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Application of a Heuristic Approach
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Abstract

Optimal control of dynamic econometric models has a wide variety
of applications including economic policy relevant issues. There are
several algorithms extending the basic case of a linear-quadratic op-
timization and taking nonlinearity and stochastics into account, but
being still limited in a variety of ways, e.g., symmetry of the objective
function and identical data frequencies of control variables. To over-
come these problems, an alternative approach based on heuristics is
suggested. To this end, we apply a ’classical’ algorithm (OPTCON)
and a heuristic approach (Differential Evolution) to three different
econometric models and compare their performance. In this paper we
consider scenarios of symmetric and asymmetric quadratic objective
functions. Results provide a strong support for the heuristic approach
encouraging its further application to optimum control problems.
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1 Introduction

In many areas of science from engineering to economics, determining the
optimal way of controlling a system is required in a great number of appli-
cations. In economics, one frequently asked question is how a policy maker
should choose appropriate values for given controls, such as taxes or pub-
lic consumption in order to, e.g., increase the growth rate of GDP, decrease
unemployment rate or achieve other targets. In this case, calculation of the
targeted state variables is restricted by a system of equations representing
an econometric model of the country of interest.

Solving such an optimum control problem for nonlinear econometric mod-
els is the core of this paper. To this end, two different methods are consid-
ered, namely the OPTCON algorithm (Matulka and Neck (1992), Blueschke-
Nikolaeva et al. (2011)), where classical techniques of linear-quadratic opti-
mization are used, and Differential Evolution (DE, Storn and Price (1997)),
which is a population based stochastic optimization method. Among DE’s
main advantages are the ability to explore complex search spaces with mul-
tiple local minima thanks to cooperation and competition of individual solu-
tions in the DE’s population, and the application easiness as it needs little
parameter tuning (Maringer (2008)). The non-heuristic approach, the OPT-
CON algorithm, on the other hand, is a more reliable and fast instrument
for solving optimum control problems in standard applications.

However, like nearly all ’classical’ methods, the OPTCON algorithm has
several limitations. One, which is sometimes criticized in literature, is the
required symmetry of the objective function. For the problems considered
in this paper, the objective function is given in quadratic tracking form and
equally penalizes positive and negative deviations from the given target val-
ues. In many situations, however, incorporation of different penalizing pro-
cedures for positive and negative deviations (in form of additional weighting
coefficients) or inclusion of some indifference intervals would be desirable.
Whereas it is nearly impossible to allow for this extension in the classic al-
gorithm, it can be achieved by using a heuristic approach.

Before approaching the case of an asymmetric objective function, one has
to make sure that DE can deliver a ’good’ solution to the basic case of an
optimum control problem. To demonstrate this, DE and OPTCON are ap-
plied to three macroeconometric models (with a deterministic scenario) and
the performance of the two strategies is compared. Both methods are imple-
mented in Matlab 7.11 to simplify their comparison. Due to the stochastic
nature of DE and resulting need for several restarts of the strategy, a higher
computational time is expected. For this reason, several possibilities to in-
crease DE computational efficiency are also discussed.
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Once the applicability of the heuristic approach has been demonstrated
for the basic problem, it is extended and applied to solve the optimum con-
trol problem with an asymmetric objective function to three macroecono-
metric models. To this end, certain thresholds around the target values are
introduced, inside which the objective function can be handled differently
for positive and negative deviations. The resulting changes in the solutions
are carefully analyzed and discussed both from the technical and economical
perspectives.

The paper proceeds as follows. In Section 2 we define the class of prob-
lems to be tackled by the algorithms and describe the limitations, which
are present in the OPTCON algorithm and are typical for ’classical’ opti-
mization methods. Section 3 briefly reviews the OPTCON algorithm as a
classical approach and introduces DE as an alternative heuristic strategy.
In Section 4 we analyze simulation results obtained for the two approaches
with symmetric objective functions and extend DE to the asymmetric objec-
tive function scenario, testing the two strategies based on three econometric
models (SLOVNL, SLOPOL4 and SLOPOL8). Section 5 concludes with a
summary of the main findings and an outlook to further research.

2 Theoretical background

2.1 Type of problems

The task is to solve an optimum control problem with a quadratic objec-
tive function (a loss function to be minimized) and a nonlinear multivari-
ate discrete-time dynamic system under additive and parameter uncertain-
ties. The intertemporal objective function is formulated in quadratic tracking
form, which is often used in applications of optimal control theory to econo-
metric models. It can be written as

J = E

[

T
∑

t=1

Lt(xt, ut)

]

(1)

with

Lt(xt, ut) =
1

2

(

xt − x̃t

ut − ũt

)

′

Wt

(

xt − x̃t

ut − ũt

)

, (2)

where xt is an n-dimensional vector of state variables that describes the state
of the economic system at any point in time t, ut is an m-dimensional vector
of control variables, x̃t ∈ Rn and ũt ∈ Rm are given ’ideal’ (desired, target)
levels of the state and control variables, respectively. T denotes the terminal

3

Jena Economic Research Papers 2012 - 008



time period of the finite planning horizon. Wt is an ((n + m) × (n + m))
matrix specifying the relative weights of the state and control variables in
the objective function. The Wt matrix may also include a discount factor α,
Wt = αt−1W . Wt (or W ) is symmetric.

The dynamic system of nonlinear difference equations has the form

xt = f(xt−1, xt, ut, θ, zt) + εt, t = 1, ..., T, (3)

where θ is a p-dimensional vector of parameters that is assumed to be con-
stant but unknown to the policy maker (parameter uncertainty), zt denotes
an l-dimensional vector of non-controlled exogenous variables, and εt is an
n-dimensional vector of additive disturbances (system error). θ and εt are
assumed to be independent random vectors with expectations, θ̂ and On, and
covariance matrices, Σθθ and Σεε, respectively. f is a vector-valued function
with f i(.....) representing the i-th component of f(.....), i = 1, ..., n. Solv-
ing an optimum control problem means, therefore, to find a certain set of
controls (u∗

1, u
∗

2, ..., u
∗

T ) which minimizes the objective function J , i.e. to find
u∗ = argminu J with respect to (2).

For the study presented in this paper the deterministic case is considered
only assuming the model parameters and the model equations to be exactly
true. It means that parameters in θ are given without uncertainty and the
error terms are zero. Applying a heuristic approach for stochastic case is a
further research question and will be discussed in the future.

2.2 Related restrictions

Among limitations for the existing methods, symmetric penalization of the
deviations in the objective function is mostly reported.

As some motivation to understand the limitation of tackling symmet-
ric objective functions only (henceforth, the ’symmetry limitation’), let us
consider a simple example. Assume an optimum control problem with the
government of Austria as decision-maker. Its objective state variable is the
growth rate of GDP. Let us assume that the target for this objective is given
by 4%. Final values of growth rate of GDP given by 2% and 6% will be
penalized in a standard objective function equally. But from the economic
point of view a growth rate of 6% is clearly more preferable compared to 2%.
In a similar way, Cukierman (2002, p. 23) describes the quadratic (penal-
ization) function as the one being ’chosen mainly for analytical convenience
rather than for descriptive realism’.

Moreover, this symmetry limitation is not only restricted to deviations in
output. The same applies for several other economic indicators. For example,
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Nobay and Peel (2003) show that the ECB target of 2% inflation is explicitly
asymmetric and suggest that the Bank of England had an asymmetric target
at least in its first few years of formulation.

There are several solution concepts for the symmetry limitation. Among
them the Linex form, introduced first by Varian (1974) and Zellner (1986)
in the context of Bayesian econometric analysis and proposed by Nobay and
Peel (2003) in the optimal monetary policy literature, and the piecewise
quadratic objective function introduced by Friedman (1972) are probably
the most referred. But the common issue for them is an advanced analytical
transformation of the optimization problem which makes these methods only
applicable for small-sized linear models. As mentioned above, an alternative
solution would be to use a heuristic method. In the case of the asymmet-
ric objective function, our approach is to define thresholds around the given
target values. Inside these thresholds or rather in the intervals between the
defined thresholds and the given target value the positive and negative de-
viations can be handled differently. Outside of the threshold intervals the
standard penalizing procedure is applied.

3 Optimization algorithms

3.1 OPTCON

The OPTCON algorithm determines approximate solutions to optimum con-
trol problems with a quadratic objective function and a nonlinear multivari-
ate dynamic system under additive and parameter uncertainties. It combines
elements of previous algorithms developed by Chow (1975) and Chow (1981),
which incorporate nonlinear systems but no multiplicative uncertainty, and
by Kendrick (1981), who deals with linear systems and all kinds of uncer-
tainty. In our experiments we use the last version of the OPTCON algorithm,
which is called OPTCON2. In this Section only its basic idea for open-loop
solutions is presented, for more details see Blueschke-Nikolaeva et al. (2011).

It is well known in stochastic control theory that a general analytical
solution to dynamic stochastic optimization problems cannot be achieved
even for very simple control problems. The main reason is the so-called dual
effect of control under uncertainty, meaning that controls not only contribute
directly to achieving the stated objective, but also affect future uncertainty
and, hence, the possibility of indirectly improving the system performance
by providing better information about the system (see, e.g., Aoki (1989) and
Neck (1984)). Therefore, only approximations to the true optimum for such
problems are feasible, with various schemes existing to deal with the problem
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of information acquisition.
The problem with the nonlinear system is tackled iteratively, starting

with a tentative path of state and control variables. The tentative path of
the control variables is given for the first iteration. In order to find the corre-
sponding tentative path for the state variables, the nonlinear system is solved
numerically using the Newton-Raphson method. Alternatively, the Gauss-
Seidel method or perturbation methods (see Chen and Zadrozny (2009)) may
be used for this purpose.

After the tentative path is found, the iterative approximation of the op-
timal solution starts. The solution is sought from one time path to another
until the algorithm converges or the maximal number of iterations is reached.
During this search the system is linearized around the previous iteration’s
result as a tentative path and the problem is solved for the resulting time-
varying linearized system. The criterion for convergence demands that the
difference between the values of current and previous iterations be smaller
than a pre-specified number. The approximate optimal solution of the prob-
lem for the linearized system is found under the above-mentioned simplifying
assumptions about the information pattern. Then this solution is used as the
tentative path for the next iteration, starting off the procedure all over again.

Every iteration, i.e. every solution of the problem for the linearized sys-
tem, has the following structure: the objective function is minimized using
Bellman’s principle of optimality to obtain the parameters of the feedback
control rule. This uses known results for the stochastic control of LQG prob-
lems (optimization of linear systems with Gaussian noise under a quadratic
objective function). A backward recursion over time starts in order to cal-
culate the controls for the first period. Next, the optimal values of the state
and the control variables are calculated by applying forward recursion, i.e.
beginning with u1 and x1 at period 1 and finishing with uT and xT at the
terminal period T . If the convergence criterion is fulfilled, the solution of
the last iteration is taken as the approximately optimal solution to the prob-
lem and the algorithm stops. Finally, the value of the objective function is
calculated for this solution. For more details, see Matulka and Neck (1992)
and Blueschke-Nikolaeva et al. (2011). Figure 1 summarizes the open-loop
solution of the OPTCON2 algorithm.
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Solve the system,
find tentative (x◦

t
)T
t=1

for t=T, ..., 1
- linearize the system around (x◦

t
, u◦

t
)

- minimize J , find (Gt, gt)

for t=1, ..., T
(u∗

t
, x∗

t
)T
t=1

stop criterion
for non-linearity loop

(convergence?)
J∗

(x◦

t
, u◦

t
)T
t=1

= (x∗

t
, u∗

t
)T
t=1

no

yes

nonlinearity-loop

Figure 1: Flow chart of OPTCON2, open-loop solution

3.2 Heuristic optimization

Thanks to the recent advances in computing technology, new nature-inspired
optimization methods called heuristics have become available. These meth-
ods are designed to provide ways of tackling complex combinatorial optimiza-
tion problems and detect global optima of various objective functions (eligible
for certain constraints). For an overview of these optimization techniques see
Winker (2001) and Gilli and Winker (2009).

3.2.1 Differential Evolution

Differential Evolution (DE), proposed by Storn and Price (1997), is a popu-
lation based optimization technique for continuous objective functions. For
applications of DE in finance and risk management see Lyra et al. (2010)
and Winker et al. (2011), respectively. In short, starting with an initial pop-
ulation of solutions, DE updates this population by linear combination and
crossover of four different solution vectors into one, and selects the fittest
solutions among the original and the updated population. This continues
until some stopping criterion is met. Algorithm 1 provides a pseudocode of
the DE implementation.

More specifically, the algorithm starts with a randomly initialized set of
candidate solutions P

(1)
j,t,i (j = 1, ...,m; t = 1, ..., T , i = 1, ..., p) of them×T×p
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Algorithm 1 Pseudocode for Differential Evolution
1: Initialize parameters m,T, p, F and CR
2: Randomly initialize P

(1)
j,t,i, j = 1, · · · ,m; t = 1, · · · , T ; i = 1, · · · , p

3: while the stopping criterion is not met do
4: P (0) = P (1)

5: for i = 1 to p do

6: Generate r1,r2,r3 ∈1, · · · ,p, r1 6= r2 6= r3 6= i
7: Compute P

(υ)
.,.,i = P

(0)
.,.,r1 + F × (P

(0)
.,.,r2 - P

(0)
.,.,r3)

8: for j = 1 to m and t = 1 to T do

9: if u < CR then P
(n)
j,t,i = P

(υ)
j,t,i else P

(n)
j,t,i = P

(0)
j,t,i

10: end for

11: if J(P
(n)
.,.,i ) < J(P

(0)
.,.,i) then P

(1)
.,.,i = P

(n)
.,.,i else P

(1)
.,.,i = P

(0)
.,.,i

12: end for

13: end while

size (step 2), where m × T is the dimension of a single candidate solution
and p is the population size. At this point it is important to explain how a
DE candidate solution in the case of an optimum control problem looks like
and how we choose an initial population.

We propose to use a candidate solution containing all control variables for
all time periods. Thus, each candidate i = 1, ..., p represents an alternative
complete solution path for the whole optimum control problem, and is given
as an (m × T )-matrix P

(1)
.,.,i = (P

(1)
j,t,i) j=1,...,m

t=1,...,T
= (u

(1),i
1 , u

(1),i
2 , ..., u

(1),i
T ), where

u
(1),i
t is an m-dimensional vector of controls. As a result, the dimension of

the problem for each candidate solution is given by d = m×T , with m being
the number of control variables and T – the size of the planing horizon.

It is important to mention that each candidate solution is also described
by the time paths of corresponding state variables, which result from the dy-
namic system f and the selected controls, i.e. (x

(1),i
t=1,..,T = f(..., u

(1),i
t=1,..,T , ...)).

For each candidate solution (for each set of control variables) there is a unique
set of state variables. These state variables are not directly included in a
candidate solution but they contribute to the objective function which is to
minimize. In order to calculate these state variables an appropriate nonlinear
system solver like Newton-Raphson or Gauss-Seidel is used. The objective
function as given by equations (1) and (2) summarizes the weighted quadratic
deviation of the n state variables and the m control variables for all time pe-
riods and has the dimension (m + n) × T . The value J of this objective
function is used as the fitness of each candidate solution.

One candidate solution P
(1)
.,.,1 as described above is available at the be-

ginning of the optimization procedure and is given by the tentative path
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of control variables. The remaining p − 1 candidate solutions of the initial
population (P

(1)
.,.,i, i = 2, ..., p) are constructed from this given path P

(1)
.,.,1 by

adding uniformly distributed error terms. The key aspect for creating this
distribution is the assumed variance of the control variable j. In order to
calculate these individual variances, the volatility of the corresponding time
series and/or the differences between the tentative path and the OPTCON2
solution can be used.1

Then, in each generation the algorithm constructs a new candidate solu-
tion P

(υ)
.,.,i (containing information on all control variables for all time periods)

for member i from three different members of the current population (steps
6-7). For this reason, the scale factor F determines the shrinkage rate in ex-

ploring the search space. After that, the elements of the two solutions, P
(υ)
.,.,i

and P
(0)
.,.,i, are shuffled in an updated solution P

(n)
.,.,i according to the crossover

rate CR and the uniform random variable u ∼ U(0, 1) (steps 8-10). Finally,
the fitness of the new candidate solution is compared with the one of the
original population (step 11). If the new solution is better, the new candi-
date replaces the old one. The above process is repeated until the population
of solutions has converged to a single vector, or until the predefined maximal
number of generations g is reached.

3.2.2 DE calibration

Some guidelines for DE calibration can be found in Price et al. (2005).2

Although DE performs well for many problems with F = 0.8, CR = 0.8
and p = 10d, tuning of the parameters is a problem specific issue. For this
reason, we conduct a series of simulation experiments calibrating the DE
parameters.3 As it was done in Winker et al. (2011), initially we fix F and
CR to be both equal to 0.55 (average value) and test different population
sizes (between 5d and 30d) increasing g until DE results in the same outcome
for several replications. This is achieved with the population of 10d size and
750 generations. Whereas 5d does not allow for a successive identification
of the same outcome, experiments with 30d provide identical results in each
restart. Since a larger population reduces the convergence speed, p = 10d
and g = 750 for a standard symmetric optimization problem are selected.

The difficulty in applying DE to an optimum control problem comes
from the repeated computation of the state variables for each new calcu-
lated candidate solution, i.e. x

(l),i
t = f(..., u

(l),i
t , ...), for all time periods

1The latter is the case when the observed variance equals zero.
2A practical advice for this is also given on www.icsi.berkeley.edu/ storn/code.
3In the following we describe the procedure for the SLOVNL model. Similar findings

are made for the other two models, SLOPOL4 and SLOPOL8.
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t = 1, .., T , for all members of the population i = 1, ..., p and for all gen-
erations l = 1, ..., g. Comparing the quality of two available system solving
algorithms, Newton-Raphson (line-search extension) and Gauss-Seidel, the
latter one demonstrates a slightly better performance4 and is employed for
our computations in the following.

Furthermore, we examine the impact of the convergence criterion inside
the nonlinear system solver on the DE performance.5 Analyzing DE progress
over the search process (see right panel of Figure 2 for the SLOVNL model),
we notice that high precision (set equal to 1 × 10−5) of the system solving
algorithm does not play an important role throughout the full search process,
but only at its end. This precision, however, constitutes a significant compu-
tational challenge. For this reason, we decrease the accuracy up to 1 for the
first 85% of generations leaving the full precision only for the final part of
the search period. For all three models this alternation in precision does not
affect our findings on the population size and gives an approximately 30%
time reduction in comparison to the default (full precision) calculation.6

Some additional reduction in computational time can be achieved by an-
alyzing and using the structure of the Wt matrix of the weights, which has
the dimension ((n +m)× (n +m)). Usually, not all of the available (state)
variables are considered in the objective function. Especially for large models
this can result in the fact that the statement rank(W ) ≤ n+m is in reality
a strong inequality rank(W ) < n+m. In order to reduce the CPU time, we
prevent the program from evaluating the objective function for non-objective
variables. We use the structure of the Wt matrix and evaluate only the state
variables which correspond to non-zero elements of the vector of weights.
Although the computational costs for the procedure are low for one evalua-
tion, the total gain can be significant due to the very large frequency of the
objective function evaluation for DE (e.g., for SLOVNL one restart results in
10× 3× 12× 750 =270000 evaluations). Depending on the model considered
this performance improvement leads to a time reduction of around 1-10%,
where the largest improvement is identified for the SLOPOL8 model.

Next, we run DE for different CR and F ranging between 0.1 and 1 and
construct a phase portrait (see Price et al. (2005)) that pictures combinations
of parameter values with the lowest average number of generations required

4Lower computational time and nearly no difference in the quality of the final solutions.
5More precisely, we examine the impact of the convergence criterion’s precision, which

requires the relative deviations between the values of objective variables in the current
and the previous solution loop of the system solver to be less than a certain value.

6This finding only holds for symmetric optimization problems. In contrast, for asym-
metric case the precision is found to be more sensitive throughout the entire search path.
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to achieve the value–to–reach (V TR).7 The combination is highlighted if the
minimum objective value obtained becomes less than or equal to V TR in less
than or equal to 750 generations. This process is illustrated in Algorithm 2.

Algorithm 2 Calibration of tuning parameters
1: Initialize parameters p, g

2: Initialize population P
(1)
j,i , j = 1, · · · , d, i = 1, · · · , p

3: for F = 0.1 to 1 do

4: for CR = 0.1 to 1 do

5: for k = 1 to g do

6: Repeat statements 4-12 from Algorithm 1
7: if JDE ≤ 1.0001JOPTCON2 then mark F and CR

8: end for

9: end for

10: end for

Figure 2 (left panel) demonstrates the resulting phase portrait for the
SLOVNL model. Whereas CR favourable values vary predominantly between
0.1 and 0.4, F is concentrated in [0.4,0.6]. Choosing the combination with the
highest fitness, we set F = 0.4 and CR = 0.1.8 In addition, on the right panel
of Figure 2 the DE progress plot over the evaluation time is demonstrated.
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CR−rate
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x 10

6

Figure 2: Phase portrait and progress plot for SLOVNL

To illustrate convergence of the resulting objective function values, we
apply DE with 100 restarts for different g (number of generations). In the

7V TR is set to 100.0001% of the objective value achieved by OPTCON2. Thus, the
deviation of .0001% (e.g., less than 100 for SLOVNL) is acceptable for illustrative reasons.

8In contrast, employing high precision in the fitness evaluation over the full search
process would result in the F = 0.4, CR = 0.5 combination.
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upper left plot of Figure 3 the cumulative distribution function F (J) for dif-
ferent g is given, whereas the other plots are histograms of objective function
values identified. Increasing g the distribution shifts left and becomes less
dispersed (see also Savin and Winker (forthcoming)).
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Figure 3: Empirical distribution of objective function values for different g

Since DE is a stochastic method, the algorithm is restarted ten times and
the solution with the best objective value is selected.

The corresponding computational time for the three models tested in
this study varies depending on the complexity of a particular problem. For
SLOVNL 750 generations are sufficient to obtain a solution, and require less
than one minute using Matlab 7.11 and Pentium IV 3.3 GHz.

4 Simulation results

4.1 Comparison of OPTCON and DE

Before analyzing the impacts of introducing asymmetric objective functions,
one has to consider the standard objective values for three macroeconometric
models (SLOVNL, SLOPOL4 and SLOPOL8).

We start with the results for the SLOVNL model, a small nonlinear econo-
metric model of the Slovenian economy, which consists of 8 equations and
includes 8 state variables, 4 exogenous non-controlled variables, 3 control
variables and 16 unknown (estimated) parameters (see Appendix 6.1 and
Blueschke-Nikolaeva et al. (2011) for more detail). Here only the informa-
tion about the values of the objective function is presented.
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The objective function value achieved by OPTCON2 for SLOVNL model
equals 2759744 in the uncontrolled simulation and 904649.68 for the optimal
solution. Heuristic solution with symmetric objective function approximates
the optimal solution fairly well. As DE gives by each restart slightly different
values, we also report its standard deviations (in parentheses) to account
for the variance in results. With 10 restarts and 750 generations the best
value identified is 904649.98. All objective value results for symmetric and
asymmetric solutions for three models considered can be seen in Table 1.

Similar findings are calculated for SLOPOL4 and SLOPOL8. Thus, the
values of the objective function as calculated by OPTCON2 in the un-
controlled simulation are 1000690.19 and 1257518562.81, respectively, while
for the optimal solution OPTCON2 achieves 375452.64 and 876621276.32.
Heuristic solution with standard objective function approximates the opti-
mal OPTCON2 solutions well, by achieving values even slightly below the
OPTCON2 results. In particular, 375403.81 and 876597577.33 are obtained.
The latter fact explains a higher variance in DE results for the SLOPOL4
model: since DE slightly outperforms OPTCON2, the corresponding VTR is
systematically reached even with the higher variance in DE results.9 Thus,
we find evidence that DE can even beat standard optimum control strategies
for complex econometric models compensating by this the higher computa-
tional cost required to obtain a solution.

Table 1: Results for both optimization algorithms with different settings

OPTCON2 Differential Evolution Benefit

uncontrolled optimal symmetric asymmetric absolute relative

S
L
O
V
N
L min 2759744.00 904649.68 904649.98 479025.65 174946.80 19.3%

std (0.00) (0.00) (0.62) (4.66) (19.00)

cpu .001s .5s 58s 1378s

S
L
O
P
O
L
4

min 1000690.19 375452.64 375403.81 351066.92 6373.18 1.7%

std (0.00) (0.00) (1.78) (80.99) (67.58)

cpu .001s 5s 15047s 31005s

S
L
O
P
O
L
8

min 1257518562.81 876621276.32 876597577.33 788018915.13 1155946.19 0.1%

std (0.00) (0.00) (679.29) (124.96) (1262.33)

cpu .002s 33s 7512s 35610s

aFor explanation see Section 4.1.

9For SLOPOL8 the standard deviation lies within the 0.0001% (VTR) deviation.
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4.2 Application to asymmetric objective functions

In order to solve the symmetry limitation of the objective function we define
certain thresholds around the given target values. In particular, we concen-
trate on the intervals between the defined thresholds and the given target
values. Let us consider again a simplified example with the growth rate of
GDP as the only one objective variable. Let us assume further that the
target value is given by 4%. In order to reduce penalty on the positive de-
viations, we define a threshold larger than the target value of 4% and given,
for example, by 8% for the growth rate of GDP. Possible optimization results
inside the interval [4%, 8%] can be then handled differently: i.e. penalized
less strong compared to negative deviations. To this end, we introduce an
additional factor β ≤ 1 which indicates the level of the asymmetry.10 Outside
of the thresholds standard penalizing procedure is applied (see 4-5), so that
an overheating of the economy is punished in the same way as an underper-
formance.

Our first results use ’one-sided’ thresholds which are defined as relative
deviations from the given targets. ’One-sided’ means that we deal either with
positive or negative intervals for one variable in asymmetric way. Two-sided
thresholds which allow for simultaneous consideration of positive and nega-
tive intervals for each variable are implemented as well. Such experiments
could be especially interesting for the problems where controls are allowed to
be very flexible but only inside a certain interval. An example could be the
nominal prime rate set by a central bank which can vary at low cost inside
the interval [0, x] with x = 5% or even higher, but can not be negative, which
implies a high penalty weight outside of the defined interval.

The advantage of using relative deviations instead of fixed values arises for
the objective variables with targets given as changing time paths. Using fixed
values as thresholds would require to define a time path for these thresholds
as well. In contrast, defining relative deviations for thresholds allows to
calculate the corresponding values using the given target value at the time
point t.11 The targets and the thresholds (given as relative deviations and
denoted by d̃) for all three models under consideration are presented in Table
2.12 Since some variables in different models have a very similar economic

10For the special case β = 1 the symmetric case is included as well.
11Notice, that in case of variables with target values given as ’0’ relative thresholds do

not work and should be replaced by absolute ones.
12There is no unique way in defining thresholds. For the present study some moderate

values are chosen using very general economic theory considerations. Allowing for larger
intervals would increase the impact of the thresholds on the final solutions. Moreover, some
differences to catch model specifications are allowed: for example, in SLOPOL8 model
describing an economy in crisis some differences in thresholds chosen (e.g., unemployment
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meaning but a different notation (e.g., GRCPI and INFL), they are grouped
in one line to simplify understanding and comparison.

Table 2: Target values x̃t=1, ũt=1 and thresholds d̃

SLOVNL SLOPOL4 SLOPOL8

x̃,ũ d̃ x̃,ũ d̃ x̃,ũ d̃

S
t
a
t
e
s
in

t
=
1

CR 1920 5% CR 370 5%

INV R 956.9 10% INV R 173 10%

IMPR 2299 0 IMPR 437 0

STIRLN 9.78 -20%

GDPR 3478 10% GDPR 679 10% GDPR 5898 10%

V R 5783 3%

PV 172.5 -1.5%

GRCPI 6 -50% INFL 2.27 -50%

UR 10 -5% UR 9.79 -50%

EXR 437 10%

GR 144 0

CAN% 0 0

GRGDPR 4.5 100%

DEF% 0 0

DEBTGDP 23.95 -10%

C
o
n
t
r
o
ls

in
t
=
1

TaxRate 25.2 0

GR 629.3 -1%

M3N 16050 0%

TaxRateLabour 37.45 -10%

GN 240 0 GN 1548 0

TRANSFERSN 197 -3% TRANSFERSN 1303 -3%

STIRLN 12 -50%

The value of 5% for CR, for example, means that possible final solutions
are penalized differently in the interval [1920, 1920 + 0.05*1920]. Thus,
some private excess demand is ’tolerated’, i.e. penalized less strongly com-
pared with the standard objective function. Similarly, -20% for the STIRLN
defines the asymmetric interval for negative deviations [9.78 - 0.2*9.78, 9.78].
As mentioned before, this asymmetric penalization procedure is achieved by
adding an additional weighting coefficient β, 0 ≤ β ≤ 1. A lower value of β
implies a lower penalty. In the case if β = 0 we create an indifference interval,
where no penalty for deviations between the optimization results and given
target values is applied. The case of β = 1 describes the standard penalizing
procedure and is used for testing of implementation only.

Thus, in a general form the asymmetric objective function described above

rate (UR) and level of debt in relation to GDP (DEBTGDP )) can be observed.
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and denoted by Lasym
t (xt, ut) penalizes the deviations

(xt − x̃t) for xt /∈ [min(x̃t, x̃t(1 + d̃)),max(x̃t, x̃t(1 + d̃))]

(4)

(ut − ũt) for ut /∈ [min(ũt, ũt(1 + d̃)),max(ũt, ũt(1 + d̃))]

similar to Lsym
t (xt, ut), which denotes the standard penalizing procedure as

described in (2), but

√

β(xt − x̃t) for xt ∈ [min(x̃t, x̃t(1 + d̃)),max(x̃t, x̃t(1 + d̃))]

(5)
√

β(ut − ũt) for ut ∈ [min(ũt, ũt(1 + d̃)),max(ũt, ũt(1 + d̃))].

Lasym
t (xt, ut) allows to ’smooth’ the parabola of the quadratic objective func-

tion inside the defined intervals by factor β.13

We apply DE using the advanced (’asymmetric’) penalizing procedure14

starting with an additional weighting coefficient β = 0.1. Comparing the
results for both, symmetric and asymmetric, scenarios calculated via DE one
can see a very substantial decrease of the objective value by around 47%.

In order to analyze the relevance of this change two additional compar-
isons are performed next. First, we compare the objective values not for the
final results, but for the tentative paths. The objective value in the standard
case is given by 2759744. The objective value of the uncontrolled solution in
asymmetric case is 2451838. We see that the difference between the standard
calculation and the asymmetric calculation using the thresholds as given in
Table 2 reduces the uncontrolled objective value by around 12%. This is
a considerable reduction, but significantly below the 47% reduction of op-
timized results. Hence, the 47% difference in the final results is influenced
by the penalizing procedure. Furthermore, this indicates a good quality of
the target values chosen. Thus, if the optimal values can at ’low cost’ take
values on the one side (positive or negative) from the target values, then it
is sometimes reasonable to adjust target values in this direction. As a result
one obtains better target values and better results in the ’low cost’ area.

Second, to emphasize the impact of the penalizing procedure we use an
additional index which calculates the ’benefit’ from asymmetric DE search

13As a result it creates a discontinuous point at the threshold position.
14The asymmetric penalization scheme naturally affects the corresponding search space

of solutions making it more complex and ’unfriendly’. This necessitates a larger population
of solutions (p = 50d) to screen the search space in more directions simultaneously and,
hence, a larger number of generations and CPU time required.
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path. To this end, we calculate first the asymmetric objective value for the
symmetric DE result, i.e. we obtain first the DE results using standard
weighting procedure. Then we take the optimal states and controls from this
optimization (xsym

t , usym
t ) and calculate the objective value for the advanced,

asymmetric weighting procedure. The resulting difference between the latter
objective value and the one obtained via DE and the asymmetric penalized
procedure is referred as Benefit (last two columns in Table 1):

Benefit = E

[

T
∑

t=1

Lasym
t (xsym

t , usym
t )

]

− E

[

T
∑

t=1

Lasym
t (xasym

t , uasym
t )

]

. (6)

Thus, we apply asymmetric penalization Lasym
t (·) (i.e. the more ’meaningful’

penalization from economical point of view) on both, the symmetric and
asymmetric, results for control and state variables measuring an impovement
in the objective value J .

To ease the comparison between the benefits for the three different models
we report both, the absolute value of the benefit and its share in relation to
the symmetric DE result (relative benefit) in Table 1. In addition, standard
deviations over ten restarts are indicated. Thus, for SLOVNL the benefit
from using the asymmetric penalization throughout the search process implies
a decrease in the final objective value of slightly more than 19%.

Next, the asymmetric penalizing procedure is applied on the other two
models. We use the same additional weighting coefficient β = 0.1 and look
first at the resulting objective values which are 351066.92 and 788018915.13
for SLOPOL4 and SLOPOL8, respectively. Comparing the asymmetric DE
result with the objective value calculated using standard DE one can see
a substantial decrease of the objective value by around 6-10%.15 Similar to
SLOVNL, comparison of the objective values for the tentative paths indicates
a good quality of the target values chosen: for SLOPOL4 these are 1000690
(symmetric) and 986193 (asymmetric), while for SLOPOL8 1340648701 and
1257518562, respectively. Thus, in contrast to the decrease in the final ob-
jective values, the difference amounts only to 1.5-6%. Finally, the benefit
obtained from asymmetric penalization throughout the (stochastic) search
process accounts for 1.7-0.1%. It is evident that the benefit for these two
models is much lower than for SLOVNL, which can be explained by different
normalization procedures for the weighting matrix W .16

15The lower difference between symmetric and asymmetric objective function values for
this models can be expalined by logarithmization of some variables’ values used in the
latter two models in comparison to ’level’ values used in SLOVNL.

16In order to prevent that the unit of measurement and other time series charachteris-
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Our paper focuses on the technical application of a heuristic optimiza-
tion method (DE) to optimum control problems including certain advanced
restrictions and comparison of performance between DE and OPTCON. We
do not aim (at this stage of research) on giving any policy recommenda-
tions. Nevertheless, in the following we give a brief insight into economic
interpretation of the DE results for the asymmetric scenario.

In order to understand constituent elements of the resulting differences in
the objective function values for the different methods applied (Table 1), let
us consider relative deviations in the state and control variables’ values ob-
tained from the given targets. To this end, we calculate percentage differences
dDE (i.e. difference between the values obtained via DE with symmetric pe-
nalization and the targets) and dDEasym (i.e. difference between the values
obtained via DE with asymmetric penalization and the targets) taken in re-
lation to the respective subtrahend (target).17 While plots on the deviation
in controls are given below, plots for states are presented in Appendix.
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Figure 4: Relative deviations in controls for SLOVNL

Comparing results for the SLOVNL model in control (Figure 4) and state
(Figure 7) variables, one realizes that the lower objective value obtained via
asymmetric penalization is due to a different fiscal and monetary policy ap-
plied. In particular, while in the period 2004-2005 the state introduces a lower

tics can distort the optimization results, usually the weights in the matrix W should be
normalized. For this purpose an appropriate normalization procedure is applied. For more
information about different normalization procedures see Blueschke (2011).

17We also have considered differences between the obtained values via OPTCON2 and
the targets. However, since DE (with symmetric objective function) approximates the
OPTCON2’s optimal solution very well, the latter difference is very close to dDE. For
this reason, we do not report those differences in the paper for the sake of brevity. However,
the results can be obtained from authors on request.
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tax rate (TaxRate) and a higher public consumption (GR) and, at the same
time, shrinking less the money stock (M3N), it raises TaxRate and reduces
GR and M3N more radically than in the symmetric penalization scenario at
the end 2005 - start of 2006. As a result of this (less restrictive) monetary
and fiscal policy in 2004-2005, a lower short term interest rate (STIRLN)
and marginally higher growth in the gross domestic product (GDPR), aggre-
gate demand (V R), imports of goods and services (IMPR), and investments
(INV R) in the economy within this period is achieved. Furthermore, as one
could expect, a somewhat lower growth in GDPR, V R, IMPR and INV R
is obtained in the first quarter of 2006. However, in total these differences
account for the 19% benefit in favour of the asymmetric DE penalization ob-
tained in the objective value.18 Note that the larger negative deviations from
the targets in GR (within 1%) and STIRLN (within 20%) and also larger
positive deviation in V R (within 3%), GDPR and INV R (both within 10%)
are ’stimulated’ if applying the thresholds given in Table 2.

Next, considering SLOPOL4 (see Figures 5 and 8) one can notice that
the larger decreases in short term interest rate (STIRLN) and wage tax
rate (TAXRATELABOUR) - both within the tolerance intervals defined by
thresholds in Table 2 - together with a lower nominal public spending (GN)
and higher transfer payments (TRANSFERSN) allow to obtain a slightly
larger real GDP (GDPR), private consumption (CR) and imports (IMPR),
particularly for the period 2005-2007. This, in its turn, results in a higher
growth rates of GDP (GRGDPR) in the respective period. Furthermore,
the measures described lead to lower unemployment rates (UR) and a larger
gross fixed capital formation (INV R).19 All this allows to reduce the budget
(DEF%) and the current account (CAN%) disbalances20 of the economy
and produce an almost 2% benefit in terms of the objective function value.

Finally, analyzing the deviations obtained for SLOPOL8 (and illustrated
in Figures 6 and 9) one observes a larger public consumption (GN) values
within the period of 2009-2013, which are accompanied by lower transfer
payments to households (TRANSFERSN). This, however, leads to only
minor differences in the state values considered (unemployment rate (UR),

18Such a substantial benefit in comparison to relatively small differences in the Figures
4 and 7 can be explained by several reasons: large ’level’ values of the variables used in
computation, quadratic penalization of the model, different weights of particular variables
in the final objective value.

19Note again that the lower unemployment rates (within 5%) and higher growth rates
in fixed capital formation (within 10%) are tolerated by our thresholds.

20Note that the deviations for the latter two variables, which are measured in percent-
ages, are not ’normalized’ with respect to the targets and therefore are denoted in Figure
8 with ’abs’ (standing for absolute deviations) on the end.
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Figure 5: Relative deviations in controls for SLOPOL4

real gross domestic product (GDPR), inflation (INFL) and debt level in
relation to GDP (DEBTGDP )). Since the deviations in the states are very
moderate, we also calculate individual constituent elements of the objective
function value for all six variables under consideration (see Figure 10). Thus,
while for DEBTGDP , GN and TRANSFERSN the deviations obtained
in the asymmetric scenario are found to be slightly higher (within 3-6%),
results for UR, GDPR and particularly INFL are in contrast in favour of the
asymmetric penalization (although they are within 0.2-2%). Thus, obviously
the redistribution of funds from TRANSFERSN in favour of GN allows to
marginally improve the final objective value by 0.1%.

5 Conclusions and Outlook

In this paper we apply a heuristic approach (Differential Evolution) to solve
nonlinear optimum control problems. The main reason to do that is the DE’s
flexibility allowing to deliver solutions in the specific situations, where the
classical methods fail. To test the quality and performance of DE we compare
its results with the ones obtained by the OPTCON algorithm, which uses the
classical techniques of linear-quadratic optimization.

Our work can be divided into two parts. First, we demonstrate that DE
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Figure 6: Relative deviations in controls for SLOPOL8

approximates the solutions obtained by OPTCON fairly well based on three
econometric models (SLOVNL, SLOPOL4 and SLOPOL8). Moreover, we
obtain evidence that the heuristic approach can even beat standard opti-
mum control strategies compensating by this the higher computational cost
required. Furthermore, different tuning schemes for performance improve-
ment of DE are analyzed.

Second, we apply DE to situations where classical methods fail. In partic-
ular, we focus on the symmetry limitation of the quadratic objective function
and relax this condition by introducing certain thresholds (intervals) around
given target values for objective variables. Inside these intervals the negative
and positive deviations between final results and target values are handled
differently, i.e. penalized asymmetrically. We find that the asymmetric ap-
plication of DE requires even more computational time compared to the sym-
metric scenario, but does not require any advanced analytical adjustments.
Intensive computational experiments with different thresholds and models
demonstrate proper robustness of the calculated results, indicate their supe-
riority compared to the results with symmetric penalization and encourage
DE’s application to asymmetric optimum control problems.

Although our paper focuses on the technical implementation of the two
strategies, we provide a brief insight into the economical interpretation of
the asymmetric results obtained (which are not meant for any kind of policy
recommendations). Thus, it is clear that these results are highly problem
specific and correlate to many model internal issues including the choice of
targets, weights and thresholds. We observe substantial differences for sym-
metric and asymmetric scenarios in the optimal policy in nearly all control
variables considered, which supports the usefulness of the heuristic methods
and the necessity of further research in this area.
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In the future, it is highly interesting to consider other limitations of the
classical methods (the problem of different data frequencies), to compare the
two strategies based on stochastic problems and further elaborate the issue
of performance improvement (e.g., consider other heuristic methods).
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6 Appendix

6.1 The SLOVNL model

The small nonlinear macroeconometric model of the Slovenian economy
(SLOVNL) consists of 8 equations, 4 of them behavioral and 4 identities.
The model includes 8 state variables, 4 exogenous non-controlled variables,
3 control variables and 16 unknown (estimated) parameters. The quarterly
data for the time periods 1995:1 to 2006:4 yield 48 observations and admit a
full-information maximum likelihood (FIML) estimation of the expected val-
ues and the covariance matrices for the parameters and system errors. The
start period for the optimization is 2004:1 and the end period is 2006:4 (12
periods).

Endogenous (state) variables :

x[1] : CR real private consumption
x[2] : INV R real investment
x[3] : IMPR real imports of goods and services
x[4] : STIRLN short term interest rate
x[5] : GDPR real gross domestic product
x[6] : V R real total aggregate demand
x[7] : PV general price level
x[8] : Pi4 rate of inflation

Control variables:

u[1] TaxRate net tax rate
u[2] GR real public consumption
u[3] M3N money stock, nominal

Table 3: Weights of the variables in the SLOVNL model

a: ‘raw’ weights b: ‘correct’ weights

variable weight variable weight
—————— ———– —————— ————
CR 1 CR 3.457677
INV R 1 INV R 12.16323
IMPR 1 IMPR 1.869532
STIRLN 1 STIRLN 216403.9
GDPR 2 GDPR 2
V R 1 V R 0.333598
PV 1 PV 423.9907
Pi4 0 Pi4 0
TaxRate 2 TaxRate 37770.76
GR 2 GR 63.77052
M3N 2 M3N 0.090549
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Figure 7: Relative deviations in states for SLOVNL
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6.2 The SLOPOL4 model

The medium-sized nonlinear macroeconometric model of the Slovenian econ-
omy (SLOPOL4) consists of 15 behavioral and 30 identity equations (the
total number of equations as programmed for optimum control optimization
including several auxiliary equations is 71). The model includes 45 state
variables, 4 controls, 11 exogenous non-controlled variables and 59 unknown
(estimated) parameters. The exogenous variables include variables outside
the influence of Slovenian policy-makers (oil price, world trade, euro area in-
terest rates, population), some policy instruments (public consumption and
investment, transfer payments to private households, tax rates and social
security contribution rates) and some dummy variables.

The behavioral equations are estimated by ordinary least squares (OLS),
using quarterly data for the period 1995:1 until 2005:4. The start period for
the optimization is 2002:1 and the end period is 2007:4 (24 periods). For
more information see (Neck et al. 2004).

Endogenous (objective) variables :

x[1] : GDPR real gross domestic product
x[2] : UR unemployment rate
x[3] : CR private consumption, real
x[4] : EXR exports, real
x[5] : IMPR imports, real
x[6] : INV R gross fixed capital formation, real
x[7] : GR government consumption, real
x[8] : CAN% current account balance in percent of GDP
x[9] : GRGDPR growth rate of real gross domestic product
x[10] : GRCPI growth rate of consumer price index
x[11] : DEF% budget balance in relation to GDP

Control variables:

u[1] TAXRATELABOUR wage tax rate
u[2] GN government consumption at current prices
u[3] TRANSFERSN transfer payments to households at current prices
u[4] STIRLN short term interest rate

Table 4: Weights of the variables in the SLOPOL4 model

state variables control variables
variable weight variable weight variable weight

GDPR 1 IMPR 1 TAXRATELABOUR 10
UR 1000 INV R 1 GN 1
CR 1 GR 1 TRANSFERSN 1
EXR 1 CAN% 1000 STIRLN 100
GRGDPR 1000 GRCPI 1000
DEF% 1000
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Figure 8: Relative deviations in states for SLOPOL4
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6.3 The SLOPOL8 model

The medium-sized nonlinear macroeconometric model of the Slovenian econ-
omy (SLOPOL8) consists of 24 behavioral and 37 identity equations (the
total number of equations as programmed for optimum control optimization
including several auxiliary equations is 154). The model includes 61 state
variables, 2 controls, 15 exogenous non-controlled variables and 148 unknown
(estimated) parameters. Similar to SLOVNL, the exogenous variables also
include variables outside the influence of Slovenian policy-makers (oil price,
world trade, euro area interest rates, population), some policy instruments
(public consumption and investment, transfer payments to private house-
holds, tax rates and social security contribution rates) and some dummy
variables.

The behavioral equations are estimated by ordinary least squares (OLS),
using quarterly data for the period 1995:1 until 2008:4. The start period for
the optimization is 2008:1 and the end period is 2015:4 (32 periods). For
more information see (Neck et al. 2011).

Endogenous (objective) variables :

x[1] : UR unemployment rate
x[2] : INFL inflation rate
x[3] : GDPR real gross domestic product
x[4] : DEBTGDP debt level in relation to GDP

Control variables:
u[1] GN government consumption at current prices
u[2] TRANSFERSN transfer payments to households at current prices

Table 5: Weights of the variables in the SLOPOL8 model

state variables control variables
variable weight variable weight
UR 1259698.847 GN 28.6
INFL 6763629.434 TRANSFERSN 39.9
GDPR 2
DEBTGDP 148218.3721
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Figure 9: Relative deviations in states for SLOPOL8
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Figure 10: Constituent elements of the objective function value for SLOPOL8
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