
Strid, Ingvar

Working Paper

Metropolis-Hastings prefetching algorithms

SSE/EFI Working Paper Series in Economics and Finance, No. 706

Provided in Cooperation with:
EFI - The Economic Research Institute, Stockholm School of Economics

Suggested Citation: Strid, Ingvar (2008) : Metropolis-Hastings prefetching algorithms, SSE/EFI
Working Paper Series in Economics and Finance, No. 706, Stockholm School of Economics, The
Economic Research Institute (EFI), Stockholm

This Version is available at:
https://hdl.handle.net/10419/56369

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/56369
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

E¢ cient parallelisation of Metropolis-Hastings
algorithms using a prefetching approach

Ingvar Strid �

Dept. of Economic Statistics and Decision Support,
Stockholm School of Economics

SSE/EFI Working Paper Series in Economics and Finance No. 706

2009-12-02 (revised version)

Abstract

Prefetching is a simple and general method for single-chain parallelisation of the
Metropolis-Hastings algorithm based on the idea of evaluating the posterior in par-
allel and ahead of time. Improved Metropolis-Hastings prefetching algorithms are
presented and evaluated. It is shown how to use available information to make
better predictions of the future states of the chain and increase the e¢ ciency of
prefetching considerably. The optimal acceptance rate for the prefetching random
walk Metropolis-Hastings algorithm is obtained for a special case and it is shown
to decrease in the number of processors employed. The performance of the algo-
rithms is illustrated using a well-known macroeconomic model. Bayesian estimation
of DSGE models, linearly or nonlinearly approximated, is identi�ed as a potential
area of application for prefetching methods. The generality of the proposed method,
however, suggests that it could be applied in other contexts as well.
Keywords: Prefetching, Metropolis-Hastings, Parallel Computing, DSGE
model, Optimal acceptance rate, Markov Chain Monte Carlo (MCMC)

�Email adress: ingvar.strid@hhs.se. Tel: +4687369232. Fax: +468348161. Permanent adress: Stock-
holm School of Economics, P.O. Box 6501, SE-113 83 Stockholm, Sweden. I thank Sune Karlsson, John
Geweke, Ingelin Steinsland, Karl Walentin, Darren Wilkinson and Mattias Villani for comments and dis-
cussions that helped improve this paper. I also thank seminar participants at Sveriges Riksbank, Örebro
University and the 14th International Conference on Computing in Economics and Finance in Paris. The
Center for Parallel Computers at the Royal Instititute of Technology in Stockholm provided computing
time for experiments conducted in the paper.

1 Introduction

E¢ cient single-chain parallelisation of Markov Chain Monte Carlo (MCMC) algorithms
is di¢ cult due to the inherently sequential nature of these methods. Exploitation of the
conditional independence structure of the underlying model in constructing the paral-
lel algorithm and parallelisation of a computationally demanding likelihood evaluation
are examples of problem-speci�c parallel MCMC approaches (Wilkinson (2006); Strid
(2007b)). The prefetching approach and �automatic�parallelisation using parallel matrix
routines are more general approaches (Brockwell (2006); Yan et al. (2007)).
In this paper we propose simple improvements to the prefetching Metropolis-Hastings

algorithm suggested by Brockwell (2006), which is a parallel processing version of the
method originally proposed by Metropolis et al. (1953) and later generalised by Hastings
(1970). As the name suggests the idea of prefetching is to obtain several draws from the
posterior distribution in parallel via multiple evaluations of the posterior ahead of time.
It is assumed that the proposal density depends on the current state of the chain, such
that the future states must be predicted. We show how the random walk Metropolis-
Hastings (RWMH) prefetching algorithm can be improved by utilising information on the
acceptance rate, the posterior and the sequence of realised uniform random numbers in
making these predictions. It is also explained how the optimal acceptance rate of the
RWMH algorithm depends on the number of processors in a parallel computing setting.
When the proposal density does not depend on the current state the prediction problem

vanishes. Parallelisation of the Metropolis-Hastings algorithm is simpli�ed considerably
and reminiscent of parallelisation by running multiple chains. The attractiveness of the
independence chain Metropolis-Hastings (ICMH) algorithm is therefore obvious from a
parallel computing perspective.
The main focus here is on developing e¢ cient prefetching versions of the one-block

RWMH algorithm. The one-block case is the most attractive setting from a pure parallel
e¢ ciency perspective. Further it allows for a simple exposition of concepts and algorithms.
The prefetching method generalises to the multiple blocks case, as we describe brie�y. In
general, however, we expect it to be less e¤ective in that context, at least in situations
where some of the full conditional posteriors can be sampled directly using Gibbs updates.
Prefetching has obvious limitations in terms of parallel e¢ ciency but there are at least

three reasons why the approach is still interesting. First is the generality of the one-block
prefetching method; it is largely problem independent. Second, prefetching is easy to
combine with other parallel approaches and can therefore be used to multiply the e¤ect
of a competing parallel algorithm, via construction of a two-layer parallel algorithm. As
a result, even if prefetching, by itself, is reasonably e¢ cient only for a small number
of processors its contribution to overall performance is potentially large. Finally, the
method is easy to implement and provides a cheap way of speeding up already existing
serial programs.
The prefetching algorithms are applied exclusively in the context of Bayesian estima-

1

tion of Dynamic Stochastic General Equilibrium (DSGE) models. Estimation of large-
scale linearised DSGE models or nonlinearly approximated DSGE models of any size are
computationally demanding exercises. This class of models is also chosen because the
one-block RWMH algorithm has been the predominant choice of sampling method, for
reasons explained below.
Despite the focus on macroeconomic models the generality of the prefetching approach

suggests that the methods should be useful in other contexts. Estimation of long mem-
ory time series models and �-stable distributions using the RWMH algorithm are direct
examples (Brockwell (2006); Lombardi (2007)). For latent variable models we argue that
prefetching is suitable in conjunction with marginalisation techniques whereas other paral-
lel approaches are required with sampling schemes based on data augmentation and Gibbs
updates. To illustrate this further we discuss how to apply prefetching methods to the
hierarchical Bayesian models with Gaussian Markov Random Field (GMRF) components
encountered, for example, in spatial statistics (Knorr-Held and Rue (2005)).
In section 2 a brief overview of parallel MCMC is given. In section 3 terminology is

introduced and the main ideas are conveyed via some simple examples before the algo-
rithms are presented. In section 4 the prefetching algorithms are illustrated using two
example problems. First the algorithms are compared using a well-known medium-scale
macroeconomic model due to Smets and Wouters (2003) and the potential gains from
using prefetching methods in the context of Bayesian estimation of large-scale linearised
DSGE models are discussed. Second the algorithms are applied to the nonlinear esti-
mation of a small DSGE model in an easy-to-use personal high performance computing
(PHPC) environment, using Matlab on a multi-core computer. Finally, in section 5 it is
illustrated how prefetching can be combined with lower level parallelism to increase the
overall parallel e¢ ciency of an estimation algorithm.

2 A brief overview of parallel MCMC

Parallel algorithms require the existence of independent tasks that can be performed
concurrently. The granularity, or size, of the tasks determines to what extent an algorithm
can be successfully parallelised. Bayesian inferential techniques �t unequally well with the
parallel paradigm. Nonsequential methods, e.g. importance sampling, are better suited
for parallelisation than sequential methods, such as Gibbs sampling. The relative merits
of di¤erent sampling algorithms thus change in a parallel setting. This becomes apparent
below when the random walk prefetching and parallel independence chain Metropolis-
Hastings algorithms are compared. Furthermore, as we demonstrate in this paper the
optimal scaling of the proposal density of the RWMH algorithm changes in a parallel
computing environment, since statistical e¢ ciency is no longer the sole concern.
The most obvious approach to parallel Metropolis-Hastings is simply to run multiple

chains in parallel. This parallel chains approach does not require any parallel programming

2

although a parallel program could be used to automise the procedure of running the same
program with di¤erent inputs on several machines (Rosenthal (2000); Azzini et al. (2007)).
In some situations it may also be of interest to parallelise a single chain. Poor mix-

ing and long burn-in times are factors which increase the attractiveness of single-chain
parallelisation (Wilkinson (2006)). More generally, MCMC methods are computationally
intensive for a wide range of models and can require days or even weeks of execution time.
Parallelisation of a single chain can be divided into within and between draw paralleli-

sation. The former includes, necessarily problem-speci�c, parallelisation of the likelihood
evaluation, since typically this is the computationally challenging part of the posterior
evaluation (Strid (2007b)). The blocking strategy based on exploitation of the underlying
model�s conditional independence structure also falls into this category (Wilkinson (2006);
Whiley and Wilson (2004)). In both these approaches several processors collaborate to
obtain a draw from the posterior. Between draw parallelism has been given the name
prefetching (Brockwell (2006)). In the one-block prefetching approach each processor
works independently on a posterior evaluation.
Parallel independence chainMetropolis-Hastings (ICMH) and parallel approaches based

on regeneration are important special cases (Brockwell and Kadane (2005)). From a paral-
lel computing perspective both these methods are largely equivalent to the parallel chains
approach. Any other single-chain parallel algorithm requires frequent communication be-
tween processors. The precise nature of the parallel computer then determines whether an
algorithm can be successfully used. Within-draw parallel algorithms are expected to be
(typically substantially) more communication intensive than the prefetching algorithm.
Hence if a particular parallel computer is deemed unsuitable for the prefetching algorithm,
e.g. because the interconnection network is too slow in relation to the capacity of proces-
sors, then it should be even more inappropriate for any other, competing, within-draw
single-chain parallel algorithm.

3 Prefetching

3.1 Terminology

The objective is to generate draws, f�igRi=1 where R is the length of the chain, from
a posterior distribution, using the one-block Metropolis-Hastings prefetching algorithm.
Throughout the paper we use the convention that parameters with superindices refer to
draws whereas parameters with subindices refer to proposals. The assumption that all
parameters in the vector � are updated jointly, i.e. in one block, allows for a simple
exposition of concepts.
The prefetching algorithm can be pictured using a tree; here called a Metropolis tree

(�gure 1). The nodes in the tree represent the possible future states of the chain. The
number of levels of the tree, K, is related to the number of nodes,M; throughM = 2K�1.

3

The branches represent the decisions to accept or reject a proposal. Accepts are pictured
as down-left movements and rejects as down-right movements in the tree.

Figure 1 Four-level Metropolis tree.

��������

HHHHHHHH
�

�
�

�

@
@
@
@

�
�

�
�

@
@
@
@

�
�
�
�

A
A
A
A

A
A
A
A

�
�
�
�

�
�
�
�

A
A
A
A

A
A
A
A

�
�
�
�

s1
s2

A R RA

s 3
s4 s5 s6 s7

s8A R A R A R A Rs9 s10 s11 s12 s13 s14 s15

Accept Reject

Level 1

Level 2

Level 3

Level 4

A node in the tree is associated with a state of the chain and a proposal based on
this state. An evaluation of a proposed parameter will always occur at the start node
i1 = 1. This corresponds to the evaluation required for a serial Metropolis-Hastings
algorithm. The state of the chain at node i1 is �i, assuming that i draws have been
obtained previously, and the proposed parameter is �1 v f (:j�i). If �1 is accepted the
chain moves from node 1 to node 2, with state �i+1 = �1, and otherwise the chain moves
to node 3 and �i+1 = �i. More generally the states of the chain at nodes ip and 2ip + 1
are the same whereas the proposed parameter is unique to each node.
The number of processes/processors (the terms are used interchangeably in this paper)

is given by P . A description of the P nodes and the associated proposed parameters, at
which the posterior is evaluated in parallel, is called a tour of size P

T (P) = fi1; i2; :::; iP ; �i1 ; �i2 ; :::; �iP g .

Often we refer to a tour merely by the node indices, assuming that it is understood how
to determine the parameter points. The number of draws, ~D (P; T), produced by a tour is
a stochastic variable with support 1; :::; P . A chain consists of the draws obtained from a
sequence of tours, fTngNn=1, and the last parameter reached by a tour becomes the starting
point for the next tour.
For an even node ip the parent node is

ip
2
and for an odd node it is ip�1

2
. If a node

belongs to a tour, then its parent must also belong to the tour. The expected number of
draws obtained from a tour of size P is denoted D (P; T) and it is given by

D (P; T) =
PX
p=1

Pr (ip) , (1)

4

where Pr (ip) is the probability of reaching node ip and trivially Pr (1) = 1. The expected
number of draws of the optimal tour, the tour that maximises D (P; T) conditional on the
branch probabilities in the Metropolis tree, is denoted D (P) :
For some of the algorithms below the expected draws per tour can be obtained exactly

whereas for others it is estimated via the average

�d =
1

N

NX
n=1

dn, (2)

using the output of the Metropolis-Hastings prefetching algorithm, where fdngNn=1 are the
realised number of draws from the tours fTngNn=1 and

�d
p�! D,

by a law of large numbers. To obtain a chain of length R the required number of tours
is N = ceil

�
R= �d

�
and ~R = NP > R posterior evaluations occur in total. Thus ~R� R of

the posterior evaluations are useless.
Expected draws per tour, D(P), is equivalent to the theoretical speedup of the al-

gorithm, i.e. it is the speedup in the absence of communication costs and other factors
which a¤ect parallel e¢ ciency in practice. Draws per tour therefore provides an upper
bound on the observed relative speedup

S (P) =
T (1)

T (P)
, (3)

where T (p) is the time of executing the parallel program using p processors in a particular
hardware and software environment. The di¤erence D(P) � S (P) > 0 thus depends on
the precise nature of the parallel computing environment.
The maximum possible depth (MaPD) is the maximum number of draws that can be

obtained from a tour, such that MaPD � P . Also, let L = L (ip) be the function that
maps Metropolis tree indices to levels, e.g. L (7) = 3. A branched tour is a tour for
which MaPD < P . In other words it is a tour with the property that at least two nodes
at the same level of the Metropolis tree are evaluated, i.e. L (ip) = L (i~p) for some pair
ip; i~p 2 T . A nonbranched tour satis�es MaPD = P , or alternatively L (ip) = P for
exactly one ip 2 T . The concepts are illustrated in �gure 2.
A static prefetching algorithm is an algorithm where all tours consist of the same nodes,

i.e. the indices i1; :::; iP are constant across tours. For a dynamic prefetching algorithm,
on the other hand, the nodes of the tour vary as we move through the chain.
Parallel random number generation is not an issue in our context since naturally all

random numbers are generated by one process. The random numbers should be generated
such that the chain is independent of the number of processors used. If this is the case
we say that the random numbers are draw-speci�c and it is assured that prefetching does

5

Figure 2 Tours.

��������
@
@
@
@
A
A
A
A

s1
s2

Rs5

Rs11

A

a) Nonbranched tour b) Branched tour
P=MaPD=4 P=8, MaPD=5

��������

HHHHHHHH
@
@
@
@

@
@
@
@

�
�

�
�

A
A
A
A
B
B
B
BB

s1
s2

R R

s 3
s5 s6

A s7

Rs15

A R

s31
R

not a¤ect the statistical properties of the chain. This is an implementational issue. The
attachment of random numbers to draws implies that if tour n � 1 produces dn�1 < P
draws then the random numbers attached to levels dn�1 + 1; :::; P of the Metropolis tree,
i.e. the levels that are not reached by the tour, should instead be used in tour n.

3.2 Examples

EXAMPLE 1 Assume that two processors, P1 and P2, are available for implementa-
tion of the random walk Metropolis-Hastings (RWMH) algorithm. The �rst processor is
necessarily employed for evaluation of the posterior kernel p at

�1 = �
i + �i+1,

where �i is the current state of the chain.
The second processor, P2, can be used either to prepare for an accept in the �rst

stage, i.e. for evaluation of the posterior at

�2 = �1 + �
i+2 = �i + �i+1 + �i+2,

or to prepare for a reject and evaluate the posterior at

�3 = �
i + �i+2.

Assume that the acceptance probability can be chosen approximately as � by proper
selection of the increment density g (�), e.g. by scaling the covariance matrix of a Normal

6

proposal density appropriately. Now, if � < 0:5 it is obviously optimal to use P2 to
prepare for a reject at the �rst stage (R1) and the optimal tour is T (2) = f1; 3g.
If the �rst proposal is rejected two draws are obtained in one time unit using the two

processors. If, on the other hand, �1 is accepted the posterior evaluation at �3 is useless.
In this case one draw is obtained in one time unit using two processors. The expected
number of draws per time unit, or the theoretical speedup, is

D (2; f1; 3g) = �+ 2 (1� �) = 2� �.
This is an example of static prefetching since the tours that constitute the chain will

contain the same node indices. It should also be noted that if instead � > 0:5 the analysis
is symmetric. In the remainder of the paper we restrict attention to the case � < 0:5.
The reason for this is our focus on the random walk variant of the Metropolis-Hastings
method and it is further motivated by the discussion in section 3.3.5 below.

EXAMPLE 2 In the case of three processors, P1,P2 and P3, assume � < 0:5 as before.
The optimal allocation of P1 and P2 is clearly the same as in the example above. For
the third processor there are three options. First it can be employed for evaluation of

�7 = �
i + �i+3,

i.e. anticipating rejects in the �rst two stages (R1,R2). A second possibility is to evaluate
�2 in anticipation of an accept at the �rst stage. This yields the branched tour f1; 2; 3g
and D (3; f1; 2; 3g) = 2 draws are obtained with certainty, since P2 was used to prepare
for a reject at the �rst stage.
The �nal possibility is to prepare for a reject in the �rst stage followed by an accept

in the second stage (R1,A2) and evaluate

�6 = �
i + �i+2 + �i+3.

In the �rst case (R1,R2) the expected number of draws is

D (3; f1; 3; 7g) = �+ 2 (1� �)�+ 3 (1� �)2 . (4)

For example, with � = 0:25 this yields 2:31. It is optimal to choose the nonbranched tour
f1; 3; 7g if

D (3; f1; 3; 7g) > D (3; f1; 2; 3g) = 2,
which is if

� � 3�
p
5

2
� 0:38.

Note that
D (3; f1; 3; 7g)�D (3; f1; 3; 6g) = (1� �) (1� 2�) > 0,

for � < 0:5 so it is never optimal to prepare for (R1,A2).
Again, if instead � > 0:5 is assumed the optimal tour for � �

p
5�1
2

� 0:62 would be
given by f1; 2; 4g due to the symmetry.

7

EXAMPLE 3 In the random walk Metropolis-Hastings algorithm a proposal at stage
i + 1 is accepted with probability �i+1 = min fX i+1; 1g, i.e. if ui+1 < X i+1 for some
ui+1 � U [0; 1] where

X i+1 =
p (�i + �i+1)

p (�i)
.

Consider example 1 again and assume that ui+1 = 10�5 where ui+1 is the realised uniform
random number associated with draw i + 1. Clearly, in this hypothetical situation it is
wise to use P2 to prepare for an accept, assuming no information about the posterior ratio
X i+1 is available. The sequence of uniform random numbers, fuigRi=1 which are �xed from
the outset, thus carries some information on how to best structure prefetching.

EXAMPLE 4 The acceptance rate, �; and the sequence of uniform random numbers,
fuigMi=1, can be used to improve the e¢ ciency of prefetching. Finally, knowledge about
the posterior, p, can be used to make better predictions on where the chain is moving.
Assume that an approximation to the posterior, p�, is available and that the evaluation
of p� takes a fraction of the time to evaluate p: Then this approximate distribution can
be used to suggest the states which are likely to be visited subsequently.
In the limiting case when p� = p we say that prefetching is perfect; it is analogous to

importance sampling using the posterior as the importance function. In other words it is
a situation when neither prefetching or importance sampling is necessary.

3.3 Algorithms

3.3.1 One-block random-walk Metropolis-Hastings prefetching

In this section the one-block Metropolis-Hastings prefetching algorithm is presented. This
algorithm applies when all the parameters in � are updated jointly and the proposal
density f depends on the current state of the chain, e.g. for the one-block random walk
Metropolis-Hastings sampler which we focus on here. It would be possible to use other
proposal densities, e.g. a more general autoregressive proposal, but this route is not
pursued here. Multiple block prefetching is discussed brie�y at the end of this section
and in appendix B.
The algorithm assumes that the posterior evaluation time is not parameter dependent

and it is intended for application on a homogeneous cluster. The key assumption for
application of the algorithm in practice is, loosely speaking, that the time of a posterior
evaluation is signi�cant in relation to the other steps of the algorithm.

Algorithm 1 Metropolis-Hastings prefetching algorithm

1. Choose a starting value �0: Set the draw counter S0 = 0.

8

2. (Prefetching step) Assume that the chain is in state �Sn�1 when the nth tour begins,
where Sn�1 is the state of the draw counter after n� 1 completed tours. Construct
a tour, Tn = fi1; :::; iP ; �i1 ; �i2 ; :::; �iP g (serial).

3. Distribute �ip ; p = 1; ::; P , to the processes (scatter).

4. Evaluate p
�
�ip
�
in parallel.

5. Return p
�
�ip
�
(gather).

6. (Metropolis-Hastings step) Run the Metropolis-Hastings algorithm for the tour T to
generate Dn draws, where 1 � Dn � P: Update the draw counter, Sn = Sn�1 +Dn,
and assign the starting state for the next tour, �Sn (serial).

7. Go to 2. Stop when Sn � R draws from the posterior have been obtained. �

The posterior evaluations, step 4 above, are performed in parallel. Communication
between processes takes place in steps 3 and 5 and message passing collective communi-
cation tokens are used to describe the required operations. Steps 2 and 6 are performed
by a master process or are replicated by all processors.
The Metropolis-Hastings step, step 6 in the above algorithm, is implemented in the

following way for the random walk algorithm:

Algorithm 2 Random walk Metropolis-Hastings step

1. Set j = 1. The current state of the chain is �Sn�1 , where Sn�1 is the state of the
draw counter after n� 1 completed tours. Let �i1 = �1 be the proposal conditional
on the current state, i.e. �1 = f

�
:j�Sn�1

�
= �Sn�1 + �Sn�1+1.

2. The current node is ip, with associated state �Sn�1+j�1, and its level is L (ip) = j. If

uSn�1+j < �Sn�1+j = min

(
1;
p
�
�Sn�1+j�1 + �Sn�1+j

�
p (�Sn�1+j�1)

)
, (5)

where u = U [0; 1], accept the draw and set �Sn�1+j = �Sn�1+j�1+�Sn�1+j. Otherwise
set �Sn�1+j = �Sn�1+j�1.

3. If (i) the proposal �ip = �
Sn�1+j�1 + �Sn�1+j was accepted and i~p = 2ip or (ii) if �ip

was rejected and i~p = 2ip+1 for some node i~p 2 T then move to i~p. In this case set
j = j + 1 and the current node to i~p and return to 2. Otherwise exit. �

9

The output from algorithm 2 are the Dn draws from the tour n, �Sn�1+1; :::; �Sn ; and
the output from the prefetching algorithm consists of the draws�

�Sn�1+1; :::; �Sn
	N
n=1

=
�
�1; �2; :::; �SN

	
,

where N is the total number of completed tours and

NX
n=1

Dn = SN � R.

The remaining discussion in this section focuses on the prefetching step (step 2 of
algorithm 1). The prefetching, or tour construction, problem consists of two separate
parts:

1. Determine a rule for calculating the probabilities of reaching the nodes in the
Metropolis tree based on some set of information.

2. Find the tour that maximises the expected number of draws per tour, D, based on
these probabilities. We call this the optimal tour, with the implicit understanding
that optimality is conditioned on the speci�c rule used.

The second task is easy and an algorithm which constructs the optimal tour given
a rule for assigning the probabilities of the Metropolis tree is presented in appendix A.
Below a parallel independence chain Metropolis-Hastings algorithm is �rst presented and
then �ve variants of prefetching are discussed, named as follows: (1) Basic prefetching,
(2) Static prefetching, (3) Dynamic prefetching using the sequence of uniform random
numbers, (4) Dynamic prefetching using a posterior approximation and (5) Most likely
path. Finally we discuss prefetching with multiple blocks and other proposal densities.

3.3.2 Independence chain Metropolis-Hastings

In the special case when the proposal density is �xed

f
�
�j�i

�
= f (�) ,

parallelisation is simpli�ed further since there are no dependencies between posterior
evaluations. Let

R =
PX
p=1

Rp,

where Rp is the number of posterior evaluations performed by process p and R is the
length of the chain.

10

Algorithm 3 Parallel Independence Chain Metropolis-Hastings (ICMH) algorithm

1. Each process p generates �p =
�
�1p; �2p; :::; �Rpp

	
where

�ip � f; i = 1; :::; Rp,

and collects the values of the posterior evaluated at these parameters in the vector
pp =

�
p (�1p) ; p (�2p) ; :::; p

�
�Rpp

�	
(parallel).

2. The master process gathers �p and pp, p = 1; :::; P (gather).

3. Run the Metropolis-Hastings algorithm with the posterior already evaluated at R
parameter values (serial). �

In this algorithm the master process only collects the results from the other processes
once. If memory limitation is a concern it can be solved by collecting the local results
more often. In the case of inhomogeneous processors load balance is easily restored by
allowing Rp to vary across processors.
The parallel ICMH algorithm is embarrassingly parallel both in the sense that it is

simple to implement and because there is no essential dependency between the parallel
tasks. As a consequence this algorithm will yield close to linear speedup, i.e. S (P) � P ,
on any homogeneous parallel computer. The prefetching RWMH algorithm is also simple
to implement but good parallel performance for this algorithm requires a balance between
the problem (or problem size) and hardware/network since communication is frequent.

3.3.3 Basic prefetching

The basic prefetching algorithm suggested by Brockwell (2006) has the property that all
future states at the same level in the Metropolis tree are treated as being equally likely
to be reached. No information is used to structure prefetching. In our framework this
algorithm is obtained if every branch in the Metropolis tree is assigned the probability
0:5.
The basic prefetching tour evaluates the proposed parameters of all nodes up to a

given level of the Metropolis tree, i.e. T (P) = f1; 2; :::; Pg, and thus produces a certain
number of draws

D (P) =MaPD = log2(P + 1). (6)

This approach provides a lower bound on the scalability that can be achieved using
prefetching. Note that if the number of processors P does not correspond to the val-
ues 2p � 1; p = 1; 2; ::: there is no clear guide on how to select the �surplus�nodes for
evaluation.

11

3.3.4 Static prefetching

The researcher can typically target an acceptance rate, �, with good precision by selection
of the proposal density, f , in the Metropolis-Hastings algorithm: Knowing � it is easy to
improve on the basic algorithm. Let T (P j�; ~�) denote the tour when the acceptance rate
is � and the �perceived�acceptance rate used to construct the tour is ~�, thus allowing for
imperfect targeting. The static prefetching tour is obtained by attaching the probability ~�
to all accept (down-left) branches of the Metropolis tree and 1� ~� to reject (down-right)
branches. This was explained in some detail in examples 1 and 2 above for the cases
P = 2 and P = 3. The nonbranched tour shown in �gure 2 is obtained if we choose P = 8
and target, for example, ~� = 0:25.
The node indices of the tours only needs to be obtained once per chain and the

approach is general, i.e. model independent, since it only depends on the acceptance rate.
For large enough � and/or P the tour will be branched.
In �gure 3 the expected number of draws per tour,D (�; P), and the maximum possible

depth (MaPD) of the optimal static prefetching tour is plotted against the acceptance rate
~� = � 2 (0; 0:5) for P = 3; 7; 15: The expected number of draws decreases smoothly in
� and above some threshold �h (P) it becomes optimal to choose the basic prefetching
tour. If � is below some threshold �l (P) the optimal tour is nonbranched and an �always
prepare for a reject� strategy is chosen. The MaPD curve jumps at points where the
optimal tour changes.
What happens if the tour is constructed based on a perceived acceptance rate ~� when

the true acceptance rate is in fact �? In �gure 4 the expected number of draws is plotted
for ~� 2 (0; 0:5) and P = 3; 7; 15; 31 when the true acceptance rate is � = 0:25. It is seen
that it is optimal to use ~� = � in constructing the tour but the optimal choice of ~� is
not unique. For example, as was seen in example 2 above, in the case of three processors
any ~� 2 (0; 0:38) will suggest the nonbranched tour T (3j0:25; ~�) = f1; 3; 7g which is the
optimal tour if � = 0:25:

3.3.5 Optimal static prefetching

A parallel e¢ ciency perspective obviously suggests targeting a low acceptance rate, as
seen in �gure 3. Intuitively it becomes very easy to predict where the chain is moving
when � is small.
The optimal acceptance rate, �opt;1 , for the random walk Metropolis-Hastings algo-

rithm has been derived under various assumptions on the target density p (Roberts et al.
(1997); Roberts and Rosenthal (2001)). Here we show how the optimal acceptance rate
depends on the number of processors in a parallel computing framework, thus consid-
ering jointly Markov chain, or statistical, e¢ ciency and parallel e¢ ciency of the static
prefetching RWMH algorithm.

12

Figure 3 Static prefetching performance, ~� = �.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

16

Alpha

D
ra

w
s

pe
r t

ou
r,

M
aP

D

P=3

P=7

P=15

MaPD, dashed
Draws per tour, solid

Figure 4 Static prefetching performance. The true acceptance rate is � = 0:25 and tours
are constructed based on ~�.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

Alphatilde

D
ra

w
s

pe
r t

ou
r

P=7

P=15

P=31

P=3

13

We revisit the special case where the posterior density has the product form

p (�) =

kY
i=1

~p (�k) ,

and the increment density, g, is of the form g (�) = N (0; Ik�
2
k) where �

2
k = l2=k and

l is the scaling parameter. In the high-dimensional limit, i.e. as k �! 1, and under
certain regularity conditions on ~p it can be shown that the Markov chain converges to a
di¤usion process and the optimal acceptance rate is obtained by maximising the �e¢ ciency
function�

E1 (�) _ ��
h
��1

��
2

�i2
, (7)

where � is the standard normal cumulative distribution function. This yields the famous
result of an optimal acceptance rate �opt;1 = argmax�E1 (�) � 0:234 (see Theorem 1 in
Roberts and Rosenthal (2001) and the subsequent discussion).
In �gure 5 the joint output measure

E (�; P) = E1 (�)�D (�; P)� c, (8)

is plotted as a function of the acceptance rate � and the number of processors P . The
constant c is chosen such that E (�opt;1; 1) = 1. The �gure is interpreted as follows: the
time needed to achieve a given accuracy in estimating any function h (�) of the posterior
is inversely related to the output E.
The optimal acceptance rate in a parallel setting is the acceptance rate which minimises

the time of obtaining a sample of a �xed size and quality, e.g. a �xed number of iid draws,
from the posterior, conditional on the number of processors used. It is seen in �gure 5 that
the optimal acceptance rate implies an �always prepare for a reject�prefetching strategy.
The optimal rate is below the nonbranched tour boundary which is de�ned implicitly
by � = (1� �)P�1 : For example, using P = 7 processors the optimal acceptance rate
is �opt;7 = 0:120 and a sample of a given size and quality from the posterior can be
obtained E (�opt;7; 7) = 4:3 times faster than when applying one processor and the optimal
acceptance rate �opt;1 = 0:234:
Our choice of c implies that E (�opt;P ; P) is interpreted as the optimal speedup of the

static prefetching RWMH algorithm and it satis�es

D (�opt;1; P) � E (�opt;P ; P) � D (�opt;P ; P) ,

where equality holds for P = 1. For the case of P = 7 processors we have E (�opt;1; 7) =
D (�opt;1; 7) = 3:65. The bene�t of lowering the acceptance rate from �opt;1 = 0:234 to
�opt;7 = 0:120, the gain in parallel e¢ ciency, is larger than the cost, the loss of statistical
e¢ ciency.

14

Figure 5 Optimal static prefetching acceptance rates.

Processors

A
cc

ep
ta

nc
e

ra
te

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

Output
Optimal acceptance rate
Boundary, nonbranched tour

9

31

7

5

More generally the optimal acceptance rate �opt;P will be determined by the curvature
of the e¢ ciency functionE1 (�). In a serial computing setting a �at e¢ ciency curve implies
that it is �of little value to �nely tune algorithms to the exact optimal values�(Roberts
and Rosenthal (2001)). In a parallel computing setting the implication is that parallel
e¢ ciency can be improved, by lowering the acceptance rate, without incurring a large
cost in terms of statistical e¢ ciency.
In our applications below the e¢ ciency function E1 (�) is not available analytically

and hence the optimal acceptance rate �opt;P cannot be solved for. Instead we target an
acceptance rate � = 0:25 for all P , a �conservative�choice, and compare the parallel e¢ -
ciency of di¤erent prefetching approaches while keeping the statistical properties �xed. In
the main illustration the empirical static prefetching optimal speedup and the associated
empirical optimal acceptance rates are also obtained.
Finally, in the processor limit

lim
P�!1

n
argmax

�
E (�; P)

o
= lim

P�!1
�opt;P = 0.

In other words we can a¤ord to make the algorithm arbitrarily poor, in the statistical
sense, only if parallel computing technology is arbitrarily cheap.

15

3.3.6 Dynamic prefetching based on the uniform random numbers

The probability of accepting a proposal �z drawn from f (�j�i) depends on the realised
value of a uniform random number, ui+1. Let

X i+1 =
p (�z)

p (�i)
,

and consider the conditional acceptance probability

�i+1
�
ui+1

�
= Pr

�
ui+1 < X i+1jui+1

�
,

where u is treated as �xed and X as stochastic. Since it is possible to characterise the
relationship between � and u the static prefetching algorithm can be improved upon.
In the applications below we incorporate information from the sequence of realised uni-

form random numbers in the following way. First R draws from the Metropolis-Hastings
sampler are obtained. Next, the unit interval is divided into K subintervals Ik and an
empirical acceptance rate

�k =
ffu < Xg \ fu 2 Ikgg

fu 2 Ikg
, (9)

is calculated for each subinterval k = 1; :::; K based on approximately R=K draws. The
constant acceptance rate used in the static prefetching algorithm above is then replaced
by an acceptance probability which depends on a uniform random number

�i+1
�
ui+1

�
=

KX
k=1

�kI
�
ui+1 2 Ik

�
, (10)

where Ik = [
(k�1)
K
; k
K
] and I is the indicator function. This algorithm has the property that

the branch probabilities in the Metropolis tree are level-speci�c, i.e. all accept branches
at the same level in the tree will have the same probability attached to them.
The procedure is illustrated in �gure 6 where the acceptance rate is plotted against the

uniform random number for the linear estimation example presented later in the paper.
Here R = 100; 000 draws are used to obtain estimates of �k forK = 20 equally sized subin-
tervals. For example it is seen that �1 = 0:60 is the estimate of Pr (u < Xju 2 [0; 0:05]) :

3.3.7 Dynamic prefetching based on a posterior approximation

If a posterior approximation, p�, is available and if evaluation of p� is fast in comparison
with the posterior kernel p a possibility is to use p� to determine at which parameters
to evaluate p. The objective is thus the same as in importance sampling or indepen-
dence chain Metropolis-Hastings (ICMH) sampling, i.e. to �nd a good approximation

16

Figure 6 Acceptance rate as a function of the uniform random number in the estimation
of a linear DSGE model.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Uniform random number

A
cc

ep
ta

nc
e

ra
te

Average acceptance rate=0.24

to the posterior. However, a di¤erence is that the quality of the approximating density
used for prefetching has no implications for the statistical analysis; it will �merely�a¤ect
computational e¢ ciency.
For the RWMH algorithm one possible strategy is to simply replace the constant � in

the construction of the static prefetching tour with the probability

min

(
�;
p�
�
�ip
�

p� (�i)

)
,

where �ip = �
i+� and thus incorporate information about the posterior in the construction

of the tour. We call this dynamic prefetching using a posterior approximation. If � < 1
then Pr (ip) > 0 for all p, i.e. all nodes of the Metropolis tree have positive probability of
being visited. In the application below we let � = 1, thus eliminating parts of the tree.
As in the static prefetching case the tour will in general be branched.
Another possibility is to run the chain P steps ahead using the approximate density,

thereby also incorporating the information contained in the sequence of realised uniform
random numbers. The states visited using the approximate posterior yield the parame-
ter points at which the posterior p is subsequently evaluated in parallel. The tour is
nonbranched and we call this type of algorithm a most likely path algorithm.

17

3.4 Marginalisation and blocking

The Dynamic Stochastic General Equilibrium (DSGE) models used for the illustrations
in this paper are represented as state-space models. The coe¢ cients of the DSGE-state-
space model are nonlinear functions of the structural parameters, �. The latent variables,
collected in x, are integrated out of the joint posterior p (�; xjy) using �ltering techniques
and attention is restricted to the marginal posterior density, p (�jy), where y denotes the
data. Sampling from the conditional p (�jx; y) is precluded for these models. In the main
example, in section 4.1, the Kalman �lter is applied for integration in a degenerate linear
and Gaussian state-space (LGSS) model. If there is interest in the posterior distribution
for the state variables, p (xjy), this distribution is obtained via smoothing after p (�jy)
has been sampled, see e.g. Durbin and Koopman (2001). The marginalisation technique
has also been used in other contexts, e.g. Garside and Wilkinson (2004).
For comparison, consider the more typical LGSS model where interest centers on

p (�; xjy) and where, in contrast to the linearised DSGE model, the classic two-block data
augmentation scheme is available. The conditional posterior p (�jx; y) is sampled using
Gibbs or Metropolis updates and p (xj�; y) is sampled using a simulation smoother, e.g.
Strickland et al. (2009). A Gibbs step, viewed as a Metropolis-Hastings update with ac-
ceptance probability 1, implies perfect prefetching and hence prefetching does not apply.
In situations where a Metropolis-Hastings block sampler with reasonably good mixing
properties is available we expect prefetching to be of limited use and, if thought neces-
sary, other parallelisation approaches should be considered. Wilkinson (2006) shows how
to exploit the conditional independence structure to parallelise the multimove simulation
smoother used for estimation of the baseline stochastic volatility (SV) model. This ap-
proach can also be applied to extended SV models and the stochastic conditional duration
(SCD) model, for which e¢ cient block sampling schemes have been developed (Omori and
Watanabe (2008); Takahashi et al. (2009); Strickland et al. (2006)). A similar �parallel
blocks�approach is also applied by Whiley and Wilson (2004).
There are two features, in addition to the inability to sample from p (�jx; y), which

increase the attractiveness of the one-block prefetching approach for DSGE models. First,
it is typically a nontrivial task, at least a priori, to split the parameter vector � into blocks
such that there is weak posterior dependency between blocks. Second, the resulting
Metropolis sampler with B blocks is �penalised�by a B-factor increase in computational
time relative to the one-block sampler.
More generally, although prefetching generalises to the case of Metropolis multiple

block sampling parallel e¢ ciency is expected to su¤er in that context, at least when a
subset of the full conditionals can be sampled directly. If high dimensionality of the
parameter vector, rather than exploitable structure, is the motive for splitting the para-
meters into blocks then Metropolis block prefetching could be interesting but this is not
investigated further here. A brief description of block prefetching is given in appendix B.
Another potentially interesting application for prefetching methods, not fully explored

18

in this paper, is the class of hierarchical Gaussian Markov random �eld (GMRF) models
with a wide range of applications, e.g. in spatial statistics (Knorr-Held and Rue (2005)).
Knorr-Held and Rue (2002) develop a �hyperblock�sampler for this type of model, using
the methods for fast sampling from GMRFs presented by Rue (2001). This is another,
more elaborate, example of a marginal updating scheme where the hyperparameters �
and the latent �eld x are updated jointly using a Metropolis-Hastings step.
Knorr-Held and Rue (2002) demonstrate that the hyperblock sampler mixes more

rapidly than the traditional single-site updating scheme and various intermediate blocking
schemes in three typical disease mapping applications. The results are driven by the
strong posterior dependency between � and x in these applications. A one-block sampler
for linear mixed regression models, along similar lines, is suggested by Chib and Carlin
(1999). The marginalisation approach is also used by Gamerman et al. (2003) for spatial
regression models and in Moreira and Gamerman (2002) for time series models.
The possibility of prefetching parallelisation may be interpreted as a further argument

in favour of the sophisticated one-block sampling scheme for GMRF models, in addition
to the documented improvement in chain mixing. In fact, the �always prepare for a reject�
prefetching strategy applies to a more general one-block sampler, suggested by Wilkinson
and Yeung (2004) for the related class of linear Gaussian Directed Acyclic Graph (DAG)
models. In appendix B we outline how to apply prefetching in the GMRF context and
also mention the possibility of combining prefetching with the parallel GMRF sampling
approach suggested by Steinsland (2007).

4 Illustrations

4.1 Linear estimation of a DSGE model

Long burn-in times and poor mixing are factors that can motivate interest in single-chain
parallel methods. In the area of Bayesian estimation of Dynamic Stochastic General
Equilibrium (DSGE) models the one-block random walk Metropolis-Hastings algorithm
is the most commonly used estimation method and our impression is that poor mixing of
chains is a typical experience of researchers in this �eld. For an exception, see Belaygorod
and Dueker (2006).
The performance of the �ve variants of the prefetching algorithm presented above and

the parallel ICMH algorithm is compared using one of the core macroeconomic models
at the European Central Bank, the Smets and Wouters (SW) model (Smets and Wouters
(2003)). The model is chosen because it is well known and since it is the backbone of
larger DSGE models currently developed at many central banks. A major determinant of
the computational cost of estimating a DSGE model is the number of state variables of the
model. Our version of the SW model has 15 state variables, including 8 shocks. Recently
developed large-scale microfounded models in use at central banks have as many as 65

19

state variables and there is at least one very recent example of a model which contains
more than 100 state variables (Adolfson, Laséen, Lindé and Villani (2007); Christiano
et al. (2007)). In a relative sense, and using the jargon of parallel computing, this implies
that our estimation problem can be viewed as �ne-grained.
The empirical analysis of large-scale DSGE models is restricted by the computational

cost of estimating them. Re-estimation is necessary as di¤erent model speci�cations
are evaluated or when new data arrives. Furthermore, a central bank is facing real-
time constraints on these activities. In our view the development of larger and more
complex models and the unavailability of adequately e¢ cient sampling methods increase
the attractiveness of applying the parallel methods presented here.

4.1.1 Model, prior, solution and likelihood

The economic content of the model is largely unimportant for our evaluation of the parallel
algorithms and therefore it is not presented here. Similar models have been analysed
and/or estimated in many articles (Smets and Wouters (2003); del Negro et al. (2005)).
The model used here is presented in detail in Strid (2007a).
The model consists of a set of nonlinear expectational equations describing the equi-

librium and a linear approximation to the policy function of the model is obtained (the
solution). The linear approximate policy function is represented as a linear state-space
model:

Xt = T (�)Xt�1 +R (�) �t (11)

and
Yt = d (�) + ZXt + vt, (12)

where [11] is the state equation and [12] the measurement equation. Here Xt (dimension
nx) is a vector containing the state variables and Yt (ny) is a vector containing the observed
variables. The structural parameters of the model are collected in the vector � (n�) and
the coe¢ cient matrices, T (which is dense), R and Z, and the vector d are nonlinear
functions of �. The innovations, �t (n�), and the measurement errors, vt (nv), are assumed
to be independent and normally distributed, �t v N (0;��) and vt v N (0;�v).
The likelihood evaluation consists of two parts. First the model is solved using one

of the many available methods (Klein (2000)). Second the likelihood function of the
model is evaluated using the Kalman �lter, see e.g. Durbin and Koopman (2001). The
prior distribution for � is similar to the distributions typically used in the literature on
estimation of New Keynesian models.
For the model estimated here we have the dimensions nx = 15; ny = 5; n� = 8 and

n� = 23. The model is estimated on Euro Area data for the period 1982:1-2003:4 (88
observations). The �ve data series used for estimation are the short-term interest rate,
in�ation, output growth, the consumption-to-output ratio and the investment-to-output
ratio.

20

4.1.2 Parallel approaches for linearised DSGE models

In the context of estimation of large-scale linearised DSGE models, what other strate-
gies for single-chain parallelisation are available apart from prefetching? An obvious
within-draw approach is to apply parallel matrix algorithms (e.g. using ScaLAPACK
or PLAPACK) to the computations involved in Kalman �ltering, primarily the matrix
multiplications of the Riccati equation which account for a signi�cant part of Kalman
�ltering time. However, if this approach is attempted it is crucial to apply parallel rou-
tines whenever fruitful, including in the solution algorithm. The extent to which a few
standard matrix operations account for overall Kalman �ltering and model solution time
determines the parallel e¢ ciency properties of the approach. Furthermore, it is hard to
improve on optimal serial DSGE-speci�c Kalman �lter implementations using parallel
methods, see Strid and Walentin (2008).
Note again that it would be straightforward, at least in principle, to combine such

local computations strategies, which are somewhat more demanding to implement, with
prefetching.

4.1.3 Parallel e¢ ciency: draws per tour

The posterior approximation used for prefetching (variants 4 and 5) is a normal approx-
imation p� = N (�m;�m) where �m is the posterior mode, Hm the Hessian matrix at the
mode and �m = H�1

m . The scaled inverse Hessian is also used as the covariance matrix for
the proposal density in the random walk Metropolis-Hastings algorithm, i.e. proposals
are generated with

�z = �i + �i+1,

where �i+1 � N (0; cH�1
m) and c is a scaling parameter.

Prior to optimisation of the posterior p and estimation using the RWMH algorithm
some parameters in � are reparameterised to make the parameter space unbounded. The
reparameterisation serves two purposes: �rst, it makes optimisation easier and, second,
the e¢ ciency of sampling using the RWMH algorithm is improved because the approxi-
mation to normality is better. In the context of prefetching the reparameterisation will
thus also improve the parallel e¢ ciency of the algorithms which rely on the posterior
approximation.
For each combination of prefetching algorithm and number of processors P the RWMH

prefetching algorithm is used to sample R = 500; 000 draws from the posterior distribu-
tion. In total the posterior is evaluated ~R = NP = RP= �d times where N is the number
of tours and �d is the average number of draws per tour. In all estimations the chain is
started at the posterior mode and 50; 000 draws are discarded as burn-in. A target accep-
tance rate ~� = 0:25 is used to construct the tours in static prefetching (2) and dynamic
prefetching based on the uniform random numbers (3) and the average acceptance rate
� turns out to be 0:24. Later on we allow ~� to vary with P for the static prefetching

21

Table 1 Performance of prefetching algorithms for the linearised DSGE model. Average
number of draws per tour, �d.

Processors
Algorithm variant 1 3 7 15 31 1
1. Basic prefetching 1 2 3 4 5 1
2. Static prefetching 1 2.31 3.54 4.75 6.00 1
3. Dynamic prefetching, uniform 1 2.38 3.81 5.04 6.24 1
4. Dynamic prefetching, post. approx. 1 2.57 4.58 6.45 8.04 -
5. Most likely path 1 2.66 4.99 7.31 8.42 8.70
6. Optimal static prefetching speedup 1 2.44 4.30 6.55 6.55 -
Optimal empirical acceptance rate 0.22 0.16 0.13 0.09 0.05

algorithm. Detailed results on prefetching performance are presented for P = 2p � 1;
p = 1; :::; 5. These values are chosen because they allow for a neat comparison with the
benchmark basic prefetching algorithm, which has integer draws per tour for these values
of P (see expression [6]).
In table 1 the average number of draws per tour �d are presented. It is seen, �rst, that

static prefetching allows us to make easily reaped, although quite small, gains in compar-
ison with the basic algorithm. Second, incorporating knowledge about the sequence of
uniform random numbers lead to additional small gains. These e¢ ciency improvements
are model independent and can always be obtained.
Third, in our example the inclusion of information about the posterior via the normal

approximation yields the largest gains. For example, using the most likely path algorithm
(5) with P = 7 processors the extra draws, i.e. the draws which are added to the sure draw,
is doubled in comparison with the basic algorithm (1). If a reasonable approximation to
the posterior is available it thus appears possible to improve the parallel e¢ ciency of
prefetching quite substantially.
Finally, we report empirical measures of the static prefetching optimal speedup and

optimal acceptance rates for this problem (6). Note that these quantities are adjusted for
di¤erences in sampling e¢ ciency when targeting di¤erent acceptance rates. Thus direct
comparison with the other approaches is possible. The experiments conducted to obtain
these numbers are described in appendix A. Also note that we have not been able to
increase the quality-adjusted speedup for the most likely path algorithm (5) by targeting
lower acceptance rates in this way.
The results reported above must be interpreted with caution. If the parallel perfor-

mance of the most likely path algorithm is becoming �too good� it suggests that other
approaches, such as independence chain Metropolis-Hastings (ICMH), should be consid-
ered. For our estimation problem we have veri�ed that the sampling e¢ ciency of ICMH
using standard choices of proposal densities, e.g. the multivariate t, is inferior to the e¢ -
ciency of RWMH. The acceptance rate of the best ICMH sampler is 13%. If the thinning

22

factor for ICMH is roughly eight times the factor used with the RWMH sampler it is found
that the relative numerical e¢ ciencies, or the ine¢ ciency factors, of the two approaches
are roughly similar.

4.1.4 Parallel e¢ ciency on an HPC cluster

Draws per tour, D(P); is an abstract measure of scalability since the cost of constructing
tours and communication cost is not taken into account. In order to assess the magnitude
of the di¤erence between theoretical and actual speedup, D(P) � S (P), the algorithms
are taken to a parallel computer. The prefetching algorithm is implemented using Fortran
and the Message Passing Interface (MPI) and tested on the Lenngren cluster at the Center
for Parallel Computers (PDC) at the Royal Institute of Technology (KTH) in Stockholm,
a high performance computing (HPC) environment. The cluster uses Intel Xeon 3.4GHz
processors connected by an In�niband 1GB network. The MPI implementation on the
cluster is Scali MPI. Further information on the performance characteristics of the cluster
is available at www.pdc.kth.se.
For each combination of P and algorithm an acceptance rate ~� = 0:25 is targeted

and R = 500; 000 draws from the posterior are obtained. In table 2 the draws per tour
D and relative speedup S, as de�ned in [3], are reported for P = 2p; p = 0; ::; 5 for the
static prefetching algorithm (2) and the best performing algorithm according to table 1,
the most likely path algorithm (5). Using one processor R = 500; 000 draws are obtained
in 80 minutes and using P = 8 processors the static prefetching algorithm (2) executes in
23 minutes and the most likely path algorithm (5) in 15 minutes.
It is seen that for the particular model, programming language, implementation and

hardware the speedup is acceptably close to the upper bound, at least for P = 1� 8. We
conclude that on a representative HPC cluster the RWMH prefetching algorithm can be
implemented successfully for a �ne-grained problem. For the large-scale models mentioned
above we expect S � D in this environment.

4.1.5 Discussion

In an article written by researchers at the Riksbank, the central bank of Sweden, some
econometric issues related to the estimation of a large-scale linearised open economy
DSGE model (the RAMSES model) are addressed (Adolfson, Lindé and Villani (2007)).
We present some of their observations because we believe they are representative to this
�eld of research:

1. Computing time is a major concern when Bayesian methods are employed to analyse
large-scale DSGE models.

2. The one-block RWMH algorithm has been the common choice of sampler in the
estimation of linearised DSGE models. A substantial problem of the one-block

23

Table 2 Performance of prefetching algorithms for the linearised DSGE model on the
Lenngren cluster.

Static prefetching
Processors, P 1 2 4 8 16 32
Draws per tour, D 1 1:76 2:77 3:77 4:92 6:16
Relative speedup, S 1:00 1:72 2:70 3:46 4:61 5:18

Most likely path
Processors, P 1 2 4 8 16 32
Draws per tour, D 1 1:88 3:35 5:39 7:36 8:54
Relative speedup, S 1:00 1:82 3:23 5:15 6:45 7:34

ICHM algorithm is that it easily gets stuck for long spells when the parameter
space is high-dimensional.

3. Blocking approaches are di¢ cult to implement for these models because full condi-
tional posteriors are not easy to simulate from. Furthermore, this approach requires
multiple evaluations of the likelihood per posterior draw.

4. It is found for the RWMH algorithm that decreasing the targeted acceptance rate
from 0:25 to 0:10 leaves the ine¢ ciency factors largely unaltered.

5. Reparameterisation increases the e¢ ciency of sampling substantially.

These observations are largely con�rmed by our exercise above and taken together
we believe that they increase the attractiveness of prefetching methods in the context of
large-scale linearised DSGE models.

Computing time The issue of when computing time becomes a real concern is largely
context-speci�c. Clearly in our environment, characterised by a relatively small DSGE
model, Fortran code and decent computing power, the rationale for parallel methods is
perhaps limited, as indicated by the absolute execution times reported. Even for a model
of this size it is however clear that the scope of experiments that can be performed in a
given time span is increased.
In a more typical desktop computing environment, and using state-of-the-art DSGE

modelling tools like DYNARE or YADA, single runs may take several days for the most re-
cent generation of policy-relevant DSGE models. Total project computing time, including
a substantial amount of experimentation, is measured in months.

24

RWMH vs. ICMH The parallel e¢ ciency of ICMH is far superior to that of RWMH.
Using ICMH with P = 64 processors to generate one million draws from the posterior
distribution of the SW model the total execution time is around 2:5 minutes on the
Lenngren cluster and the relative speedup is S(64) = 63. Although the ICMH sampler has
much to recommend to it, especially in a parallel setting, in our example problem it does
not seem straightforward to �nd an e¢ cient proposal density. In a serial programming
context the choice of estimation strategy would certainly be to use the RWMH algorithm.
In a parallel framework the trade-o¤s are slightly more complicated and several factors
must be taken into account.
The following example clari�es the trade-o¤s for our example under the assumption

that ICMH requires a thinning factor which is 8 times that of RWMH to achieve roughly
the same sampling e¢ ciency. If P = 128 processors are used to estimate the model above
with the two algorithms, parallel ICMH and RWMH prefetching, then a posterior sample
of a given quality, as judged by the ine¢ ciency factor, can be obtained roughly twice as
fast for the ICMH algorithm in comparison with prefetching. If P = 8 processors are used
the execution time of prefetching is more than 5 times faster than for parallel ICMH.

Acceptance rate The fourth observation above is especially interesting in relation to
prefetching. As demonstrated above the empirical optimal static prefetching e¢ ciency
is not far behind the e¢ ciency of the most likely path approach for the relevant range
of processors in our problem. These two approaches are also the simplest to implement,
since they imply nonbranched tours.
To conclude a simple heuristic strategy is suggested: choose the scaling of the incre-

mental density to obtain the optimal static prefetching acceptance rate conditional on
the number of processors (see �gure 5) and use the �always prepare for a reject �tour. It
can be expected that often this will be reasonably close to the optimal overall prefetching
strategy.

4.2 Nonlinear estimation of a DSGE model

In this section the Metropolis-Hastings prefetching algorithm is applied to the problem of
estimating a nonlinearly approximated small-scale DSGE model using Bayesian methods.
In the previous section we established that in a high performance computing (HPC) envi-
ronment, i.e. on the Lenngren cluster, the prefetching algorithm works successfully for a
�ne-grained estimation problem. Our main objective in this section is to assess prefetching
performance in a particular personal high performance computing (PHPC) environment:
using the parallelism of Matlab (the Distributed Computing Toolbox, DCT) on a quad-
core desktop computer. Alternatively, and perhaps more correctly, we may interpret this
exercise as an evaluation of the parallel functionality of Matlab, using the prefetching
algorithm as the test ground. The multi-core/Matlab environment is presumably one of
the most accessible and easy-to-use PHPC environments.

25

The nonlinear estimation example is chosen �rst because it is an estimation problem
that should be su¢ ciently coarse-grained to deliver reasonable parallel e¢ ciency also in
the PHPC environment. Note that for a given model the particle �lter based evaluation of
the likelihood for the quadratically estimated model is roughly 1000 times slower than the
Kalman �lter likelihood evaluation for the corresponding linearly approximated model.
Second, the discontinuous likelihood approximation in the nonlinear case implies that
prefetching methods which rely on a posterior approximation (variants 4 and 5 above)
cannot be implemented without modi�cation. In other words, the most successful variants
of prefetching in the linear estimation example of the previous section are not readily
available to us here.

4.2.1 Model, prior, solution and likelihood

The prototypical small-scale New Keynesian model is borrowed from An (2005). Again,
the economic content of the model is largely irrelevant for our purposes here and therefore
no discussion of the model is provided.
The policy function of the model is approximated to the second order using the ap-

proach of Schmitt-Grohe and Uribe (2004). The approximative solution can be cast in
the following state-space form. The state equation is separated into an equation for the
exogenous state variables (the shocks)

X1t = AX1t�1 + "t, (13)

and an equation for the endogenous predetermined variables and a subset of the nonpre-
determined variables

X2t = B ~Xt�1 + Cvech(~Xt�1 ~X
T
t�1) + e, (14)

where ~Xt�1 =
�
XT
1t XT

2t�1
�
T and Xt =

�
XT
1t XT

2t

�
T .

In this way a linear observation equation,

Yt = d+ ZXt + vt, (15)

is obtained. The innovations and measurement errors are assumed to be independent
and normally distributed, "t � N (0; Q) and vt � N (0; H) : The second order policy
function approximation of a large class of DSGE models can be cast in this form. The
state-space representation of the corresponding linearly approximated model, which was
used in the previous example, is obtained by letting C = 0 and e = 0. The matrices
A (�2) ; B (�1) ; and C (�1) and the vectors e (�) and d (�1) are functions of the parameters
of the economic model, which are collected in � =

�
�T1 �T2

�T
where �1 consists of the

structural parameters of the model and �2 contains the auxiliary parameters, i.e. the
parameters describing the shock processes. The dimensions of the vectors are nx1 = 3;
nx2 = 4; nx = 7; ny = 3; n� = 13 and n� = 3:

26

The model is estimated on simulated data and we use the same data-generating
process, �dgp, as An (2005) and a prior distribution for � similar to the one in An�s
paper. The likelihood function of the model is evaluated using an Adaptive Linear Par-
ticle Filter (ALPF), designed for the particular state-space model described by equations
[13]-[15] [Strid (2007a)]. The particle �lter and its application to the nonlinear estimation
of DSGE models is not discussed in detail here and the reader is referred to the refer-
enced articles (Arulampalam et al. (2002); Doucet et al. (2000); Fernández-Villaverde and
Rubio-Ramírez (2007); Amisano and Tristani (2007)).

4.2.2 Implementation

The estimation routine is implemented in Matlab, using a Fortran mex function only for
the systematic resampling (SR) step of the Adaptive Linear Particle Filter. The SR algo-
rithm cannot be implemented as vectorised code, implying that a Fortran implementation
of this part of the particle �lter is considerably faster than its Matlab counterpart. The
likelihood evaluation accuracy of the ALPF �lter applied here is at least as good as for
a standard particle �lter with 40; 000 particles and the time of a posterior evaluation is
roughly 2:5s for this Matlab implementation.
The parallel section of the prefetching algorithm, step 4 of algorithm 1, is implemented

using the parallel for-loop (parfor) construct contained in the Parallel Computing Toolbox.
The number of calls to parfor is thus equal to the total number of tours, N .

4.2.3 Experiment

The Metropolis-Hastings prefetching algorithm is executed on an Opteron 275, 2.2 Ghz,
using three of the four available cores. Three variants of prefetching are tested: (i) static
prefetching, (ii) dynamic prefetching based on the uniform random numbers and (iii) a
modi�ed most likely path (MLP) algorithm. The modi�cation of the MLP algorithm
in (iii) consists of updating the mode of the normal approximation to the posterior in
order to obtain a successively better approximation, even though the exact mode cannot
be obtained. This type of adaptation only a¤ects the quality of prefetching and not the
statistical properties of the chain. The starting mode of the approximation is the linear
posterior mode.
An acceptance rate ~� = 0:25 is targeted and the actual rate is 0:24. The potential

suboptimality of this choice for P = 3 is disregarded. In each case 50; 000 draws from
the posterior are obtained. Draws per tour and speedup are presented in Table 3. First,
the problem is su¢ ciently coarse-grained for implementation in the particular PHPC
environment, in the sense that absolute speedup is acceptably close to draws per tour.
Second, the results suggest that it is hard to improve on static prefetching when a good
posterior approximation is not immediately available. All three variants roughly halves
estimation time when three cores are used, from 35 to 17 hours of computing time.

27

Table 3 Performance of prefetching algorithms for the nonlinear DSGE model in a multi-
core/Matlab environment.

Static prefetching Dynamic prefetching Modi�ed MLP
Processors 1 3 1 3 1 3
Draws per tour 1 2:32 1 2:37 1 2:32
Speedup 1:0 2:09 1:0 2:11 1:0 2:06

5 Two-layer parallelism

In this section we brie�y discuss the possibility of either (i) combining prefetching with
lower level parallelism or (ii) using prefetching performance to evaluate competing parallel
algorithms. In the context of the Metropolis-Hastings algorithm lower level, and hence
competing, parallelisation means any type of within-draw parallelisation of the posterior
evaluation. Since prefetching is a general, i.e. largely problem independent, single-chain
parallel algorithm it can be used to suggest admissible regions for the number of processors
used by the lower level parallel algorithm. Competing parallel algorithms are necessar-
ily problem-speci�c, presumably more complicated both to develop and implement and
they certainly require more frequent communication between processors. This suggests a
natural benchmark role for the prefetching algorithm.
The potential performance gain of combining prefetching with a lower level parallel

algorithm is illustrated using the nonlinear estimation example considered above. A Par-
allel Standard Particle Filter (PPF) is used for the likelihood evaluation. The speedup
numbers for the PPF refer to Fortran/MPI implementations run on the Lenngren clus-
ter (Strid (2007b)). The number of particles employed is N = 40; 000. For the static
prefetching (SP) algorithm an acceptance rate of � = 0:25 is targeted.
In �gure 7 it is seen that the PPF is much more e¢ cient than the prefetching approach.

(The kink in speedup for the PPF is explained by the fact that we estimate a speedup
function based on a set of observations S(P); P = 1; 2; 4; :::; 64 ; while ruling out the
possibility of superlinear speedup.) However, when the number of processors exceed P �opt =
22 it becomes optimal to switch to the two-layer parallel algorithm which combines static
prefetching with the PPF. As the number of processors increase the speedup di¤erence
between the two-layer algorithm and the PPF becomes quite pronounced. It is also
possible that a minor improvement in speedup, adjusted for statistical e¢ ciency, can be
achieved by targeting a lower acceptance rate for prefetching.
The simple calculations underlying �gure 7 show how consideration of the prefetching

alternative can guide decisions on the tolerable number of processors to use for the lower
level parallel algorithm for a given estimation problem and problem size (here the number
of particles employed in the particle �lter). Importantly this type of scalability analysis
can be performed without ever implementing the prefetching algorithm.

28

Figure 7 Two-layer parallel performance. Static prefetching and a parallel particle �lter
applied for the estimation of a nonlinear DSGE model.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

Processors

Sp
ee

du
p

SP

PPF

SP, PPF

Inadmissible region for PPF

6 Conclusions

Prefetching algorithms have obvious limitations in terms of parallel e¢ ciency. This is due
to the inherently sequential nature of the Metropolis-Hastings algorithm. The advantages
of the independence chain Metropolis-Hastings algorithm in a parallel context are obvious.
In this paper we have shown how to substantially increase the e¢ ciency of prefetching

using some simple techniques. Even using these techniques on reasonably well-behaved,
unimodal, problems it is hard to imagine anyone applying more than, say, 10�15 proces-
sors to a prefetching algorithm. Despite this the simplicity of implementing the method
and the possibility of a multiplication e¤ect if combined with lower level parallelisation
were claimed to motivate interest in the method.
The paper has highlighted some complicated trade-o¤s. First, for the prefetching

algorithm a parallel e¢ ciency perspective suggests targeting of a low acceptance rate.
This must be weighted against Markov chain e¢ ciency considerations. For the random
walk Metropolis-Hastings algorithm it was demonstrated that the optimal acceptance
rate decreases with the number of processors applied to the algorithm. Second, �good�
scalability of prefetching when a posterior approximation is used to construct tours may
indicate that other sampling approaches should also be considered.
Bayesian estimation of DSGEmodels was identi�ed as one potential arena for prefetch-

ing methods. In this context the experiences reported by researchers at the Riksbank,

29

which largely correspond to the results reported here for a smaller model, suggest that
prefetching methods is a viable alternative in reducing estimation time. The generality of
the proposed method, however, suggests that it could be applied in other contexts as well.
Brockwell (2006) applies prefetching to long memory time series models. The application
of prefetching with the hyperblock sampling approach for GMRF models and in related
contexts should be more thoroughly explored in future research.
Finally, it would be straightforward to implement a prefetching version of the adaptive

RWMH algorithm proposed by Haario et al. (2001). In many cases we expect the proposal
distribution of the RWMH and the posterior approximation used to make prefetching pre-
dictions to coincide, possibly with a di¤erent scaling as in our linear estimation example.
The adaptive RWMH can then potentially increase statistical and parallel e¢ ciency si-
multaneously.

Appendix A

The prefetching algorithm

Let L = L (ip) be the function that maps Metropolis tree node indices to levels, e.g.
L (10) = 4: The expected number of draws D (P) for the tour T (P) = fi1; :::; iPg is given
by

D (P) =
PX
p=1

pPr(~D = p) =
PX
p=1

p
h
Pr(~D � p)� Pr(~D � p+ 1)

i
=

=
PX
p=1

Pr(~D � p) =
PX
p=1

0@ X
ip:L(ip)=p

Pr(ip)

1A =
PX
p=1

Pr(ip), (16)

where Pr
�
~D = p

�
is the probability of obtaining p draws and Pr (ip) is the probability of

reaching node ip of the Metropolis tree, where Pr (ip) = 1.
A general prefetching algorithm which constructs the optimal tour, i.e. the tour that

maximises [16], conditional on the probabilities assigned to the branches of the Metropolis
tree, is presented below. The algorithm satis�es the obvious need to avoid calculation of
all branch probabilities up to level P in order to obtain a tour of size P . Instead the
number of probabilities that must be calculated grows linearly in P . Observe that if ip
belongs to the tour then its parent must belong to the tour. This �connectedness property�
is used to restrict the number of probabilities calculated.
The expected number of draws per tour may be written recursively as

D (P) = D (P � 1) + Pr (iP) ,

30

and the nodes of the optimal tour satisfy

1 = Pr (1) = Pr (i1) � ::: � Pr (iP) > 0,

such that the marginal value of an additional processor is decreasing.

Algorithm 4 Prefetching (tour construction)

1. Set p = 2; D (1) = 1; T (1) = fi1; �i1g where i1 = 1 and de�ne the sets �(1) =
I (1) = ?.
2. When the pth step begins the tour is T (p� 1) =

�
i1; :::; ip�1; �i1 ; :::; �ip�1

	
and ip�1

was added to the tour in the previous iteration. Construct a set of candidate nodes/indices

I (p) = I (p� 1) [f2ip�1; 2ip�1 + 1g .

3. Construct a set containing the probabilities of reaching the candidate nodes

�(p) = � (p� 1) [fPr (2ip�1) ;Pr (2ip�1 + 1)g .

The required probabilities are

Pr (2ip�1) = �p (L) Pr (ip�1) (17)

and
Pr (2ip�1 + 1) = (1� �p (L)) Pr (ip�1) , (18)

where Pr (ip�1) is available from the previous iteration and where L = L (ip�1). The
probabilities attached to the branches of the Metropolis tree, �p, de�ne the di¤erent
variants of prefetching and they are given below.
4. Find the index imax, the node with the largest probability of being reached among

the candidate nodes in I (p), i.e. Pr(imax) = max� (p) and let ip = imax.
5. Add ip to the tour, T (p) = T (p� 1) [fipg, and calculate the maximum expected

draws per tour, D (p) = D (p� 1) + Pr(ip): Then remove ip and Pr(ip) from I (p) and
�(p) respectively but store Pr(ip) temporarily for calculation of [17] and [18] in the next
iteration.
6. If p < P go to step 2, otherwise stop. �

Variants of prefetching

At iteration p of the algorithm above a node ip is allocated to the pth process. The
node ip�1 was added in the previous iteration. Note that for branched algorithms ip
is not necessarily the child of ip�1. For a nonbranched algorithm the pth processor will
necessarily evaluate a parameter at level p in the tree, i.e. ip = 2ip�1 or ip = 2ip�1 + 1
and hence L(ip) = p. For branched algorithms at least one node ip will satisfy L (ip) < p.

31

The static prefetching algorithm (2) is de�ned by

�p = �,

and the basic prefetching algorithm (1) is obtained as the special case

�p = � = 0:5.

The prefetching algorithm which utilises information from the sequence of uniform random
numbers (3) is obtained when

�p = �
�
uL
�
,

where L is the level of the parent

L = L (ip�1) .

The conditional acceptance rate, [10], is repeated here

�
�
uL
�
=

KX
k=1

�kI
�
uL 2 Ik

�
,

where Ik = [(k�1)
K
; k
K
] and where �k was de�ned in [9]. Note that the uniform random

numbers fupgPp=1 are connected to levels 1 to P of the Metropolis tree. Since the random
numbers are draw-speci�c the attachment of random numbers to levels of the Metropolis
tree requires that we keep track of the number of draws obtained previously.
The algorithm which is based on a posterior approximation (4) is obtained when

�p = min

(
�;

p�
�
�ip�1

�
p�
�
�ip�1 � �L

�) ,
where 0 < � � 1 and �L is the random vector associated with level L (ip�1). Note that
�ip�1 � �L is the state associated with node ip�1. The random vectors f�pgPp=1 are speci�c
to levels 1 to P of the Metropolis tree, in the same way as the uniform random numbers.
The most likely path algorithm (5) is de�ned by

�p = I

(
up�1 < min

(
1;

p�
�
�ip�1

�
p�
�
�ip�1 � �p�1

�)) ,
since the tour is nonbranched and thus we know that L = L (ip�1) = p� 1.
For the latter two algorithms, with our notation it is more convenient to express the

posterior ratios in terms of proposed parameters. In implementations it is of course easy
to keep track of the associated states as well.

32

Optimal static prefetching for the linear DSGE model

The DSGE model is estimated ten times, targeting acceptance rates �1; :::; �10 evenly
spread in the interval (0:015; 0:40) : In each estimation 500; 000 draws from the posterior
are obtained and the mean �� (�) of the ine¢ ciency factors

�̂j (�) = 1 + 2

IX
i=1

Corr
�
�tj; �

t+i
j

�
, j = 1; :::; n�,

is calculated for each �. The estimated output is Ê (�; P) / D (�; P) �m=�� (�) where
�� (�) is approximated using simple linear interpolation on the grid of acceptance rates
and �m = min� �� (�). The empirical optimal acceptance rates across processors obtained
in this way are quite similar to those in �gure 5 and therefore we are content with reporting
only the values that appear in table 1.

Appendix B

The one-block sampler for Gaussian Markov random �eld models

The reader is referred to the articles referenced below and Knorr-Held and Rue (2005) for
a treatment of Gaussian Markov random �eld (GMRF) models and their use in various
areas of statistics. Let x = (x1; :::; xn)

T be a GMRF which depends on a vector of
hyperparameters, �, with prior density p (�). Let y denote the data and assume that the
posterior density of interest is of the form

p (x; �jy) / p (xj�) p (�)
Y
i

p (yijxi) ,

where p (yijxi) is the likelihood for one observation.
The current state of the chain is denoted �i = (xi; �i) and ~� = (~x; ~�) is the state at

the start node of a tour. Knorr-Held and Rue (2002) suggest the updating scheme

�z � f1
�
:j�i
�
; xz � f2

�
:j�z; y; xi

�
, (19)

where the proposal �z = (�z; xz) is accepted/rejected jointly using a Metropolis-Hastings
step. The vector of hyperparameters � may be sampled using a random walk step. If
the likelihood function is Gaussian the full conditional posterior of the �eld is a GMRF
and it is used to sample the proposal, i.e. f2 (:j�z; y; xi) = p (:j�z; y). Otherwise f2 is a
GMRF approximation to this conditional. GMRFs can be sampled using the fast sampling
methods presented by Rue (2001). The proposed joint update is accepted with probability
min f1; Ag where

33

A =
p (�z) p (xzj�z) p (yj�z; xz) f2 (xij�i; y; xz)
p (�i) p (xij�i) p (yj�i; xi) f2 (xzj�z; y; xi)

, (20)

if we assume a symmetric proposal for �.
In the one-block prefetching algorithm presented in the paper generation of proposals

is performed serially in the prefetching step. In typical applications in spatial statistics the
dimension of the latent �eld x is large and sampling from the GMRF (approximation) f2
accounts for a major part of computational time. Therefore it is required that prefetching
is applied only to the, typically low-dimensional, set of hyperparameters, �. The GMRF
proposals for the latent �eld, xi1 ; :::; xiP , are then sampled in parallel and conditional on
the hyperparameters of the tour T = f�i1 ; :::; �iP g.
If the observation model is Gaussian the ratio [20] simpli�es to

A =
p (�z) p (yj�z)
p (�i) p (yj�i) , (21)

and all the strategies for prefetching presented in the paper apply to the vector of hyper-
parameters, �. In Knorr-Held and Rue (2002) p (xj�; y) is approximated using a second
order Taylor approximation around the current state of the latent variable, xi, such that
f2 (:j�z; y; xi) = ~p (:j�z; y; xi). In this case there is only one possibility for prefetching: to
target a low acceptance rate in order to obtain the �always prepare for a reject� static
prefetching tour. All proposals, xi1 ; :::; xiP , are generated conditional on the latent �eld
at the start node of the tour, ~x, and the process-speci�c proposal �ip � f1 (:j�i).
It is realised that this strategy also applies in the more general case where there is x

dependence in f1 since all �ip are generated conditional on the state at the start node,
~�. This proposal is suggested by Wilkinson and Yeung (2004) in the context of linear
Gaussian directed acyclic graph (LGDAG) models.
Further, if the proposal in [19] is used with the LGDAG model parallel sampling could

proceed in two stages. First the marginal chain f�igRi=1 is obtained using prefetching.
The acceptance probability is given by [21]. Next the latent variables fxigRi=1 are sampled
in embarassingly parallel fashion from f2 = p (xj�i; y) = NC(hi; Ki). Here it is assumed
that hi = KiE(xj�i; y) and the Cholesky factor Gi of the sparse precision matrix Ki,
which are used to evaluate p (�jy) in the �rst stage, have been stored. The two-stage
approach is possible since p (yj�), can be evaluated in a simpli�ed way for the LGDAG
model. However, sampling from f2 is cheap given that the Cholesky factor G is available.
Hence we expect the, seemingly wasteful, approach where x is instead sampled inside the
prefetching algorithm to be more e¢ cient in practice. In this case there is no need to
store hi and Gi after xi has been sampled.
The crudest approximation considered by Rue et al. (2004) is a GMRF approximation

in the mode xm of p (xj�; y) such that f2 (:j�z; y; xi) = ~p (:j�z; y; xm(�z)) : In this case all the
strategies for �-prefetching apply. This follows since the current value of the latent �eld,

34

xi, is not explicitly needed to construct the GMRF approximation. However, a �suitable
value�of x is required as a starting value for �nding the mode, xm. A natural candidate
in a prefetching context is ~x or, if it is important to reduce communication requirement,
the locally stored mode, xmip , from the previous tour. In the latter case the latent �eld
need not be transferred between processors.
A potential weakness of the resulting prefetching algorithm is the inhomogeneous

computing time in the optimisation step but we expect this to be of minor importance.
Some e¢ ciency loss could be acceptable and, if thought necessary, the number of iterations
of the optimiser, e.g. Newton-Raphson, could be �xed at a low number to restore load
balance. Note that a cruder approximation yields a lower acceptance rate which, in
turn, increases prefetching e¢ ciency. Finally it would be possible to construct a two-
layer parallel algorithm using the parallel sampling approach for GMRFs suggested by
Steinsland (2007).

Multiple block prefetching

Consider the multiple block Metropolis-Hastings algorithm with B blocks where the pa-
rameter vector � is split into blocks �0; :::; �B�1. A chain of length R requires ~B = RB
block updates. For notational convenience, assume that the blocks are updated in a �xed
order from block 0 to B � 1 using the proposal densities

�b � fb
�
:j�i�1;b; �i;<b; �i�1;>b

�
, b = 0; :::; B � 1,

where �i;>b = (�i;b+1; �i;b+2; :::; �i;B�1) and �i�1;b is the state of block b when the ith sweep
begins. The choice of scanning strategy does not a¤ect prefetching since the scan order
for the complete chain is realised at the outset of sampling.
The probability of a move for block b is given by

�b = min

(
1;

p
�
�b; �i;<b; �i�1;>b

�
p (�i�1;b; �i;<b; �i�1;>b)

fb
�
�i�1;bj�b; �i;<b; �i�1;>b

�
fb (�bj�i�1;b; �i;<b; �i�1;>b)

)
, (22)

and we must, as before, assume that evaluation of p is �expensive�. For simplicity we
consider only nonbranched tours. In this context a tour is a collection of proposed block
updates of the form

T =
n
�
mod(b+1;B)
i1

; �
mod(b+2;B)
i2

; :::; �
mod(b+P;B)
iP

o
,

where it is assumed that block b has just been updated when the tour is entered. Tours
and sweeps thus overlap and blocks are associated with levels of the Metropolis tree. Let
~� =

�
�i;�b; �i�1;>b

�
be the parameter value at the start node of the tour. For random walk

updates it will be desirable to tune each fb such that bold moves are proposed, in order
to decrease block acceptance rates and increase parallel e¢ ciency.

35

For example, assume B = 3; P = 6 and that block 1 has just been updated such that
the current paraneter is ~� = (�i;0; �i;1; �i�1;2). The �always prepare for a reject�tour is
T = f�21; �03; �17; �215; �031; �163g and each processor evaluates p(�bip ; ~��b) where �bip 2 T . The
tour produces at least one block update and at most six block updates, i.e. two draws.
A Gibbs step yields perfect prefetching since

fb
�
:j�i�1;b; �i;<b; �i�1;>b

�
= p

�
:j�i;<b; �i�1;>b

�
,

implies �b = 1 and hence prefetching does not apply for a pure Gibbs sampler. A Gibbs
component within a Metropolis block sampler would be handled by grouping the Gibbs
update with a Metropolis update on a single processor, under the assumption that the
Gibbs update is �cheap�. Clearly, whenever a Gibbs step accounts for a dominant part of
computational time prefetching is not feasible. An example of this is when the simulation
smoother is used to sample the latent variables in linear Gaussian state-space models.

References

Adolfson, M., Laséen, S., Lindé, J. and Villani, M. (2007), �Bayesian Estimation of an
Open Economy DSGE Model with Incomplete Pass-Through�, Journal of Interna-
tional Economics 72(2), 481�511.

Adolfson, M., Lindé, J. and Villani, M. (2007), �Bayesian Inference in DSGE Models -
Some Comments�, Econometric Reviews 26(2-4), 173�185.

Amisano, G. and Tristani, O. (2007), �Euro Area In�ation Persistence in an Estimated
nonlinear DSGE model�. Working paper 754, European Central Bank.

An, S. (2005), �Bayesian Estimation of DSGE Models: Lessons from Second-order Ap-
proximations�. Working Paper, University of Pennsylvania.

Arulampalam, S., Maskell, S., Gordon, N. and Clapp, T. (2002), �A Tutorial on Particle
Filters for On-Line Non-Linear/Non-Gaussian Bayesian Tracking�, IEEE Transac-
tions on Signal Processing 50(2), 174�188.

Azzini, I., Girardi, R. and Ratto, M. (2007), �Paralellization of Matlab codes under Win-
dows platform for Bayesian estimation: a Dynare application�. Working Paper 1,
Euro-area Economy Modelling Centre.

Belaygorod, A. and Dueker, M. (2006), �The Price Puzzle and Indeterminacy in an Esti-
mated DSGE model�. Working Paper 2006-025, Federal Reserve Bank of St. Louis.

Brockwell, A. (2006), �Parallel Markov Chain Monte Carlo Simulation by Pre-fetching�,
Journal of Computational and Graphical Statistics 15(1), 246�261.

36

Brockwell, A. E. and Kadane, J. B. (2005), �Identi�cation of Regeneration Times in
MCMC Simulation, with Application to Adaptive Schemes�, Journal of Computa-
tional and Graphical Statistics 14(2), 436�458.

Chib, S. and Carlin, B. P. (1999), �On MCMC Sampling in Hierarchical Longitudinal
Models�, Statistics and Computing 9(1), 17�26.

Christiano, L. J., Trabandt, M. and Walentin, K. (2007), �Introducing Financial Frictions
and Unemployment into a Small Open EconomyModel�. Working paper 214, Sveriges
Riksbank.

del Negro, M., Schorfheide, F., Smets, F. and Wouters, R. (2005), �On the Fit and Fore-
casting Performance of New-Keynesian Models�. Working Paper Series, No. 491,
European Central Bank.

Doucet, A., Godsill, S. and Andrieu, C. (2000), �On Sequential Monte Carlo Sampling
Methods for Bayesian Filtering�, Statistics and Computing 10, 197�208.

Durbin, J. and Koopman, S. J. (2001), Time Series Analysis by State Space Methods,
Oxford University Press.

Fernández-Villaverde, J. and Rubio-Ramírez, J. F. (2007), �Estimating Macroeconomic
Models: A Likelihood Approach�, Review of Economic Studies 74(4), 1059�1087.

Gamerman, D., Moreira, A. R. and Rue, H. (2003), �Space-varying regression mod-
els: Speci�cations and Simulation�, Computational Statistics and Data Analysis
42(3), 513�533.

Garside, L. and Wilkinson, D. (2004), �Dynamic Lattice-Markov Spatio-Temporal Models
for Environmental Data�, Bayesian Statistics 7, 535�542.

Haario, H., Saksman, E. and Tamminen, J. (2001), �An adaptive Metropolis algorithm�,
Bernoulli 7(2), 223�242.

Hastings, W. (1970), �Monte Carlo Sampling Methods Using Markov Chains and Their
Applications�, Biometrika 57(1), 97�109.

Klein, P. (2000), �Using the Generalized Schur Form to Solve a Multivariate Linear Ratio-
nal Expectations Model�, Journal of Economic Dynamics and Control 24(10), 1405�
1423.

Knorr-Held, L. and Rue, H. (2002), �On Block Updating in Markov Random Field Models
for Disease Mapping�, Scandinavian Journal of Statistics 29(4), 597�614.

37

Knorr-Held, L. and Rue, H. (2005), Gaussian Markov Random Fields: Theory and Ap-
plications, Chapman and Hall.

Lombardi, M. J. (2007), �Bayesian Inference for Alpha-stable Distributions: A Random
Walk MCMC Approach�, Computational Statistics and Data Analysis 51(5), 2688�
2700.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E. (1953), �Equation
of State Calculations by Fast Computing machines�, Journal of Chemical Physics
21(6), 1087�1092.

Moreira, A. R. and Gamerman, D. (2002), �Bayesian Analysis of Econometric Time Series
Models using Hybrid Integration Rules�, Communications in Statistics. Theory and
Methods 31(1), 49�72.

Omori, Y. and Watanabe, T. (2008), �Block Sampler and Posterior Mode estimation
for Asymmetric Stochastic Volatility Models�, Computational Statistics and Data
Analysis 52(6), 2892�2910.

Roberts, G., Gelman, A. and Gilks, W. (1997), �Weak Convergence and Optimal Scaling of
RandomWalk Metropolis Algorithms�, The Annals of Applied Probability 7(1), 110�
120.

Roberts, G. O. and Rosenthal, J. S. (2001), �Optimal Scaling for Various Random Walk
Metropolis Algorithms�, Statistical Science 16(4), 351�367.

Rosenthal, J. S. (2000), �Parallel Computing and Monte Carlo algorithms�, Far Eastern
Journal of Theoretical Statistics 4, 207�236.

Rue, H. (2001), �Fast Sampling of Gaussian Markov Random Field Models�, Journal of
the Royal Statistical Society Ser B. 63(2), 325�338.

Rue, H., Steinsland, I. and Erland, S. (2004), �Approximating Hidden Gaussian Markov
Random Models�, Journal of the Royal Statistical Society 66(4), 877�892.

Schmitt-Grohe, S. and Uribe, M. (2004), �Solving Dynamic General Equilibrium Models
Using a Second-Order Approximation to the Policy Function�, Journal of Economic
Dynamics and Control 28.

Smets, F. and Wouters, R. (2003), �An Estimated Stochastic Dynamic General Equi-
librium Model of the Euro Area�, Journal of the European Economic Association
1(5), 1123�1175.

Steinsland, I. (2007), �Parallel Exact Sampling and Evaluation of Gaussian Markov Ran-
dom Fields�, Computational Statistics and Data Analysis 51(6), 2969�2981.

38

Strickland, C. M., Forbes, C. S. and Martin, G. (2006), �Bayesian Analysis of the Sto-
chastic Conditional Duration Model�, Computational Statistics and Data Analysis
50(9), 2247�2267.

Strickland, C. M., Forbes, C. S. and Martin, G. M. (2009), �E¢ cient Bayesian Estimation
of Multivariate State Space Models�, Computational Statistics and Data Analysis
53(12), 4116�4125.

Strid, I. (2007a), �A Simple Adaptive Particle Filter for Second-Order Approximated
DSGE Models�. Mimeo, Stockholm School of Economics.

Strid, I. (2007b), �Parallel particle filters for likelihood evaluation in DSGE models: An
assessment�. Mimeo, Stockholm School of Economics.

Strid, I. and Walentin, K. (2008), �Block Kalman Filters for Large-scale DSGE models�,
Computational Economics 33(3), 277�304.

Takahashi, M., Omori, Y. and Watanabe, T. (2009), �Estimating Stochastic Volatility
Models using Daily Returns and Realized Volatility Simultaneously�, Computational
Statistics and Data Analysis 53(6), 2404�2426.

Whiley, M. and Wilson, S. P. (2004), �Parallel Algorithms for Markov Chain Monte Carlo
in Latent Spatial Gaussian Models�, Statistics and Computing 14(3), 171�179.

Wilkinson, D. (2006), Parallel Bayesian Computation, in E. J. Kontoghiorghes, ed.,
�Handbook of Parallel Computing and Statistics�, Chapman and Hall, chapter 16,
pp. 477�508.

Wilkinson, D. and Yeung, S. K. (2004), �A Sparse Matrix Approach to Bayesian Com-
putation in Large Linear Models�, Computational Statistics and Data Analysis
44(3), 493�516.

Yan, J., Cowles, M. K., Wang, S. and Armstrong, M. P. (2007), �Parallelizing
MCMC for Bayesian Spatiotemporal Geostatistical Models�, Statistics and Comput-
ing 17(4), 323�335.

39

