V

and (4) will hold.

Next, write µt ≡ µ(pt) for short (we will keep using this notation) and use Bayes’

rule to write

µt =
π

π +(1−π)∏
t
s=1 Φ(Cs)

. (6)

Since Φ(Ct) < Φ(C̄) < 1, µt is strictly increasing in t and approaches 1 for large

enough t.12

The next part of the argument demonstrates the same for early rounds. This relies

on choosing T high enough that Ct is very close to C̄. The logic is as follows.

Staying and observing a further round of helping has three effects on the attacker.

First, it increases his probability that he is facing a hunter group. This encourages

him to move to a different group. The other effects are that the end of the T

rounds is now closer, and that the defenders’ cutpoint decreases somewhat (i.e.

Ct+1 < Ct). These effects may encourage the attacker to stay. However, when T

is large, they become negligible, since the end of the game is far away and (for

that reason) the defenders’ cutpoint changes very little. Therefore the first effect

dominates.

Lemma 2. For any M, for T high enough, VS( /0)>VS(p1)> ... >VS(pM).13

Combining these Lemmas, along with the fact that VS( /0) = V , we can choose M

and T large enough that V ≥ VS(ht) for ht ∈P , both for t > M and for t ≤M as

Equation (4) requires. This completes the proof of Proposition 1.
12Technically a little more work is necessary to show that only the beliefs of equation (6) are

possible in sequential equilibrium. See Lemma 5 in the Appendix.
13Proofs not given in the main text are in the Appendix.
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4 Uniqueness

Here we investigate whether there are other equilibria. We continue to write V

for the value of the game to the attacker, which is also the attacker’s value after

choosing move. First, we demonstrate that behaviour for ht /∈P is always the

same as in the equilibrium above. The argument is essentially by backward in-

duction: after the attacker has become certain he is facing a group of gatherers,

then he cannot be driven off by any further helping, and then cooperation cannot

be preserved among the defenders since the game has finite periods.

Lemma 3. Suppose µ(ht)= 0. Then in any equilibrium, ζ (ht)= stay and σ(ht ,c)=

0 for all c.

Sequential equilibrium ensures that µ(ht) = 0 for all ht /∈P ,14 so this Lemma

shows that in any equilibrium, when ht /∈P , σ(ht ,c) = 0 for all c and ζ (ht) =

stay, just as in the previous section. Therefore, the only source of variation in

equilibria must be in different attacker and defender responses to a history of

helping pt .

We now show that for T large enough, there is no equilibrium with ζ (pt) > 0

for t ≥ 1. Thus, the equilibrium of the previous section is the unique sequential

equilibrium. 15

The proof works as follows. First, we observe that for t large enough, ζ (pt) =

move since it becomes increasingly certain that the defenders are hunters. Next,

14See Lemma 5 in the Appendix.
15There may be Weak Perfect Bayesian equilibria with ζ (p1) = 0 (i.e. move), ζ (pt) > 0 for

some t > 1, in which case, pt is never reached in equilibrium. However, all Weak Perfect Bayesian
equilibria have ζ (p1) = move.
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we show that when there are enough rounds, the defenders’ cutpoint is higher at

the end of a set of periods for which the attacker stays with positive probability

even after observing helping, than at the beginning of these periods. The logic

is that at the end, one’s own action decides whether the attacker will leave or

not. At the beginning, on the other hand, the attacker will stay until some future

round and will then only leave if all other supporters have also helped. Thus, the

incentive to help is greater in the later round. On the other hand, the future history

of play which one can affect may be shorter in the later round; but when T is large

enough, this makes little difference.

We then examine the attacker’s value at round F , the last round in which ζ (pF)>

0, and at the last earlier period L− 1 at which ζ (pL−1) = 0 (or if there is none

such, at the beginning of the game). At F the attacker’s belief that he is facing a

group of hunters is strictly higher, and (as we showed) the cutpoint of gatherers is

also higher. Combining these facts reveals that, since the attacker is more likely

to observe a further round of defense VS(pL−1)>VS(pF). By our assumption that

at L−1, moving is optimal,V ≥ VS(pL−1). Thus, we arrive at V > V (pF), which

contradicts the assumption that staying is optimal at pF .

Proposition 2. For T large enough, ζ (pt) = move for all t ≥ 1.

So far we have used a tool of “rationalist” game theory. Given our applications

to biology, and our argument that signalling logic affected the evolution of human

dispositions to cooperate, it is interesting to ask whether the equilibrium of Section

2 is evolutionarily stable. Technically, it is not an Evolutionarily Stable Strategy,

since both defenders and attackers may play differently at histories which are

not on the equilibrium path (for example, pt for t ≥ 2), without affecting their
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welfare. However, for T large enough, all Weak Perfect Bayesian equilibria satisfy

ζ ((1)) = move (and C1 as defined in (2), and ζ (h) = stay and σ(h,c) = 0,∀c, for

h /∈P). It would therefore be surprising if the equilibrium outcome given by

these actions were not evolutionarily stable.

5 Cooperation before conflict

In the introduction we mentioned the evidence that cooperative and helping be-

haviour seems to increase when there is an attack, or the threat of an attack, from

the outside. We can extend the model to give a natural explanation for this. The

setup is kept as simple as possible to focus on the intuition.

Suppose now that the attacker must commit before the game to attacking for all

T periods, or moving. This resembles an irrevocable decision to launch a war. In

the period before making his choice, the attacker observes K randomly selected

group members playing a Prisoner’s Dilemma. Player i’s cooperation gives R ∈

(1/K,1) to each member of the group, at a cost of q to the player where q is

drawn from a distribution with pdf Ψ(·), supported on (R,1). The value of q is

common knowledge among defenders but not the attacker. As before, hunters

always cooperate. After observing play in the Prisoner’s Dilemma, the attacker

either attacks, or does not, earning a payoff of P. This could be the expected

payoff from attacking a different group, or the payoff from some other activity.

In the attacks, hunters always help and gatherers never help, since the attacker
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cannot be deterred.16 We assume

T

∑
t=1

δ
t a
N

< P <
T

∑
t=1

δ
t A
N
.

The expected loss to each defender from facing an attack is:

T

∑
t=1

δ
t A
N
.

There is always an equilibrium in which gatherers do not cooperate. However,

there may also be cooperation in equilibrium, for the same signalling reason as

before. We seek an equilibrium in which all gatherers cooperate if q≤ q̄.

It must be the case that such cooperation (and only such cooperation) deters the

attacker. The attacker’s belief after observing full cooperation is

µ =
π

π +(1−π)Ψ(q̄)
(7)

and he is deterred if

µ

T

∑
t=1

δ
t a
N
+(1−µ)

T

∑
t=1

δ
t A
N
≤ P. (8)

If he observes any non-cooperation he learns for sure that the defenders are gath-

erer types, and attacks (since ∑
T
t=1 δ t A

N > P ).

Since µ in (7) is decreasing in q̄, (8) provides an upper limit for q̄. Above this
16The Prisoner’s Dilemma itself may be the basis for the differentiation between group types.

For example, hunters can be engaging in the game repeatedly with the same partners, whereas
the gatherers often reconstruct new groups with stranger members. The attacker observes only
one period of the repeated game, and therefore cannot distinguish between partner and stranger
groups.
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upper limit, cooperation is not convincing enough since too many gatherer types

are doing it. Call this the “attacker deterrence constraint”.

If the attacker is deterred by full cooperation, and q ≤ q̄ so that other defenders

will cooperate, then it is optimal for each defender to join in cooperating if

R−q≥−
T

∑
t=1

δ
t A
N
,

equivalently if

q≤ R+
T

∑
t=1

δ
t A
N
.

This provides another upper limit on q̄. Call it the “reward constraint”, since it

requires that the reward from cooperation be large enough to justify the cost. Of

course, q̄ may be lower than these, since no defender will cooperate if, for a given

value of q, he or she expects the others not to cooperate. To sum up, there is a set

of equilibria in which gatherer defenders cooperate for q≤ q̄ where

0≤ q̄≤min{R+
T

∑
t=1

δ
t A
N
, q̂}

where

q̂≡Ψ
−1

(
π

1−π

(
∑

T
t=1 δ t A−a

N

∑
T
t=1 δ t A

N −P

))
is the solution to (7) and (8).

Examining the upper bound for q̄ reveals the following. (1) If only the attacker’s

deterrence constraint is binding, so that the upper bound is given by q̂, then it is

weakly increasing in P and π . An increase the value of the outside option, or in the

probability the attacker puts on the defenders being hunters, will make him easier
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to deter. Also, in this case the upper bound is decreasing in A17 and a: a greater

benefit for the attacker from finding either kind of group makes him harder to

deter. Finally, the upper bound increases if Ψ increases (in the sense of first order

stochastic dominance): when average costs get higher, then cooperation up to a

higher cost level will still persuade the attacker that he is facing a hunter group.

(2) If only the reward constraint is binding then the upper bound is increasing in

R and A: cooperation is sustainable at higher levels when it is more efficient in

itself, and when the cost of an attack is high.

It is clear that this logic could be extended to many different game forms, includ-

ing episodes of pairwise cooperation or altruism – any behaviour that correlates

with the desire to cooperate in an actual attack.

6 When history is unobserved

We return to the framework of Section 2, in order to make a slight modifica-

tion. Some readers may be concerned that our result is driven by the history-

dependent behaviour of other defenders. Since future supporters will cease to

help if the current supporter does not help, perhaps this is just a Folk-theorem

like result albeit for finite repetitions. To show this is not so, we now assume that

defenders cannot condition on others’ behaviour. Instead, a gatherer strategy is

σ : {1, ...,T}×C→{0,1}, where σ(t,c) gives the probability of helping in each

round t, given a helping cost of c.

We look for an analogue of the earlier equilibrium, in which the attacker is in-

17To show this, differentiate q̂, recalling that P > ∑
T
t=1 δ t a

N .
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stantly deterred by a single episode of helping on the equilibrium path.

Proposition 3. If and only if Φ( δ

1−δ

A
N )<

√
π−π

1−π
, then for large enough T there is

an equilibrium of the following form:

ζ (h) = move if and only if h ∈P .

Gatherer defenders help during the first attacks if and only if c is less than C1 =

∑
T−1
t=1 δ T A

N . In subsequent attacks they never help.

The expression
√

π−π

1−π
is increasing in π and approaches 0 as π → 0. Thus, our

conclusions are modified somewhat when defenders cannot condition on each oth-

ers’ behavior. Our equilibrium only exists when the proportion of hunters is non-

negligible, compared to the probability of low costs.

[other extensions

... with defenders being “killed” (i.e. group size shrinking) after a successful

attack...

... if related defenders do not always defend ...

... if the attacker pays a cost to move between groups ... more generally, if there

is an exogenous outside option from leaving.]

7 Conclusion

There has been a recent surge of interest in the economics of conflict. Yet eco-

nomic models of conflict typically lack microfoundations. This paper provides

one: actors may cooperate against an outside attacker in order to drive him/her/it
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off by appearing like a highly cooperative group. Resulting cooperation levels

decrease in group size, but they can be arbitrarily high if the time horizon of the

attack is long enough and defenders are patient enough. Also, they do not neces-

sarily depend on the proportion of truly cooperative groups in the population as a

whole.

We see scope for further work in the following areas. First, can the uniqueness

result be generalized to a wider class of games with group reputation? Second,

extending the model to have two groups in conflict, rather than one group and

one unified attacker, would help us to understand the logic of civil wars and eth-

nic conflict. Lastly, in our theory, defensive cooperation is due to group members’

expectations of further attacks. In the model, groups are exogenously given. How-

ever, a group might also be defined by the attacker’s (perhaps arbitrary) choice of

targets. This would provide a model of violence and the social construction of

identity, as argued for in Fearon and Laitin (2003).
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Appendix

Proof of Lemma 2

Proof. Rewrite (5) as

VS(pt)= [µt +(1−µt)Φ(Ct+1)][a+δV ]+[(1−µt)(1−Φ(Ct+1))][
T−t−1

∑
s=0

δ
sA+δ

T−tV ].

Now, ∑
T−t−1
s=0 δ sA+ δ T−tV is strictly decreasing in t and is greater than a+ δV .

Therefore, to show the above is strictly decreasing in t, it will suffice if

(1−µt)(1−Φ(Ct+1)) (9)

26

Jena Economic Research Papers 2010 - 064



is decreasing in t. Rewrite this expression, using the definition of µ(ht) in (6), as

(
1− π

π +(1−π)∏
t
s=1 Φ(Cs)

)
(1−Φ(Ct+1)).

Observe from the definition of Ct in (2) that, for any t, Ct → C̄ as T → ∞. Since

Φ is continuous, the above expression approaches

(1− µ̄t)(1−Φ(C̄)) where µ̄t ≡
π

π +(1−π)Φ(C̄)t (10)

as T →∞. This expression is strictly decreasing in t, since µ̄t is strictly increasing

in t. Define ε = mint∈{0,...,M−1}(1− µ̄t+1)(1−Φ(C̄))− (1− µ̄t)(1−Φ(C̄)) and

note that ε > 0. Now, by selecting T large enough, we can ensure that

| (1−π)∏
t
s=1 Φ(Cs)

π +(1−π)∏
t
s=1 Φ(Cs)

(1−Φ(Ct+1))− (1− µ̄t)(1−Φ(C̄))|< ε

2
for all t,

and this, combined with our definition of ε , ensures that (9) is decreasing.

Lemma 4. In any equilibrium, after any history ht , gatherers do not help with

probability of at least 1−Φ(C̄)> 0.

Proof. Gatherers help if

1− c+δW ≥ 1+δW ′

where W and W ′ are continuation values from helping and not helping respec-

tively. These are bounded below by ∑
T−t
s=0 δ s(1− A

N ) and above by ∑
T−t
s=0 δ s. The

above bound is reached if the attacker leaves; the lower bound holds because the

defender can achieve at least this payoff by never helping. The maximum differ-

ence between δW and δW ′ is thus δ ∑
T−t−1
s=0 δ s A

N = δ−δ T−t+1

1−δ

A
N < C̄; so for c≥ C̄
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the inequality above will not be satisfied.

Lemma 5. In any sequential equilibrium, beliefs µ(pt) must be as given in equa-

tion (6), while µ(ht) = 0 for ht /∈P .

Proof. First, observe that in any equilibrium, defender play σ(pt ,c) can be char-

acterized by a (perhaps infinite) cutpoint Ct , because if σ(pt ,c) = 1 is optimal,

then σ(pt ,c′) must be strictly optimal for c′ < c. Since pt may be off the equilib-

rium path of play, permissible beliefs must be derived by constructing a sequence

of equilibria of perturbed games in which (1) defenders’ probability of helping at

ht , σn(ht ,c) is bounded within a subinterval of (0,1), with the interval approach-

ing [0,1] as n→ ∞, for all ht and c; (2) σn(ht ,c)→ σ(ht ,c) as n→ ∞ (to avoid

complications we assume that this convergence is uniform across all c) and (3)

attacker’s probability of leaving or staying is similarly bounded between 0 and 1

and converges to 0 or 1 according toζ (ht) ∈ {stay,move}. We also assume that

gatherer defenders help with probability 1−ηn(ht ,c)→ 1 as n→ ∞. We then

apply Bayes’ rule to give the attacker’s beliefs. For pt , this results in

µn(pt) =
π ∏

t
s=1 {

∫
(1−ηn(ps,c))dΦ(c)}

π ∏
t
s=1 {

∫
(1−ηn(ps,c))dΦ(c)}+(1−π)∏

t
s=1 {

∫
σn(ps,c)dΦ(c)}

.

As n→ ∞ we arrive at the limit

µ(pt) =
π

π +(1−π)∏
t
s=1 {

∫
σn(ps,c)dΦ(c)}

and in the equilibrium of Section 2, since σn(ps,c)→ 1 for c≤Cs, σn(ps,c)→ 0
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otherwise, this must reduce to

µ(pt) =
π

π +(1−π)∏
t
s=1 Φ(Cs)

as in (6).

For ht /∈P , in any equilibrium, write ht = (r1,r2, ...,rt), with rs ∈ {0,1} for s ∈

{1, ..., t}. Bayes’ rule gives

µn(ht) =
π ∏

t
s=1 {rs

∫
(1−ηn(hs,c))dΦ(c)+(1− rs)

∫
ηn(hs,c)dΦ(c)}

D

with

D = π

t

∏
s=1

{
rs

∫
(1−ηn(hs,c))dΦ(c)+(1− rs)

∫
ηn(hs,c)dΦ(c)

}
+(1−π)

t

∏
s=1

{
rs

∫
σn(ps,c)dΦ(c)+(1− rs)

∫
(1−σn(ps,c))dΦ(c)

}
.

Since rs = 0 for at least one s, the numerator of the above expression goes to 0

as n→ ∞, and the denominator D remains bounded above 0 since gatherer types

sometimes fail to help after any history (Lemma 4). Thus µ(ht) = 0.

Lemma 6. Suppose that ζ ((ht ,0,h+)) = ζ ((ht ,1,h+)) for all continuation histo-

ries h+ of length 0 or more. Then in any equilibrium, σ(ht ,c) = 0 for all c.

Proof. We prove by backwards induction over the T periods. First, in a final

period history hT−1, σ(hT−1,c) = 0 for all c, since supporter behaviour cannot

affect future play. Next, at T − 2, σ(hT−2,c) = 0 for all c, since the supporter

cannot affect either future supporter play (as we have just shown) or the attacker’s
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future play (by assumption). Then at T −3, σ(hT−3,c) = 0 for all c for the same

reason, and so on.

Proof of Lemma 3

Proof. Again, start at the end. Since µ(hT−1) = 0, the attacker is certain that

the defenders are gatherer types, and since σ(hT−1,c) = 0 for all c, the attacker

will gain his maximum per-round payoff of A next round by staying, giving a

continuation value of A+δV >V (since there is positive probability of receiving

a in the first round, V < A/(1−δ )). Thus ζ (hT−1) = stay is strictly optimal.

Now consider ζ (hT−2). Since µ(hT−2) = 0, the attacker’s belief will stay at 0 for

any continuation history. Thus, ζ ((hT−2,0)) = ζ ((hT−2,1)) = stay as we have

just shown. Therefore, the assumption of Lemma 6 holds for histories of length

T −2. Applying Lemma 6, we conclude that σ(hT−2,c) = 0 for all c. Therefore

ζ (hT−2) = stay. For, given that σ(hT−2,c) = σ((hT−2,0),c) = σ((hT−2,1),c) =

0 for all c, and that µ(hT−2) = 0, the continuation value for staying is A+ δA+

δ 2V > V . We have now proved the conclusion of the Lemma for histories of

length T −2.

At hT−3, if ζ (hT−3)= stay then the previous paragraph shows that ζ ((hT−3,h+))=

stay for any positive-length continuation history h+. Again this allows us to ap-

ply Lemma 6 and shows that σ(hT−3,c) = 0 for any c, and again this shows that

ζ (hT−3) = stay. This plus the previous paragraph proves the conclusion of the

Lemma for histories of length T −3. Continuing thus, we prove it for histories of

any length.
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Lemma 7. There is some t̄ such that in any equilibrium for a game of any length

T , ζ (pt) = move for all t ≥ t̄ .

Proof. Applying (6), Lemma 4 shows that in any equilibriumµ(pt) is strictly in-

creasing in t, and so approaches 1. Furthermore, in any equilibrium, since the

probability of helping is no more than Φ(C̄), µ(pt)≥ µ̄t as defined in (10). There-

fore, the set of beliefs µ(pt), defined over all equilibria, approaches 1 uniformly

as t → ∞: for any ε > 0, there is some t̄ε such that µ(pt̄ε ) ≥ µ̄t̄ε > 1− ε in any

equilibrium.

Now, the value to the attacker of staying in equilibrium can be written

VS(pt) = µ(pt)[a+δV ′]+ (1−µ(pt))V ′′ (11)

where V ′ is the continuation value conditional on the defenders being hunter types,

and V ′′ is the value if the defenders are gatherers. Since hunter types always help,

the best response when faced with hunters is to leave; therefore a+δV ′ ≤ a+δV .

Furthermore,

V ≥ (π+(1−π)Φ(C̄))a+(1−π)(1−Φ(C̄))A+δV = a+δV +(1−π)(1−Φ(C̄))(A−a),

since (1) the probability of gatherers helping is no more than Φ(C̄), and (2) the

attacker can achieve at least the payoff on the RHS, by leaving after the first

round. Therefore, in any equilibrium, a+ δV ′ ≤ V − ε2 where ε2 = (1−π)(1−

Φ(C̄))(A−a). Plugging this into (11), and using the fact that V ′′ is bounded above
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by ∑
∞
s=0 δ sA, gives for any ε some t̄ε such that

VS(pt̄ε ) ≤ (1− ε)(V − ε2)+ ε

∞

∑
s=0

δ
sA

≤ V − (1− ε)ε2 + ε

∞

∑
s=0

δ
sA

Choosing ε so that the right hand side is strictly less than V for any equilibrium

value of V , we can set t̄ = t̄ε . Then, it is sequentially rational to leave after pt̄ , so

ζ (pt̄) = leave.

Proof of Proposition 2

Proof. Suppose false, so that ζ (pt) > 0 for some t > 0. If T ≥ t̄, ζ (pt) = 0 (i.e.

leave) for t high enough, as Lemma 7 shows. So, for T large enough we may take

F such that ζ (pF) > 0, but ζ (pF+1) = 0. Now, define L = min{t ≥ 1 : ζ (pt ′) >

0 for all t ≤ t ′ ≤ F}. Observe that if ζ (pt) = 0 for all t < F , then L = F ; if

ζ (pt)> 0 for all t < F , then L = 1.

First we show that CL < CF+1. After pF , the attacker will condition on the next

round, staying until T if he observes no helping and leaving otherwise. Thus,

CF+1 =
δ −δ T−F

1−δ

A
N
,

just as in (2). Observe that for any T , F < t̄, by Lemma 7. Therefore as T becomes

large,

CF+1→ C̄ =
∞

∑
t=1

δ
t A
N
. (12)
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Now examine the supporter’s problem in round L. The benefit of not helping is

1+
T

∑
t=L+1

δ
t−L
[

1− A
N

]
. (13)

The benefit of helping is

1−c+
F

∑
t=L+1

δ
t−L
[

1−Nohel pt
A
N
−Attackt

{
1
N

∫ Ct

0
ĉdΦ(ĉ)+

1
N
[Φ(Ct)a+(1−Φ(Ct))A]

}]
+

T

∑
t=F+1

δ
t−L1−

[
Nohel pF+1

A
N

]
(14)

where Nohel pt gives the probability that at least one defender failed to help be-

tween rounds L+1 and t−1, and Attackt gives the probability that the attacker is

still present at time t even though all defenders helped. That is, until round F , the

attacker may still be present even after observing helping. If so, the defender bears

the expected cost in curly brackets, which includes the expected cost of being a

supporter and helping if c ≤Ct , and the expected cost of being attacked and per-

haps helped. From round F +1 onwards, either the attacker has observed perfect

helping and left, or h /∈P , the attacker is staying forever and no defenders help.

We can calculate Attackt as

t−1

∏
s=L+1

Φ(Cs)ζ (ps)

which is positive by definition of L, and Nohel pt , recursively, as

Nohel pt−1 +(1−Nohel pt−1)ζ (pt−2)(1−Φ(Ct−1))

with Nohel pL+1 = 0 since by assumption the current supporter helped. I.e. even

33

Jena Economic Research Papers 2010 - 064



if every supporter helped up till t−2, if the attacker continued to stay then at t−1

the supporter may have failed to help. All that matters is that both Attackt and

Nohel pt are positive, since ζ (pt) is positive for L≤ t ≤ F .

Rearranging (14) and (13), and taking T → ∞, gives

CL −→
T→∞

F

∑
t=L+1

δ
t−L
[
(1−Nohel pt)

A
N
−Attackt

{
1
N

∫ Ct

0
ĉdΦ(ĉ)+

1
N
[Φ(Ct)a+(1−Φ(Ct))A]

}]
+

∞

∑
t=F+1

δ
t−L(1−Nohel pF+1)

A
N
.

Comparing this with 12 shows CL < CF+1, since each term of the above sum is

less than A
N .

Now,

VS(pL−1)= [µL−1+(1−µL−1)Φ(CL))](a+δV (pL))+(1−µL−1)(1−Φ(CL))(A+δA+...+δ
T−LA+δ

T−L+1V )

where the first term in brackets gives the probability of the supporter helping, and

V (pL) is the value after pL. Observe that

a+δV (pL)< A+δA+ ...+δ
T−LA+δ

T−L+1V

since V (pL) involves a sequence of no more thanT −L attacks which can give no

more than A, followed by V , and since V < A+ δV implies V < A+ δA+ ...+
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δ t−1A+δ tV for any t ≥ 1. Therefore we can write

VS(pL−1) > [µF +(1−µF)Φ(CF+1))](a+δV (pL))+(1−µF)(1−Φ(CF+1))(A+δA+ ...+δ
T−LA+δ

T−L+1V )

(by µF > µL−1 and CL <CF+1, and a+δV (pL)< A+δA+ ...+δ
T−LA+δ

T−L+1V )

> [µF +(1−µF)Φ(CF+1))](a+δV )+(1−µF)(1−Φ(CF+1))(A+δA+ ...+δ
T−F−1A+δ

T−FV )

(since V (pL)≥V, as must always hold given that leaving is an option,

and V < A+δV ⇒ δ
T−FV < δ

T−F A+δ
T−F+1A+ ...+δ

T−LA+δ
T−L+1V )

= V (pF).

But since, by definition of L, either ζ (pL−1) = 0, or VS(pL−1) = V if L = 1, it

must be that V ≥ VS(pL−1). We therefore arrive at V > V (pF) which contradicts

ζ (pF)> 0.

Proof of Proposition 3

Proof. First consider defender behaviour. Since ζ ((1)) = move, if t ≥ 2 then the

attacker must have observed not helping and will stay forever. Therefore it is not

optimal to bear any cost to help. Now suppose that t = 1. Helping gives expected

welfare of

1− c+
T−1

∑
t=1

δ
t

and not helping gives

1+
T−1

∑
t=1

δ
t(1−A/N)

giving a cutpoint

C1 =
T−1

∑
t=1

δ
t A
N
.
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Next consider attacker behavior. Write pt = (1,1, ..,1) for a t-length history of

helping, so that pt ∈P . Clearly since only related helpers help in the second and

subsequent periods, v(pt) = move is optimal for t ≥ 2. The interesting question

is ζ (p1), the optimal strategy after a single episode of helping. The benefit of

attacking is

µ1(a+δV )+(1−µ1)(
T−2

∑
t=0

δ
tA+δ

T−1V )

with

µ1 =
π

π +(1−π)Φ(C1)

while the benefit of moving is

V = [π +(1−π)Φ(C1)](a+δV )+(1−π)(1−Φ(C1))(
T−1

∑
t=0

δ
tA+δ

TV )

We wish to show conditions when the benefit of moving is greater than that of

attacking. Taking T to infinity, the relevant inequality becomes

µ1(a+δV )+(1−µ1)
∞

∑
t=0

δ
tA≤ [π+(1−π)Φ(C1)](a+δV )+(1−π)(1−Φ(C1))

∞

∑
t=0

δ
tA.

Since a + δV < ∑
∞
t=0 δ tA, this will hold in the limit whenever µ1 > π + (1−

π)Φ(C1), equivalently when

π

π +(1−π)Φ(C1)
> π +(1−π)Φ(C1).

This results in a quadratic, but we can observe at once that it holds for Φ(C1)→

0, does not hold for Φ(C1)→ 1, and has a single crossover point in terms of

Φ(C1). Intuitively, when Φ(C1) is small enough, the fact that the supporter helped
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is strong evidence that the defenders are indeed hunters. Taking T → ∞ gives

C1→ ∑
∞
t=1 δ t A

N = δ

1−δ

A
N . Solving the quadratic for Φ(C1) gives

Φ(C1) =

√
π−π

1−π

as the upper bound for Φ(C1) for the equilibrium to exist.
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