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Abstract

We introduce a nonlinear infinite moving average as an ates to the standard state-space
policy function for solving nonlinear DSGE models. Pertatibn of the nonlinear moving average
policy function provides a direct mapping from a history ohovations to endogenous variables,
decomposes the contributions from individual orders ofeutainty and nonlinearity, and enables
familiar impulse response analysis in nonlinear settinggien the linear approximation is saddle
stable and free of unit roots, higher order terms are likewaddle stable and first order correc-
tions for uncertainty are zero. We derive the third orderrapipation explicitly and examine the

accuracy of the method using Euler equation tests.
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1 Introduction

Solving models with a higher than first-order degree of aacyirs an important challenge for DSGE
analysis with the growing interest in nonlinearities. Weaduce a novel policy function, the non-
linear infinite moving average, to perturbation analysislymamic macroeconomics. This direct
mapping from shocks to endogenous variables neatly dsteeindividual contributions of orders
of nonlinearity and uncertainty to the impulse responsetions (IRFs). For economists interested
in studying the transmission of shocks in a nonlinear DSGEHehmur method offers insight hith-
erto unavailable.

The nonlinear moving average policy function chooses astéte variable basis the infinite
history of past shocks. This infinite dimensional approach is longstanding in lneedels and
delivers the same solution as state space methods for limedels? For the nonlinear focus of this
paper, however, it provides a different solution. Directigpping from shocks to endogenous vari-
ables of interest facilitates familiar impulse responsaysis and makes clear the caveats introduced
by nonlinearity. These include history dependence, asyinesea breakdown of superposition and
scale invariance, as well as the potential for harmoniodisin 3

As highlighted by Gomme and Klein (2011) in their second o&jgroximation, deriving per-
turbation solutions with standard linear algebra increabe transparency of the technique and
makes coding the method more straightforward. In that wem,adapt Vetter's (1973) multidi-
mensional calculus to provide a mechanical system of @iffgation that maintains standard linear

algebraic structures for arbitrarily high orders of appnoation. We implement our approach nu-

1This is the “external” or “empirical” approach to system dhe according to Kalman (1980), who lays out the
dichotomy to the ‘internal” or “state-variable” approadttioe state-space methods, now more common to DSGE prac-
titioners. The nonlinear DSGE perturbation literatureiated by Gaspar and Judd (1997), Judd and Guu (1997), and
Judd (1998, ch. 13) has thus far operated solely with sfgaeesmethods, see Collard and Juillard (2001b), Collard
and Juillard (2001a), Jin and Judd (2002), Schmitt-Grattk @ribe (2004), Anderson, Levin, and Swanson (2006),
Lombardo and Sutherland (2007), and Kim, Kim, Schaumburd,Zims (2008).

2Compare, e.g., the state space representations of Uhl@g)1%lein (2000), or Sims (2001) with the infinite
moving-average representations of Muth (1961), Whiterd@838) or Taylor (1986).

3See Priestly (1988), Koop, Pesaran, and Potter (1996ERa000), and Gourieroux and Jasiak (2005) for detailed
discussions from a time series perspective.



merically by providing an add on for the popular Dynare paekaWe then apply the Volterra rep-
resentation of the approximated nonlinear infinite movimgrage solution to the model of Aruoba,
Fernandez-Villaverde, and Rubio-Ramirez (2006) for parability and explore the resulting de-
composition of the contributing components of the respsiée&ariables to exogenous shocks. We
develop Euler equation error methods for our infinite dinr@mal policy function and confirm that
our moving average solution produces approximations witbgaee of accuracy comparable to state
space solutions of the same order of approximation predémi&ruoba, Fernandez-Villaverde, and
Rubio-Ramirez (2006).

We make two assumptions on the characteristic equatioredirgt order (i.e., linear) approxi-
mation: it is saddle stable and it is free of unit roots. Thstfis the standard Blanchard and Kahn
(1980) assumption and we show that the resulting stabiliyfthe first order is passed on to higher
order terms. The second is necessary to ensure the boursdeaineorrections to constants and
essentially embodies the necessary invertibility of a ddath state-space policy function to yield
our infinite moving average. Together, these assumptioaklerus to show that the derivatives of
the moving average policy function first order in the peratidin parameter are uniquely zero. For
state space methods, Jin and Judd (2002) and Schmitt-@rah&ribe (2004) emphasize that the
equations that these derivatives solve are homogenousi@ugiaecessarily admitting a zero solu-
tion and Lan and Meyer-Gohde (2011) prove that the uniqueokthe zero solution ta th order
follows from the saddle stability of the first order charaistiéc equation.

The rest of the paper is organized as follows. The model amdadhlinear infinite moving aver-
age policy function are presented in sectirin section3, we develop the numerical perturbation
of our nonlinear infinite moving average policy function &gly out to the third order. We then

apply our method to a standard stochastic growth model itiosed, a widely used baseline model

4See Adjemian, Bastani, Juillard, Mihoubi, Perendia, Rattal Villemot (2011).

SAruoba, Fernandez-Villaverde, and Rubio-Ramirez (3G0€o explore several global methods (projection, value
function iteration) and our choice allows comparabilitytiese other methods. Our focus, however, is on the alteenati
basis from the nonlinear moving average for local (perttiobamethods and our analysis proceeds accordingly.



for numerical methods in macroeconomics. In secipwe develop Euler equation error methods
for our infinite dimensional solution form and quantify thecaracy of our method. Finally, section

6 concludes.

2 Problem Statement and Solution Form

In this section, we introduce the class of models we analyzethe policy function we propose
as a solution. Our class of models is a standard system ofiiilean) second order expectational
difference equations. In contrast with the general pradticthe literature, however, the solution
will be a policy function that directly maps from realizat® of the exogenous variables to the
endogenous variables of interest. We will first present tbdehclass followed by the solution form
and then conclude with the Taylor/\Volterra approximatidrine@ solution and the matrix calculus

necessary to follow the derivations in subsequent sections

2.1 Model Class

We analyze a family of discrete-time rational expectatimaglels given by

(1) 0=E{f(yt1. %t Y1, W), wherew = 5 N'ee i

=
f is an(negx 1) vector valued function, continuoustytimes (the order of approximation to be
introduced subsequently) differentiable in all its argaisey; is an(ny x 1) vector of endogenous
variables; the vector of exogenous variablidgs of dimension(nux 1) and it is assumed that
there are as many equations as endogenous variatdes= ny). N is the (nux nu) matrix of
autoregressive coefficients of, presented here in moving average form. The eigenvalulisawé
assumed all inside the unit circle so thgtdmits this infinite moving average representation; and
& is an(nex 1) vector of exogenous shocks of the same dimen&ion= ne). Our software add on

forcesN = 0 to align with Dynaré.

6See again Adjemian, Bastani, Juillard, Mihoubi, Peren&atto, and Villemot (2011). Thus in practice, the
economist using Dynare must incorporate any serial cdioalanto the vectory. This choice is not made in the
exposition here primarily as the admissibility of seriafredation in the exogenous driving force brings our firstesrd
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Additionally, & is assumed independently and identically distributed shebhE(g;) = 0 and
E(®[") exists and is finite for ath up to and including the order of approximation to be intragtlic
subsequently.

As is usual in perturbation methods, we introduce an auyilgarametero < [0, 1] to scale
the uncertainty in the model. The valage= 1 corresponds to the “true” stochastic model under
study ando = 0 represents the deterministic version of the model. FafiguAnderson, Levin, and
Swanson (2006, p. 4), we do not scale the realizations ofxbgenous variable up to (including)
with o, as the realizations dk;, &1, ...} are known with certainty at The perturbation parameter
does not enter the problem statement explicitly, but onigliaitly through the policy functions, and

its role will become clear as we introduce the solution fomd @s approximation.
2.2 Solution Form

Let the policy function take the causal one-sided infinilgusmce of shocks as its state vector and,
following Anderson, Levin, and Swanson (2006, p. 3), letdttime invariant for alt, analytic and
ergodic® The unknown policy function is then given by

(2) Yt = Y(0,&, & 1,...)

Note thato enters as a separate argument. As the scale of uncertaanges, so too will the policy
functiony itself change. Time invariance and scaling uncertaintg gis

€) Yeo1=Y (0,8 1,& 2,...)

(4) Yir1 =Y (0,€ 41,88 1,...) Whereg 1 = Ogt;1

derivation in line with earlier moving average approactwedihear models, e.g., Taylor (1986).

"The notationg®[" represents Kronecker powerg®" is the n'th fold Kronecker product ofg; with itself:
& Q& ---®é&. For simulations and the like, of course, more specific deessregarding the distribution of the exoge-

times

nouns processes will have to be made. Kim, Kim, SchaumbuSams (2008, p. 3402) emphasize that distributional
assumptions like these are not entirely local assumpti@gare (Adjemian, Bastani, Juillard, Mihoubi, Perendia,
Ratto, and Villemot 2011) assumes normality of the undedyshocks.

8Analyticity is required for the convergence of asymptotipansion as the order of approximation becomes infinite
and ergodicity rules out explosive and nonfundamentat&wois.



The notationy, y—, andy™, is adopted so that we can keep track of the source (threugh 1, and
Vi1 respectively) of any given partial derivative of the polieyiction. Due to the assumption of
time invariancey, y—, andy" are the same function differing only in the timing of theigaments.
The importance of discriminating among these functionsly@tome clear in the next section. The
termaogi, 1 in (4) is the source of uncertainty, v&. 1, that we are perturbing witt. The known
functionu of the exogenous variable is rewritten similarly
(5) U = u(o,&, & 1,...) = _%Ni&—i
=

For notational ease in derivation, we will define vecgorcontaining the complete set of variables
(6) X=[Y_1 % Y1 W]
X% is of dimension(nxx 1) with (nx= 3ny+ ne). With the policy function of the form3), (3) and
(4), plus the function of the exogenous varialB (ve can writex as
(7) X = X(0,€1,&, &1, .)
The functionx is time invariant, analytic and ergodic, following from thesumptions oy andu

above.

2.3 Approximation: Taylor/\Volterra Series Approximation

We will approximate the solution?2], as a Taylor series expanded around a nonstochastic steady
state X, which is the solution to the function
(8) 0=1(7..7,0) = f(X)
thatis, the functiorf in (1) with all shocks, past and present, set to zero, and all taingy regarding
the future eliminatedo = 0). Furthermore
9) y=Y(0,0,...)
represents the solutio@)(evaluated at the nonstochastic steady state.
Following general practice in the perturbation literafwwe pin down the approximation of the

unknown policy function 2) by successively differentiatingl and solving the resulting systems



for the unknown coefficients. The algorithm is detailed iot&e 3. Notice that, sincd is a vector
valued function, successive differentiation fofvith respect to its arguments, which are vectors in
general, will generate a hypercube of partial derivatiVids.adapt the structure of matrix derivatives
defined in Vetter (1973) to unfold the hypercube conformablidne Kronecker product, collecting
partial derivatives from successive differentiationfah two dimensional matrices. This allows us
to avoid tensor notation and use standard linear algebra.

A similar approach can be found in Gomme and Klein (2011).yTiee the matrix derivative
structure and the associated chain rule of Magnus and NkedE&007, ch. 6) to unfold a three di-
mensional cube of second partial derivatives. The apprdaek not appear to be easily adaptable to
orders of approximation higher than two, as Magnus and Nekeat€2007) do not provide methods
that go beyond the second differential. Lombardo and Slathé(2007) also derive a second order
solution without appealing to tensor notation. Their apgiobenefits from their use of the vech
operator to eliminate redundant quadratic terms. Our ambrohowever, provides a mechanical
recipe applicable to higher orders, extending the ideakexfd existing approaches past the second
order.

The formal definition of our matrix derivative structure rsthe Appendix. This structure will
make the presentation of the solution method more transpaiguccessive differentiation dfto

the desired order of approximation is a mechanical apjdicadf the following theorem

Theorem 2.1. A Multidimensional Calculus

For the matrix-valued functions F, G, A, and H and vectorueal functions J and C there exists
an operator%y indicating differentiation with respect to a vector x. Usdandicated otherwise, all
matrices and vectors are understood to be functions of theow® and we leave this dependency

implicit.



1. Matrix Product Rule:

_@BT{ F G}:FB<I ®G)+FGB
o1 | Pxuuxq SXS

2. Matrix Chain Rule:

Dt {A(C)} AC(CB® I )
pxq ux1 axq
3. Matrix Kronecker Product Rule:
pxqgq uxv SXS
where Kqvs and K,q are gvsx qvs and gqu< qv commutation matrices (see Magnus and

Neudecker (1979)).

4. Vector Chain Rule:

@BT{ J (C)}:ACCB

px1 ux1

where g = ZgTF etc. has been used as abbreviated notation to minimizeeclut
Proof. See Appendix. O

By adapting the abbreviated notation from above and wrigi,...i.,, as the partial derivative,
evaluated at the nonstochastic steady statg,with respect tao for n times and with respect to
el i & i, & i, We can then write thdl-th order Taylor approximation of the policy function

(2) using the following

Corollary 2.2. An M-th order Taylor Approximation oRj is written as

(10) Z mI Z | _O[ % y0“|1|2 im0 ](St—il®€t—i2®"'€t—im)

Il 0I2 0

Proof. See Appendix. O

This infinite dimensional Taylor approximation, or Voltegeries with kernel@zn 0 n|y0n|1 ,mO”} 9

directly maps the exogenous innovations to endogenouablas up thevi-th order. The kernels

9See Priestly (1988, pp. 25-26) and Gourieroux and Jasids)Z0r a representation theorem.
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atm collects all the coefficients associated with théh fold Kronecker products of exogenous in-
novationsiy, i», ... andiy, periods ago. For a given set of indices,i», ... andiy, the sum over
n gathering terms in powers of the perturbation parameteorrects the kernel for uncertainty up
to then-th order, thereby enabling a useful classification of thetidoutions of uncertainty to the
model. That is, we can first decompose the Volterra seriesketnels associated with the order of
approximation in the state space itself—the zeroth keragldconstants, the first order kernel be-
ing linear in the product space of the history of innovatjdhe second being quadratic in the same,
etc. Thereafter, we can decompose each of the kernels iotessively higher order corrections for
uncertainty according to the order ar—ygn represents tha'th order correction for uncertainty of
the zeroth order kerngjgnj, then'th order correction for uncertainty of the first order kegrygni,i,
then'th order correction for uncertainty of the second ordemnkg&rand so on.

For a different perspective, observe that moving to a highaer in L0) comprises two changes:
(i) adding a higher order kernel and (ii) opening up all @rgkernels to a higher order correction

for uncertainty10 The change in moving from avi — 1'th to M’th order approximation is

(11) Z |\/|| Z Z Z YoM-miyj,.. ImOM_m (&t—iy @ E—i, @~ Et—ipy)

i1=0ip=0  im=0
The difference can be written compactly despite the two ghanas change (i) is av’th or-
der kernel with a zeroth order correction for uncertaintyr (h = M above,ycmfmiliz...imo'\"*m =
y00i1i2-~-im00 = Yiyir-im)- From (ii) comes then additionally a first order correctfonuncertainty in
theM — 1'th order kernel, a second order uncertainty correctiotifeM — 2’th kernel and so on up
to theM’th order correction for uncertainty in the constant or zerarder kernel. The uncertainty
correction at a given order directly depends on the momédifitsure shocks at each order and so (i)
can be interpreted as successively opening each kernelhigher moments in the distribution of

future shocks, while (i) maintains the standard Tayloreambdf moving to a higher order polynomial

(captured by the kernels in our Volterra series).

1OWe are grateful to Michael Burda for suggesting this intetgtion.



As the notation in10) is rather dense, it is instructive to consider the cadd ef 2 (the second-
order approximation) given by
5Y020" + Zj (Vi +Yo.0) &-i+ 5 Z}Z}iji(a_ | @)
1= ]=01=

Here,y, the policy function evaluated at the nonstochastic stesalyg, represents the rest point in

(12) Yt =Y+Yo0+

the absence of uncertainty regarding future shocks. Thestgf” 5 yigt—i and% SioYizoYi(&—j®
&-i) capture the first and second order responses of the detstimifiie., without uncertainty re-
garding future shocks) system. The constant term has twertaiaty correctionsy;o and %yc,zo2
the first and second order corrections for uncertainty &gy, leading to the second order accu-
rate stochastic steady state. At second ofglgr, yicO¢:_; is the first order correction for uncertainty
concerning future shocks of the first-order response toistery of shocks. The first order correc-
tions for uncertainty will turn out to be zero in this caseamfliar result from state-space analy$és.
For the case oM = 2, the task at hand is to pin down numerical valuesyfoy;, Yo, Yji, Yis, and
Y42 Using the information ink). In the next section, we provide explicit derivations todhorder,

which is novel in the literaturé?

3 Numerical Solution of the Perturbation Approximation

It this section, we lay out the method for solving for the ¢oédnts of the approximated solution.
Solving for the first-order terms is primarily an applicatiof methods well known in the literature.
Similarly to existing state-space methods, solving foigorder terms operates successively on
terms from lower orders with linear methods. In contrasttedesspace methods, the system of
equations for the coefficients at all orders of approxinraisoa system of difference equations with
identical homogenous components, enabling the stabiiiy fthe first order to be passed on to

higher orders. Terms linear in the perturbation parametrzaro, as is the case with the state-

11See Jin and Judd (2002), Schmitt-Grohé and Uribe (2004)Kém, Kim, Schaumburg, and Sims (2008).
12See Andreasen (forthcoming) for a notable extension of &ti@nohé and Uribe’s (2004) method out to the third
order. The author’s appendix with one third order term ogauptwo pages highlights the advantage of our notation.



space policy function. The moving average solution funtgtimowever, requires us to rule out unit
roots in the first order approximation along with the staddaddle point assumptions to ensure the
boundedness of uncertainty corrections to constants.

The method can be outlined as folloWsInserting the policy functions foy_1, yt, andy;,1—
equations, ), (2), and @) respectively—along with the analogous representatighn,for the ex-

ogenous driving force; into the model {) yields
(13) 0= Et[f(y_ (07 &-1,&-2,.. '>7y(07 &, &-1,.. ')7y+(0-7§t+17 &, &-1,.. ')7u(07 &,&-1,-- ))]
a function with arguments, &, &_1, .... At each order of approximation, we take the collection of

derivatives off from the previous order (for the first-order, we start wita fanctionf itself) and

1. differentiate each of the derivatives bffrom the previous order with respect to each of its

arguments (i.eq, &, &1, ...)
2. evaluate the partial derivatives bfand ofy at the nonstochastic steady state
3. apply the expectations operator and evaluate using ¥le@ gnoments
4. set the resulting expression to zero and solve for theawikrpartial derivatives oy.

The partial derivatives of, obtained in step (4) at each order, constitute the missanggb deriva-
tives for the Taylor-Volterra approximation of the policynictiony. They are numeric and used
again in step (2) of the next higher order. This introducespbtential for the compounding of nu-
merical errors as we move to higher orders as highlightedrme#son, Levin, and Swanson (2006).
The set of derivatives of obtained in step (1), however, are symbolic at each ordeaititig the

source for potential error compounding to the partial denes of the policy function.

135ee Anderson, Levin, and Swanson (2006, p. 9) for a simildineun their state-space context.
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3.1 First-Order Approximation

We are seeking the first order approximation of the policfiom (2), evaluated at the nonstochastic
steady statéx), of the form
(14) Yt :V+yoo+iyiet_i, i=0,12,...
The task at hand is to pin down the partialll_derivati%sandyi. Even in the first-order case, the
problem is infinite dimensional owing to the infinite movingeeage representation of the solution.
As explained by Taylor (1986, p. 2003) for the linear probldra original stochastic difference
equations iny; become deterministic difference equations in the moviwerage coefficients of
yt. This motivates our choice of beginning with the unknownmiin the history of shocks and
then turning to those i, as the problem at higher-orders of approximation will nithe similar
structure.

To determingy;, we differentiatef in (13) with respect to soma _;
(15) Der T =1
Evaluating this at the nonstochastic steady stgtarf{d setting its expectation to zero yields
(16) E(Zer B)| = fy-Yima t ¥+ fyyia + futi = 0

fori=0,1,..., withy 1=0

a second order linear deterministic difference equatiothéxmatrices/—the derivatives of the
vector-valuedy function with respect to its— 1'th € element. That isy; contains the linear moving
average coefficients gf with respect to the elements gf ;. Equation {6) is an inhomogeneous
version of Anderson and Moore’s (1985) saddle-point pnobkeolved in detail by Anderson (2010).

We make two assumptions regarding the difference equaystem (16).

Assumption 3.1. Saddle stability

Of the2ny ze C such that def fy- + fyz+ fy+zz) = 0, there are exactly ny witfz| < 1.

Assumption 3.2. No unit roots

11



There is no = C with |z| = 1 and det( fy- + fyz+ f,-2%) =0

The first assumption is standard, fulfilling the Blanchard Kahn (1980) condition. The second
has been found in other analyses, e.g., Klein (2000), arel éresures the solvability of terms ho-
mogenous ir—i.e., uncertainty corrections to the constant. The twaoigggions are our versions
of Jin and Judd’s (2002) solvability constraints. In costit® the conditions for state-space policy
function from Lan and Meyer-Gohde (2011), our moving avernaglicy function requires us to rule
out unit roots. Intuitively from the state-space persmpegtunit roots must be ruled out to allow
the state-space solution to be inverted, yielding the neali moving average we work with. As in
the case of an explosive state-space solution, the impaant afitial condition on the endogenous
variables would fail to vanish and constants (i.e., ternaslinng the perturbation parameter) would
fail to converge when solving out a unit-root state-spadetsm back into the infinite past.

Anderson’s (2010, p. 479) method can be applied under oungs$ons3.1 and3.2 along with
the first-order linear autoregressiue(i.e., ui = N'),24 delivering the unique stable solution tb6}
(17) yi = ayi-1+ P, withy_;1 =0
a convergent recursion from which we can recover the linaaing-average terms gf's.t®

To determingyy, we differentiatef in (13) with respect ta
(18) Dt = 1xDsX

whereZgx = Xg + X:€t+1
Evaluating this ak and setting its expectation to zero yields
(19) B (Zof)| = (fy-+Ty+ Ty )¥o =0
asE;(g4+1) = 0. From assumptiorB(2), it follows that

(20) det(f, + fy+f,) #0

14Alternatively, one can apply Klein’s (2000) QZ algorithmttis deterministic approach to yield the solution above.
Note, as discussed by Meyer-Gohde (2010, pp. 986-987),ewwa@iking on a deterministic saddle-point problem in the
moving-average coefficients and not on a stochastic sgutiig-problem in the endogenous variables themselves.

15We have tacitly assumed that this solution exists, see Aotef2010, p. 483) for the details. In Klein's (2000)
notation,Z1; of the QZ decomposition must be invertible, the added pooefdranslatability.

12



and hence
(21) Yo=0
The first-order correction of the constant for uncertairgtyzero. Lan and Meyer-Gohde (2011)
show for state space methods that saddle point stabilityffcent to ensure the zero solution for
the state space equivalent &9 is unique, completing the observation by Jin and Judd (Ra6d
Schmitt-Grohé and Uribe (2004, p. 761) that the system o&gqgns “is linear and homogeneous”
in their first-order correction and “[t]hus, if a unique stdun exists” it must be zero. This result
carries over to our moving average by ruling out unit rootengure the invertibility of the state
space representation. The result itself reflects the ratiheous fact that opening the expansion to a
moment of the future distribution of shocks will change rioghf this moment E; [;1]) is exactly
zero.

Gathering the results of this section, the first order appmakion of the policy function %),

which can be thought of as an extension of Muth (1961), Tayle86), and others, reduces to
(22) Yt :y+ %Yiet—i, I 2071727"'

i=
Note that 22) is independent ob, confirming the certainty equivalent nature of the firstesrd

solution.

3.2 Second-Order Approximation

We now move on to the second order approximation of the pdiiogtion @) evaluated at the
nonstochastic steady stat®), and taking the first order results as given of the form

(23) B=y+ %yozc2 + ii (¥i +Yo,i0) &—i + % jiiiyj,i (& @)

The task is to pin down the three second order derivativeBeyf function, y; i, Y52 andyg. The
equations governing i andyg ; will be difference equations with homogenous componeetstidal

to those in 16), with the equation ity being homogenous in accordance with Schmitt-Grohé and

Uribe (2004) and others. The no-unit-root assumption wélicbucial again in solving for the term
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Vg2, Preventing this constant correction for uncertainty icetli by the potential for future shocks
from becoming arbitrarily large.

We first differentiate 15) with respect to somg_j, deliveringy; i, the second derivatives of the
y function with respect to all pairs @f_j ande;_j. As Judd (1998, p. 477) points out, the resulting

system of equations remains a linear system, only now indbersl derivatives that are being sought

(24) T e f=Telxj@x)+ fxj;

— &t

Evaluating at the nonstochastic steady state and setsiegitectation to zero

(25) B(Z o, D], = Ty Vit fii+ fy i+ fe(g @x) =0
for j,i=0,1,..., withy;; =0, for j,i <O

a second order linear deterministic difference equation inThe coefficients on the homogeneous

components of the forgoing and@) are identical. The inhomogeneous components have a first

order Markov representation (see the shifting and traositiatrices defined in the Appendix) in the

Kronecker product of the first-order coefficiedfsThe resulting expression is
(26) f-yi—vi-1+ fyyji + fr i+ fe(1®@y)(§§©S) =0
for j,i=0,1,..., withy;; =0, for j,i <0
The stable solution of the forgoing, analogously to the brster, takes the form
(27) Yii=0ayj-1i-1+B2(§®S), withyj; =0,Vj,i <0
Note thata in this solution is known. It is the same uniquely stablas in the first order solution
(17) due to the fact that the syster®5) and (L6) have identical homogeneous components. To
determing3,, we substituteZ7) in (25), using the shifting matrices and matching coefficients
(28) (fy+ fyra)B2+ fy+B2(31 ® 01) = —fr2(Y1 @ y1)
This is a type of Sylvester equation, the solution of whicprissented in detail by Kamenik (2005).

Applying the techniques developed in Lan and Meyer-Goh@&12, the existence and uniqueness

16Thus, our nonlinear moving average solution parallels inear state space solutions in a manner analogous to the
linear case, where the recursion is in the coefficients assgipto the variables themselves. Instead of products of the
state-variables entering into the solution, we have prtsdoicthe first-order coefficients.
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of the solution to the Sylvester equation can be shown gteedrby the saddle point assumption.
Next we pin downy, i, the second derivatives of thyefunction with respect t@;_; ando se-

guentially, by differentiatingX5) with respect ta. The resulting linear system is

(29) Dger | = Te(Zox@%) + txZo

whereZsX = Xo,i + % (€1+1® Ine)
Note that the additional potential derivati\@éztticf, Is simply equal to the derivative in the text,
‘Qgeli f.17 Evaluating R9) at X, taking expectations, noting thgs = 0, and setting the resulting

expression to zero yields
(30) Et(gggt[i f) = fy-Yo,-1+ fyYo,i+ fy+¥o,ir1=0
fori=0,1,..., withys; 1 =0
The unique stable solution takes the form
(31) Yo, = QYg,i-1, fori=0,1,..., withys 1 =0
as the system at hand is identical to the homogenous compohéme first order systemlg).
Combined with the initial conditiog; —1 = 0O, the forgoing delivers
(32) Yoi=0, fori=0,1,...
Again, we confirm Schmitt-Grohé and Uribe’s (2004) and Jid dudd’s (2002) result that terms
with a first order uncertainty correction are zero. Like Lawl &eyer-Gohde (2011) we have the

addition result that saddle stability on the first-ordeusoh show that not only is zero a solution

(the equation is homogenous), but that it is also the uniqligien.

17 Although the derivative operat@? works on Kronecker products (i.e@é{T = 9§®8T f) and although the Kro-
—i t—i

necker product is not generally commutatigas a scalar and, thus, commutation is preserved. This reanlbe seen
by exploiting the properties of the commutation mati, as follows. Take the first term i@(fE[T , for example, and
—i

insert the identity matrix:f,2l 2 (ZoXx®@ ). This can be rewritten a§2KnyxnxKnxnx(ZoX® %). Pre-multiplying the
Kronecker product of a matrix and a column vector (each withows) with Kny nx reverses their order (see Theorem
3.1.(ix) of Magnus and Neudecker (1979, p. 384)) and, thksg(ZoX®@Xi) = X @ ZgX. Now f,2 = QXZTWT f and post-
multiplying a Kronecker product of row vectors each of dirsien nx with Knxnx reverses their order. But the two row
vectors are identical, so reversing their order changesimgt f,, = @%@J fKnxnx = @fTWTf = f,2. Combining the
two yields f2 (Zox®@ %) = f2(X ® Zsx). Proceeding likewise with the second term@leT ~ completes the argument.
Accordingly for higher-order derivatives, the order in winiderivatives with respect tu)aptplear is inconsequential as it
is a scalar and we choose to have dteappear first.
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Finally, to determing/,2, the second derivative of thefunction with respect t@, we differen-

tiate (18) with respect tao, the resulting linear system is

(33) D2t = fo( DX ® DoX) + TxD2:X
WhereZ2;x = Xy2 + 2% g€t+1 + Xe2 (€11 @ €111
Evaluating this ak and setting its expectation to zero yields

(34) Ei(22:1)| = [fyyoe + fyi2(Yo® Yo) Bt (841 @ &41) + (fy- + fy+ fys )ye =0

X
therefore we can recovgy. by

(35) Yoo = —(fy- + fy+ fyr) T fysyoe + fyi2(Yo® Yo) Bt (811 @ t11)

By assumption, the second moment of the exogeneous variabde, 1 ® €1), is given.

As the model approaches a unit root from below, the effectnaettainty on the constant be-
comes unbounded. This result is novel, giving additionahmigy to the invertibility condition of
assumptior8.2 from a state-space perspective, the correction for uaiceytwill be accumulated
forward starting from the nonstochastic steady state;@fdtate space contains a unit root, this ac-
cumulated correction will become unbounded and there wilhb finite stochastic steady state to
which the model can converge.

Gathering the results of this section, the second orderoappation of the policy function?)

takes the form

2

In contrast to the first-order approximatioB6] does depend oa, with the term%yc,z correcting

1 00 100 00
(36) Vi =Y+ =V20° 4+ Y Vigri + = Vii(&_j @& i)
ARPRESAFPIORILSESS

the nonstochastic steady state for uncertainty regardifgd shocks. A& goes from 0 to 1 and
we transition from the certain to uncertain model, the reshtpof the solution transitions from
the nonstochastic steady stat¢o the second-order approximation of the stochastic stetaty

y+ %y020'2. As we are interested in this uncertain version, settirig one in @6) gives the second
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order approximation

(37) Yo =Y+ Yoz + i;)’i &t 5 ];i;yj,i (& j @& i)

3.3 Third-Order and Higher Approximations

Given the results from lower orders, including that ternmedir in the perturbation parameter are
zero, the third order approximation of tigunction we are seeking takes the form
1 s 1 3 - 1 2 122
Vi =Y+ éyo-zo' + 6)/030' + % Vi + §y027i0' i+ é Z} % (y“ +yo7j7i0') (St_j & St_i>
i= j=0i=

1
(38) += Vi ji (Et—k ® & —j @ & i)
6 20 2y R

The task at hand is to pin down some third derivatives ofythenction, includingy ji, o2, Yo.j.i
andy,s. Computing these derivatives largely resembles the coatipatof the second derivatives in
the previous section. We relegate the details to the Appearttl focus on the results here.

To determineyy j i, we differentiate 24) with respect to some shockg i, delivering the third
derivatives of they function with respect to all triplets of the shocks. The HBg system, evalu-
ated atx and in expectation, of equations is a linear determinigtcmad order difference equation
inygji- The homogeneous components AxX7) are identical to those inlg) and @5) and the

inhomogeneous components can again be rearranged to hasteoader Markov representation

Et(-@%fkgtrfjgt[i f) =iy Yienionioa B+ fe Ve £ [fe fe fe fe]ysSji=0
(39) fork,j,i=0,1,..., withygji =0, fork,j,i <0

The unique stable solution of the forgoing, analogouslytedr orders, takes the form

(40) Yi,ji = Q¥k-1,j-1i-1+ B3 j,i, Withyji =0, fork, j,i <O

andps can be solved for by, again, formulating an appropriate &stier equation.

To determineys j i, we differentiate 24) with respect tao, evaluate ag, take expectations, set
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the resulting expression to zero, and recall the results foaver orders, yielding

(41) Et(.@jsljst[i Dl = fy-Yo-vi-1+ fyo,ji+ fy+Yo j+1i+1 =0
for j,i=0,1,..., withys ;i =0, for j,i <O

or

(42) Yo.ji =0, for j,i=0,1,...

again confirming Schmitt-Grohé and Uribe’s (2004) and dich dudd’s (2002) result that terms with

a first order uncertainty have zero as a solution and Lan aryéM8ohde’s (2011) result that saddle

stability on the first-order solution ensures that the zetot®n is also the unique solution.

To determiney,2 ;, we differentiate 29) with respect too, evaluate ak, take expectations, set

the resulting expression to zero, and recall the resulta fowver orders, yielding

Et(-@(?zgt[i f) . fa{[( ©Xg)Et(Er11 @ &11)| @ X } + 22 (% © %) [Et (€t+1 @ €141) © Ine
+ fe{ (%2 @) + ([Xe2Ee (et41 @ €141)] @ %)} + B Xz + X2 [Et (€111 @ €t11) @ Inel}

(43) =0, fori=0,1,..., withy 1 =0

which is still a second order deterministic difference dggum The homogeneous components are

packed inx52; and they are identical to those ibg) and @5). The inhomogeneous components can

again be rearranged to have a first order Markov representayi using the shifting and transition

matrices defined in the Appendix, and the unique stableisolof the forgoing takes the form

(44) Yoz,i = AYg2i_1+BoS, Withysz 1 =0

wheres can be solved for by, again, formulating an appropriate &tkr equation.

To determingy/gz, we differentiate 83) with respect tas, evaluate ax, take expectations, set the

resulting expression to zero, and recall the results fromefamrders, yielding
Et(9§3 f) - fra[(% © X @ X ) Bt (8141 @ €141 @ €141) ] + 2F e [Er (41 @ €41 @ €111) (X @ X2
(45) + Fe (X2 @ %) Bt (141 ® €11 @ €111)] + x[Yos + XesEr (811 @ €141 @ €141)] = 0

as the third moment af is assumed givert; (&r+1 @ €111 @ €4+1) is known. Recovering,s from the
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forgoing is straightforward under the assumpti8r2(. Wheng; is normally distributed® however,
Ei(€1+1® &+1®&+1) = 0. Hence
(46) Yg3 =0

Combining, the third order approximation of the policy ftioa (2) takes the form

Vi =Y+ =Yg20° + Vi +=Yg2,0° ) &—i + = V(& ®&i)
2°° i; 27 Zj;i;

1 (o) (o] (o]

(47) ‘f‘é Z %%Wj,i(st—k@)stq ®E—i)
K=0 j=0i=

Again in contrast to the first-order approximatioA7Y does depend oa, with the term%ycz cor-
recting the nonstochastic steady state for uncertaintyrdkd second-order approximatioB6],
but now with %y027i02 correcting the first-order kernel for uncertainty; i.e.,cagoes from 0 to 1
and we transition from the certain to uncertain model, weiporate the additional possibility of a
time-varying correction for uncertainty. As we are intéeelsin the original, uncertain formulation,
settingo to one in @7) gives the third-order approximation

Vi =Y+ éycz + i; Yi+ éyO'Z,i E—i + > j;i;y“ (&t—j @ &)

100 00 00

(48) + ékZJ .%.%yk,j,i(st—k@)st—j Qi)
=00

Higher order approximations of the policy functia) can be computed using the same steps.
Moving through higher orders of approximation succesgjtbe undetermined partial derivatives of
the policy function will always be terms of highest orderfgeconsidered, ensuring that the leading
coefficient matrix isfy. Thus, for all time varying components, the difference ¢igua in these
components will have the same homogenous representatmmeifi time varying components (i.e.
derivatives with respect twonly), the leading coefficient matrify along with assumptioB.2ensure
the uniqueness of their solution. The inhomogenous elesradithe difference equations in the time
varying components will be composed of terms of lower oredrich are necessarily constants

(terms in the given moments and derivatives with respectdaly) or products of stable recursions

18ps is the case in Dynare, see Adjemian, Bastani, JuillarthoMbi, Perendia, Ratto, and Villemot (2011).
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(time varying components of lower order). As the latter #ewise stable, we can conclude from
assumptiorB8.1that the difference equations in all time varying composgemitl be saddle stable;

hence, the stability of the first order recursion is passetbafl higher orders.

4 Stochastic Neoclassical Growth Model

In this section, we examine two versions of the stochasticlassical growth model to demonstrate
the method. This model has been used in numerous studiesacoigmumerical techniques and
is a natural benchmark. We begin with the special case oflefggences in consumption and full
depreciation that has a known solution to illustrate thatreh of the nonlinear moving average to
the more familiar state-space solution. We then move onddtseline specification of Aruoba,
Fernandez-Villaverde, and Rubio-Ramirez’s (2006) cahensive study with inseparable utility to
foster comparability with their results. This version oétimodel lacks a known solution and must be
approximated. Using our nonlinear moving average solutianalyze the contributing elements
to the response of the model's endogenous variables to adkdy shock and highlight the features
of the multidimensional kernels and impulse responses.

The model is populated by an infinitely lived representatisasehold seeking to maximize its

expected discounted lifetime utility given by

. | (coa-Lot)"
(49) Eo t;)BU(Ct,Lt) , with U (G, Lt) = 1y

whereC; is consumptionl labor, and3 € (0, 1) the discount factor, subject to

(50) Ci+ K =K LY+ (1-8) K1

wherekK; is the capital stock accumulated today for productive psegdomorrowZ; a stochastic
productivity processg € [0,1] the capital share, andl€ [0, 1] the depreciation rate. OutpMt is
given bye% Kto‘_lLtL“ and investment; by Ky — (1— 9) K;_1. Productivity is described by

(51) Zy = pzZ-1+¢€z1, €24~ N (0,0%)

with pz € (0,1) a persistence paramete,; the innovation to the process, aod the standard
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deviation of the innovations.
The solutionis characterized by the intertemporal Euleddoon equalizing the expected present-

discounted utility value of postponing consumption oneqzeto its utility value today

_g\ 1Y o\ 1=y
(52) <C[e(1_|;)l e) _ PR, (Cte+1(1—c|t-t++ll)l e) <aezt+1Kt“*1Lt1+_f+1—5>

and the intratemporal condition equalizing the utility tomarginally increasing labor supply to

the utility value of the additional consumption provideeéwith

1-6 6
_ _ t e a —a
l—l—t_ct(l a) K L

plus the budget constrain@ and the technology shockl). Collecting the four equations into

(53)

a vector of functions, the set of equilibrium conditions denwritten O= E;[f(yt—1, W, Yt+1, Ut)]

wherey; = [G K Lt Z(}' andu; = [szﬂ'.
4.1 Logarithmic Preferences and Complete Depreciation Speal Case

The first case we will examine is the simple stochastic nesaal growth model under log prefer-
ences and complete capital depreciation. This model canfressed in terms of one endogenous
variable, enabling a scalar version of the method to be atljdind possesses a well-known closed-
form solution for the state-space policy function. We shawour policy function relates to this
well-known state-space example and use our resultingaifisen policy function as a basis for an
initial appraisal of our method.

Accordingly, letU (G, L) in (49) be given byin (CG),1° normalizeL; = 1 and se® = 1 in (50).
Combining 60) with (52) in this case yields
(54) 0=FE [(ezt Kl —Ki) B (1K — Kep1) - (GeZ”thGfl)}

This particular case has a well-known closed form solutanrtlie state-space policy function:

Ki = ape” K ,. However, we are interested in its infinite nonlinear mowangrage representation

That is, sed andy to one, subtracting an appropriate constant and extenléngtility function over the removable
singularity aty = 1.
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and guess that the logarithm of the solution is linear in tifi@ite history of technology innovations

(55) In(Ky) = In(K) + %bjsz,t,,-
i=
Inserting the guess and the infinite moving average reptaisen for Z;, (54) can be rewritten
1—exp<z‘j’°:0 (p) —bj+abj_1)ezs—j— (1—0a)In (K_)>
1—exp<z‘j’°:0 (pi —bj+abj_1)eze11j— (1—a)ln (K_)>
(56) ><exp<%(pj —bj+abj_1)ez;— (1—0()In(K_)>]
i=

whereb_; = 0.

1= (XBEt |:

The value and recursion
(57) K = (aB)t's, by = abj_1+pl, withb_y =0
solve 66) and verify the guess5b).

Not surprisingly, this solution can also be deduced diyetthm the known state-space solu-
tion. Take logs ofK; = aBe”K¢ ,, yielding In(K¢) = In(af) + Z +aln(Ki—1). Making use of
the lag operatorl, and definingp (L) = z‘j”zo(pL)j, the foregoing can be written dn (K;) =

(1—o) tin(ap)+ (1—aL) tp(L) €zt and restating in levels gives

(58) — (aB)re exp((1—aL) "p(L)ez:) = (aB)wex ( Pl 3 bieze- J>
whereb(L) = (1—aL) *p(L) = 35 objLI as before.

This special case offers a simple check of the numericalcsmbr. We defin; = In(K;) and
useK; = expK;) to reexpressi4) as®
(59  0=F [(ezwm ) (e ) (oreZHl*(“l)Kt)]
With this reformulation, the first-order expansion is theetpolicy rule in this special case. That is
(59) can be rewritten as & E;[f (Yi—1, Yt, i+1, )] Wherey, = [K; Zt}' andu = [ez;].

To check our method, we calculate the kernels of the thireéloetcurate nonlinear moving
average solution of50) out 500 periods, following the parameterization of Han§E385) for the

remaining parameters by setting= 0.36, 1/ = 1.01, p = 0.95, andoz = 0.00712. Our method

20See Fernandez-Villaverde and Rubio-Ramirez (2006) faneron change of variable techniques such as this.
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successfully identifieg; i, i j.i, andy,2; as being zero and the largest absolute differengefirom
those implied by the analytic solution was3368x 1018, This first check, while encouraging, is
far from comprehensive. In secti@additional and potentially more meaningful measures vl

examined.
4.2 CRRA-Incomplete Depreciation Case

We now move to the general case of Aruoba, Fernandez-¥iltha; and Rubio-Ramirez (2006).
Following their parameterization, we relax the completerdeiation and log preferences of the pre-
vious section, see table As no known closed-form solution exists, we will need anragjmation.

We reexpress variables in logs, commensurate with a lagfliapproximation. This choice is addi-
tionally motivated by our results in secti®@that indicate a log specification improves the accuracy

of the approximation.
[Table 1 about here.]

For higher-order approximations, our policy functi@j, ¢ = y(o, &, &1, &2, . ..), will straight-
forwardly enable impulse response analysis. That is, densi shock irt to an element of;, one

measuré! for the response of; through time to this impulse is given by the sequence
vt =Y(0,&,0,0,0,...)
Vi+1 =Y(0,0,&,0,0,...)
Vi+2 =Y(0,0,0,&,0,...)

(60)

[Figure 1 about here.]

21 Note that we are assuming that j = y(0,0,0,...), ¥j > 0. Fernandez-Villaverde, Guerron-Quintana, Rubio-
Ramirez, and Uribe (2011), for example, examine the resgmatarting from the mean of the ergodic distribution as
opposed to the stochastic steady state that we assume.Hdbie & nonlinear environment, variables will wander away
deterministically from the ergodic mean to the stochadtady state when the response to a single shock is examined,
as the maintenance of variables around the ergodic meamesdiue model to be constantly buffeted with shocks. We
argue for our measure as it eliminates such deterministicis in impulse responses.
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Figure 1 depicts the impulse responses and their contributing coemts from the kernels of
different orders for capital, consumption, and labor to aifpee, one standard deviation shock in
sz,t.zz The upper panel displays the impulse responses at firstpdeand third order as deviations
from their respective (non)stochastic steady states @ktras in the middle right panel) and the
first feature to notice is that they are indistinguishablthtoeye. This is not surprising, as it is well
known that the neoclassical growth model is nearly loglinda the middle column of panels in
the lower half of each figure, the contributions to the totapulse responses from the second and
third-order kernely; ; andy; j j are displayed. Note that these components display multiplaps’
to either side of the *hump’ in the first-order component (@pleft panel), this is in accordance with
the artefact of harmonic distortion discussed in Priesit88g, p. 27).

The second-order contributions of capital and consumpatierpositive and that of labor is nega-
tive. This reflects the combination of a precautionary fieacnd nonlinear propagation mechanism
of technology shocks. A technology shock is exploited byuanglating a disproportionately large
capital stock, which enables a larger increase in consemgitiut of an order of magnitude smaller
than capital in terms of second order contribution, as agutanary reaction) and a smaller in-
crease in labor (due to the second order downward corrgdhian the linear model would predict.
In the case of a negative technology shock (not pictured)fitbt order components would simply
be their mirror images with opposite sign. The second ordatributions, however, would remain
entirely unchanged following from the symmetry of the qudidr In combination, the second order

approximation can thus capture time invariant asymmeiniése impulse responsés.

22In terms of the “conceptual difficulties” laid out in Koop, $2&an, and Potter (1996), we are assuming a particu-
lar history of shocks (namely the infinite absence thereafekdnteraction will be addressed later), are examining a
particular shock realization (positive, one standard atémn: due to the nonlinearity, asymmetries and the absehce
scale invariance are a potential confound), and ignorietgidutional compaosition issues by examining a realizatid
a single structural shock irrespective of its potentiatefation with other shocks (in this model there is only onecét
so this is moot anyway).

23Time varying asymmetries would be capturedyy; ;, require a fourth order approximation as the tegn,; from
the third order approximation is zero, see secB8ch
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The precautionary component can likewise be seen in the ngdpvaarection of the steady states
in the rightmost panels. In the stochastic steady statetafgce uncertainty regarding future shocks
and accumulate a precautionary stock of capital througteased labor efforts and disburse this as
increased consumption when shocks fail to manifest theraselThe lower left panel contains the
contributions fromy,z; the second order (io) time-varying correction for risk, this demonstrates
an initial wealth effect with consumption increasing ang@ita and labor decreasing relative to a
nonstochastic environmefft. Nonlinear impulse responses are not scale invariant, airaiso
by Fernandez-Villaverde, Guerron-Quintana, Rubio-Ram and Uribe (2011): for example, while
the first-order component scales linearly with the magmitafithe shock, the second-order order
component scales quadratically. As shocks become lardjeear approximation would generally
not suffice to characterize the dynamics of the model. Thpesisely the effect of higher-order
terms: as the magnitude of the shock increases, these logierterms begin to contribute more
significantly to the total impulse, attempting to correct tesponses for the greater departure from
the steady state. For this model, however, one would neeahnsider shocks of unreasonable mag-
nitude to generate any notable effects from the higherrdedens on the total impulse, reinforcing

the conventional wisdom that this model is nearly lineahim tariables’ logarithms.

[Figure 2 about here.]

In figure 2, the impulse responses to a technology shock with differahies (2, 5, and 10) of
the CRRA parameteyare overlayed. Note that for all three valuesypthe first order components
dominate. While changes yndo change the periodicity of the harmonic distortion as \&slthe
shape and sign of some second and third order componenipiistant and time-varying correc-
tions for risk display a significant change in magnitude yAsincreased, the stochastic steady state

is associated with higher constant precautionary stocksapital and the time-varying component

24rernandez-Villaverde and Rubio-Ramirez (2010) disesisise nonlinear impact of shocks in the production func-
tion and similar wealth effects.
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displays a magnified wealth effect. Though not very large ptecautionary channel of the second
order kernel is highlighted by the experiment, with both sleeond order contributions of capital
and labor increasing minimally and that of consumption éasing initially. At values above 20 (not
pictured), the time-varying corrections for risk begin tmtribute noticeably to the total impulse,
whereas shocks several orders of magnitude larger thamdasthdeviation are needed to propel

the nonlinear kernels to significance.
[Figure 3 about here.]

Figures3 and4 draw the second and third order kerngis,andyx j i, as they depend on differing
time separation (potentially~ j £ k) of shocks. As likewise discussed in Fernandez-Villagerd
Guerrbn-Quintana, Rubio-Ramirez, and Uribe (2011),uls® responses are not invariant to the
history of shocks. The third order kernels in figdrare four dimensional objects, captured by our
use of colors inside a cube; we slice the cube with a diagdaakpvhose diagonal £ j = K) is the
third order contribution (though not scaled to the magretatithe shock) in figuré&. The unscaled
contribution from the second-order kernel in the impulspomses in figuré can be found along
the diagonals of the kernels=€ j) in figures3. The off diagonali(# j # k) elements ‘correct’ for the
history of shocks. That is, in addition to the individual ged-order contribution that can be found
along the diagonals in figu® an off diagonal correction to the second order contrilmiould be
needed for shocks from the past. The deep valleys on eittiesithe kernels for consumption and
capital that bottom out at about fifty periods indicate a satgally persistent nature or ‘memory’

of the second order kernels.
[Figure 4 about here.]

Additionally, the harmonic distortion mentioned earli@nde seen in the kernels as well. The
shapes of the kernels perpendicular to the diagonal haeetdinalogs in polynomials: on either

side of the diagonal of figure3a and 3b, the shape is reminiscent of the parabola of a quadratic
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equation and the ‘s’ shape of the cubic equation can be fooritber side of the diagonal of figure
4. This bears a word of caution that not too much should be r@adhe shape itself of the kernels,

as they are dictated by the form of the underlying polynosial
[Figure 5 about here.]

Figure 5 highlights a central component of higher-order impulsgoeses: the break down
of superposition or history dependence of the transfertfonc The nonlinear impulse response
to two shocks at different points in time is not equal to thensaf the individual responses, even
after having corrected the individual responses for thadrigrder. The panels in the figure depict
the second-order contributions to the impulse responseapfal, consumption, and labor to two
positive, one standard deviation technology shocks, sha@eeriods apart. The dashed line in the
top of figure simply adds the individual second order comptsé&om each shock together (i.e.,
presents the total second-order component if superpositere to hold), whereas the solid line
additionally contains the second-order cross-comporient presents the true total second-order
component). Demonstrating this breakdown of superpasitibe cross component overwhelms
the individual components shortly after the second shodksamd the second-order contributions
to the responses of capital (upper panel) and consumptiatd{epanel) fail to match the peak
response from a single shock, despite the lingering carttab from the initial shock in the same
direction. Although the mitigation is much less pronount@dabor (lower panel), the difference
from the sum of individual contributions is nonethelessicezsble and prolonged. In a nonlinear
environment, there is no single measure for an impulse resgf8 in starting from the stochastic
steady state, however, we remove any deterministic trendsrimpulse response measure at each
order of approximation (e.g., starting from the ergodic medroduces such a trend, see footnote

21).

?5See, e.g., Gourieroux and Jasiak (2005), Potter (2000)Kaad, Pesaran, and Potter (1996).
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5 Accuracy

In this section, we explore the accuracy of our solution meétising Euler equation error methots.
Beside validating the accuracy of our solution method, we ad Euler equation error method
for assessing the accuracy of an impulse response, endhknmethod to address our infinite-
dimensional state space.

We examine our method using the model of Aruoba, Fernantlkererde, and Rubio-Ramirez
(2006), examined in sectigh2 From Judd (1992), the idea of the Euler equation accuratyrtéhe
neoclassical growth model is to find a unit-free measuredkptesses the one-period optimization
error in relation to current consumption. Accordingl§2) can be rearranged to deliver the Euler

equation error function 85

1
B(1-y—1

0 (1_ 1-0\1-v
1 BE; (R ('3—:11) ) (ant+thG1Lt:l-+f+1_6>:|

(61) EE()=1-F%

(1- L) 90

Deviations in 61) from zero are interpreted by Judd (1992) and many othereeasetative opti-
mization error that results from using a particular appmadion. Expressed in absolute value and
in base 10 logarithms, an error efl implies a one dollar error for every ten dollars spent and an
error of —6 implies a one dollar error for every million dollars spent.

The arguments oEE () depend on the state space postulated. Standard stateraptuads
would choosé&E (Ki—1,7;) or EE(Ki—1,Z:—1,€z¢t). Our nonlinear moving average policy function
requiresEE(ezt,ez¢-1,...), rendering the Euler equation error function an infinite eiisional
measure. In line with our presentation of impulse respousetions, we examine the following set
of Euler equation error functions, holding all be one shamkstant and moving back in time fram

essentially assessing the one-step optimizing error ededavith the impulse response functions.

(62) EE =EE(£24,0,0,...), EE_1 =EE(0,€2¢t-1,0,...), EE_ 2 =EE(0,0,€z¢t»,...),

263ee, e.g., Judd (1992), Judd and Guu (1997), and Judd (1998)
21Cf. Aruoba, Fernandez-Villaverde, and Rubio-Ramir@0@, p. 2499).
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We examine a range of shock valuesdgg_ j that covers 10 standard deviations in either direc-
tion. This is perhaps excessive given the assumption of alitgmbut enables us to cover the same
range for the technology process examined in Aruoba, hele Villaverde, and Rubio-Ramirez
(2006) from a single shock. FigufeplotsEE; for first through third order approximations in logs,
see sectiod.2, and in the variables’ original level specification. Thetfobservation is that higher
order in levels performs uniformly better than the precgdirder—this result is reassuring, but not
a given. As Lombardo (2010, p. 22) remarks, although witheradius of convergence the error in
approximation goes to zero as the order of approximatioonies infinite, this does not necessary
happen monotonically. Second, switching to a log specifinamproves the first and second order
approximations uniformly, while for the third order, thgstrue only for very large shocks. If we re-
strict our attention to three standard deviation shogk&@21), the second order log approximation
make mistakes no greater than one dollar for everyone tdiomgpent and the third order level
and log approximations no greater than one dollar for evexyane hundred million spent, hardly
an unreasonable error. Of independent interest is thet tbstithe first order approximation in logs
is uniformly superior to the first order approximation inéés; standing in contrast to the result of
Aruoba, Fernandez-Villaverde, and Rubio-Ramirez (2086 their focus was on the mapping from
capital to errors and ours on shocks to errors, it is postilliethe preferred approximation depends

on the dimension under study.
[Figure 6 about here.]

In figure 7, plots of EE;,_; for j = 0,1,...,100 for the first order approximations in both levels
and logs are provided. Comparing these two figures—Iet almw@porating the associated results
for the second and third order (not pictured)—is difficulbbast. Thus, to facilitate comparison of the
different approximations across the different horizong measures that reduce to two dimensions

will be examined, namely maximal and average Euler equaticors.

[Figure 7 about here.]
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First, we plot the maximal Euler equation errors over a sgdi®0 periods in figur&a |.e.,
(63) _max _(EE-j), forj=0,1,...,100

—10e° <€zt j<10e°
wheree? is the constant standard deviation of the technology shHBlog figure tends to reinforce the
results from examining only shocks in peritidfor both the level and log approximations, moving
to a higher order uniformly improves the quality of approaiion and, at all three orders, moving

from a level to a log specification likewise improves the aacy of the approximation uniformly

according to this metric.
[Figure 8 about here.]

In our final measure, we graph average Euler equation ernversaosspan of 100 periods in figure
8h. In contrast to state space analyses where the ergodithdisin of endogenous state variables
is needed, this measure is relatively easy to calculateganevely need to integrate with respect to
the known distribution (in this case normal) of the shocks
(64) /Eadeez_t].,forj:o,l,...,loo
Weighting the regions of shock realizations most likely écgmcountered as defined by the distribu-
tion of shocks, we are not forced to make a choice regardiegahge of shock values to consider.
Again, we note the uniform improvement with higher order tlog level approximations and the
improvement in the approximation by switching to logs. Thlounow there is some ambiguity re-
garding the preferred specification among the third in keaeld second and third in logs, with the
second order log specification surpassing both third orgeraximations between 25 and 35 quar-
ters. The average error using a first order in level approttanas around one dollar for every ten
thousand spent regardless of horizon. The second ordepxapyations show an improvement as
the horizon increases, whereas the third order approxamstend to be lower at first, rise and then
fall again. The third order approximation in both levels &gk are associated with an average error
of about one dollar for every billion spent regardless ofizmr, putting the ambiguity mentioned

above in perspective.
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We conclude that the nonlinear moving average policy fumctian provide competitive ap-
proximations of the mapping from shocks to endogenous mmsa As was the case with Aruoba,
Fernandez-Villaverde, and Rubio-Ramirez (2006), h@rethe perturbation methods here deteri-
orate (not reported) in their extreme parameterizationalhperturbations, our method remains a

local method and is subject to all the limitations and resgons that face such methods.

6 Conclusion

We have introduced a nonlinear infinite moving average aslt@nnative to the standard state-
space policy function to the dynamical analysis of nonline8GE models. We have derived an
perturbation-based approximation of this policy functiproviding explicit derivations up to third
order in the form of a Volterra expansion. This approach foealy mapping the history of shocks
into endogenous variables enables familiar impulse respanalysis techniques in a nonlinear en-
vironment, and provides a convenient decomposition on tgpimg from approximation order and
uncertainty. We confirm that this approach provides a smhutiith a degree of accuracy compara-
ble to state-space methods by introducing Euler equatian erethods for this infinite dimensional
mapping.

Although there are a number of DSGE models and applicatiansyelfare analysis, asset pric-
ing and stochastic volatility for which the importance ohfinear components and uncertainty in
the policy function has been proved, the nonlinear compisnga analyzed in the baseline neoclas-
sical growth model are quantitatively unimportant, thisat surprising as the model is known to
be nearly linear. Qualitatively, the nonlinear contrilbat to the the mapping from shocks to en-
dogenous variables are economically interpretable, lting, e.g., into precautionary behavior and
wealth effects. Likewise, non economically interpretadntégfacts of the nonlinear method, such as
harmonic distortion are documented as well.

The potential for explosive behavior in the simulation @ftetspace perturbations has lead to
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the adaptation of ‘pruning’ algorithms, see Kim, Kim, Schdaurg, and Sims (2008), that appear
ad-hoc relative to the perturbation solution itself. Witlr snethod, however, the stability from the
first order solution is passed on to all higher order recasid his feature of the nonlinear kernels
in our moving average solution is consistent with the Vo#tesperator acting upon the history of
shocks being bounded and the existence of an endogenotigppdion-based ‘pruning’ algorithm
derived from inverting our moving average, both of which wedy in a companion paper.

The nonlinear perturbation DSGE literature is still in ameatage of development and our
method provides a different, yet—from linear methods—feamiperspective. Standard state-space
perturbation methods provide insight into the nonlineappiag between endogenous variables
through time. Yet when the researcher’s interest lies inméeng the nonlinear mapping from

exogenous shocks to endogenous variables, our method ihsisexble insight to offer.
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A Appendices

A.1 Matrix Calculus and Taylor Expansion

A.1.1 Matrix Calculus Definition

Definition A.1. Matrix Derivative and Commutation Matrix

1. Matrix Derivative [See Vetter (1970), Vetter (1973) anmdwger (1978).]

0ayi oby oby
(A-1) Do A(B) = [ab—l} = : :
pxq K dap1 dapq
by ‘oby
76, AB) - _:_‘@_b;t'f‘(_B_) i
(A-2) QBAgB) = [%HA(B)} = : ! ! :
spxtg = |-=-==-—-=- U
o TogAB) - I, AB)
Structures of higher derivatives are thereby uniquely @efin
(A-3) IeAB) = Zs(Zs(-- (Z8A(B)) )
2. Abbreviated Notation
(A-4) Ag = ZgrA(B) and Agn = @FBT)nA( B)
spxtq
where' indicates transposition. Additionally,
(A-5) ACB = gcT (QBTA(B,C)) = .@CTBTA(B,C)

3. Commutation Matrix Ky [See Magnus and Neudecker’s (1979, p. 383) Theorem 3.1.]

(A-6) B ® A =Knn(A®B)Kis

mxt nxs

A.1.2 Proof of theorem2.1

1. Matrix Product Rule: Combine Vetter’'s (1973, p. 356) sfamse and product rules and exam-

ine the special case of an underlying vector variable.

2. Matrix Chain Rule: Combine Vetter’s (1973, p. 356) trassgp and chain rules and examine

the special case of an underlying vector variable.
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3. Matrix Kronecker Product Rule: Combine Vetter's (19733p6) transpose and Kronecker

rules with an underlying vector variable and adopt MagnusN@udecker’s (1979) notation.

4. Vector Chain Rule: The result follows from the Matrix Gin&ule, setting) to one.

A.1.3 Proof of corollary 2.2

From Vetter (1970, p. 243) and, especially, Vetter (1973,358—363), a multidimensional Taylor

expansion using the structure of derivatives (evaluat®) at appendixA.1.1is given by

_ N1 N _ — i _
(B M(B=ME S SogME) B8 Ru BB
— B
(a9) whereRu;1 (B.8) = i [ _INiEM(E) (1s (B-8)° ) a

Differentiating @) with respect to all its argumenks times, evaluating at the steady statand

noting permutations of the order of differentiation, a Taydpproximation is

1

11 1, 1
Vi = 0' y+ y00+zy020 +...+WyGM0

1 1 L 2 1 M—1
+F O|Y|1+ﬁ)/0i10+ zyozilG +‘“+WVGM*H10 & i,

1
Z Z <0|y'1'2+ 1|y0|1I20+2|y02|1|20 +...+ M—2)! yGM 2j,i,0 oM~ 2) €—i; @& i,

I1 Olz—

Z Z Z Oly'1|2 imEt—i; @ E—i, @ &,

|1 0i,=0 im=0

Writing the foregoing more compactly yield$Q) in the text.

A.2 Auxiliary Matrices
A.2.1 Shifting Matrices

a B 01 R0 R0 0 0 0

i} _ | nyxny  nyxne _|@ B2 _ 0 0 ® 01 0 0

(A-9) 51[ 0 0 ] % [o 61®61] % 0 0 &®dp O
nexny nexne 0 0 0 5,555
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nylx ny ny(x)ne | 0
o B1 a B2
A-10 = -
( ) Y1 o2 afy+ PN Y2 a2 a2+ PB2(d1®01)
0 | 0 0
L nuxne nexne
_ - O -
Y1®Y1®Y1 0 0 0 nygny
_ B 0 Vo @ V1 0 0 _ | nyxny
A1) vs= | g 0 iy 0 [T
] 0 0 0 vi®y "o
L nexny.|
— I(ny+ne)3 |
0
nyx (ny+ne)? | |(ny+ne)2
|(ny+ne)2
0
A-12 =
( ) ¥ Ly g2 © nyx(ny+ne)2] Kiny+ne),(ny+ne2 (Ine® Kinyine) (ny-ne)
|(ny+ney
0
| (nyneg2 ® |y (ny+ne)?
I (ny+ne)2 -

A.2.2 State Spaces for the Markov Representation

(A-13) = ViS. § = {y‘u—il}  andS.1 = 1§

(A-14) Xji =Y2Sji, Sji = [yéj_gél] , andSj;1i+1 = 025

SOS®S

i - Sj®S &S
(A 15) S(,j,l - (Sj ® S(7i)Knenez<lne® Knene) ands<+l,]+l,l+1 - 635(,],I

S®S

A.3 Details of Third-Order Derivation

We begin by differentiating with respect to each triplet of shocks. The resulting systéequa-

tions remains linear in the third derivatives
Q;T,kst[jst[i f =fa(x & Xj ®Xi) + fye (Xk7j RX)
(A-16) + felX) © %] Knene (Ine® Knene) + fi2 (X @ Xj 1) + Fikic .
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Evaluating this ay and setting its expectation to zero yields

Eq( geslkstl;eli ) ) =fyWk-1j-vi-1+ fyYiji+ fyr Vi1 j+1i+1
+ fe (X ®Xj @%) + fr2 (X j @ X))
+ fe(X; ®Xk7i>Knene2(|ne® Knene) + fre (X ® X i)
(A-17) =0, fork, j,i=0,1,..., withyi ; =0, fork, j,i <0

a linear deterministic second order difference equatiothénthird derivativeyy ji. The homoge-
neous components iA{17) are identical to those irLg) and 5). The inhomogeneous components
again have a first order Markov representation. Using thiéirstpiand transition matrices defined in
appendixA.2 gives B9) of the main text, whose solution takes the fo®)( The solution of the
forgoing, analogously to lower orders, takes the form. Bgursively substituting40) in (A-17),

using the shifting matrices and matching coefficients, wiaiola Sylvester equatiéfin B3
(A-18) (fy+ fy+0)Bs+ fy+ B3ds = — [fxs fre fe fxz} Y3
Now we move on to the partial derivativesyfunction involving the perturbation parameter

To determingyg, j i, we differentiatef with respect t&;_j, &_j ando

ggﬁljiif =fa(ZoX@ X @%) + T DX @ X i) + fra( ZoX] @ %)
(A-19) + f2(X] ® D% ) Knene+ fxZoXi |
whereZoXji = Xo,ji +%.j.i(Et+1®@ Ine)
Evaluating aty, taking expectations, setting the resulting expressiareto yields, and noting the
results from lower orders yields the expression in the texipse solution, again analogously to
lower orders, takes the foryy ji = 0yg j—1i-1, Withyg ji = 0, for j,i < O delivering @2) in the
main text.

To determingy2 ;, we differentiatef with respect te;_; ando twice

3
‘@0

2T f = f,0(DoXQR DX %) + f,2( DX @ Doxi) + f2( 22X %) + f2( DX @ DoXi) + fxggzm

o

28 |t is a straightforward exntension of Lan and Meyer-Gohd&. [ to shown the existence and uniqueness of the
solution to the Sylvester equation is guaranteed by thelsguabint assumption.
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(A-20) WhereZ5,% = g2 + X 2111 Ine) + X2, (€11 @ €t 11 @ Ine)

Evaluating at the nonstochastic steady stg}etéking expectations, and setting the resulting ex-
pression to zero yields the expression in the main text, kvlscstill a second order deterministic
difference equation. The homogeneous components are gpatixg: ;, and they are identical to
those in 6) and 5). The inhomogeneous components can again be rearrangadda ffirst order

Markov representation by using the shifting and transitratrices defined in appendi?2, thus
Yo2i-1 + Yo2,i T Yo2it1
+ { {fxs(V4l31 ®VYaPL@ VY1) + fee([YaP2(So® S)] @ V1) + 2fe(VaB1 ® [yaB2(So @ 1)])

(A-21) 4 fxyaBays (S90S @ 1) | [Et(Et41 @ €141) @ Ing + Fr2 (X2 @ Y1) }S =0
fori=0,1,..., withy 1 =0
The solution of the forgoing takes the form d@#j in the main text Substitutingtd) in (A-21) and

matching coefficients, we obtain a Sylvester equafiam 3,
(A-22)

(t+ )P+ by Bods = —{ | GoluBro V1) + VeSS o)
+ 212 (YaPB1 @ [YaB2(S ® 81)]) + fxyaBays(So® S ® 1) | [Et (€11 @ €r11) @ Inel + fra(Xs2 @ Y1) }
To determinegygs, we differentiatef with respect tao three times
(A-23) D31 = f8(ZoX®@ DX ® DoX) + 2T (DoX @ D5X) + To( 22X @ DoX) + Tk D5x
WhereZgsx = Xg3 + 3Xg2 g8t-+1 + 3 g2 (Et41 © 1) +%3(Er41 © Ero1 ©€r41)
Evaluating this at the nonstochastic steady state anthgéi$i expectation to zero yields
E((2%1) = Fol06 ©% @) B (Err1 @ &1 @ &11)] + 2He[Ee (B0 @ &1 @ 8111) (X @ X2
+ fro[(Xe2 @ %) Et (41 @ €111 @ €141)] + Tx[Yos + XeaBt (Et41 ® €141 @ Et41)]
(A-24) =0

the expression in the text.

2The existence and uniqueness of the solution to the Sylvestetion is guaranteed, see footn8e
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Table 1: Parameter Values for the Model of Section

Parameter 3 T 0 a o Pz (04

Value 0.9896 2.0 0.357 0.4 0.0196 0.95 0.007

See Aruoba, Fernandez-Villaverde, and Rubio-Ramiré@gp
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