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Abstract

Financial risk control has always been challenging and becomes now an even harder problem

as joint extreme events occur more frequently. For decision makers and government regulators,

it is therefore important to obtain accurate information on the interdependency of risk factors.

Given a stressful situation for one market participant, one likes to measure how this stress affects

other factors. The CoVaR (Conditional VaR) framework has been developed for this purpose.

The basic technical elements of CoVaR estimation are two levels of quantile regression: one on

market risk factors; another on individual risk factor.

Tests on the functional form of the two-level quantile regression reject the linearity. A flexi-

ble semiparametric modeling framework for CoVaR is proposed. A partial linear model (PLM)

is analyzed. In applying the technology to stock data covering the crisis period, the PLM out-

performs in the crisis time, with the justification of the backtesting procedures. Moreover, using

the data on global stock markets indices, the analysis on marginal contribution of risk (MCR)

defined as the local first order derivative of the quantile curve sheds some light on the source of

the global market risk.

Keywords: CoVaR, Value-at-Risk, quantile regression, locally linear quantile regression, par-

tial linear model, semiparametric model

JEL classification: C14, C21, C22, C53, G01, G10, G20, G32

1. Introduction

Sufficiently accurate risk measures are needed not only in crisis times. In the last two decades,

the world has gone through several financial turmoils, and the financial market is getting riskier and

the scale of loss soars. Beside marginal extremes that can shock even a well diversified portfolio,

the focus of intensified research in the recent years has been on understanding the interdependence

of risk factors and their conditional structure.
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The most popular risk measure is the Value-at-Risk (VaR), which is defined as the τ -quantile

of the return distribution at time t+ d conditioned on the information set Ft:

V aRτ
t+d

def
= inf{x ∈ R : P(Xt+d ≤ x|Ft) ≥ τ}. (1)

Here Xt denotes the asset return and τ is taking values such as 0.05, 0.01 or 0.001 to reflect negative

extreme risk.

Extracting information in economic variables to predict VaR brings quantile regression into play

here, since VaR is the quantile of the conditional asset return distribution. Engle and Manganelli

(2004) propose the nonlinear Conditional Autoregressive Value at Risk (CaViaR) model, which

uses (lag) VaR and lag returns. Chernozhukov and Umantsev (2001) propose linear and quadratic

time series models for VaR prediction. Kuan et al. (2009) propose the Conditional AutoRegressive

Expectile (CARE) model, and argue that expectiles are more sensitive to the scale of losses. These

studies and many others apply quantile regression in a prespecified often linear functional form.

In a more nonparametric context, Cai and Wang (2008) estimate the conditioned cdf by a double

kernel local linear estimator and find the quantile by inverting the cdf. Schaumburg (2011) uses

the same technique together with extreme value theory for VaR prediction. Taylor (2008) proposes

Exponentially Weighted Quantile Regression (EWQR) for estimating VaR time series.

The aforementioned studies focus mainly on the VaR estimation for single assets and do not

directly take into account the escalated spillover effect in crisis periods. This risk of joint tail

events of asset returns has been identified and studied. Further, Brunnermeier and Pedersen (2008)

show that the negative feedback effect of a ”loss spiral” and a ”margin spiral” leads to the joint

depreciation of assets prices. It is therefore important to develop risk measures which can quantify

the contagion effects of negative extreme event.

Acharya et al. (2010) propose the concept of marginal expected shortfall (MES), which mea-

sures the contribution of individual assets to the portfolio expected shortfall. Via an equilib-

rium argument, the MES is shown to be a predictor to a financial institution’s risk contribution.

Brownlees and Engle (2010) demonstrate that the MES can be written as a function of volatility,

correlation and expectation conditional on tail events. Huang et al. (2011) propose the distress

insurance premium (DIP), a measure similar to MES but computed under the risk-neutral proba-

bility. This measure can therefore be viewed as the market insurance premium against the event

that the portfolio loss exceeds a low level. Adams et al. (2010) construct financial indices on return

of insurance companies, commercial banks, investment banks and hedge funds, and use a linear

model for the VaRs of the four financial indices to forecast the state-dependent sensitivity VaR

(SDSVaR). The risk measures proposed above have some shortcomings though: The computation

of DIP is demanding since this involves the simulation of rare events. MES suffers from the scarcity

of data because it conditions on a rare event.

In Adrian and Brunnermeier (2011) (henceforth AB), the CoVaR concept of conditional VaR

is proposed, which controls the effect of the negative extreme event of some systemically risky

financial institutions. Formally, let C(Xi,t) be some event of a asset i return Xi,t at time t and take

Xj,t as another asset return (e.g. the market index). The CoVaRτ
j|i,t is defined as the τ -quantile of
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the conditional probability distribution:

P
{
Xj,t ≤ CoVaRτ

j|i,t

∣∣∣C(Xi,t),Mt

}
= τ, (2)

where Mt is a vector of market variables defined in Section 2.1. The standard CoVaR approach is to

set C(Xi,t) = {Xi,t = V aRτ
Xi,t

}. In AB, Xj,t is the weekly return which is constructed from a vast

data set comprised of all publicly traded commercial banks, broker dealers, insurance companies,

and real estate companies in the U.S. Further, AB propose ∆CoVaR (measure of marginal risk

contribution) as the difference between CoV aRτ1
j|i,t and CoV aRτ2

j|i,t, where τ1 = 0.5 associated with

the normal state and τ2 = 0.05 associated with the financial distress state.

The formulation of this conditional risk measure has several advantages. First, the cloning

property: After dividing a systemically risky firm into several clones, the value of CoVaR condi-

tioned on the entire firm does not differ from the one conditioned on one of the clones. Second,

the conservativeness. The CoVaR value is more conservative than VaR because it conditions on an

extreme event. Third, CoVaR is endogenously generated and adapted to the varying environment

of the market.

The recipe of AB for CoVaR construction is as follows: In a first step one predicts the VaR of

an individual asset Xi,t through a linear model on market variables:

Xi,t = αi + γ⊤i Mt−1 + εi,t, (3)

where γ⊤i means the transpose of γi and Mt is a vector of the state variables (see Section 2.1). This

model is estimated with quantile regression of Koenker and Bassett (1978) to get the coefficients

(α̂i, γ̂i) with F−1
εi,t(τ |Mt−1) = 0. The VaR of asset i is predicted by

V̂ aRi,t = α̂i + γ̂⊤i Mt−1. (4)

In a second step one models the asset j return as a linear function of asset return i and market

variables Mt:

Xj,t = αj|i + βj|iXi,t + γ⊤j|iMt−1 + εj,t, (5)

again one employs quantile regression and obtains coefficients (α̂j|i, β̂j|i, γ̂j|i). The CoVaR is finally

calculated:

ĈoV aR
AB

j|i,t = α̂j|i + β̂j|iV̂ aRi,t + γ̂⊤j|iMt−1. (6)

In equation (5) the variable Xi,t influences the return Xj,t in a linear fashion. However, the

linear parametric model may not be flexible enough to capture the tail dependence between i and j.

The linearity of the conditioned quantile curves of Xj on Xi is challenged by the confidence bands

of the nonparametric quantile curves, as shown in Figure 1.1. The left tail quantile from linear

parametric quantile regression (red) lies well outside the confidence band (gray dashed curve) of

Härdle and Song (2010). This motivates empirically, that a linear model is not flexible enough for

the CoVaR question at hand.

Nonparametric models can be used to account for the nonlinear structure of the conditional
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Figure 1.1: Goldman Sachs (GS) and Citigroup (C) weekly returns 0.05(left) and 0.1(right) quantile
functions. The y-axis is GS daily returns and the x-axis is the C daily returns. The blue curve are
the locally linear quantile regression curves (see Appendix A). The locally linear quantile regression
bandwidth are 0.1026 and 0.0942. The red lines are the linear parametric quantile regression
line. The antique white dashed curves are the asymptotic confidence band (see Section B) with
significance level 0.05. The sample size N = 546.

quantile, but the challenge for using such models is the curse of dimensionality, as the quantile

regression in CoVaR modeling often involves many variables. Thus, we resort to semiparametric

partial linear model (PLM) which preserves some flexibility of the nonparametric model while

suffers little from the curse of dimensionality.

As an illustration, the VaR/CoVaR of Goldman Sachs (GS) returns are shown, given the returns

of Citigroup (C) and S&P500 (SP). S&P500 index return is used as a proxy for the market portfolio

return.

Choosing market variables is crucial for the VaR/CoVaR estimation. For the variables repre-

senting market states, we follow the most popular choices such as VIX, short term liquidity spread,

etc. In particular, the variable we use for real estate companies, is the Dow Jones U.S. real estate

index. The data is in daily frequency and spans from August 4, 2006 to August 4, 2011.

To see if the estimated VaRs/CoVaRs are accurate, we utilize the backtesting procedures de-

scribed in Berkowitz et al. (2009). We compare three (Co)VaR estimating methods in this study:

VaR computed by linear quantile regression on market variables; CoVaR; PLM CoVaR proposed

here. The VaR is one-sided interval prediction, the violations (the asset return exceeds estimated

VaR/CoVaR) should happen unpredictably if the VaR algorithm is accurate. In other words, the

null hypothesis is that the series of violations of VaR is a martingale difference given all the past

information. Furthermore, if the time series is autocorrelated, we can reject the null hypothesis

of martingale difference right away; therefore, autocorrelation tests can be utilized in this context.

The Ljung-Box test is not the most appropriate approach here since it has a too strong null hy-

pothesis (i.i.d. sequence). Thus, we additionally apply the Lobato test. The CaViaR test, which

is inspired by the CaViaR model, is proposed and shown to have the best overall performance
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by Berkowitz et al. (2009) among other alternative tests with an exclusive desk-level data set. To

illustrate the VaR/CoVaR performances in the crisis time, we separately apply the CaViaR test to

the violations of the whole sample period and to the financial crisis period.

The results show that for the PLM CoVaR of GS given C performs better than the AB and PLM

CoVaR given SP during the financial crisis period from mid 2008 to mid 2009. The nonlinearity

between GS and C returns may convey information which is incapable to be reflected in the market

returns, especially during unstable market conditions.

In contrast to ∆CoVaR, we use a mathematically more intuitive way to analyze the marginal

effect by taking the first order derivative of the quantile function. We call it ”marginal contribution

of risk” (MCR). Bae et al. (2003) and many others have pointed out the phenomenon of financial

contagion across national borders. This motivates us to consider the stock indices of a few developed

markets and explore their risk contribution to the global stock market. MCR results show that

when the global market condition varies, the source of global market risk can be different. To be

more specific, when the global market return is bad, the risk contribution from the U.S. is the

largest. On the other hand, during financially stable periods, Hong Kong and Japan are more

significant risk contributors than the U.S. to the global market.

This study is organized as follows: Section 2 introduces the construction and the estimation

of the PLM model of CoVaR. The backtesting methods and our risk contribution measure are

also introduced in this section. Section 3 presents the Goldman Sachs CoVaR time series and

the backtesting procedure results. Section 4 presents the conclusion and possible further studies.

Appendices describe the detailed estimation and statistical inference procedures used in this study.

2. Methodology

Quantile regression is a well-established technique to estimate the conditional quantile function.

Koenker and Bassett (1978) focus on the linear functional form. An extension of linear quantile

regression is the PLM quantile regression. A partial linear model for the dynamics of assets return

quantile is constructed in this section. The construction is justified by a linearity test based on

a conservative uniform confidence band proposed in Härdle and Song (2010). For more details on

semiparametric modeling and PLM, we refer to Härdle et al. (2004) and Härdle et al. (2000).

The backtesting procedure is done via the CaViaR test. Finally, the methodology of MCR is

introduced, which is an intuitive marginal risk contribution measure. We will apply the method to

a data set of global market indices in developed countries.

2.1. Constructing Partial Linear Model (PLM) for CoVaR

Recall how the CoVaR is constructed:

V̂ aRi,t = α̂i + γ̂iMt−1,

ĈoV aR
AB

j|i,t = α̂j|i + β̂j|iV̂ aRi,t + γ̂⊤j|iMt−1.

where (α̂i, γ̂i) and (α̂j|i, β̂j|i, γ̂j|i) are estimated from a linear model using standard linear quantile

regression.
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We have motivated the need for more general functional forms for the quantile curve. We

therefore relax the model to a non- or semiparametric model. The market variable Mt is mul-

tidimensional and the data frequency here is daily. The following key variables are entering our

analysis:

1. VIX: Measuring the model-free implied volatility of the market. This index is known as the

”fear gauge” of investors. The historical data can be found on the Chicago Board Options

Exchange’s website.

2. Short term liquidity spread: Measuring short-term liquidity risk by the difference between

the three-month treasury repo rate and the three-month treasury bill rate. The repo data

is from the Bloomberg database and the treasury bill rate data is from the Federal Reserve

Board H.15.

3. The daily change in the three-month treasury bill rate: AB find that the changes have better

explanatory power than the levels for the negative tail behavior of asset returns.

4. The change in the slope of the yield curve: The slope is defined by the difference of the

ten-year treasury rate from the three-month treasury bill rate.

5. The change in the credit spread between 10 years BAA-rated bonds and the 10 years treasury

rate.

6. The daily Dow Jones U.S. Real Estate index returns: The index reflects the information of

lease rates, vacancies, property development and transactions of real estates in the U.S.

7. The daily S&P500 index returns: The approximate of the theoretical market portfolio returns.

The variables 3, 4, 5 are from the Federal Reserve Board H.15 and the data of 6 and 7 are from

Yahoo Finance.

First we conduct a statistical check of the linearity between GS return and the market variables

using the confidence band as constructed in Appendix B. As shown in Figure 2.1 (a) and 2.1 (b),

except for some ignorable outsiders, the linear quantile regression line lies in the LLQR asymptotic

confidence band.

On the other hand, there is nonlinearity between two individual assets Xi and Xj . To illustrate

this, we regress Xj on Mt, and then take the residuals and regress them on Xi. Again the Xj,t is

GS daily return and Xi is C daily return. The result is shown in Figure 2.2. The linear QR line

(red) lies well outside the LLQR confidence band (magenta) when the C return is negative. The

linear quantile regression line is fairly flat. The risk of using a linear model is obvious in this figure:

the linear regression can ”average out” the humped relation of the underlying structure (blue), and

therefore imply a model risk in estimation.

Based on the results of the linearity tests above, we construct a PLM model:

Xi,t = αi + γ⊤i Mt−1 + εi,t, (7)

Xj,t = α̃j|i + β̃⊤
j|iMt−1 + lj|i(Xi,t) + εj,t, (8)

6
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Figure 2.1: The scatter plots of GS daily returns to the 7 market variables with the LLQR curves.
The bandwidths are selected by the method described in Appendix A. The LLQR bandwidths are
0.1101, 0.1668, 0.2449, 0.0053, 0.0088, 0.0295 and 0.0569. The data period is from August 4, 2006
to August 4, 2011. N = 1260. τ = 0.05.
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Figure 2.2: The nonparametric part l̂GS|C(·) of the PLM estimation. The y-axis is the GS daily
returns. The x-axis is the C daily returns. The blue curve is the LLQR quantile curve. The red line
is the linear parametric quantile line. The magenta dashed curves are the asymptotic confidence
band with significance level 0.05. The data is from June 25, 2008 to December 23, 2009. 378
observations. Bandwidth =0.1255. τ = 0.05.

where Xi,t,Xj,t are asset returns of i, j firms. Mt is a vector of market variables at time t as

introduced before. If i=S&P500, Mt is set to consist of the first 6 market variables only. Notice

the variable Xi,t enter the equation (8) nonlinearly.

Applying the algorithm of Koenker and Bassett (1978) to (7) and the process described in

Appendix C to equation (8), we get {α̂i, γ̂i} and {α̂j|i, β̂i, l̂(·)} with F−1
εi,t(τ |Mt−1) = 0 for (7) and

F−1
εj,t(τ |Mt−1,Xi,t) = 0 for (8). Finally, we estimate the PLM CoV aRj|i,t by

V̂ aRi,t = α̂i + γ̂⊤i Mt−1, (9)

ĈoV aR
PLM

j|i,t = ˆ̃αj|i +
ˆ̃
β⊤
j Mt−1 + l̂j|i(V̂ aRi,t). (10)

2.2. Backtesting

The goal of the backtesting procedure is to check if the VaR/CoVaR is accurate enough so

that managerial decisions can be made based on them. The VaR forecast is a (one-sided) interval

forecast. If the VaR algorithm is correct, then the violations should be unpredictable, after using

all the past information. Formally, if we define the violation time series as

It =

{
1, if Xt < V̂ aRτ

t ;

0, otherwise.

Where V̂ aRτ
t can be replaced by ̂CoV aRτ

t in the case of CoVaR. It should form a sequence of

martingale difference.
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There is a large literature on martingale difference tests. We adopt Ljung-Box test, Lobato test

and the CaViaR test. The Ljung-Box test and Lobato test aim to check whether the time series

is autocorrelated. If the time series is autocorrelated, then we reject of course the hypothesis that

the time series is a martingale difference.

Particularly, let ρ̂k be the estimated autocorrelation of lag k of the sequence of violation {It}

and n be the length of the time series. The Ljung-Box test statistics is:

LB(m) = n(n+ 2)

m∑

k=1

ρ̂2k
n− k

L
→ χ(m), (11)

as n → ∞.

This test is too strong though in the sense that the asymptotic distribution is derived based

on the i.i.d. assumption. A modified Box-Pierce test is proposed by Lobato et al. (2001), who also

consider the test of no autocorrelation, but their test is more robust to the correlation of higher

(greater than the first) moments. (Autocorrelation in higher moments does not contradict with the

martingale difference hypothesis.) The test statistics is given by

L(m) = n

m∑

k=1

ρ̂2k
v̂kk

L
→ χ(m),

as n → ∞, where

v̂kk =
1
n

∑n−k
i=1 (yi − ȳ)2(yi+k − ȳ)2

{ 1
N

∑n
i=1(yi − ȳ)2}2

.

The CaViaR test, proposed by Berkowitz et al. (2009), is based on the idea that if the sequence

of violation is a martingale difference, there ought to be no correlation between any function of the

past variables and the current violation. One way to test this uncorrelatedness is through a linear

model. The model is:

It = α+ β1It−1 + β2V aRt + ut,

where V aRt can be replaced by CoV aRt in the case of conditional VaR. The residual ut follows a

Logistic distribution since It is binary. We get the estimates of the coefficients (β̂1, β̂2)
⊤. Therefore

the null hypothesis is β̂1 = β̂2 = 0. This hypothesis can be tested by Wald’s test.

We set m = 1 or 5 for the Ljung-Box and Lobato tests. For the CaViaR test, two data periods

are considered separately. The first is the overall data from August 4, 2006 to August 4, 2011. The

second is the data from August 4, 2008 to August 4, 2009, the period when the financial market

reached its bottom. By separately testing the two periods, we can gain more insights into the PLM

model.

2.3. Risk Contribution Measure

The risk contribution of one firm to the market is one of the top concerns among central bankers.

The regulator can restrict the risky behaviors of the financial institution with high risk contribution

to the market, and reduce the institution’s incentive to take more risk. AB propose the idea of
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∆CoVaR, which is defined by

∆CoV aRτ
j|i,t = CoV aRτ

j|i,t − CoV aR0.5
j|i,t. (12)

where CoVaRτ
j|i,t is defined as in the introduction. j, i represent the financial system and an

individual asset. τ = 0.5 corresponds to the normal state of the individual asset i. This is essentially

a sensitivity measure quantifying the effect to the financial system from the occurrence of a tail

event of asset Xi.

In this study we adopt a mathematically intuitive way to measure the marginal effect by search-

ing the first order derivative of the quantile function. Because the spillover effect from stock market

to stock market has already got much attention, it is important to investigate the risk contribution

of a local market to the global stock market. The estimation is conducted as follows:

First, one estimates the following model nonparametrically:

Xj,t = f0.05
j (Xt) + εj , (13)

The quantile function f0.05
j (·) is estimated with local linear quantile regression with τ = 0.05,

described with more details in Appendix A. Xj is the weekly return of the stock index of an

individual country and X is the weekly return of the global stock market.

Second, with f̂0.05
j (·), we compute the ”marginal contribution of risk”(MCR) of institution j by

MCRτ
j =

∂f̂0.05
j (x)

∂x

∣∣∣x=F̂−1

X
(τk)

, (14)

where F̂−1(τk) is a consistent estimator of the τk quantile of the global market return, and it can

be estimated by regressing Xt on the time trend. We put k = 1, 2 with τ1 = 0.5 and τ2 = 0.05.

The quantity (14) is similar to the MES proposed by Acharya et al. (2010) in the sense that the

conditioned event belongs to the information set of the market return, but we reformulate it in the

VaR framework instead of the expected shortfall framework.

There are some properties of the MCR to be described further. First, τk determines the

condition of the global stock market. This allows us to explore the risk contribution from the index

j to the global market given different global market status. Second, the higher the value of MCR,

the more risk factor j imposes on the market in terms of risk. Third, since the function f0.05
j (·) is

estimated by LLQR, the quantile curve is locally linear, and therefore the local first order derivative

is straightforward to compute.

We choose indices j=S&P500, NIKKEI225, FTSE100, DAX30, CAC40, Heng Seng as the

approximate of the market returns of each developed country or market. The global market is

approximated by the MSCI World (developed countries) market index. The data is weekly from

April 11, 2004 to April 11, 2011 and τ = 0.05
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3. Results

3.1. CoVaR Estimation

The estimation results of VaR/CoVaR are shown in this section. We compute three types of

VaR/CoVaR of GS, with a moving window size of 126 business days and τ = 0.05.

First, the VaR of GS is estimated:

V̂ aRGS,t = α̂GS + γ̂⊤GSMt−1, (15)

using linear quantile regression, and Mt ∈ R7 is introduced in Section 2.1.

Second, the CoVaR of GS given C returns is estimated:

V̂ aRC,t = α̂C + γ̂⊤CMt−1; (16)

ĈoV aR
AB

GS|C,t = α̂GS|C + β̂GS|C V̂ aRC,t + γ̂⊤GS|CMt−1. (17)

If the SP replaces C, the estimates are generated from

V̂ aRSP,t = α̂SP + γ̂⊤SP M̃t−1; (18)

ĈoV aR
AB

GS|SP,t = α̂GS|SP + β̂GS|SP V̂ aRSP,t + γ̂⊤GS|SPM̃t−1, (19)

where M̃t ∈ R6 is the vector of market variables without the market portfolio return.

Third, the PLM CoVaR is generated:

V̂ aRC,t = α̂C + γ̂⊤CMt−1; (20)

ĈoV aR
PLM

GS|C,t = ˆ̃αGS|C +
ˆ̃
β⊤
GS|CMt−1 + l̂GS|C(V̂ aRC,t). (21)

If SP replaces C:

V̂ aRSP,t = α̂SP + γ̂⊤SP M̃t−1; (22)

ĈoV aR
PLM

GS|SP,t = ˆ̃αGS|SP + ˆ̃β⊤
GS|SP M̃t−1 + l̂GS|SP (V̂ aRSP,t). (23)

The coefficients in (15), (16), (17), (18), (19), (20) and (22) are estimated from the linear quantile

regression and those in (21) and (23) are estimated from the method described in Appendix C.

Figure 3.1 shows the V̂ aRGS,t sequence. The VaR forecasts (red) seem to form a lower cover of

the GS returns (blue). This suggests that the market variables Mt have some predictive power for

the left tail quantile of the GS return distribution. Figure 3.2 shows the sequences ĈoV aR
AB

GS|SP,t

(cyan) and ĈoV aR
PLM

GS|C,t (light green). As the time series of the estimates is too volatile, we smooth

it further by the median LLQR. The two estimates are similar as the market state is stable, but

during the period of financial instability (from mid 2008 to mid 2009), the two estimates have

different behavior. The performance of these estimates are evaluated by backtesting procedure in

Section 3.2.

Table 3.1 shows the summary statistics of the VaR/CoVaR estimates. The first three rows show

12
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Figure 3.1: The V̂ aRGS,t. The red line is the V̂ aRGS,t and blue stars are daily returns of GS.

The dark green curve is the meadian smoother of the V̂ aRGS,t curve with h=2.75. τ = 0.05. The
window size is 252 days.

the summary statistics of V̂ aRGS,t, V̂ aRC,t and V̂ aRSP,t. The V̂ aRGS,t has lower mean and higher

standard deviation than the other two. Particularly during 2008 to 2009, the standard deviation

of the GS VaR is twice as much as the other two. The mean and standard deviation of the V̂ aRC,t

and V̂ aRSP,t are rather similar. The last four rows show the summary statistics of ĈoV aR
PLM

GS|C,t,

ĈoV aR
AB

GS|C,t, ĈoV aR
PLM

GS|SP,t and ĈoV aR
AB

GS|SP,t. This shows that the CoVaR obtaining from the

AB model has smaller mean but greater standard deviation than the CoVaR obtaining from PLM

model.

Figure 3.3 shows the bandwidth sequence of the nonparametric part of the PLM estimation.

The bandwidth varies with time. Before mid 2007, the bandwidth sequence is stably jumping

around 0.2. After that the sequence becomes very volatile. This may have something to do with

the rising systemic risk.
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Figure 3.2: The CoVaR of GS given the VaR of C. The gray dots are daily returns of GS. The

light green dashed curve is the ĈoV aR
PLM

GS|C,t. The blue curve is the median LLQR smoother of the

light green dashed curve with h = 3.19. The cyan dashed curve is the ĈoV aR
AB

GS|C,t. The purple
curve is the median LLQR smoother of the cyan dashed curve with h = 3.90. The red curve is the
V̂ aRGS,t. τ = 0.05. The moving window size is 126 days.
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Figure 3.3: LLQR bandwidth in the daily estimation of ĈoV aR
PLM

GS|C,t. The average bandwidth is
0.24.

Table 3.1: VaR/CoVaR summary statistics. The overall period is from
August 4, 2006 to August 4, 2011. The crisis period is from August 4,
2008 to August 4, 2009. The numbers in the table are scaled up by 102.

mean-overall sd-overall mean-crisis sd-crisis

V̂ aRGS,t -3.66 3.08 -7.43 4.76

V̂ aRC,t -2.63 1.67 -4.62 2.25

V̂ aRSP,t -2.09 1.57 -3.88 2.24

ĈoV aR
PLM

GS|C,t -4.26 3.84 -8.79 5.97

ĈoV aR
AB

GS|C,t -4.60 4.30 -10.36 6.32

ĈoV aR
PLM

GS|SP,t -3.86 3.30 -8.20 4.69

ĈoV aR
AB

GS|SP,t -5.81 4.56 -12.65 5.56

3.2. Backtesting

For the evaluation of the CoVaR models, we resort to the backtesting procedure described in

Section 2.2. In order to perform the backtesting procedure, the sequences {It} (defined in Section

2.2) have to be computed for all VaR/CoVaR estimates. Figure 3.4 shows the timings of the

violations {t : It = 1} of ĈoV aR
PLM

GS|C,t, ĈoV aR
AB

GS|C,t and V̂ aRGS,t. This figure shows the total

number of violations of PLM CoVaR and CoVaR are similar, while V̂ aRGS,t has more violations

than the both. The V̂ aRGS,t has a few clusters of violations in both financial stable and unstable

periods. This may result from the failure V̂ aRGS,t to adapt for the negative shocks. The violations

of ĈoV aR
PLM

GS|C,t are more evenly distributed. The violations of ĈoV aR
AB

GS|C,t have large clusters

during financially stable period, while the violation during financial crisis period is meager. This

contrast suggests that ĈoV aR
AB

GS|C,t tend to overreact, as it is slack during the stable period but is

too tight during the unstable period.

Figure 3.5 shows the timings of the violations {t : It = 1} of ĈoV aR
PLM

GS|SP,t, ĈoV aR
AB

GS|SP,t
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and V̂ aRGS,t. The overall number of violations of ĈoV aR
PLM

GS|SP,t is more than that of V̂ aRGS,t,

and it has many clusters. ĈoV aR
PLM

GS|SP,t behaves differently from ĈoV aR
PLM

GS|C,t. The SP may not

be more informative than C, though the efficient market hypothesis suggests so. The violation of

ĈoV aR
AB

GS|SP,t is fewer than the other two measures, and the clustering is not significant.

2007 2008 2009 2010 2011

 

 

Figure 3.4: The timings of violations {t : It = 1}. The top circles are the violations of the

ĈoV aR
PLM

GS|C,t, totally 95 violations. The middle squares are the violations of ĈoV aR
AB

GS|C,t, totally

98 violations. The bottom stars are the violations of V̂ aRGS,t, totally 109 violations. Overall data
N = 1260.

2007 2008 2009 2010 2011

Figure 3.5: The timings of violations {t : It = 1}. The top circles are the violations of

ĈoV aR
PLM

GS|SP,t, totally 123 violations. The middle squares are the violations of ĈoV aR
AB

GS|SP,t,

totally 39 violations. The bottom stars are the violations of V̂ aRGS,t, totally 109 violations. Over-
all data N = 1260.

The backtesting procedure is performed separately for each sequence of {It}. The null hypothesis

is that each sequence {It} forms a series of martingale difference. Six different tests are applied for
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each {It}: Ljung-Box tests with lags 1 and 5, Lobato test with lags 1 and 5 and finally the CaViaR

test with two data periods: overall and crisis period.

The result is shown in Table 3.2. First, in Panel 1 of Table 3.2, the V̂ aRGS,t is rejected by the

LB(5) test and the two CaViaR tests. This shows that a linear quantile regression on the seven

market variables may not give accurate estimates, in the sense that the violation {It} of V̂ aRGS,t

does not form a martingale sequence. Next we turn to the ĈoV aR
AB

GS|SP,t and ĈoV aR
PLM

GS|SP,t.

In Panel 2, the low p-values of the two CaViaR tests show that both the AB model and PLM

model conditioned on SP are rejected, though the p-value of the AB model almost reaches the 5%

significant level. In particular, the ĈoV aR
PLM

GS|SP,t is rejected by the L(5) and LB(5) tests. Both

the parametric and semiparametric models fail with this choice of variable. This suggests that the

market return does not provide enough information in risk measurement.

We therefore need more informative variables. Panel 3 of Table 3.2 illustrates this by using C

daily returns, which may contain information not revealed in the market and improve the perfor-

mance of the estimates. The ĈoV aR
AB

GS|C,t is rejected by the two CaViaR tests and the LB(1) test

with 0.1% and 5% significant level. However, ĈoV aR
PLM

GS|C,t is not rejected by the CaViaR-crisis

test. This implies that the nonparametric part in the PLM model captures the nonlinear effect of

C returns to GS returns, which can lead to better risk-measuring performance.

Table 3.2: Goldman Sachs VaR/CoVaR backtesting p-values. The overall period is from August
4, 2006 to August 4, 2011. The crisis period is from August 4, 2008 to August 4, 2009. LB(1) and
LB(5) are the Ljung-Box tests of lags 1 and 5. L(1) and L(5) are the Lobato tests of lags 1 and 5.
CaViaR-overall and CaViaR-crisis are two CaViaR tests described in Section 2.2 applied on the
two data periods.

Measure LB(1) LB(5) L(1) L(5) CaViaR-overall CaViaR-crisis
Panel 1

V̂ aRGS,t 0.3449 0.0253* 0.3931 0.1310 1.265 ×10−6*** 0.0024**
Panel 2

ĈoV aR
AB

GS|SP,t 0.0869 0.2059 0.2684 0.6586 8.716×10−7*** 0.0424*

ĈoV aR
PLM

GS|SP,t 0.0518 0.0006*** 0.0999 0.0117* 2.2×10−16*** 0.0019**

Panel 3

ĈoV aR
AB

GS|C,t 0.0489* 0.2143 0.1201 0.4335 3.378 ×10−9*** 0.0001***

ĈoV aR
PLM

GS|C,t 0.8109 0.0251* 0.8162 0.2306 2.946×10−9*** 0.0535

*, ** and *** denote significance at the 5, 1 and 0.1 percent levels.

3.3. Global Risk Contribution

In this section we present the MCR (defined in Section 2.3), which measures the marginal

risk contribution of risk factors. We choose τ1 = 0.5, associated to the normal (median) state

and τ2 = 0.05, associated to an negative extreme state. Figure 3.6 shows the MCRτ1
j from local

markets j to the global market. When the MSCI World is (hypothetically) at its normal state,

one concludes that the Heng Seng in normal times contributes the most to the MSCI World at all

times. The NIKKEI225 places second; the contribution from S&P500 varies most with the time;
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Figure 3.6: The MCRτ1
j , τ = 0.5. j:CAC, FTSE, DAX, Heng Seng, S&P500 and NIKKEI225. The

global market return is approximated by MSCI World.

the risk contribution from DAX30 is nearly zero. The contribution from CAC40 and FTSE100 are

negative.

Assuming that the MSCI World is at its bad state (τ2 = 0.05), the MCRτ2
j differs from MCRτ1

j ,

see Figure 3.7. One sees that the S&P500 imposes more pressure on the world economy than the

other countries. Especially during the financial crisis of 2008 and 2009. The contribution from

Heng Seng is no longer of the same significance. The three European markets are relatively stable.

This analysis suggests that the risk contribution from individual stock market varies a lot with

the state of global economy.

4. Conclusion

In this study we construct a PLM model for the CoVaR, and we compare it to the AB model

by backtesting. Results show that PLM CoVaR is preferable especially during a crisis period. The

study of the MCR reveals the fact that the risk from each country can vary with the state of global

economy.

As an illustration, we only study the Goldman Sachs conditional VaR with Citigroup and

S&P500 as conditioned risk sources. In practice, we need to choose variables. In Hautsch et al.

(2011), the Least Absolute Shrinkage and Selection Operator (LASSO) techniques is used to deter-

mine the most relevant systemic risk sources from a pool of financial institutions. A VAR (Vector

Autoregression) model may be also suitable for capturing the asset dynamics, but the estimation

may be more involved. We may include other firm specific variables such as corporate bond yields

as these variables can bear other information which is not included in the stock returns or stock
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Figure 3.7: The MCRτ2
j , τ = 0.05. j:CAC, FTSE, DAX, Heng Seng, S&P500 and NIKKEI225.

The global market return is approximated by MSCI World.

indices.

Appendices

A. Locally Linear Quantile Regression (LLQR)

Let {(Xi, Yi)}
n
i=1 ⊂ R2 be i.i.d. bivariate random variables. Denote by FY |x(u) the conditional

cdf and l(x) = F−1
Y |x(τ) the conditional quantile curve to level τ , given observations {(xi, yi)}

n
i=1,

one may write this as

yi = l(xi) + εi,

with F−1
ε|x (τ) = 0. A locally linear kernel quantile estimator (LLQR) is estimated as l̂(x0) = â0

from:

(â0, b̂0) = argmin
{a0,b0}

n∑

i=1

K

(
xi − x0

h

)
ρτ {yi − a0 − b0(xi − x0)} , (24)

where h is the bandwidth, K(·) is a kernel and ρτ (·) is the check function given by

ρτ (u) = (τ − 1{u<0})u (25)
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Figure A.1 illustrates the check functions. Different loss functions give different estimates. u2

corresponds to the conditional mean. ρτ (u) corresponds to the conditional τth quantile.
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5

Figure A.1: This figure presents the check function. The dotted line is u2. The dashed and solid
lines are check functions ρτ (u) with τ = 0.5 and 0.9 respectively.

It is shown by Fan et al. (1994) that the locally linear kernel estimator is asymptotically efficient

in a minimax sense. It also possesses good finite sampling property which is adaptive to a variety

of empirical density g(x) and has good boundary property.

Next, we describe the method to compute the bandwidths. The approach used here follows

Yu and Jones (1998). The bandwidth is chosen by

hτ = hmean

[
τ(1− τ)ϕ{Φ−1(τ)}−2

]1/5
, (26)

where hmean is the locally linear mean regression bandwidth, which can be computed by the algo-

rithm described in Ruppert and Wand (1995) or Ruppert et al. (1995). ϕ(·) and Φ(·) are the pdf

and cdf of the standard normal distribution. Since we discuss the case for VaR, τ is usually small.

hτ needs to be enlarged to allow for more smoothing (usually taking 1.5hτ or 2hτ ).

The approach is acceptable but not so flexible because it is based on assuming the quantile func-

tions are parallel. A more flexible approach was developed by Härdle, Spokoiny and Wang (2011).

In order to stabilize the bandwidth choice, we first regress yi on the rank of the corresponding xi

and then rescale the resulted estimated values to the original x space. Carroll and Härdle (1989)

show that this local bandwidth estimator and the global bandwidth estimator are asymptotically

equivalent.

B. Confidence Band for Nonparametric Quantile Estimator

The uniform confidence band of the quantile estimator is based on the Theorem 2.2 and Corol-

lary 2.1 presented in Härdle and Song (2010). The details are as follows.

Let {(Xi, Yi)}
n
i=1 be as in Appendix A. Define Kh(u) = h−1K(u/h) and similar to (24) let ln(x)
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Figure A.2: GS and C weekly returns 0.90(left) and 0.95(right) quantile functions. The y-axis is
GS daily returns and the x-axis is the C daily returns. The blue curves are the LLQR curves
(see Appendix A). The LLQR bandwidths are 0.0942 and 0.1026. The red lines are the linear
parametric quantile regression line. The antique white curves are the asymptotic confidence band
(see Appendix B) with significance level 0.05. N = 546.

and l(x) are zeros (w.r.t. θ) of the functions:

H̃n(θ, x)
def
= n−1

n∑

i=1

Kh(x−Xi)ρτ (Yi − θ);

H̃(θ, x)
def
=

∫

R

f(x, y)ρτ (y − θ)dy,

where ρτ (·) is the check function defined as (25).

THEOREM B.1. Let h = n−δ, 1
5 < δ < 1

3 , λ(K) =
∫ A
−AK2(u)du, where K(·) is supported on

[−A,A]. J = [0, 1]. Define c1(K) = {K2(A) +K2(−A)}/2λ(K), c2(K) =
∫ A
−A{K

′(u)}2du/2λ(K)

and

dn =

{
(2δ log n)1/2 + (2δ log n)−1/2

[
log{c1(K)/π1/2}+ 1

2{log δ + log log n}
]
, if c1(K) > 0;

(2δ log n)1/2 + (2δ log n)−1/2 log{c2(K)/2π}, otherwise.

Then

P

[
(2δ log n)1/2

{
sup
x∈J

r(x)|ln(x)− l(x)|/λ(K)1/2 − dn

}
< z

]
→ exp{−2 exp(−z)},

as n → ∞, with

r(x) = (nh)1/2f{l(x)|x}{fX(x)/τ(1 − τ)}1/2,

where fX(·) is the marginal pdf for X and f(·|x) is the conditional pdf of Y on X = x.

The corollary followed by the theorem explicitly indicates how a uniform confidence interval

can be constructed.
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COROLLARY B.1. An approximate (1− α)× 100% confidence band is

ln ± (nh)−1/2{τ(1− τ)λ(K)/f̂X(t)}1/2f̂−1{l(t)|t}{dn + c(α)(2δ log n)−1/2},

where c(α) = log 2−log | log(1−α)| and f̂X(t), f̂{l(t)|t} are consistent estimates for fX(t), f{l(t)|t}.

Figure 1.1 is done by the techniques introduced in Appendices A and B. Another illustration

with right tail quantiles is in Figure A.2. We plot the LLQR curve for 0.9 and 0.95 quantile. Both

the two linear quantile regression lines lie outside the LLQR confidence band as the Citigroup

returns are positive.

C. PLM model estimation

For the PLM estimation, we adopt the algorithm described in Härdle, Ritov and Song (2011).

Given data {(Xt, Yt)}
T
t=1 bivariate and {Mt}

T
t=1 multivariate random variables. The PLM is:

yt = α+ β⊤Mt−1 + l(xt) + εt.

Let an denote an increasing sequence of positive integers and set bn = a−1
n . For each n = 1, 2, ...,

dividing the interval [0, 1] in an subintervals Int, t = 1, ..., an with equal length bn. On each Int,

l(·) can approximately be taken as a constant.

The PLM estimation procedure is:

1. Inside each partition Int, a linear quantile regression is performed to get β̂i, then their weighted

mean gives β̂. Formally, let ρτ (·) be the check function defined as (25), l1, ..., lan are constants,

β̂ = argmin
β

min
l1,...,lan

n∑

t=1

ρτ

{
Xj,t − α− β⊤Mt−1 −

an∑

m=1

lm1(Xi,t ∈ Int)

}

2. Computing the LLQR nonparametric quantile estimates of l(·) as outlined in Appendix A

from {(Xi,t,Xj,t − α̂− β̂⊤Mt−1)}
N
t=1.
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