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Abstract

The paper focuses on the problem of pricing and hedging a European contingent

claim for an incomplete market model, in which evolution of price processes for a

saving account and stocks depends on an observable Markov chain. The pricing

function is evaluated using the martingale approach. The equivalent martingale

measure is introduced in a way that the Markov chain remains the historical one,

and the pricing function satisfies the Cauchy problem for a system of linear parabolic

equations. It is shown that any European contingent claim is attainable using a

generalized self-financing replicating strategy. For such a strategy, apart from the

initial endowment, some additional funds are required both step-wise at the jump

moments of the Markov chain and continuously between the jump moments. It is

proved that the additional funds (the additional investments and consumptions) are

present in the proposed strategy in a risk-neutral manner, hence the generalized self-

financing strategy is self-financing in mean. A payment for the considered option

should consist of two parts: the initial endowment and a fair insurance premium in

order to compensate for contributions and consumptions arising in future.
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1 Introduction

Let a financial market consist of a saving account B(t) (riskless asset) and d stocks (risky

assets) with price processes Xi(t), i = 1, . . . , d. The system (B,X) is assumed to satisfy

the stochastic differential equations

dB = r(X,µ)Bds, (1.1)

dXi = Xi
[
bi(X,µ)ds+

d∑
j=1

σij(X,µ)dW j(s)
]
, 0 ≤ s ≤ T, i = 1, . . . , d, (1.2)

where W = (W 1, . . . ,W d)ᵀ is a d-dimensional standard Wiener process and µ is a Markov

chain with finite state space {µ1, . . . , µm}.
Let Xt,x,µk(s), µt,µk(s), 0 ≤ t ≤ s ≤ T , be a trajectory of the Markov process (X,µ)

(we consider the coefficients of (1.2) to be deterministic), where µt,µk(s) is the Markov

chain starting from µk at the moment t and Xt,x,µk(s) is the solution of (1.2) starting

from x at the moment t with µ = µt,µk(s). We consider the problem of pricing and

hedging a European claim at a maturity time T , specified by a payoff function f which

depends on X(T ) and µ(T ) by constructing a generalized self-financing strategy.

The model has a Markovian structure, hence the price of the contingent claim should

be associated with a function u(t, x, µk). For evaluating u(t, x, µk), we use the martingale

approach. To this end we choose an equivalent probability measure under which the

discounted underlying assets are martingales. This martingale measure does not change

the probabilistic characteristics of the Markov chain µ which remains a historical one.

It turns out that the function u(t, x, µk) (or the collection uk(t, x) := u(t, x, µk), k =

1, . . . ,m) satisfies the Cauchy problem for a system of linear parabolic equations. The

system can be solved by the Monte Carlo approach.

Analogously to the classical Black-Scholes case, one can expect that the price of the

contingent claim f(X(T ), µ(T )) along the trajectory X(s) = Xt,x,µk(s), µ(s) = µt,µk(s)

is connected with a wealth process

U(s) = u(s,X(s), µ(s)).

Both X and µ are observable and, consequently, we can construct a trading strategy

depending not only on X but also on µ. The system (1.1)–(1.2) has two sources of

randomness: the d-dimensional Wiener process W and the Markov chain µ. However

only the d-dimensional risky asset X and the saving account B are tradable. Hence the

model is incomplete. Besides, in contrast to the classical case, the wealth process U(s)

here is discontinuous because of discontinuity of the Markov chain µ (we note that the

stock prices Xi(s) remain continuous). The process U(s) is right-continuous with left
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limits (RCLL or càdlàg process). The discontinuities of U(s) coincide with the jump

times of the Markov chain µ.

Let τ be a jump time of µ from the state µl to the state µr. Then

U(τ−) = u(τ ,X(τ), µl) = ul(τ ,X(τ)),

U(τ) = u(τ ,X(τ), µr) = ur(τ ,X(τ)) = U(τ+).

Let t < τ1 < . . . < τν < T , ν = 1, 2, . . ., be all times between t and T where

µ(s) has a jump. Between the jumps, i.e. on the intervals [t, τ1), (τ1, τ2), . . . , (τν , T ],

the wealth process U(s) is constructed according to a trading strategy (Φ(s),Ψ(s)) =

(Φ(s),Ψ1(s), . . . ,Ψd(s)) depending on (s,X(s), µ(s)) :

Φ(s) = ϕ(s,X(s), µ(s)), Ψi(s) = ψi(s,X(s), µ(s)), i = 1, . . . , d,

and it has the value

U(s) = Φ(s)B(s) +

d∑
i=1

Ψi(s)Xi(s). (1.3)

If the strategy is self-financing then

U(s) = Φ(s)dB(s) +
d∑
i=1

Ψi(s)dXi(s). (1.4)

However, the self-financing strategy which is able to replicate the price u(s,X(s), µ(s)),

is impossible (see Subsection 4.1). That is why we construct the wealth process in the

form of generalized self-financing strategy, i.e. we admit (1.3) with

U(s) = Φ(s)dB(s) +

d∑
i=1

Ψi(s)dXi(s) + dDs − dCs (1.5)

instead of (1.4), allowing some contributions dDs and consumptions dCs to the wealth

process between the jump times.

Starting from the state (x, µk) at the moment t with the initial endowment u(t, x, µk),

we construct the process U(s) on the interval [t, τ1) according to (1.3) and (1.5). At the

moment τ1 the Markov chain µ switches from µk to µr and the value of the portfolio

changes from u(τ1, X(τ1), µk) to u(τ1, X(τ1), µr). Such change in the wealth of the

portfolio requires an additional capital (a contribution to the wealth process) if

U(τ1) = u(τ1, X(τ1), µr) > u(τ1, X(τ1), µk) = U(τ1−)

or withdrawal (for instance, for consumption) in the case

U(τ1) = u(τ1, X(τ1), µr) < u(τ1, X(τ1), µk) = U(τ1−).
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We proceed in the same way on the intervals (τ1, τ2), . . . , (τν , T ]. Thus, we should take

into account the future necessary additional investments (contributions)

Dτ i := max
{
u(τ i, X(τ i), µri)− u(τ i, X(τ i), µli), 0

}
and consumptions

Cτ i := max
{
u(τ i, X(τ i), µli)− u(τ i, X(τ i), µri), 0

}
,

i = 1, . . . , ν.

It is shown that any European contingent claim is attainable due to a generalized

self-financing strategy. This property brings the considered model closer to the classical

Black-Scholes model. The generalized replicating strategy on the interval [t, T ] is de-

termined not only by the initial endowment (which is equal to u(t,X(t), µ(t))) and by

means of evolution of underlying assets but also due to contributions dDs with consump-

tions dCs and due to additional funds at the jump moments τ1, . . . , τν . So, the proposed

strategy requires some additional investments and consumptions. However, and this is

very remarkable, they appear in a risk-neutral manner. To be more precise, it is proved

that the mean of all the discounted additional funds on any interval [t, t̄ ] is equal to zero.

One may say that the constructed here generalized self-financing strategy is self-financing

in mean. Let us emphasize that the strategy (Φ(s),Ψ(s)), the additional contributions

dDs and consumptions dCs, and the additional funds at the jump moments are uniquely

defined by the function u(t, x, µ). A payment for the considered option should consist

of two parts: the initial endowment (the initial value of the wealth process) and a fair

insurance premium in order to compensate for contributions and consumptions arising in

future. We see that both financial and insurance aspects appear together in the consid-

ered model. However, here we restrict ourselves to constructing the wealth process and

the generalized replicating strategy and to determining the necessary additional funds.

In Section 2, we briefly recall the well-known results concerning the classical Black-

Scholes model (see, e.g. [5], [14]) in the required form. In Section 3, we choose a mar-

tingale measure fixing the chain µ as a historical one and construct the price u(t, x, µk).

Section 4 is devoted to the generalized self-financing strategy and it contains derivation

of formulas for (Φ(s),Ψ(s)), dDs, dCs, and U(τ i) − U(τ i−). In Section 5, it is proved

that the mean of all the discounted additional funds on any interval [t, t̄ ] is equal to

zero, hence the constructed generalized self-financing strategy is self-financing in mean.

Using a Markov chain with single jump on the interval [t, T ], the proposed approach can

be exploited for modelling defaults which is illustrated in Section 6.
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2 Preliminary

Let us remind the problem of pricing and hedging a European claim at a maturity time

T , specified by a payoff function f which depends on X(T ) in the classical Black-Scholes

model:

dB = r(X)Bds, (2.1)

dXi = Xi
[
bi(X)ds+

d∑
j=1

σij(X)dW j(s)
]
, 0 ≤ s ≤ T, i = 1, . . . , d. (2.2)

In (2.1)–(2.2), W = (W 1, . . . ,W d)ᵀ is a d-dimensional standard Wiener process on a

probability space (Ω,F , P ). As usual, the P -augmentation of the filtration generated by

W is denoted by FWt . We write Ft for the σ-field FWt . It is assumed that the functions

r(x), xibi(x), xiσij(x), i, j = 1, . . . , d, k = 1, . . . ,m, x ∈ Rd
+ := {x : x1 > 0, . . . , xd > 0},

have bounded derivatives with respect to x up to some order. In addition, we assume

that the volatility matrix σ(x) = {σij(x)} has full rank for any x ∈ Rd
+.

We denote Xt,x(s), 0 ≤ t ≤ s ≤ T , the solution of (2.2) starting from x at the

moment t and we denote X(s) := X0,x(s), 0 ≤ s ≤ T . The price U(t) of the contingent

claim f(X(T )) is defined as the expectation of the discounted value of claim under the

martingale measure P̃ :

U(t) = EP̃
[
B(t)B−1(T )f(X(T )) | Ft

]
, (2.3)

with B(s) = B(0)e
∫ s
0 r(X(s′))ds′ . Here P̃ is an equivalent probability measure under which

the discounted stock price processes X̃i(s) := B−1(s)Xi(s) are all martingales. It is

known that

dP̃

dP
:= Z(T ),

Z(s) := exp

{
−

d∑
i=1

(∫ s

0
θidW i(s′) +

1

2

∫ s

0
[θi]2ds′

)}
, (2.4)

with the vector θ = (θ1, . . . , θd)ᵀ to be equal to

θ = σ−1(b− r1), 1 = (1, . . . , 1)ᵀ, b = (b1, . . . , bd)ᵀ, σ = {σij},

where r, b, and σ are calculated at (s′, X(s′)). Here it is assumed that Z(s) is a martin-

gale. A well known sufficient condition for the martingale property is

E exp

{
1

2

∫ T

0

d∑
i=1

[θi]2ds

}
<∞. (2.5)

We have

dXi = Xi
[
rds+

d∑
j=1

σijdW̃ j(s)
]
, i = 1, . . . , d, X(0) = x, (2.6)
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where

W̃ j(s) = W j(s) +

∫ s

0
θj(s′)ds′

is a P̃ -Brownian motion due to the Girsanov theorem. Now the formula (2.3) can be

written in the form

U(t) = E(2.6)
[
e−

∫ T
t r(X(s))dsf(X(T )) | Ft

]
, (2.7)

where the sign E(2.6) means that the averaging is carried by virtue of the system (2.6)

with W̃ being the Brownian motion on the probability space (Ω,F , P̃ ) with filtration Ft.
Due to the Markov property, the price U(t) can be represented in the form

U(t) = u(t,X(t)), (2.8)

where the function u(t, x) is found according to

u(t, x) = E(2.6)
[
e−

∫ T
t r(Xt,x(s))dsf(Xt,x(T ))

]
. (2.9)

This yields that the function u(t, x) satisfies the following Cauchy problem for the

parabolic partial differential equation

∂u

∂t
+

1

2

d∑
i,j=1

aij(x)
∂2u

∂xi∂xj
+ r(x)

d∑
i=1

xi
∂u

∂xi
− r(x)u = 0, (2.10)

u(T, x) = f(x), (2.11)

where

aij(x) = xixj
d∑
l=1

σil(x)σjl(x), i, j = 1, . . . , d.

The price U(t) = u(t,X(t)) coincides with the portfolio value of a trading strategy

(Φ(t),Ψ(t)) = (Φ(t),Ψ1(t), . . . ,Ψd(t)), where Φ and Ψi denote the portfolio positions in

bond B(t) and stocks Xi(s), respectively. Hence U(t) is given by

U(t) = Φ(t)B(t) +

d∑
i=1

Ψi(t)Xi(t).

Self-financing property of the trading strategy implies

dU(t) = Φ(t)dB(t) +
d∑
i=1

Ψi(t)dXi(t). (2.12)

On the other hand,

dU(t) =
∂u

∂t
dt+

d∑
i=1

∂u

∂xi
dXi +

1

2

d∑
i,j=1

∂2u

∂xi∂xj
dXidXj . (2.13)

6



The equations (2.12) and (2.13) imply in view of (2.6) and (2.10) that

Φ(t) = ϕ(t,X(t)) =
1

B(t)

[
u(t,X(t))−

d∑
i=1

∂u

∂xi
(t,X(t)) ·Xi(t)

]
, (2.14)

Ψi(t) = ψi(t,X(t))) =
∂u

∂xi
(t,X(t)),

with

ϕ(t, x) =
1

B(t)

[
u(t, x)−

d∑
i=1

∂u

∂xi
(t, x) · xi

]
, ψi(t, x)) =

∂u

∂xi
(t, x), i = 1, . . . , d.

3 The pricing function u(t, x, µ)

Let us return to the system (1.1)–(1.2)

dB = r(X,µ)Bds, (3.1)

dXi = Xi
[
bi(X,µ)ds+

d∑
j=1

σij(X,µ)dW j(s)
]
, 0 ≤ s ≤ T, i = 1, . . . , d. (3.2)

In (3.1)–(3.2), W = (W 1, . . . ,W d)ᵀ is a d-dimensional standard Wiener process and

µ is a Markov chain with finite state space {µ1, . . . , µm} on a probability space (Ω,F , P ).

As usual, the P -augmentation of the filtration generated by W (by µ) is denoted by FWt
(by Fµt ). We write Ft for the σ-field FWt ∪ F

µ
t , where FWt and Fµt are supposed to be

independent.

Let

Q =


−q1 q12 . . . q1m

q21 −q2 . . . q2m

· · · ·
qm1 qm2 . . . −qm


be the infinitesimal generator matrix of the chain µ with qkl ≥ 0, k 6= l, and∑

l 6=k
qkl = qk. (3.3)

It is assumed that the functions r(x, µk), x
ibi(x, µk), x

iσij(x, µk), i, j = 1, . . . , d, k =

1, . . . ,m, x ∈ Rd
+ := {x : x1 > 0, . . . , xd > 0}, have bounded derivatives with respect

to x up to some order. In addition, we assume that the volatility matrix σ(x, µk) =

{σij(x, µk)} has full rank for any 0 ≤ s ≤ T , x ∈ Rd
+, and µk, k = 1, . . . ,m.

Let Xt,x,µk(s), µt,µk(s), 0 ≤ t ≤ s ≤ T , be a trajectory of the Markov process (X,µ),

where µt,µk(s) is the Markov chain starting from µk at the moment t, Xt,x,µk(s) is

the solution of (3.2) starting from x at the moment t with µ = µt,µk(s). We denote
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X(s) := X0,X(0),µ(0)(s), µ(s) := µ0,µ(0)(s), 0 ≤ s ≤ T . Consider the problem of pricing

and hedging a European claim at a maturity time T , specified by a payoff function f

which depends on X(T ) and µ(T ). Applying the martingale approach, we introduce the

option’s price using a natural analogue of the formula (2.3). So, the price of the option

appears here in a postulated way. This price as a function of t, x, µ plays the key role in

construction of the replicating self-financing in mean strategy.

3.1 The equivalent martingale measure

Similarly to the classical Black-Scholes case, one can expect that the price of the contin-

gent claim f(X(T ), µ(T )) along the trajectory X(s), µ(s), 0 ≤ s ≤ T , is given by

U(t) = EP̃
[
B(t)B−1(T )f(X(T ), µ(T )) | Ft

]
, (3.4)

B(s) = B(0)e
∫ s
0 r(X(s′),µ(s′))ds′ , 0 ≤ s ≤ T.

In (3.4), Ft = FWt ∪ F
µ
t , P̃ is an equivalent probability measure under which the dis-

counted stock price processes X̃i(s) := B−1(s)Xi(s) are all martingales.

Define the vector ϑ = (ϑ1, . . . , ϑd)ᵀ by

ϑ = σ−1(b− r1), 1 = (1, . . . , 1)ᵀ, b = (b1, . . . , bd)ᵀ, σ = {σij},

where r, b, and σ are evaluated at (X(s′), µ(s′)); sometimes we write ϑ(s) instead of

ϑ(X(s), µ(s)). The symbol ϑ is used to distinguish between Black-Scholes case from

Section 2 and the considered regime switching situation; cf. (2.4). Below we assume that

ϑ satisfies (2.5).

Let us verify that an equivalent martingale measure P̃ can be defined by

dP̃

dP
:= Z(T ), Z(s) := exp

{
−

d∑
i=1

(∫ s

0
ϑi(s′)dW i(s′) +

1

2

∫ s

0
[ϑi(s′)]2ds′

)}
,

Indeed, due to the Girsanov theorem the process W̃ (s) = (W̃ 1(s), . . . , W̃ d(s)) with

W̃ j(s) = W j(s) +

∫ s

0
ϑj(s′)ds′, j = 1, . . . , d,

is a Ft-standard Wiener process. This yields

dXi = Xi
[
bids+

d∑
j=1

σijdW j(s)
]

= Xi
[
bids−

d∑
j=1

σijϑj(s)ds+
d∑
j=1

σijdW̃ j(s)
]
,

i.e.,

dXi = Xi
[
rds+

d∑
j=1

σijdW̃ j(s)
]
, i = 1, . . . , d. (3.5)

It easily follows from (3.5) that the processes X̃i(s) := B−1(s)Xi(s) are P̃ -martingales.
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3.2 The system of parabolic equations for u(t, x, µk)

The equality (3.4) can be written in the form

U(t) = E(3.5)
[
e−

∫ T
t r(X(s),µ(s))dsf(X(T ), µ(T )) | Ft

]
,

where the sign E(3.5) means that the averaging is carried out with respect to µt,µk(s) and

Xt,x,µk(s), t ≤ s ≤ T , which is the solution of (3.5). Because the process (X(t), µ(t)) is

Markovian, the price U(t) can be represented as a function u of the position (t, x, µ) :

U(t) = u(t,X(t), µ(t)), 0 ≤ t ≤ T. (3.6)

Due to the Markov property,

uk(t, x) := u(t, x, µk) = E(3.5)
[
e−

∫ T
t r(Xt,x,µk (s),µt,µk (s))dsf(Xt,x,µk(T ), µt,µk(T ))

]
. (3.7)

In connection with this formula let us note that the discounted price

e−
∫ t
0 r(X

0,X(0),µ(0)(s),µ0,µ(0)(s))dsu(t,X0,X(0),µ(0)(t), µ0,µ(0)(t))

= E(3.5)
[
e−

∫ T
0 r(X0,X(0),µ(0)(s),µ0,µ(0)(s))dsf(X0,X(0),µ(0)(T ), µ0,µ(0)(T )) | Ft

]
is a P̃ -martingale.

The infinitesimal generator A of the Markov process (X,µ) governed by the system

(3.5) is given by (see [1, 3, 7, 8, 15])

Ag(x, µk) =
1

2

d∑
i,j=1

aij(x, µk)
∂2g

∂xi∂xj
(x, µk) +

d∑
i=1

xir(x, µk)
∂g

∂xi
(x, µk) (3.8)

−qkg(x, µk) +
∑
l 6=k

qklg(x, µl), k = 1, . . . ,m.

It follows from (3.8) that for sufficiently regular functions fk(x) := f(x, µk), k = 1, . . . ,m,

(for instance, for functions with bounded derivatives up to some order), the functions

(3.7) satisfy the following Cauchy problem for the linear system of parabolic partial

differential equations:

∂uk
∂s

(s, x) +
1

2

d∑
i,j=1

aij(x, µk)
∂2uk
∂xi∂xj

(s, x) +

d∑
i=1

xir(x, µk)
∂uk
∂xi

(s, x) (3.9)

−ruk(s, x)− qkuk(s, x) +
∑
l 6=k

qklul(s, x) = 0,

uk(T, x) = f(x, µk), k = 1, . . . ,m. (3.10)

We derived the system (3.9) by some heuristic arguments. A rigorous proof based on

the formula (3.4) is given in the next theorem.
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Theorem 3.1. Let the set of functions uk(t, x) = u(t, x, µk), k = 1, ...,m, satisfy (3.9)–

(3.10).Then U(t) defined by (3 .4 ) is equal to

U(t) = u(t,X(t), µ(t)),

where X(t) = X0,X(0),µ(0)(t) is the solution of (3 .2 ) starting from X(0) with µ(t) =

µ0,µ(0)(t).

Proof. As Z(s) is a P -martingale, (3.4) and the Bayes formula yield

U(t) = EP̃
[
B(t)B−1(T )f(X(T ), µ(T )) | Ft

]
(3.11)

=
EP

[
B(t)B−1(T )f(X(T ), µ(T ))Z(T ) | Ft

]
EP [Z(T ) | Ft]

= EP
[
f(X(T ), µ(T ))Y t,X(t),µ(t),1(T ) | Ft

]
,

where

Y t,X(t),µ(t),1(s) = exp

{
−
∫ s

t
r(X(s′), µ(s′))ds′

−
d∑
i=1

(∫ s

t
ϑi(s′)dW i(s′) +

1

2

∫ s

t
[ϑi(s′)]2ds′

)}
, t ≤ s ≤ T.

Introduce the system for X (see (3.2)) and Y :

dXi = Xi
[
bi(X,µ)ds+

d∑
j=1

σij(X,µ)dW j(s)
]
, Xi(t) = xi, i = 1, . . . , d. (3.12)

dY = Y
[
−r(X,µ)ds−

d∑
i=1

ϑi(X,µ)dW i(s)
]
, Y (t) = y, 0 ≤ t ≤ s ≤ T. (3.13)

This system generates the Markov process (X,Y, µ) = (Xt,x,µk(s), Y t,x,µk,y(s), µt,µk(s)),

t ≤ s ≤ T, with the following infinitesimal generator on the functions g(x, y, µ) of the

form g(x, y, µ) = g(x, µ)y (i.e., the functions are linear with respect to the scalar y):

Ag(x, y, µk) =
1

2

d∑
i,j=1

aij(x, µk)
∂2g

∂xi∂xj
(x, y, µk) +

d∑
i=1

xibi(x, µk)
∂g

∂xi
(x, y, µk) (3.14)

−
d∑
i=1

d∑
j=1

xiσij(X,µk)yϑ
j(X,µk)

∂2g

∂xi∂y
(x, y, µk)− r(X,µk)y

∂g

∂y
(x, y, µk)

−qkg(x, y, µk) +
∑
l 6=k

qklg(x, y, µl), k = 1, . . . ,m.

Substituting σϑ = b− r1 and g(x, y, µ) = g(x, µ)y yields

−
d∑
i=1

d∑
j=1

xiσij(X,µk)yϑ
j(X,µk)

∂2g

∂xi∂y
(x, y, µk)

= −
d∑
i=1

xibi(x, µk)
∂g

∂xi
(x, y, µk) +

d∑
i=1

xir(x, µk)
∂g

∂xi
(x, y, µk),
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hence (3.14) turns into

Ag(x, y, µk) =
1

2

d∑
i,j=1

aij(x, µk)
∂2g

∂xi∂xj
(x, µk)y +

d∑
i=1

xir(x, µk)
∂g

∂xi
(x, µk)y (3.15)

−r(X,µk)g(x, µk)y − qkg(x, µk)y +
∑
l 6=k

qklg(x, µl)y, k = 1, . . . ,m.

This easily implies due to the Feynman-Kac formula that a probabilistic representation

for the solution of the problem (3.9)–(3.10) is given by

u(t, x, µk) = EP
[
f(Xt,x,µk(T ), µt,µk(T ))Y t,x,µk,1(T )

]
, (3.16)

where Xt,x,µk(s), Y t,x,µk,1(s) is the solution of (3.12)–(3.13) with µt,µk(s). Comparison

of (3.11) and (3.16) completes the proof.

Remark 3.1. It is worth noting that the infinitesimal generator does not depend on the

drift b while X and Y do depend on it. The issue here is that a solution of a system of

parabolic equations has a lot of different probabilistic representations; see, for instance,

[9, 11], where this fact is used for variance reduction when applying the Monte Carlo

technique. One possible representation which does not involve the drift b can be given

as follows:

uk(t, x) := u(t, x, µk) (3.17)

= E(3.18)
[
e−

∫ T
t r(Xt,x,µk (s),µt,µk (s))dsf(Xt,x,µk(T ), µt,µk(T ))

]
,

k = 1, ...,m,

dXi = Xi
[
r(X,µ)ds+

d∑
j=1

σij(X,µ)dwj(s)
]
, Xi(t) = xi, i = 1, . . . , d, (3.18)

where w is a d-dimensional Wiener process and Fwt and Fµt are independent. This rep-

resentation repeats (3.7), (3.5) (however, P̃ -independence of FW̃t and Fµt is not proved).

Remark 3.2. Because µ(s) remains constant on any of the intervals [t, τ1), [τ1, τ2),

. . . , [τν , T ], it follows from (3.9) that

∂u

∂s
(s, x, µ(s)) +

1

2

d∑
i,j=1

aij(x, µ(s))
∂2u

∂xi∂xj
(s, x, µ(s)) +

d∑
i=1

r(x, µ(s))xi
∂u

∂xi
(s, x, µ(s))

−ru(s, x, µ(s))− qµ(s)u(s, x, µ(s)) +
∑
l 6=µ(s)

qµ(s)lu(s, x, l) = 0, (3.19)

s ∈ [t, τ1) ∪ [τ1, τ2) ∪ . . . ∪ [τν , T ).

The differentiation here with respect to time s at t, τ1, ... , τν is understood as differen-

tiation from the right.
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The next section shows that the use of the price function u(s, x, µ) enables us to

construct the replicating wealth process.

Remark 3.3. Suppose that an infinitesimal generator matrix Q(1) is such that q
(1)
kl > 0

if and only if qkl > 0. It is known ([13], P. 39) that the new law of the Markov chain

is equivalent to the old one. Basing on the new law we can introduce the equivalent

martingale measure P̃ (1) instead of the measure P̃ and repeat the previous construction.

Clearly, we obtain the new pricing function u(1)(t, x, µk) which satisfies the system (3.9)–

(3.10) with q
(1)
kl instead of qkl. The questions concerning the choice of an equivalent

martingale measure are not considered here. However, bearing in mind the problem of

evaluating a fair insurance premium, the real world probability measure for µ given by

Q seems to be suitable.

4 The wealth process, the generalized self-financing strat-

egy, attainability

Let t < τ1 < . . . < τν < t̄, 0 ≤ t < t̄ ≤ T , be all the times between t and t̄

where µ(s) has a jump. Using the Ito formula for u(s,X(s), µ(s)) on the intervals

[τ0, τ1), (τ1, τ2), . . . , (τν , τν+1], τ0 := t, τν+1 := t̄, we obtain

du =
∂u

∂s
ds+

d∑
i=1

r
∂u

∂xi
Xids+

1

2

d∑
i,j=1

aij
∂2u

∂xi∂xj
ds (4.1)

+
d∑
i=1

∂u

∂xi
Xi

d∑
j=1

σijdW̃ j(s), τ i < s < τ i+1, i = 0, . . . , ν, ν = 0, 1, . . .

On an interval [t, t̄ ], 0 ≤ t ≤ t̄ ≤ T , we get (see [15])

u(t̄, X(t̄), µ(t̄))− u(t,X(t), µ(t)) (4.2)

=

∫ t̄

t

∂u
∂s

+

d∑
i=1

r
∂u

∂xi
Xi +

1

2

d∑
i,j=1

aij
∂2u

∂xi∂xj

 ds+

∫ t̄

t

d∑
i=1

∂u

∂xi
Xi

d∑
j=1

σijdW̃ j(s)

+

ν∑
i=1

u(τ i, X(τ i), µ(τ i))− u(τ i, X(τ i), µ(τ i−)),

with the preceding notation the sum
∑0

i=1 := 0.

In contrast to the classical case, the process

U(s) = u(s,X(s), µ(s)) (4.3)

here is discontinuous on [t, T ] because of discontinuity of the Markov chain µ (we note

that the asset prices Xi(s) remain continuous). The process U(s) is right-continuous
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with left limits (RCLL process), i.e. it is càdlàg. The discontinuity moments of U(s)

coincide with the jump times τ i of the Markov chain µ which are observable.

4.1 Impossibility of a replicating self-financing strategy

Let us suppose for a moment that U(s) is the value of a self-financing portfolio defined

by (Φs,Ψs) = (Φs,Ψ
1
s, . . . ,Ψ

d
s) on the interval (τ i, τ i+1), where Φs and Ψi

s denote the

portfolio positions in the bond B(s) and stocks Xi(s), respectively:

U(s) = ΦsB(s) +
d∑
i=1

Ψi
sX

i(s), τ i < s < τ i+1. (4.4)

The trading strategy (Φs,Ψs) is self-financing on (τ i, τ i+1) if

dU = ΦsdB +

d∑
i=1

Ψi
sdX

i

= ΦsrBds+

d∑
i=1

Ψi
sX

i
[
rds+

d∑
j=1

σijdW̃ j(s)
]
, τ i < s < τ i+1. (4.5)

Suppose that U(s) of the form (4.4) replicates the price u. It follows from (4.3)

du = dU, τ i < s < τ i+1. (4.6)

Let µ(s) = µk under τ i < s < τ i+1. By comparing (4.1) and (4.5), we conclude

Ψi
s = ψi(s,X(s), µ(s)) =

∂u

∂xi
(s,X(s), µ(s)) =

∂uk
∂xi

(s,X(s)), (4.7)

and

∂uk
∂s

+
1

2

d∑
i,j=1

aij
∂2uk
∂xi∂xj

= ΦsrB, τ i < s < τ i+1. (4.8)

Now (4.6), (4.4), and (4.7) imply

ΦsB(s) = uk −
d∑
i=1

Ψi
sX

i(s) = uk −
d∑
i=1

∂uk
∂xi

Xi(s). (4.9)

Substituting this in (4.8) yields

∂uk
∂s

+
1

2

d∑
i,j=1

aij
∂2uk
∂xi∂xj

− ruk +

d∑
i=1

r
∂uk
∂xi

Xi = 0. (4.10)

However, (4.10) contradicts to (3.9). Hence the trading strategy of the form (4.4)–(4.5)

is impossible and we should allow some contributions dDs and consumption dCs to the

wealth process.
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4.2 The generalized self-financing strategy

We propose to construct the wealth process in the form (4.4) but with the generalized

self-financing strategy (see, e.g. [2]):

dU = ΦsrBds+
d∑
i=1

Ψi
sX

i
[
rds+

d∑
j=1

σijdW̃ j(s)
]

+ dDs − dCs, (4.11)

µ(s) = µk, τ i < s < τ i+1,

with contributions dDs and consumptions dCs. A particular choice is given by

dDs = qkuk(s,X(s))ds, dCs =
∑
l 6=k

qklul(s,X(s))ds. (4.12)

The equality (4.11) is equivalent to

BdΦs +
d∑
i=1

XidΨi
s +

d∑
i=1

dXidΨi
s = qkukds−

∑
l 6=k

qklulds, τ i < s < τ i+1. (4.13)

Comparing (4.1) and (4.11) yields

Ψi
s =

∂uk
∂xi

(s,X(s)), τ i < s < τ i+1, (4.14)

and it follows from (4.3) and (4.14) that

Φs =
1

B(s)

[
uk(s,X(s))−

d∑
i=1

Xi(s)
∂uk
∂xi

(s,X(s))
]
, τ i < s < τ i+1. (4.15)

It is worth noting that the formulas (4.14)–(4.15) coincide with (2.14). However, the

strategy (4.14)–(4.15) is not self-financing in contrast to the classical case.

The equations (4.1) and (4.11) replace (4.8) by the formula

∂uk
∂s

+
1

2

d∑
i,j=1

aij
∂2uk
∂xi∂xj

= ΦsrB + qkukds−
∑
l 6=k

qklulds

which is consistent with (3.9) if we take into account (4.4). The equality (4.13) for the

strategy (4.14)–(4.15) can be checked by direct calculus.

4.3 Dynamics of the wealth replicating process

This section briefly describes the evolution of the wealth process and of the additional

funds on the interval [t, T ]. The initial value U(t) of the wealth process is equal to the

initial endowment u(t, x, µ(t)). Due to (4.3), we have

U(s) = u(s,X(s), µ(s)), µ(s) = µ(t), t ≤ s < τ1.
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Besides, U(s) satisfies (4.3), (4.11) and the funds Ds, Cs are found as (see (4.12)):

Ds =

∫ s

t
qµ(t)u(s′, X(s′), µ(t))ds′,

Cs =

∫ s

t

∑
l 6=µ(t)

qµ(t)lu(s′, X(s′), l)ds′, t ≤ s < τ1. (4.16)

So, starting from the initial endowment, the portfolio value U(s) changes on [t, τ1)

through trading in the saving account B and in the underlying assets X1, . . . , Xd ac-

cording to (4.14)–(4.15) and due to the contributions dDs and consumptions dCs ac-

cording to (4.16). Clearly, U(τ1−) = u(τ1−, X(τ1), µ(t)). Let the chain µ jump at the

moment τ1 from the state µ(τ1−) = µ(t) to the state µ(τ1). Then we set U(τ1) =

u(τ1, X(τ1), µ(τ1)). If the difference

U(τ1)− U(τ1−) = u(τ1, X(τ1), µ(τ1))− u(τ1−, X(τ1), µ(t))

is positive, we need the additional contribution at the moment τ1 in order to have U(τ1)

for the wealth process U . And it requires the consumption U(τ1−)−U(τ1) if the difference

U(τ1)−U(τ1−) is negative. On the intervals [τ1, τ2), . . . , [τν , T ] and at the jump moments

τ2, . . . , τν the behavior of the wealth process is similar. In particular, we obtain

U(T ) = u(T,Xt,x,µ(t)(T ), µt,µ(t)(T )) = f(Xt,x,µ(t)(T ), µt,µ(t)(T )).

This equality shows that any European contingent claim is attainable in the considered

model. Such a property is usual for complete markets. However, it is not fulfilled for

incomplete markets in the class of self-financing strategies. In our case the considered

market is incomplete and the attainability is achieved by using a generalized self-financing

strategy.

Remark 4.1. Computational aspects of the considered model can be developed on the

base of numerical integration of stochastic differential equations (see [6, 9, 11]) using

special methods from computational finance, in particular, Monte Carlo methods [4]. A

lot of works are devoted to numerics in finance; see e.g. [10] and [12] among many others.

5 The generalized self-financing strategy is self-financing

in mean

Introduce the value at time t of the s-price u :

v(s,Xt,x,µ(t)(s), µt,µ(t)(s))

:= e−
∫ s
t r(X

t,x,µ(t)(s′),µt,µ(t)(s′))ds′u(s,Xt,x,µ(t)(s), µt,µ(t)(s)). (5.1)
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The discounted additional funds F1 during the time from t to T inside the intervals

(τ i, τ i+1), i = 0, . . . , ν with τ0 := t and τν + 1 := T , are equal to

F1 =

∫ T

t
e−

∫ s
t rds

′
[qµ(s)u(s,X(s), µ(s))ds−

∑
l 6=µ(s)

qµ(s)lu(s,X(s), l)]ds, (5.2)

and the discounted additional funds F2 at the moments τ i, i = 1, . . . , ν, are equal to

F2 =

ν∑
i=1

e−
∫ τi
t rds′ [u(τ i, X(τ i), µ(τ i))− u(τ i, X(τ i), µ(τ i−))]. (5.3)

Theorem 5.1. The P̃ -mean of all the discounted additional funds on the interval [t, T ]

is equal to zero.

Proof. Applying the Ito formula to the function v on the interval [t, T ] (see [3], [15]),

we obtain

v(T,X(T ), µ(T ))− v(t,X(t), µ(t)) = e−
∫ T
t rds′u(T,X(T ), µ(T ))− u(t, x, µ(t)) (5.4)

=

∫ T

t
e−

∫ s
t rds

′
[
−ru+

∂u

∂s
+

1

2

d∑
i,j=1

aij
∂2u

∂xi∂xj
+

d∑
i=1

r
∂u

∂xi
Xi
]
ds

+

∫ T

t
e−

∫ s
t rds

′
d∑
i=1

∂u

∂xi
Xi

d∑
j=1

σijdW̃ j(s) + F2.

Due to (3.19), we get from (5.4)

e−
∫ T
t rds′f(X(T ), µ(T ))− u(t, x, µ(t))

= F1 + F2 +

∫ T

t
e−

∫ s
t rds

′
d∑
i=1

∂u

∂xi
Xi

d∑
j=1

σijdW̃ j(s). (5.5)

According to the definition of price u (see (3.7) the mean of the left-hand side of (5.5)

is equal to zero, hence the P̃ -mean of the right-hand side is equal to EP̃ (F1 + F2) = 0.

Theorem 5.1 is proved.

Corollary 5.1.By the same way it can be proved that the P̃ -mean of all the discounted

additional funds on the any interval [t, t̄ ], t < t̄ ≤ T , is equal to zero.

6 A single jump case

As an example, let us consider the situation when there is only a single jump of the

Markov chain on the interval [t, T ]. Such a situation can be modelled by the system

(3.1)–(3.2) where the chain µ has absorbing states. For definiteness, consider the chain
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with two states µ1 and µ2 where µ2 is the absorbing state. The infinitesimal generator

matrix of such chain is equal to

Q =

[
−q q

0 0

]
, q > 0.

Let τ > t be a (single) jump time of the chain µt,µ1(s). If τ > T then during the time

t ≤ s ≤ T the chain has no jumps, i.e., µt,µ1(s) ≡ µ1, t ≤ s ≤ T . The price u(t, x, µk),

k = 1, 2, is given by (3.7) where the functions u1(t, x), u2(t, x) satisfy the system (see

(3.9)–(3.10)):

∂u1

∂s
+

1

2

d∑
i,j=1

aij1
∂2u1

∂xi∂xj
+

d∑
i=1

r1x
i∂u1

∂xi
− r1u1 − qu1 + qu2 = 0, (6.1)

u1(T, x) = f1(x),

∂u2

∂s
+

1

2

d∑
i,j=1

aij2
∂2u2

∂xi∂xj
+

d∑
i=1

r2x
i∂u2

∂xi
− r2u2 = 0, u2(T, x) = f2(x). (6.2)

This system can be solved sequentially starting from the second equation. We also note

that in this case, the generalized self-financing strategy on the interval [τ , T ] reduces to

self-financing one.

If u2(τ , x) � u1(τ , x) then there is a possibility of default. Consider the particular

case when r1 = r2 := r, aij1 = aij2 := aij , but

f2(x) ≥ f1(x). (6.3)

Subtracting (6.1) from (6.2), we obtain

∂(u2 − u1)

∂s
+

1

2

d∑
i,j=1

aij
∂2(u2 − u1)

∂xi∂xj
+

d∑
i=1

rxi
∂(u2 − u1)

∂xi
(6.4)

−r(u2 − u1)− q(u2 − u1) = 0, u2 − u1 = f2 − f1 ≥ 0.

It follows from (6.3) and (6.4) that

u2(s, x)− u1(s, x) ≥ 0, t ≤ s ≤ T. (6.5)

Therefore

F1 =

∫ τ∧T

t
e−

∫ s
t rds

′
q[u1(s,X(s))− u2(s,X(s))]ds ≤ 0.

Because the integrand here is negative, the value −e−
∫ s
t rds

′
q[u1(s,X(s))−u2(s,X(s))]ds

is positive. This value is the discounted consumption on [s, s+ ds] and therefore −F1 is
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the summarized discounted consumption of the wealth process on the interval [t, τ ∧ T ].

Further,

F2 =

{
e−

∫ τ
t rds

′
[u2(τ ,X(τ))− u1(τ ,X(τ))], t < τ ≤ T,

0, τ > T,

is positive, hence F2 is the necessary additional contribution to the wealth process. Ac-

cording to Theorem 5.1 EP̃F2 = −EP̃F1. In the case of default, EP̃F2 � 0 and therefore

the P̃ -mean of the discounted consumption is large as well. This can be done only at

cost of the sufficiently large endowment. This fact corresponds with our intuition: in the

prevision of a serious default the price of the option should be large.

7 Summary and outlook

The paper considers the problem of pricing and hedging a European-type contingent

claim in an incomplete market with regime switching. First we show that a replicating

self-financing strategies in this situation does not exist. Instead, for any contingent

claim, we construct a generalized self-financing strategy. Such a strategy requires not

only an initial endowment but also some additional funds (additional investments and

consumptions) which have to be involved both at the jump moments of the Markov

chain and continuously between the jump moments. However, these additional funds are

risk-neutral, so that the generalized self-financing strategy is self-financing in mean.

The construction is based on the general martingale approach and it is reduced to

a system of linear parabolic differential equations which can be solved numerically by a

Monte Carlo method.

A payment for the considered option should consist of two parts: the initial endow-

ment and a fair insurance premium in order to compensate for contributions and con-

sumptions arising in future. So, both financial and insurance aspects appear together in

the considered model. This paper restricts itself to constructing the generalized replicat-

ing strategy and to determining the necessary additional funds. The insurance premium

aspect will be studied elsewhere.
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